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1. Introduction

This paper is part of a project by the authors that aims to show that Cartan’s classifi-
cation of the (Hermitian) symmetric spaces has a K-theoretic background. This project
will be concluded in the follow-up paper [3].

The symmetric spaces that are discussed here consist of the open unit balls of so-called
JB∗-triples, an important generalization of the concept of a C∗-algebra. If the dimension
is finite, their open unit balls coincide exactly with the Hermitian symmetric spaces of
non-compact type so that all of these spaces are obtained through duality.

In the present paper we overcome a difficulty that is one of the main obstacles for
a direct generalization of the K-theory of C∗-algebras: the impossibility, in general, of
defining tensor products of a JB∗-triple with n × n matrices over the complex numbers.
The JB∗-triples that do have this property are precisely the ternary rings of operators
that coincide as spaces with the class of (full) Hilbert C∗-modules.

We will study a construction which allows the passage from an arbitrary JB∗-triple
to such a ternary ring in a way that behaves so nicely that it will pave the way for
the programme ahead. In § 2 we will collect some definitions and preliminary results,
§ 3 contains the actual construction of the enveloping ternary ring of operators, and in
§ 4 we calculate the enveloping ternary rings of all finite-dimensional Cartan factors. We
do this quite differently from the approach in [5] (the results of which were roughly
obtained around the same time) in that we use grids. These objects will be helpful in the
sequel paper [3], and are reminiscent of the root systems that are central to the classical
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approach. Finally, in § 5, we slightly improve a result from [5] on the structure of the
enveloping ternary ring in some special cases.

All the results in the present paper are taken from [2].

2. Preliminaries

We will first provide some notation, definitions and well-known facts of triple theory. Our
general references for the theory of JB∗-triple systems are [11] and [19]. For n ∈ N, we
denote by Mn the n×n matrices over the complex numbers, and if Z is a Banach space,
then B(Z) is the Banach algebra of bounded linear operators on Z. A Banach space Z

together with a sesquilinear mapping

Z × Z � (x, y) �→ x� y ∈ B(Z)

is called a JB∗-triple system if, for the triple product

{x, y, z} := (x� y)(z)

and all a, b, x, y, z ∈ Z, the following conditions are satisfied.
The triple product {x, y, z} is continuous in (x, y, z), it is symmetric in the outer

variables and the C∗-condition ‖{x, x, x}‖ = ‖x‖3 is satisfied. Moreover, the Jordan
triple identity

{a, b, {x, y, z}} = {{a, b, x}, y, z} − {x, {b, a, y}, z} + {x, y, {a, b, z}}

holds, the operator x�x has non-negative spectrum in the Banach algebra B(Z), and it
is Hermitian (i.e. exp(it(x�x)) is isometric for all t ∈ R).

A closed subspace W of a JB∗-triple system Z which is invariant under the triple
product, and therefore is a JB∗-triple system itself, is called a JB∗-subtriple (or subtriple
for short) of Z.

A closed subspace I of a JB∗-triple system Z is called a JB∗-triple ideal if {Z, I, Z} +
{I, Z, Z} ⊆ I. JB∗-triple ideals of Z are JB∗-subtriples of Z, and the kernel of a JB∗-triple
homomorphism is always a JB∗-triple ideal.

Every C∗-algebra A becomes a JB∗-triple system under the product

{a, b, c} := 1
2 (ab∗c + cb∗a). (2.1)

More generally, every closed subspace of a C∗-algebra that is invariant under the product
(2.1) is a JB∗-triple, called a JC∗-triple system. A JB∗-triple system Z that is a dual
Banach space is called a JBW∗-triple system. Its predual is usually denoted by Z∗.
The triple product of a JBW∗-triple is separately σ(Z, Z∗)-continuous and its predual is
unique.

An important example of JB∗-triples is given by the ternary rings of operators (TROs).
These are closed subspaces T ⊆ B(H) such that

xy∗z ∈ T (2.2)
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for all x, y, z ∈ T . SubTROs are closed subspaces U ⊆ T closed under (2.2) and
TRO-ideals are subTROs I of T such that IT ∗T + TI∗T + TT ∗I ⊆ I. TROs become
JB∗-triples under the product (2.1).

Let Z be a JB∗-triple system. An element e ∈ Z that satisfies {e, e, e} = e is called
a tripotent. The collection of all non-zero tripotents in Z is denoted by Tri(Z). A tripo-
tent is called minimal if {e, Z, e} = Ce. If e is a non-zero tripotent, then e induces a
decomposition of Z into the eigenspaces of e� e, the Peirce decomposition

Z = P e
0 (Z) ⊕ P e

1 (Z) ⊕ P e
2 (Z),

where P e
k (Z) := {z ∈ Z : {e, e, z} = 1

2kz} is the 1
2k-eigenspace, the Peirce k-space, of

e� e, for k = 0, 1, 2. Each Peirce k-space, k = 0, 1, 2, is again a JB∗-triple system. In
the case of a TRO T , the Peirce 2-space P e

2 (T ) becomes a unital C∗-algebra under the
product a • b := ae∗b, denoted by P e

2 (T )(e).
Every finite-dimensional JB∗-triple system Z is the direct sum of so-called Cartan

factors C1, . . . , C6. The two exceptional Cartan factors C5 and C6 can be realized as sub-
spaces of the 3 × 3 matrices over the complex Cayley algebra O, and we call Z purely
exceptional if it is composed of these two alone. Note that these JB∗-triple systems admit
no embedding into a space of bounded Hilbert space operators. The other four types are
treated in detail in § 5.

3. Universal objects

We prove the existence of the universal enveloping TRO and the universal enveloping
C∗-algebra of a JB∗-triple system. As a corollary, we obtain a new proof of one of the
main theorems of JB∗-triple theory.

The following lemma and theorem are generalizations of classical results for real
JB-algebras (cf. [9, Theorem 7.1.3] and [1, Theorem 4.36]).

Lemma 3.1. Let Z be a JB∗-triple system. Then there exists a Hilbert space H such
that for every JB∗-triple homomorphism ϕ : Z → B(K) the C∗-algebra Aϕ generated by
ϕ(Z) can be embedded ∗-isomorphically into B(H).

Proof. The cardinality of ϕ(Z) is less than or equal to the cardinality of Z. One can
now proceed with a proof similar to that of [1, Lemma 4.35]. �

Theorem 3.2. Let Z be a JB∗-triple system.

