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STRUCTURAL PROPERTIES OF ELEMENTARY 
OPERATORS 

CONSTANTIN APOSTOL AND LAWRENCE FIALKOW 

1. Introduction. Let s# and ^ denote complex Banach algebras and let 
J ' b e a left Banach j^module and a right Banach ^-module. If 

A = (Al9...9An) ^ s/M and B = (Bl9 . . . , Bn) e #<">, 

we define the bounded linear elementary operator R(A, 2?), acting on Jt, 
by 

n 

R(A, B)(X) = 2 AiXBt. 
/ = i 

For the case Jt = s/ = &, elementary operators were introduced by 
Lumer and Rosenblum [19], who studied their spectral properties. In this 
setting many authors subsequently studied spectral, algebraic, metric, and 
structural properties of elementary operators, with particular attention 
devoted to the inner derivations Sa (Sa(x) = ax — xa) [25], general­
ized derivations r(a, b) (T(#, b)(x) = ax — xb) [9, 10], and elemen­
tary multiplications S (a, b) (S(a, b)(x) = axb), including left and 
right multiplications La and Rb [11]. In the case when stf = J£p^), the 
algebra of all bounded linear operators on a separable complex Hilbert 
space 3% a fairly complete spectral analysis of elementary operators, 
including the Fredholm theory of such operators, is given in [11, 12, 13]. 
This theory also extends to the case when stf = 38 = JSfpf) and Jt is a 
norm ideal of SPffl) in the sense of [24]. 

These results show that spectral properties of R(A, B) reflect the joint 
spectral properties of the elements of A or B, and in the sequel we 
illustrate analogous results concerning structural properties of elementary 
operators. We shall work in the following settings: 

1) Jt = J^pfj, ^ ) , the space of bounded linear operators from JfJ to 
^ 2 , where 3^x and 3tF2 are separable infinite dimensional complex Hilbert 
spaces. Jt is a left module for stf = ££($2) and a right module for 
& = J?(J?\) (under the usual composition of operators). 

2) Jt = i ^ T ^ ) = J S ^ , ^ ) / J r ( ^ r l 5 je2\ where J T ^ , JT2) is the 
space of compact operators from Jif\ \o Jtf^ Jt is & left module for 
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1486 C. APOSTOL AND L. FIALKOW 

and a right module for 

S» = S ^ = ^(^2)/Jfpf2). 

To explain the properties of elementary operators that we will in­
vestigate we need some definitions. Let 3£ be a complex Banach space and 
let «£?(#*) denote the algebra of bounded operators on 9£. For every 
T e &{X\ X e C, define 

XriX) = {x G S r l i m * ^ H (T - X)^| |1 / / c = 0}, 

^Tg = ix G *^: There exists a monic polynomial p = px such 

that />(7> = 0}. 

Clearly, &T(k) and &\g are T-hyperinvariant linear manifolds in &. We 
say that t has the strong spectral splitting property (s.s.s.p.) if 

SC = c.l.m. SCT(K)\ 
AeC 

this property is stronger than the spectral splitting property studied in [1]; 
note that if a(T), the spectrum of T, is finite, say o(T) = {Xl5 . . . , X }, 
then 

£ = XT(KX) 4- . . . 4- ^ ( X p [18, 23], 

while if # - Xr(K)9 then a ( r ) - {X} [6, p. 28]. We say that T is 
pseudoalgebraic if 

ar= (#SJ6)"; 
recall that 71 is algebraic, i.e., T satisfies a monic polynomial, if and only 
if 

&fg = % [21, p. 63]. 

