## GROWTH SEQUENCE OF GLOBALLY IDEMPOTENT SEMIGROUPS

## GYÖRGY POLLÁK

(Received 7 December 1988)

Communicated by H. Lausch

## Abstract

The n-th member of the growth sequence of a globally idempotent finite semigroup without identity element is at least  $2^n$ . (This had been conjectured by J. Wiegold.)

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 20 M 99.

In [2] Wiegold proved that the growth sequence of a semigroup S without identity is exponential, and put forward the conjecture that it increases at least as fast as  $2^n$ . Moreover, he showed that this holds, if  $S \cdot S \neq S$ . In this note we prove the estimate for the remaining case.

We recall the definition of growth sequence.

DEFINITION. Let S be a finite semigroup, and let  $d(S^n)$  denote the minimum number of generators of the nth direct power of S. The sequence  $(d(S), d(S^2), \ldots)$  is called the *growth sequence* of S.

Recall also that S is said to be globally idempotent if  $S \cdot S = S$ . For other definitions we refer to [1].

THEOREM. If S is a globally idempotent finite semigroup without identity then  $d(S^n) > 2^n$ .

This work was partially supported by the Hungarian National Foundation for Scientific Research, grant No. 1813.

<sup>© 1990</sup> Australian Mathematical Society 0263-6115/90 \$A2.00 + 0.00

PROOF. First let S be completely (0-) simple. Then S is the (0-) direct union of (0-) minimal left as well as of (0-) minimal right ideals. Since S is not a group (with 0), at least one of these unions has more than one member. Suppose that  $S = L_1 \cup \cdots \cup L_k$ , k > 1, each  $L_i$  being a left ideal, let  $e = (\varepsilon_1, \ldots, \varepsilon_n) \in \{1, \ldots, k\}^n$ , and put  $\Lambda_e = \prod_{i=1}^n (L_{\varepsilon_i} \setminus \{0\})$ . If G is a system of generators of  $S^n$  then a product  $g_1 \cdots g_r$  ( $g_j \in G$ ) is contained in  $\Lambda_e$  only if  $g_r$  is, because  $S^n \setminus \Lambda_e$  is a left ideal in  $S^n$ . As  $\Lambda_e \cap \Lambda_f = \emptyset$  if  $e \neq f$ , we have  $|G| \geq k^n$  (even that  $|G \setminus \{0\}| \geq k^n$ ).

Next consider the case of a 0-direct union of groups:  $S = \bigcup_{i=1}^k H_i \cup \{0\}$ , k > 1. Let G and e be as above, and put  $\Gamma_e = \prod_{i=1}^n H_{e_i}$ . Then  $g_1 \cdots g_r \in \Gamma_e$  if and only if  $g_i \in \Gamma_e$  for each i; thus, we have again at least  $k^n$  generators.

Finally, suppose that S has a non-trivial ideal. If M is a maximal ideal in S then S/M is globally idempotent and hence completely simple. Let J be a maximal ideal such that S/J is not a group with 0 if such an ideal exists and put  $J = \bigcap_{i=1}^k M_i$  in the opposite case, where  $M_1, \ldots, M_k$  is a full list of maximal ideals of S. Sure enough, k > 1 in this latter case, for otherwise S has an identity element, and S/J is a 0-direct union of k groups with 0 (in the other case, that is, if S/J is completely simple but not a group, k > 1) will denote the number of 0-minimal left (or right) ideals of S/J).

Now let G be a system of generators of  $S^n$  and put  $G' = G \cap (S^n \setminus J^n)$ . Then  $G' \cup \{J\}$  generates  $S^n/J^n$ . But  $S^n/J^n \cong (S/J)^n$ , whence  $|G'| \geq k^n$ , which proves the assertion.

The author is indebted to the sisters Szendrei for calling his attention to a gap in the proof in the original version of this paper.

## References

- [1] A. H. Clifford and G. B. Preston, *The Algebraic Theory of Semigroups*, vol. 1 (Math. Surveys No. 7, Providence, R. I., 1961).
- [2] J. Wiegold, 'Growth sequences of finite semigroups', J. Austral. Math. Soc. (Ser. A) 43 (1987), 16-20.

Magyar Tudományos Akadémia Matematikai Kutató Intézete Budapest Hungary