(a) There exist, up to ∗-isomorphism, a unique C∗-algebra C∗(Z) and a JB∗-triple
homomorphism ψZ : Z → C∗(Z) such that

(i) for every JB∗-triple homomorphism ϕ : Z → A, where A is an arbitrary
C∗-algebra, there exists a ∗-homomorphism C∗(ϕ) : C∗(Z) → A with C∗(ϕ) ◦
ψZ = ϕ,

(ii) C∗(Z) is generated as a C∗-algebra by ψZ(Z).
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(b) There exist, up to TRO-isomorphism, a unique TRO T ∗(Z) and a JB∗-triple homo-
morphism ρZ : Z → T ∗(Z) such that

(i) for every JB∗-triple homomorphism α : Z → T , where T is an arbitrary TRO,
there exists a TRO-homomorphism T ∗(α) : T ∗(Z) → T with T ∗(α) ◦ ρZ = α,

(ii) T ∗(Z) is generated as a TRO by ρZ(Z).

Proof. Let H be the Hilbert space from Lemma 3.1 and let I be the family of JB∗-
triple homomorphisms from Z to B(H). Let ψZ := ρZ :=

⊕
ψ∈I ψ and Ĥ :=

⊕
ψ∈I Hψ

be l2-direct sums with Hψ := H. Then ψZ (and ρZ) are JB∗-triple homomorphisms from
Z to B(Ĥ). Let C∗(Z) be the C∗-algebra and T ∗(Z) be the TRO generated by ρZ(Z)
in B(Ĥ). If A is a C∗-algebra and ϕ : Z → A is a JB∗-triple homomorphism, where
ϕ(Z) without loss of generality generates A as a C∗-algebra, then we can suppose (by
Lemma 3.1) that A is a subalgebra of B(H). Therefore, ϕ can be regarded as an element
of I. Let πϕ :

⊕
ψ∈I B(Hψ) → B(Hϕ) be the projection onto the ϕ-component. Then

πϕ(ψZ(z)) = πϕ(ρZ(z)) = ϕ(z) for all z ∈ Z. We define C∗(ϕ) and T ∗(ϕ) to be the
restrictions of πϕ to C∗(Z) and T ∗(Z), respectively. Uniqueness is proved in the usual
way using the universal properties. �

We call (T ∗(Z), ρZ) the universal enveloping TRO and (C∗(Z), ψZ) the universal
enveloping C∗-algebra of Z. Most of the time we only use the notation T ∗(Z) and C∗(Z)
for brevity.

Similar to the classical case [1, Proposition 4.40], there exists a TRO-antiautomorphism
on T ∗(Z).

Proposition 3.3. Let Z be a JB∗-triple system. There exists a TRO-antiauto-
morphism θ (i.e. a linear, bijective mapping from T ∗(Z) to T ∗(Z) such that θ(xy∗z) =
θ(z)θ(y)∗θ(x) for all x, y, z ∈ T ∗(Z)) of T ∗(Z) of order 2 such that θ ◦ ρZ = ρZ .

Proof. Denote by T ∗(Z)op the opposite TRO of T ∗(Z), i.e. the TRO that coincides
with T ∗(Z) as a set and is equipped with the same norm. If γ : T ∗(Z) → T ∗(Z)op,
γ(a) = aop denotes the (formal) identity mapping, then (xy∗z)op = zop(yop)∗xop for all
x, y, z ∈ T ∗(Z).

The composed mapping γ ◦ ρZ : Z → T ∗(Z)op is a JB∗-triple homomorphism and thus
lifts to a TRO-homomorphism T ∗(γ ◦ ρZ) : T ∗(Z) → T ∗(Z)op. We set

θ := γ−1 ◦ T ∗(γ ◦ ρZ) : T ∗(Z) → T ∗(Z).

It can easily be seen (since, by construction, θ fixes ρZ(Z), which generates T ∗(Z) as
a TRO) using the universal properties of T ∗(Z) that θ is a TRO-antiautomorphism of
order 2. �

We refer to θ as the canonical TRO-antiautomorphism of order 2 on T ∗(Z).

Corollary 3.4. If the JB∗-triple system Z in Theorem 3.2 is a JC∗-triple, then the
mappings ψZ and ρZ are injective.
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Obviously, ψZ and ρZ are the 0 mappings if Z is purely exceptional.

Lemma 3.5. For every JB∗-triple ideal I in a JB∗-triple system Z and every JB∗-triple
homomorphism ϕ : I → W , where W is a JBW∗-triple system, there exists a JB∗-triple
homomorphism Φ : Z → W that extends ϕ.

Proof. We know from [7] that the second dual Z ′′ of Z is a JBW∗-triple system
and that the canonical embedding ι : Z → Z ′′ is an isometric JB∗-triple isomorphism
onto a norm closed w∗-dense subtriple of Z ′′. By [4, Remark 1.1], and since W is a
JBW∗-triple system, there exists a unique, w∗-continuous extension ϕ̄ : I ′′ → W of ϕ

with ϕ̄(I ′′) = ϕ(I)
w∗

. Let

I ′′⊥ := {x ∈ Z ′′ : y �→ {x, i, y} is the 0 mapping for all i ∈ I ′′}

be the w∗-closed orthogonal complement of I ′′ with Z ′′ = I ′′ ⊕ I ′′⊥ (cf. [10, Theo-
rem 4.2 (4)]). If we denote the projection of Z ′′ onto I ′′ by π, we get the desired extension
of ϕ by defining Φ := ϕ̄ ◦ π ◦ ι. �

We obtain a new proof of an important theorem of Friedman and Russo (see [8,
Theorem 2]).

Corollary 3.6. Any JB∗-triple system Z contains a unique purely exceptional ideal
J such that Z/J is JB∗-triple isomorphic to a JC∗-triple system.

Proof. Let J be the kernel of the mapping ρZ : Z → T ∗(Z), which is a JB∗-triple
ideal. We know that Z/J is a JB∗-triple system that is JB∗-triple isomorphic to the
JB∗-triple system ρZ(Z) ⊆ T ∗(Z) and hence to a JC∗-triple system.

Let us assume that J is not purely exceptional, which means that there exists a non-
zero JB∗-triple homomorphism ϕ from J into some B(H). By Lemma 3.5, this JB∗-triple
homomorphism extends to a JB∗-triple homomorphism φ : Z → B(H). Since φ = T ∗(φ)◦
ρZ holds, φ vanishes on J , which is a contradiction.