The operator T is pseudodiagonal if 

# = c.l.m. ker(T - X). 

T infinitely diagonal if there exist idempotents Ex, . . . , E G «£?(#"), 

1 = 1 

such that 

T = 2 Xz£7 
/ = 1 
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for distinct scalars Al9 . . . , A . Thus T is finitely diagonal if and only if 

% = ker(r - Aj) + . . . 4- ker(T - A^), 

and in this case T is clearly pseudodiagonal. Using [2, 6] it is not difficult 
to verify the following implications: 

T is pseudodiagonal ==> T is pseudoalgebraic => T has the s.s.s.p. 
In Section 4 we shall describe the elementary operators R(A9 B) on 

«£?(#!, ^2), having any of the latter three properties, in terms of the norm 
closed algebras generated by A and B. In Theorem 4.7 we show that 
R(A9 B) has the s.s.s.p. if and only if it has finite spectrum and 
that R(A, B) is pseudoalgebraic if and only if it is algebraic. In Theorem 
4.8 we prove that R(A9 B) is pseudodiagonal if and only if it is finitely 
diagonal. 

Elementary operators on j£?p^j, Jf2) are less tractable, but in Section 5 
we present partial analogues of the preceding results for this setting. 
Complete results are obtained in special cases, e.g., for generalized 
derivations (Theorem 5.10). 

Let # denote a 2-sided ideal of Sfpif). J. G. Stampfli [25] proved that 
if J? * {0}, t h e n , / £ R a n ( ^ ) (A e jgfpf ) ). In [11, Theorem 2.3] it is 
proved that Ran R(A9 B) contains a nonzero 2-sided ideal if and only if 
R(A9 B) is right invertible in J^(jÇ?p^) ). In Section 3 we consider the range 
inclusion 

Ran R(A9 B) c f. 

For the cases fl = {0} or # = Jf(Jf?) this inclusion was characterized 
by Fong and Sour our [15]. They proved in [15, Theorem 1] that if 
{Bu ...,Bn) is independent, then R(A9 B) = 0 (i.e., Ran R(A9 B) c 
{0} ) if and only if At = 0 (1 ^ z ^ n). Analogously, if {Bl9. . . , Bn) is 
independent modulo Jfp^7), then 

Ran R(A9 B) c jTpT) 

if and only if At e J f p f ) (1 g / g n) [15, Theorem 3]. In Theorem 3.1 
we prove that if ^ i s a proper 2-sided ideal of «Sf(J )̂ and [Bl9 . . . , Bn) is 
independent modulo JTp^7), then 

Ran R(A9 B) c Jf 

if and only if At e f (1 ^ / S n). 
The hypothesis that {Bl9. . . , Bn} is independent modulo Jfpf7) cannot 

be weakened to independence modulo £ Indeed, if # = Cj (the 
trace class) and if 4̂ and B belong to the Hilbert-Schmidt ideal C2, then 
AXB e Cj for every X in J^pf) whether or not A or B belongs to Cx. The 
range inclusion problem for the case when {BX9 . . . 9Bn) is dependent 
modulo Jf(J^) has been studied in [14], where it is solved for the operators 
T(A9 B) and S(A9 B); for arbitrary elementary operators, a complete 
characterization of range inclusion remains unsolved. 
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In [15] Fong and Sourour conjectured that there is no nonzero compact 
elementary operator on the Calkin algebra £P(3tf>)/Jf(34f) and we verify 
this conjecture as a consequence of a more general result (Theorem 4.1). 
In this connection we recall some terminology. For a Banach space 
X Jf(&) denotes the ideal in &(&) of all compact operators on 9£\ 

ir:£(X3f) -> -2X#*)/Jf(#) 

denotes the canonical projection onto the quotient Banach algebra. For 
T e «£?(#*), we usually denote IT(T) by T and we set 

l im, = ||f|| and oe(T) = o(T). 

Acknowledgement. The main results of Sections 3 and 4, including the 
proof of the Fong-Sourour conjecture, were presented to a seminar at 
the University of Toronto in January, 1983 by the second-named author; 
he wishes to thank Professors P. Rosenthal, C. Davis, and C. K. Fong 
for their hospitality. After completing this manuscript we learned that 
B. Magajna has recently and independently found two proofs of the 
Fong-Sourour conjecture, one of which is quite different in spirit from 
ours. 

2. Banach algebra prerequisites. In this section we record for future 
reference several results concerning elements of commutative Banach 
algebras, particularly commutative subalgebras of the Calkin algebra. We 
begin by recalling some standard results about the maximal ideal space of 
a commutative Banach algebra. 

Let s# denote a commutative Banach algebra with identity e, and let 
Jt(jtf) denote the maximal ideal space of se. Thus, from the Gelfand-
Mazur Theorem [8], M e Jt(stf) if and only if there exists a (unique) 
complex homomorphism 

/ = /„:.*-> C 
such that M = kerfM (and we frequently identify M w i th /^ ) . Note that 
for each a e s/9 

a ~ fM(a)e e M-

Since fM G j ^ * (the dual space of s/)9 ^(s/) is given the w*-topology 
relative to the embedding s^c^ s/**; thus, for a e s/, the function 

a:J?(sJ) -> C, 

defined by a(Mj) = f(a), is continuous. For a compact space X, C(X) 
denotes the Banach algebra of continuous complex functions on X under 
the sup norm. The Gelfand transform 

A : J * - > C(J?(J*)) 
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is defined by A (a) — a, and we denote its range by s/A. Recall that the 
Shilov boundary of Jf(s/), T(s/), is defined by the relation 

||â|| = su P A / e r ( a ) | â (M) |, V . G i [22, p. 132]. 

For a e s/, let o(a) denote the spectrum of a. Denote the radical of s/ 
by Rad s#, i.e., 

Rad s/ = n M. 

Since s/ is commutative, Rad s/ coincides with the ideal of all quasi-
nilpotent elements of s# [22, p. 57], i.e., 

Rad j / = { f l G s/:o(a) = {0} }; 

thus a e s/ is quasinilpotent if and only if a = 0. More generally, a 
subset S c s/is independent modulo quasinilpotent s (i.e., the image of S in 
<£//Rad s/is independent) if and only if SA is independent. 

Let X be a nonempty set and let ^"(Ar) denote the vector space of 
complex functions on X. We record without proof the following 
elementary fact. 

LEMMA 2.1. {/l5 . . . , /„} c 3P(X) is independent if and only if there exist 
distinct points jcl9 . . . , xn G X such that 

LEMMA 2.2. Let {Tk}
p

k=l denote a sequence in s/ such that {Tk}
p

k==-[ is 
independent in s/A. Then there exists {Mk}

p
k = x c T(s/) such that 

aet[Tf(Mk))lSjJlSp ¥> 0. 

Proof The isometric linear mapping 

r:s/A -> C ( I > 0 ) 

defined by 

r(a) = a\Y(stf) 

maps {Tk}
p
k = l to an independent set, so the result follows from Lemma 

2.1 
Recall from [28] that a nonempty subset y c s/ consists of joint 

topological divisors of zero if for any finite subset [sl9 . . . , sn} c ^ 

inf{_2 IMhIWI = l} =0. 

LEMMA 2.3. If s/is a separable commutative Banach algebra and S? a s/ 
consists of joint topological divisors of zero, then there exists {xn }^L x c 
sf, \\xn\\ = 1 V« , such that 

lim \\xns\\ = 0 V s e Z 
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Proof. Let { s - } ^ be a dense sequence in £f. For n = 1, there exists 
xn <= ̂  \\xn\\ = 1, such that 

n 

2 llx -̂l! < \/n\ 

thus 
l i lTWoo \UnSiW = ° f o f e a c h Z > 

and the result follows. 

LEMMA 2.4. L ^ Jf be a Hilbert space and let T e ^ ( ^ ) , | | ? | | = 1. 
Let Jt be a finite dimensional subspace of J^. If {%}^Li c R satisfies 
ak —> 0, then there exists an orthogonal sequence {^}^Li c J^Q Jt such 
that 

11**11 = 1 + ak and \\Txk\\ = 1, V/c = 1. 