Now let I be another purely exceptional ideal such that Z/I is JB∗-triple isomorphic
to a JC∗-triple system. On the one hand we have I ⊆ ker(ρZ) = J . On the other hand,
let ϕ : Z → B(H) be a JB∗-triple homomorphism with kernel I. Then ϕ has to vanish
on J and therefore J ⊆ I. �

4. Cartan factors

In this section we compute the universal enveloping TROs of the finite-dimensional Car-
tan factors. Since the universal enveloping TROs of the two exceptional factors are 0, we
have to compute the factors of types I–IV. We do so by using the grids spanning these
factors (cf. [6] and [2, Chapter 2]). We make much use of the elaborate work on grids
in [16].
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4.1. Factors of type IV

A spin system is a subset S = {id, s1, . . . , sn}, n � 2, of self-adjoint elements of B(H)
that satisfy the anti-commutator relation sisj + sjsi = 2δi,j for all i, j ∈ {1, . . . , n}. The
complex linear span of S is a JC∗-algebra of dimension n + 1 (cf. [9]). Every JC∗-triple
system that is JB∗-isomorphic to such a JC∗-algebra is called a spin factor. We now
recall the definition of a spin grid: a spin grid is a collection {uj , ũj | j ∈ J} (or {uj , ũj |
j ∈ J} ∪ {u0} in finite odd dimensions), where J is an index set with 0 /∈ J , for j ∈ J ,
uj , ũj are minimal tripotents and, if we let i, j ∈ J , i �= j, then

(SPG1) {ui, ui, ũj} = 1
2 ũj , {ũj , ũj , ui} = 1

2ui,

(SPG2) {ui, ui, uj} = 1
2uj , {uj , uj , ui} = 1

2ui,

(SPG3) {ũi, ũi, ũj} = 1
2 ũj , {ũj , ũj , ũi} = 1

2 ũi,

(SPG4) {ui, uj , ũi} = − 1
2 ũj ,

(SPG5) {uj , ũi, ũj} = − 1
2ui,

(SPG6) all other products of elements from the spin grid are 0.

In the case of finite odd dimensions (where u0 is present) we have, for all i ∈ J , the
additional conditions (as exceptions of (SPG6))

(SPG7) {u0, u0, ui} = ui, {ui, ui, u0} = 1
2u0,

(SPG8) {u0, u0, ũi} = ũi, {ũi, ũi, u0} = 1
2u0,

(SPG9) {u0, ui, u0} = −ũi, {u0, ũi, u0} = −ui.

It is known (see [6]) that every finite-dimensional spin factor is linearly spanned by a
spin grid (but not necessarily by a spin system).

Let G := {ui, ũi : i ∈ I} (respectively, G̃ := G ∪ {u0}) be a spin grid that spans the
JC∗-triple Z and let 1 ∈ I be an arbitrary index. We define a tripotent v := i(u1 + ũ1);
Neal and Russo give in [16] a method of constructing from G (respectively, G̃) and v a
JC∗-triple system that is JB∗-triple isomorphic to Z and contains a spin system. First
they showed for the Peirce 2-space P v

2 (Z) of v that P v
2 (Z) = Z and that if A is any

von Neumann algebra containing Z, then P v
2 (A)(v) is a C∗-algebra TRO-isomorphic to

P v
2 (A) (the isomorphism is the identity mapping). Moreover, they proved the following.

Theorem 4.1 (Neal and Russo [16, Theorem 3.1]). The space P v
2 (Z)(v) is the

linear span of a spin grid. More precisely, let sj = uj + ũj , j ∈ I \ {1}; tj := i(uj − ũj),
j ∈ I. Then a spin system that linearly spans P v

2 (Z)(v) is given by

{sj , tk, v : j ∈ I \ {1}, k ∈ I}

or, if the spin factor is of odd finite dimension,

{sj , tk, v, u0 : j ∈ I \ {1}, k ∈ I}.
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Lemma 4.2. Let T be a TRO and let v ∈ Tri(T ).

(a) We have P v
2 (T ) = {z ∈ T : v(vz∗v)∗v = z}.

(b) Let Z ⊆ B(H) be a JC∗-triple system and let T be the TRO generated by Z. If
Z = P v

2 (Z), then T = P v
2 (T ).

(c) If v is a tripotent in the TRO T , then the Peirce 2-space P v
2 (T ) is a subTRO of T .

Proof. (a) Let z ∈ T with vv∗z + zv∗v = 2z. Then vv∗ and v∗v are projections with
vv∗zv∗v + zv∗v = 2zv∗v and vv∗zv∗v + vv∗z = 2vv∗z. Thus, we have vv∗zv∗v = zv∗v =
vv∗z and therefore vv∗zv∗v = 1

2 (vv∗z + zv∗v) = z.
If z ∈ Z with vv∗zv∗v = z, then vv∗zv∗v = zv∗v and vv∗zv∗v = vv∗z. We get

1
2 (vv∗z + zv∗v) = vv∗zv∗v = z.

(b) Let x = z1z
∗
2z3 · · · z2nz2n+1 ∈ T , with zj ∈ Z = P v

2 (Z). By (a) we get vv∗zjv
∗v = zj

and zj = vv∗zj = zjvv∗. Thus,

vv∗xv∗v = (vv∗z1)z∗
2z3 · · · z∗

2n(z2n+1v
∗v) = z1z

∗
2z3 · · · z∗

2nz2n+1 = x,

and it follows that x ∈ P v
2 (T ).

(c) Let a, b, c ∈ P v
2 (T ), then

vv∗ab∗cv∗v = vv∗a(vv∗bv∗v)∗cv∗v = (vv∗av∗v)b∗(vv∗cv∗v) = ab∗c.

�

As a first result we get an upper bound for the dimension of the universal enveloping
TRO of a spin system.

Proposition 4.3. Let Z be a spin factor of dimension k + 1 < ∞. Then

dim T ∗(Z) � 2k.