Proof. Having chosen jc l9. . . , xk_x satisfying the above requirements, 
let 

Jtk = (xl9. . . ,xk_l) © J£. 

Then 

\\T\Jii\\ g ||f|| â 1, 

so there exists xk Œ Jtk , ||JC£|| = 1, such that 

IIT4H i= 1/(1 + ak); 

let 

x, = ( i / | | r4l l)4. 

LEMMA 2.5. If {.x„}^Li c Jf satisfies 

w 
JC„ —» 0 and lim ||JCJ| ^ 1, 

then for T e J^pT), 

I S II7XJI ^ ||f ||. 

Proof. For each compact operator AT, 

| |AxB | |-».0 and 

|| (T + K)xn\\ - \\Kx„\\ ^ \\Tx„\\ £\\(T+ K)x„\\ + \\Kx„\\, 

whence 

Ilrn" \\Tx„\\ = I S || (T + K)xn\\ ^ m \\T + K\\ \\x„\\ ^ \\T + K\\, 

so the result follows. 
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LEMMA 2.6. Suppose s/ is a commutative separable subalgebra of Jfffl), 
where Jffis a complex separable infinite dimensional Hilbert space. Then for 
each M e T(s#), there exists a self adjoint projection PM e j£?(^) such 
that 

PM * 0 and TPM = T\M)PM VT e si. 

Proof. Since M e T(s/) consists of joint topological divisors of zero 
[28], Lemma 2.3 implies that there exists a sequence {Rn}^L\ c si, 
\\Rn\\ = 1 V n, such that 

lim 11^511 = 0 VS e M. 

Let {Sj}J°°=l be a dense sequence in si. For /c ^ 1, there exists % e N, 
nk> nk-h a n d r/c G ^ P O , such that % = R„k and 

|| (S,. - S;(M) )f*|| ^ 3 "* for l g y ^ i . 

We claim that there exists a sequence {/z^}^! c ^ s u c h that 

ll^ll =§ 1 + l/k, 

{^A:}^=i is a n orthonormal sequence, and 

|| (Sj - S*(M) )Tkh'k\\ ^ 2~k for \ ^ j ^ k. 

Suppose that h\, . . ., h' have been chosen to satisfy the above require­
ments for ally, k with 1 ^ j ^ k ^ p. Let 

ur = <r,+1*7##_1 

and let ^T = J ^ O Jt. Since dim Jt < oo, Lemma 2.4 implies that there 
is an orthogonal sequence 

{#>>£., c ^ 
such that for each k ^ 1, 

| | x ^ | | ^ 1 + l / M and H ^ + ^ / ' H = 1. 

Clearly, 

4 P ) " ^ 0 and Ï S ||xlp)|| ^ 1, 
A:—»oo 

so Lemma 2.5 implies that for j ë /? + 1, 

I S | | (S, - 5 ; ( M ) ) T + 1 x ^ | | ^ 11(5,- - S;(M))fp + i\\ 

< 3-(/>+l)> 

It follows that for some fixed k (sufficiently large) and h' + x = Xjf\ 

|| (S, - S;(M))Tp + ]h'p+,\\ < 2 - < " + l», l l j ^ + 1 . 
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Let PM denote the orthogonal projection of Jfonto the closed subspace 
spanned by {Tkh'k}™=l. Clearly, PM ¥= 0, and since 

oo 

2 \\(Sj- S*(M))Tkh'k\\ <oo , 
k = \ 

it follows that (Sj — Sj(M) )PM is trace class. Thus 

SJPM = §;(M)PM V/; 

the result now follows from the density of {S } and the continuity of 

JM-

We conclude this section by recalling two results of D. Voiculescu [27] 
concerning subalgebras of the Calkin algebra 

Let J f be a separable Hilbert space and let T be in iffpf ). A closed 
subspace M c ^ i s essentially T-invariant if 

(1 - PJïTPjt e J f p f ) , 

where P^ denotes the orthogonal projection of 3d? onto Jt. For a norm 
closed subalgebra srf c St{3^\ let Lat ^ d e n o t e the set of all self-adjoint 
projections/? e 1(3^) such that 

(1 - p)xp = 0 Vx G J ^ 

Since projections in «Spf ) lift to projections in JSfpf7) [5, Theorem 2.4], it 
follows that 

Lat srf = {Pjt'.Jt is an essentially T-invariant subspace of J^iox 
every 

T G -2p f ) such that f e j * } . 