Proof. For k = 2n let
G = {u1, ũ1, . . . , un, ũn}

(or, G = {u1, ũ1, . . . , un, ũn}∪{u0} for k = 2n+1, respectively) be a spin grid generating
Z. Then ρZ(G) is a spin grid in ρZ(Z) ⊆ T ∗(Z). By Lemma 4.2 we have for v :=
i(u1 + ũ1) that P v

2 (T ∗(Z)) = T ∗(Z), which is TRO-isomorphic to P v
2 (T ∗(Z))(v). By

Theorem 4.1, the unital C∗-algebra P v
2 (T ∗(Z))(v) contains a spin system {id, s1, . . . , sk},

which generates it as a C∗-algebra. It is easy to observe (see [9, Remark 7.1.12]) that
P v

2 (T ∗(Z))(v) is linearly spanned by the 2k elements si1 · · · sij , where 1 � i1 < i2 < · · · <

ij and 0 � j � k. �

From the proof of Proposition 4.3 we can deduce that the universal enveloping TRO
of a spin factor is TRO-isomorphic to its universal enveloping C∗-algebra, once we have
shown that dimT ∗(Z) = 2k.
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In Jordan C∗-theory, the following famous spin system appears (cf. [9, 6.2.1]).
Let

σ1 :=

(
1 0
0 −1

)
, σ2 :=

(
0 1
1 0

)
and σ3 :=

(
0 i

−i 0

)
be the Pauli spin matrices.

For matrices a = (αi,j) ∈ Mk and b ∈ Ml we define a ⊗ b := (αi,jb) ∈ Mk(Ml) = Mkl.
If a ∈ Mk and l ∈ N, we denote by a⊗l the l-fold tensor product of a with itself.

The so-called standard spin system, which linearly generates a (k+1)-dimensional spin
factor in M2n when k � 2n, is given via {id, s1, . . . , sk} with

s1 := σ1 ⊗ id⊗(n−1), s2 := σ2 ⊗ id⊗(n−1),

s3 := σ3 ⊗ σ1 ⊗ id⊗(n−2), s4 := σ3 ⊗ σ2 ⊗ id⊗(n−2),

s2l+1 := σ⊗l
3 ⊗ σ1 ⊗ id⊗(n−l−1), s2l+2 := σ⊗l

3 ⊗ σ1 ⊗ id⊗(n−l−1)

for 1 � l � n − 1.

Lemma 4.4. Let S = {id, s1, . . . , sk} be the standard spin system. If k = 2n, then
the TRO generated by S in M2n is M2n . If k = 2n − 1, then the generated TRO is
TRO-isomorphic to M2n−1 ⊕ M2n−1 .

Proof. Let T be the TRO generated by S.
Let k = 2n. It suffices to show that the 3k elements

aj := id⊗(j−1) ⊗ σ1 ⊗ id⊗(n−j),

bj := id⊗(j−1) ⊗ σ2 ⊗ id⊗(n−j),

cj := id⊗(j−1) ⊗ σ1 ⊗ id⊗(n−j),

for every j = 1, . . . , k, are elements of T , since aj , bj , cj and id ⊗ · · · ⊗ id span C ⊗ · · · ⊗
C ⊗ M2 ⊗ C ⊗ · · · ⊗ C.

Obviously, a1 = s1 ∈ T . Suppose we show aj ∈ T for a fixed j � 1. Then

s2js
∗
2j+1aj = id⊗(j−1) ⊗ σ2σ3σ1 ⊗ σ1id⊗(n−j−1) = iaj+1.

Similarly, we have b1 = s2 ∈ T . If we show for a fixed j � 1 that bj ∈ T , then

s2js
∗
2j+2aj = ibj+1.

Another easy induction shows that cj ∈ T for all j = 1, . . . , n.
If k = 2n − 1, we have an ∈ T , bn, cn /∈ T . Since σ1 and id ⊗ · · · ⊗ id generate the

diagonal matrices, the statement is clear.
Alternatively, we could argue that T contains the identity, so T has to be a C∗-algebra.

Then the statement follows from [9, Theorem 6.2.2]. �
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Theorem 4.5. For the universal enveloping TRO of a spin factor Z with dim Z = k+1
we have

T ∗(Z) =

{
M2n−1 ⊕ M2n−1 if k = 2n − 1,

M2n if k = 2n.

Proof. The JC∗-triple system Z is JB∗-isomorphic to the JC∗-algebra J linearly gen-
erated by the standard spin system {1, s1, . . . , sk}. Since J generates M2n−1 ⊕ M2n−1 if
k = 2n−1 (respectively, M2n if k = 2n) as a TRO, by the universal property of T ∗(Z) we
obtain a surjective TRO-homomorphism from T ∗(Z) onto M2n−1 ⊕ M2n−1 if k = 2n − 1
(respectively, M2n if k = 2n). By Proposition 4.3, this has to be an isomorphism. �

4.2. Factors of type III

A Hermitian grid is a family {uij : i, j ∈ I} of tripotents in Z such that, for all
i, j, k, l ∈ I,

(HG1) uij = uji for all i, j ∈ I,

(HG2) {ukl, ukl, uij} = 0 if {i, j} ∩ {k, l} = ∅,

(HG3) {uii, uii, uij} = 1
2uij , {uij , uij , uii} = uii if i �= j,

(HG4) {uij , uij , ujk} = 1
2ujk, {ujk, ujk, uij} = 1

2uij if i, j, k are pairwise distinct,

(HG5) {uij , ujk, ukl} = 1
2uil if i �= l,

(HG6) {uij , ujk, uki} = uii if at least two of these tripotents are distinct.

(HG7) all other products of elements from the Hermitian grid are 0.

Let Z be a finite-dimensional TRO. Then the direct sum

T =
r⊕

α=1

Mnα,mα

can be described by so-called rectangular matrix units: let E(α, i, j) := Ei,j ∈ Mnα,mα

be the matrix in Mnα,mα that is 0 everywhere except in the (i, j)-component for all
1 � i � nα, 1 � j � mα and α ∈ {1, . . . , r}, where it takes the value 1. Set

e
(α)
i,j := (0, . . . , 0, E(α, i, j), 0, . . . , 0) ∈ T,

where E(α, i, j) is in the αth summand. The rectangular matrix units satisfy the follow-
ing:

(i) e
(α)
i,j (e(α)

l,j )∗e
(α)
l,k = e

(α)
i,k ;

(ii) e
(α)
i,j (e(β)

n,m)∗e
(γ)
p,q = 0 for j �= m, n �= p, α �= β or β �= γ;

(iii) T = lin{e
(α)
i,j : 1 � α � r, 1 � i � nα, 1 � j � mα}.
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If U is another TRO which contains elements f
(β)
i,j satisfying the analogues of (i)–(iii)

for 1 � i � nα, 1 � j � mα and α, β ∈ {1, . . . , r}, then it is easy to see that the
mapping sending e

(α)
i,j to f

(α)
i,j for 1 � i � nα, 1 � j � mα and α ∈ {1, . . . , r} is a

TRO-isomorphism.
Let Z be a finite-dimensional JC∗-triple system spanned by a Hermitian grid {uij : 1 �

i, j � n} and T the TRO generated by this grid. Define

eij := uii

( n∑
k=1

ukk

)∗
uji ∈ T

for 1 � i, j � n. From [16, Lemma 3.2 (a)] we can conclude that {eij} forms a system of
rectangular matrix units in T . We get that

T ∗(Z) � Mn.