Following [27], we let 

Alg(Lat jtf) = {y Œ £(Jtr):(l - p)yp = 0 Vp e Lat j ^ } . 

We will have occasion to use a reflexivity theorem of D. Voiculescu 
[27, Theorem 1.8] which states that if s/ is a separable norm-closed 
subalgebra of â(3^) containing the identity, then 

Alg Lat s/ = s#. 

We also require the following variant of D. Voiculescu's non-commutative 
Weyl-von Neumann Theorem [27, Theorem 1.5]: Let 3% 3tf" be com­
plex separable infinite dimensional Hilbert spaces, let # z> Jf(Jf ) be a 
separable C*-subalgebra of Jjfp^), and let 
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be a faithful *-representation. Then there exists a unitary operator 
I/:J^-> J f e W such that 

T - U*(T e p(T) )u G j fp f ) , v r G « 

3. On range inclusion and ideals. In this section we present our 
characterization of the range inclusion Ran R(A, B) c / Throughout this 
section A = (Al9 . . . , An) and B = {Bx,..., Bn) denote arbitrary «-tuples 
of operators in j£p^) . Let / denote a proper 2-sided ideal in «£pf). A 
subset Sf c £P(3t?) is independent (resp., dependent) m o d , / i f the image 
of Sf in J ^ p ^ ) / / is independent (resp., dependent). Given a linear 
manifold y c «J^pr), a subset Sf c V spans ^ m o d / i f 

ir c <^> + / = {S + /:S G <5">, / e / } 

(where (5^> denotes the (not necessarily closed) linear span of £f). 
Let / denote the ideal set corresponding to / Let f̂, / = 1, 2, 3, 

denote separable infinite dimensional complex Hilbert spaces, and let 
T G Jfpfb je2). Recall from [3] that T is affiliated w i t h / i f , when the 
eigenvalues of (7"*r)1/2 are arranged in a sequence (counting multi­
plicities), that sequence belongs to / . Recall also that if T G j£p£], J^) is 
affiliated with / 

Q G j g p ^ , JT3), and S G j ^p f 3 , j ^ ) , 

then QT and TS are also affiliated w i t h / [ 3 ] . 
The main result of this section is the following characterization of 

Ran R c / f o r / ^ J*" (the ideal of all finite rank operators in £pt?) ). 
The extension of this characterization to / = J*" will be obtained as a 
corollary. 

THEOREM 3.1. Let J denote a proper 2-sided ideal of &W\ / = £ &. If 
{Bl9...9Bn} is independent mod JT(JT), then 

Ran #(.4, B) c f 

if and only if Ai G / ( l ^ / ^ «). 

Before proving Theorem 3.1, we require several preliminary lemmas. In 
the sequel, for T in j£p^) , P(T') denotes the orthogonal projection onto 
J^Q ker (T), the initial space of T. 

LEMMA 3.2. Let L in <Sf(J4?) be an operator that is not compact. For 
1 ^ n < co, let {Ktyi=x denote a sequence of compact operators in HPffl). 
Let / ¥= !F denote a proper 2-sided ideal in j£pf ) . Then there exists an 
orthogonal projection P = P(L) such that LP is not compact and KtP is 
inf(\ ^ i ^ n). 

Proof. The proof is by induction on n. Let n = 1 and let Px = P(L). 
Since L\PXJ^ is not compact, there exists an infinite rank projection 
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Q ^ Px such that L\QJ?is bounded below. Let Jt = {Mf Since Kx\Ji 
is compact, there exists an infinite dimensional subspace ££ c ^# such 
that 

is affiliated with J [3, Theorem 2.1]. Let P denote the orthogonal 
projection of J f onto & Then KxP:Jf?-+ Jifis also affiliated wi th , / hence 
^ P is i n , / Since P ^ £> = P\ = P{L\ then L|PPfis bounded below, so 
LP is not compact and the proof is complete in this case. 

Assume the result for n — 1. Since L is not compact, the induction 
hypothesis implies that there exists an orthogonal projection Px ^ P(L) 
such that LPX is not compact and KtPx is i n ^ ( l ^ / ^ « — 1). Let 

P0 = PCLPj) ^ P (P0 = P, g P(L). 

Let Jt = PQJF. Since LP^Jt is not compact, there exists an infinite rank 
orthogonal projection Q ^ P0 such that L P j Q ^ i s bounded below. 
Since Kn\Qj{? is compact, [3, Theorem 2.1] implies that there exists an 
infinite rank projection P ^ Q such that 

Kn\P3P\Ptf-* 3P 

is affiliated with & so that A^P is in £ Note also that 

KtP = (KtPx)P e / (1 ^ / ^ #i - 1). 

Since P ^ Q, then L|P^Fis bounded below; thus LP is not compact and 
the proof is complete. 

LEMMA 3.3. Let/denote a proper 2-sided ideal in ^{J^),f^ ^Ifn^l 
and L], . . . , Lnis a sequence of operators in J£(3^) with Lx not compact, then 
there exists an orthogonal projection P ^ P(LX) such that {LXP, . . . , LnP} 
contains a subset Sf that is linearly independent mod J f p f ) and which spans 
(LxP,...,LnP) mod/. 

Proof. The proof is by induction on n ^ 1. Let n = 1. Let P = P(LX); 
since Lx is not compact, then LXP is not compact. Thus S? = {LXP} is 
independent mod JT(Jf) and spans (LXP) mod J: 

Assume the result is true for n — 1. Let Px = P(LX) and note that LXPX 

is not compact. If {LXPX, . . . , LnPx) is independent mod JTpf ), then the 
result follows by setting 

P = Px and S?= {LxP,...,LnP}. 

If {LXPX, . . . , L„Pj} is dependent mod JTpf) , then since LXPX is not 
compact, we may assume (by relabelling L2, . . . , Ln if necessary) that 
there exist scalars c l 9 . . . , cn_x and AT e J f p ^ ) such that 

L ^ =cxLxPx + . . . + cn_xLn_xPx + K. 
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Since LXPX is not compact and AT is compact, Lemma 3.2 implies that there 
exists an orthogonal projection R ^ P(LXPX) ( = Px) such that LXPXR is 
not compact and KR is i n ^ Since PXR = R, it follows that LXR is not 
compact and 

LnR = cxLxR + . . . 4- cn__xLn_xR + KR. 

The induction hypothesis, applied to LXR,.. . , Ln_xR, implies that 
there exists an orthogonal projection Q ^ P(LXR) and a subset 

^ c {LxRQ,...,Ln_yRQ} 

such that £f is independent mod JTp^) and spans 

(LxRQ,...,Ln_{RQ)moàf. 

Note that since ker(i?) c ker(Lj/i), then 

e § P ( L , « ) g p(i?) = * , 

so that RQ = Q. If we set P = Q, then 

^ c {£ , /> , . . . ,£„_ , />} 

is independent mod Jf(Jf) and spans 

(LlP,...,L„_lP)modS. 

Moreover, 

L„P = L„PP = cxLxP + . . . + cn_xLn„xP + (AK)P, 

so ^ spans 

( L ^ . ^ L ^ m o d ^ 

Since P ^ R ^ P(LX), the proof is complete. 