4.3. Factors of type II

A symplectic grid is a family {uij : i, j ∈ I, i �= j} of minimal tripotents such that, for
all i, j, k, l ∈ I,

(SYG1) uij = −uji for i �= j,

(SYG2) {uij , uij , ukl} = 1
2ukl, {ukl, ukl, uij} = 1

2uij for {i, j} ∩ {k, l} �= ∅,

(SYG3) {ukl, ukl, uij} = 0 if {i, j} ∩ {k, l} = ∅,

(SYG4) {uij , uil, ukl} = 1
2ukj for i, j, k, l pairwise distinct,

(SYG5) all other triple products in the symplectic grid are 0.

The standard example of a finite-dimensional symplectic grid is the collection {Ui,j : 1 �
i, j � n, i �= j} ⊆ Mn, where Ui,j , for i < j, is a complex n × n matrix, which is 0
everywhere except for the (i, j)-entry, which is 1, and the (j, i)-entry, which is −1. This
grid spans linearly the JC∗-triple system {A ∈ Mn : At = −A} of skew-symmetric n × n

matrices; its TRO span is Mn.
Let G := {uij : i, j ∈ I, i �= j} be a symplectic grid, let Z be the JC∗-triple system

spanned by G and let T be the TRO generated by it. Since for dimZ = 3 Z is JB∗-triple
isomorphic to a type I Cartan factor and for dimZ = 6 it is JB∗-triple isomorphic to a
type IV Cartan factor, both covered in other sections, let dimZ � 10.

If we define

eii := uiku∗
kluil

and

eij := eiie
∗
iiuije

∗
jjejj
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for 1 � i, j, k, l � n pairwise distinct, using [16, Lemmas 4.1 and 4.3] yields that the
elements eii and eij are well defined and that, for v :=

∑
ekk,

ve∗
ijv = eji and eijv

∗ekl = δjkeil.

Using this result we see that

eije
∗
klemn = eijv

∗elkv∗emn

= δjlδkmein,

which shows that {eij} is a set of rectangular matrix units.

Theorem 4.6. If Z is a JC∗-triple system spanned by a symplectic grid with dim Z �
10, then

T ∗(Z) = Mn.

4.4. Factors of type I

Let ∆ and Σ be two index sets. A rectangular grid is a family {uij : i ∈ ∆, j ∈ Σ} of
minimal tripotents such that

(RG1) {uil, uil, ujk} = 0 if i �= j, k �= l,

(RG2) {uil, uil, ujk} = 1
2ujk, {ujk, ujk, uil} = 1

2uil if either j = i, k �= l or j �= i, k = l,

(RG3) {ujk, ujl, uil} = 1
2uik if j �= i and k �= l,

(RG4) all other triple products in the rectangular grid equal 0.

Let Z be the JC∗-triple system generated by a finite rectangular grid. We assume
that Z is finite dimensional and hence JB∗-triple isomorphic to Mn,m with m = |∆| and
n = |Σ|.

We first exclude some candidates for T ∗(Z).

Lemma 4.7. For the JC∗-triple system Z = Mn,m, its universal enveloping TRO
T ∗(Z) is not TRO-isomorphic to Mn,m or to Mm,n.

Proof. Assume that T ∗(Z) is TRO-isomorphic to Mn,m. Let ·t : Mn,m → Mm,n be the
transposition mapping. According to the universal property of T ∗(Z) there is a mapping
T ∗(·t) such that

Mn,m

T ∗(·t)

����
��

��
��

�

Mn,m

ρZ

����������� ·t �� Mm,n

commutes. Since ρZ is bijective, there is a TRO-isomorphism T ∗(ρZ) : Mn,m → Mn,m

with T ∗(ρZ)◦ρZ = id. This means T ∗(ρZ) = ρ−1
Z ; in particular, ρZ is a complete isometry.

Since ρZ and ·t are bijective, the same holds for T ∗(·t) and it follows that ·t is a
complete isometry. We get a contradiction because ·t is not even completely bounded.
The other statement can be proved analogously. �
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Lemma 4.8 (Neal and Russo [16, Lemmas 5.1 (b) and 5.2 (b)]). Let {uij} be
a rectangular grid spanning Z.

(a) If, for i ∈ ∆, k, l ∈ Σ, where k �= l, we have uilu
∗
ik = 0 or for i, j ∈ ∆, k ∈ Σ, where

i �= j, we have u∗
ikujk = 0, then Z is TRO-isomorphic to Mn,m.

(b) If, for i ∈ ∆, k, l ∈ Σ, where k �= l, we have u∗
iluik = 0 or for i, j ∈ ∆, k ∈ Σ, where

i �= j, we have uiku∗
jk = 0, then Z is TRO-isomorphic to Mm,n.

By this lemma we obtain the following.

Lemma 4.9. Let {eij} be a rectangular grid spanning ρZ(Z) ⊆ T ∗(Z), then we have

eike∗
il �= 0 and e∗

ikeil �= 0 for all i ∈ ∆, k, l ∈ Σ, (4.1)

as well as

eike∗
jk �= 0 and e∗

ikejk �= 0 for all i, j ∈ ∆, k ∈ Σ. (4.2)

Proof. If one of these conditions is not satisfied, by Lemma 4.8 and since ρZ(Z)
generates T ∗(Z) as a TRO, we obtain that ρZ(Z) = T ∗(Z) and hence is isomorphic to
Mn,m (respectively, Mm,n). But this is a contradiction to Lemma 4.7. �

Lemma 4.10. Let rankZ � 2 and let {eij} be a rectangular grid spanning ρZ(Z).
Then

p :=
∑
i∈∆

∏
j∈Σ

eije
∗
ij ∈ C∗(Z)

is a sum of non-zero orthogonal projections. We have

pT ∗(Z) ⊆ T ∗(Z), (1 − p)T ∗(Z) ⊆ T ∗(Z).

Proof. Since (4.1) and (4.2) hold, we can use [16, Lemma 5.5] to obtain that∏
j∈Σ

eije
∗
ij �= 0

are orthogonal projections for all i ∈ ∆.
The fact that p leaves T ∗(Z) invariant is obvious. �

Lemma 4.11. For all i, k, a ∈ ∆, j, l, b ∈ Σ we have

peij(pekl)∗peab = peije
∗
klpeab ∈ lin{peij},

and for q := (1 − p)

qeij(qekl)∗qeab = qeije
∗
klqeab ∈ lin{qeij}.
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Proof. Since {eij} is a rectangular grid, we know for i �= k and j �= l that

eije
∗
kl = 0 and e∗

ijekl = 0,

and therefore, for i �= k and j �= l,

peil(pekl)∗ = peile
∗
klp = 0 (4.3)

as well as

(peil)∗pekl = e∗
ilpekl

= e∗
il

( ∑
α∈∆

∏
β∈Σ

eαβe∗
αβ

)
ekl

= e∗
ilei1e

∗
i1 · · · ein e∗

inekl︸ ︷︷ ︸
=0 if n �=l

= 0, (4.4)

since the range projections of collinear tripotents commute by [16, Lemma 5.4].
Equations (4.3) and (4.4) lead us to the fact that we only have to prove (for arbitrary

a ∈ ∆, b ∈ Σ) that

peik(peil)∗peab, k �= l, pejk(peik)∗peab, i �= j,

peil(peil)∗peab, peab(peil)∗peik, k �= l,

peab(peil)∗pejl, i �= j, peab(peil)∗peil

are elements of lin{peij}.
Using (4.3) and (4.4) again, we have to prove this in the following cases:

peik(peil)∗peib, k �= l, k �= b �= l, peik(peil)∗peik, k �= l,

peik(peil)∗peil, k �= l, peik(peil)∗peal, k �= l, a �= i,

pejk(peik)∗peib, b �= k, i �= j pejk(peik)∗peik, i �= j,

pejk(peik)∗pejk, i �= j, pejk(peik)∗peak, i �= j, a �= i,

peil(peil)∗peib, b �= l, peil(peil)∗peal, a �= i,

peil(peil)∗peil.

We obtain a similar list for q. Luckily, Neal and Russo calculated all these products
to show that {peij} is a rectangular grid (see the proof of [16, Lemma 5.6]) and it is
true that all of them are elements of {peij}. One can show by similar methods that all
products in the list for q are elements of the rectangular grid {(1 − p)eij}. �

Proposition 4.12. If rankZ � 2, for the universal enveloping TRO of Z we have

T ∗(Z) = lin{peij , (1 − p)eij : 1 � i � n, 1 � i � m};

in particular,
dim T ∗(Z) � 2nm.
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Proof. The rectangular grid {eij} spans ρZ(Z), which generates T ∗(Z) as a TRO, so
an element x ∈ T ∗(Z) has to be of the form

x =
n∑

α=1

λαeα
1 (eα

2 )∗eα
3 · · · (eα

2n)∗eα
2kα+1,

with eα
1 , . . . , eα

2kα+1 ∈ {eij}, λα ∈ C and kα ∈ N for all 1 � α � n, n ∈ N. Let
e1, . . . , e2n+1 and e := e1e

∗
2e3 · · · e2ne∗

2n+1 ∈ T ∗(Z). Then

e = (pe1 + (1 − p)e1)(pe2 + (1 − p)e2)
∗ · · · (pe2n+1 + (1 − p)e2n+1)

= pe1(pe2)
∗ · · · pe2n+1 + (1 − p)e1((1 − p)e2)

∗ · · · (1 − p)e2n+1

+ mixed terms in p and (1 − p)

= pe1(pe2)
∗ · · · pe2n+1 + (1 − p)e1((1 − p)e2)

∗ · · · (1 − p)e2n+1,

since {peij} ⊥ {(1 − p)eij} by [16, Lemma 5.6]. An inductive use of Lemma 4.11 gives
us e ∈ {peij , (1 − p)eij : 1 � i � n, 1 � i � m}. �

Theorem 4.13. Let Z be a JC∗-triple system of rank � 2 and isomorphic to a finite-
dimensional Cartan factor of type I. Let {uij ; 1 � i � n, 1 � j � m} be a grid spanning
Z. Then

T ∗(Z) = Mn,m ⊕ Mm,n.

Proof. We identify Z with Mn,m. The mapping Φ : Mn,m → Mn,m ⊕ Mm,n, A �→
(A, At), is a JB∗-triple isomorphism onto a JB∗-subtriple of Mn,m ⊕Mm,n that generates
Mn,m ⊕ Mm,n as a TRO. Since by Proposition 4.12 dimT ∗(Z) � 2nm, the induced
mapping T ∗(Φ) : T ∗(Z) → Mn,m ⊕ Mm,n has to be a TRO isomorphism. �

For the rest of this section we assume that rank Z = 1 and Z is of finite dimension.
This implies that if {uij ; 1 � i � n, 1 � j � m} is a rectangular grid spanning Z, then
n or m have to be equal to 1. In this special case the definition of a rectangular grid
becomes simpler.

A finite rectangular grid of rank 1 is a set {u1, . . . , un} of tripotents where

(RG′1) {ui, uj , ui} = 0 for i �= j,

(RG′2) {ui, ui, uk} = 1
2uk for i �= k,

(RG′3) all other products are 0.

Let Z be an n-dimensional type I Cartan factor of rank 1. We fix a finite rectangular
grid {e1, . . . , en} of rank 1 spanning ρZ(Z) ⊆ T ∗(Z).

Lemma 4.14. Let Z be as above. Then

dim T ∗(Z) �
n∑

k=1

(
n

k − 1

) (
n

k

)
.
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Proof. Using the grid properties (RG′1)–(RG′3) we show that

T ∗(Z) = lin{ei1e
∗
i2ei3 · · · e∗

i2k
ei2k+1 : ij < ij+2, 1 � j � 2k − 1, 0 � k � 1

2 (n − 1)}.

For a fixed k we have
(

n
k−1

)(
n
k

)
choices for ei1e

∗
i2

ei3 · · · e∗
i2k

ei2k+1 . This is true because
ij < ij+2. We have

(
n
k

)
choices for i1 < i3 < · · · < i2k+1 and

(
n

k−1

)
choices for i2 < i4 <

· · · < i2k.
To prove that T ∗(Z) is the above-mentioned linear span, we give an induction that

takes x = ei1e
∗
i2

ei3 · · · e∗
i2k

ei2k+1 ∈ T ∗(Z) and rearranges the grid elements such that x

is a sum of elements of the form ej1e
∗
j2

ej3 · · · e∗
j2k

ej2k+1 with j1 � j3 � · · · � j2l+1 and
j2 � j4 � · · · � j2l. Since the grid elements are tripotents, we can assume that we do not
have three equal indices in a row. If we have the case eαe∗

βeα, where α �= β, this equals
0 by the minimality of the tripotents (according to (RG′1)). Therefore, ja < ja+2 for all
1 � a � 2l − 1. In particular, l � 1

2 (n − 1).
Therefore, let x = ei1e

∗
i2

ei3 · · · e∗
i2k

ei2k+1 ∈ T ∗(Z). Since the eia are all minimal tripo-
tents, we can assume eia �= eia+2 .

For k = 0 there is nothing to prove. Additionally, we prove the case when k = 1. Let
x = ei1e

∗
i2

ei3 .

• If i1 < i3, we are done.

• If i1 = i2 > i3, we can use (RG′2) to get x = ei3 − ei3e
∗
i1

ei1 .

• If i1 > i2 = i3, we can also use (RG′2) to get x = ei1 − ei2e
∗
i2

ei1 .

• If i1 �= i2 �= i3, then if i1 > i3 we can use (RG′3) and we deduce x = −ei3e
∗
i2

ei1 .

Now we assume that we have shown the statement for 2k + 1 ∈ N, 2k + 3 � n and for all
lesser indices. If we apply our induction statement to the first 2k +1 grid elements in the
product and then apply the beginning of the induction to all of the last three elements of
the products in the resulting sum, then we can easily convince ourselves that in at most
three repetitions of this procedure we get the desired form for x. �

Again we have to give a faithful representation T of T ∗(Z). This happens to be more
complicated than in the other cases. Again we can use the work of Neal and Russo. In [16]
they showed that a JC∗-triple system that is linearly spanned by a finite rectangular
grid of rank 1 with n elements has to be completely isometric (in particular, JB∗-triple
isomorphic) to one of the spaces Hk

n, k = 1, . . . , n, that are generalizations of the row
and column Hilbert space.

We recall the construction of the spaces Hk
n (see [16, §§ 6 and 7] or [17, § 1]). Let

1 � k � n and let I and J be subsets of {1, . . . , n} such that I has k − 1 elements and J

has n − k elements. There are qk :=
(

n
k−1

)
choices for I and

pk :=

(
n

n − k

)
=

(
n

k

)
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choices for J . We assume that the collections I := {I1, . . . , Iqk
} and J := {J1, . . . , Jpk

} of
such sets are ordered lexicographically. Let eI1 , . . . , eIqk

and eJ1 , . . . , eJpk
be the canonical

bases of C
pk and C

qk . We can define an element in Mpk,qk
by EI,J := Ei,j , when I = Ii ∈

I and J = Jj ∈ J . The space Hk
n is the linear span of matrices bn,k

i , 1 � i � n, given by

bn,k
i :=

∑
I∩J=∅,

(I∪J)c={i}

sgn(I, i, J)EJ,I , (4.5)

where sgn(I, i, J) is the signature of the permutation taking (i1, . . . , ik−1, i, j1, . . . , jn−k)
to (1, . . . , n), when I = {i1, . . . , ik−1}, i1 < i2 < · · · < ik−1, and J = {j1, . . . , jn−k},
where j1 < j2 < · · · < jn−k.

One can show that the TRO spanned by bn,k
1 , . . . , bn,k

n equals Mpk,qk
, so if we represent

our JC∗-triple system Z as
⊕n

k=1 Hk
n, with Lemma 4.14 we get the following.

Theorem 4.15. If Z is a JC∗-triple system spanned by a finite rectangular grid of
rank 1, then

T ∗(Z) =
n⊕

k=1

Mpk,qk
,

where

pk =

(
n

k

)
and qk =

(
n

k − 1

)
for all k = 1, . . . , n.

With this result the list of universal enveloping TROs of the finite-dimensional Cartan
factors is complete.

5. The radical

We use the theory of reversibility developed in [5] to prove some facts for the universal
enveloping TRO of a universally reversible TRO T . We consider the case in which a
universally reversible TRO T contains an ideal of codimension 1 that is not covered
in [5]. We show that there exists an ideal R(T ) in T that is universally reversible and
that does not contain an ideal of codimension 1 itself, such that T/R(T ) is an abelian
JB∗-triple system. We obtain an exact sequence

0 → R(T ) ⊕ θ(R(T )) → T ∗(T ) → CT

0 (Epi(T/R(T ), C)) → 0,

where the notation is given below.
We adopt the following definition from [5]. It is the generalization of reversibility of

JC∗-algebras.

Definition 5.1. A JC∗-triple system Z ⊆ B(H) is said to be reversible if

1
2 (x1x

∗
2x3 · · ·x∗

2nx2n+1 + x2n+1x
∗
2n · · ·x3x

∗
2x1) ∈ Z

for all x1, . . . , xn ∈ Z and n ∈ N. We call a JC∗-triple system universally reversible if it
is reversible in every representation.

https://doi.org/10.1017/S0013091513000461 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091513000461


The universal enveloping TRO of a JB∗-triple system 363

Obviously, every TRO, and therefore every C∗-algebra, is reversible (but not necessarily
universally reversible, since we have to cope with JB∗-triple homomorphisms). A JC∗-
triple system is universally reversible if and only if it is reversible when embedded in its
universal enveloping TRO, as follows from [5, Lemma 4.2].

Lemma 5.2 (Bunce et al . [5, Theorem 4.4]). Let Z be a universally reversible
JC∗-triple system and let ϕ : Z → B(H) be an injective triple homomorphism. Suppose
there exists a TRO antiautomorphism Ψ of the TRO-span TRO(ϕ(Z)) such that Ψ ◦ϕ =
ϕ. Then T ∗(ϕ) : T ∗(Z) → TRO(ϕ(Z)) is a TRO-isomorphism.

Lemma 5.3 (Bunce et al . [5, Corollary 4.5]). Let T be a universally reversible
TRO in a C∗-algebra A. Suppose T has no TRO-ideals of codimension 1 and there is a
TRO antiautomorphism θ : A → A of order 2. Then T ∗(T ) � T ⊕ θ(T ) with universal
embedding a �→ (a, θ(a)).

In order to establish the announced generalization of Lemma 5.3 we define an ideal
such that the quotient of T by this ideal is abelian. We first recall some facts about
abelian JB∗-triple systems that allow us to compute the universal enveloping TRO of a
general abelian triple, before showing that every ideal of a universal reversible JC∗-triple
system is universally reversible.

Recall that a JB∗-triple system Z is called abelian if

{{a, b, c}, d, e} = {a, {b, c, d}, e} = {a, b, {c, d, e}}

for all a, b, c, d, e ∈ Z. The importance of abelian JB∗-triple systems derives from the
fact that every JB∗-triple system is locally abelian, which means that every element in
a JB∗-triple system generates an abelian subtriple. Every commutative C∗-algebra is an
abelian JB∗-triple system with the product {a, b, c} = ab∗c. We call the elements of

Epi(Z, C) := {ϕ : Z → C : ϕ �= 0 is a triple homomorphism}

the characters of Z. Following [12, § 1], we consider Epi(Z, C) as a subspace of Z ′ =
B(Z, C) and endow it with the σ(Z∗, Z) topology. Then Epi(Z, C) becomes a locally
compact space and a principal T-bundle for the group T = {t ∈ C : |t| = 1}. The base
space Epi(Z, C)/T can be identified with the set of all JB∗-triple ideals I ⊆ Z such that
Z/I is isometric to C. The space

CT

0 (Epi(Z, C)) := {f ∈ C0(Epi(Z, C)) | ∀t ∈ T, ∀λ ∈ Epi(Z, C) : f(tλ) = tf(λ)}

is a subtriple of the abelian C∗-algebra C0(Epi(Z, C)), the continuous functions on
Epi(Z, C) vanishing at infinity. The mapping

·̂ : Z → CT

0 (Epi(Z, C)) (5.1)

defined by x̂(λ) = λ(x) for all x ∈ Z and λ ∈ Epi(Z, C) is called the Gelfand transform
of Z.
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Theorem 5.4 (Kaup [13, Theorem 6.2]). For every JB∗-triple system Z the fol-
lowing assertions are equivalent:

(a) Z is abelian;

(b) Z is a subtriple of a commutative C∗-algebra;

(c) the Gelfand transform of Z is a surjective isometry onto CT
0 (Epi(Z, C)).

In particular, every abelian JB∗-triple system is a TRO.

Lemma 5.5. Let Z be an abelian JC∗-triple. Then Z is a universally reversible TRO.

Proof. We only have to show that every abelian JC∗-triple system is already a TRO,
since every TRO is already reversible, but by Theorem 5.4 we know that Z is a subtriple
of an abelian C∗-algebra and therefore a TRO. �

Proposition 5.6. Let Z be an abelian JC∗-triple system. Then

T ∗(Z) � CT

0 (Epi(Z, C))

and the universal embedding ρZ : Z → CT
0 (Epi(Z, C)) is given by the Gelfand transform

of Z.

Proof. The abelian JC∗-triple system Z is, by Lemma 5.5, a universally reversible
TRO. Let ·̂ : Z → CT

0 (Epi(Z, C)) be the Gelfand transform, which is, by Theorem 5.4,
a JB∗-triple isomorphism. Since we are in the abelian world, the identity mapping id
on CT

0 (Epi(Z, C)) is also an antiautomorphism, satisfying id ◦ ·̂ = ·̂. Since Ẑ generates
CT

0 (Epi(Z, C)) as a TRO, we obtain the statement from Lemma 5.2. �

Definition 5.7. Let Z be a universally reversible JC∗-triple system. Define the radical
of Z to be the set

R(Z) :=
⋂

ϕ∈Epi(Z,C)∪{0}
ker(ϕ).

In the case that Epi(Z, C) = ∅ we have R(Z) = Z. It should be mentioned that
radicals have been defined for Jordan triple systems in, for example, [14, 15, 18]. The
above definition is tailored to our purposes here and modelled after the definition for
commutative Banach algebras.

The next proposition helps us to show that the radical of a universal reversible JC∗-
triple system is universally reversible.

Proposition 5.8. Let Z be a universally reversible JC∗-triple system and I ⊆ Z a
JB∗-triple ideal. Then I is also universally reversible.

Proof. We assume that T ∗(I) ⊆ T ∗(Z). It suffices to show that ρZ(I) ⊆ T ∗(Z) is
reversible. Since T ∗(I) is a TRO-ideal and ρZ(Z) is reversible by definition, we know
that ρZ(I) is reversible if

ρZ(I) = T ∗(I) ∩ ρZ(Z).
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Let x ∈ T ∗(I) ∩ ρZ(Z) and let π : ρZ(Z) → ρZ(Z)/ρZ(I) be the JB∗-quotient homomor-
phism. It follows from [2, Theorem 4.2.4] that

T ∗(Z)/T ∗(I) � T ∗(ρZ(Z)/ρZ(I)),

and therefore π(x) = τ(π)(x) = 0, which yields x ∈ ρZ(I). �

Since the radical is always a JB∗-triple ideal, the next corollary follows immediately.

Corollary 5.9. Let Z be a universally reversible JC∗-triple system. Then R(Z) is
universally reversible.

Theorem 5.10. Let T be a universally reversible TRO embedded in a C∗-algebra A

such that there exists a TRO antiautomorphism θ : A → A of order 2. Then we have an
exact sequence of TROs

0 → R(T ) ⊕ θ(R(T )) → T ∗(T ) → CT

0 (Epi(T/R(T ), C)) → 0. (5.2)

Proof. By Corollary 5.9 we know that the radical R(T ) is universally reversible and
does not contain a TRO-ideal of codimension 1 by Lemma 3.5. Using Lemma 5.3, we get

T ∗(R(T )) = R(T ) ⊕ θ(R(T )).

The quotient T/R(T ) is an abelian JB∗-triple system and, with Proposition 5.6 and by
Theorem 5.4, we get that

T ∗(T/(R(T ))) = CT

0 (Epi(T/R(T ), C)).

The exactness of (5.2) now follows from the exactness of

0 → R(T ) → T → T/R(T ) → 0

and [2, Theorem 4.2.4]. �

Theorem 5.10 is a generalization of Lemma 5.3. If we add the additional assumption
that T does not contain a one-codimensional TRO-ideal, then R(T ) = T , and thus (5.2)
becomes

0 → T ⊕ θ(T ) → T ∗(T ) → 0 → 0.

Acknowledgements. D.B. was supported by the Graduiertenkolleg für analytische
Topologie und Metageometrie.

References

1. E. M. Alfsen and F. W. Shultz, Geometry of state spaces of operator algebras, Math-
ematics: Theory and Applications (Birkhäuser, 2003).
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