Let </denote a proper 2-sided ideal in ^(Jf),^ =£ J^ and let ~# denote 
a proper infinite dimensional subspace of J£f 

LEMMA 3.4. / / S f= SÛiJt) is affiliated with & then T = S 0 0^± w 
in </. 

Proof Since 5* is affiliated with <X e a c n characteristic sequence for 5 
belongs to / , the ideal set of £ It follows from [5, Lemma 1.2] that each 
characteristic sequence for T = S 0 0^± also belongs to J and thus T is 
inj?. 

Proof of Theorem 3.1. Assume that Ran(#(.4, B)) c f and that 
{£ l5 . . . , Bn) is independent mod J f p O . We seek to prove that Ai e , / 
(1 ^ / ^ n). The proof is by induction on n ^ 1. 

For the case n = 1, suppose that AXXBX e </for every X in J^pf7) and 
suppose that {2?j} is independent mod JTpf). Since 5j is not compact, 
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there exists an infinite dimensional subspace J( c ^ s u c h that Bx\Jt is 
bounded below. Thus there exists L e j£?pf ) such that LBXP = P, where 
P denotes the orthogonal projection of 3F onto J£. Let F denote an 
isometry in ££(3?) whose range is ~#. Then 

V*LBYV = V*V = Ijp 

so Ax = [AX(V*L)BX]V is i n l a n d the proof of this case is complete. 
Assume that the theorem is valid for n — 1, and consider the case 

when 

Ran(P(^, B)) a J> 

where A = (Ah . . .,An), B = (Bh . . . , Bn) and { P h . . . , P„} is in­
dependent mod Jf(J$f). Suppose first that {Ax,. . . 9An} is dependent 
m o d ^ Then there exist scalars q , . . . , cn, not all zero, such that 

cxAx + . . . + c ^ „ = / G ^ 

We may assume (by reordering the A-s and P/s) that Cj i= 0, and thus we 
may further assume that cx = 1, i.e., 

^ ! = / — cyl2
 — • • • — cnAn. 

For X in ^(^T), 

(/ - c2^2 - . . . - cnAn)XBx + ,42XP2 + . . . + ^ X P „ 

is in £ a n d since / e ^ it follows that 

(*) A2X(B2 - c2Bx) + A3X(B3 - c3Bx) 

+ . . . + AnX{Bn - cnBx) e ^ 

Since {P1? . . . , Bn} is independent mod Jfpf7), it follows readily that 
{Bi — cl-P1}"=2 is independent mod J fp^ ) , so (*) and the induction 
hypothesis imply that Ai , e f (2 ^ i ^ n). Since 

R a n ( P ( ^ , P ) ) a J 

it now follows that 

AXXBX G J? for every X e ^ p f ), 

and since Bx is not compact, the case n = 1 (above) implies that i j e / 
Thus At G ^ ( 1 ^ / ^ «) and the proof is complete in this case. 

To complete the induction it thus suffices to assume the result for n — 1 
and to prove that if 

Ran(P(^, B))<zj 

and {Pj, . . . , Bn) is independent mod J f p f ) , then {Au . . . , An} is 
dependent mod J. We have 

(1) AXXBX + . . . + AnXBn e f for every X in ^ p T ) . 
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Moreover, Bn = BU, where B* = U*B denotes the polar decomposition of 
£*; thus B ^ 0 and U is a partial isometry such that BUU* = B. Let 

Cl = BtU* (1 ^ i ^ n - 1); 

(1) implies that 

(2) A]XC] + . . . + An_]XCn_l + AnXB <E fiox each X in JSfpf). 

We distinguish two cases. 
Case 1. Suppose there exists an essentially ^-invariant subspace Jl that 

is not essentially invariant for all of Cl5 . . . , Cn_v We may assume 
without loss of generality that Jt is not essentially invariant for Cx\ in 
particular, we may assume that JÏ and Jf are infinite dimensional, hence 
isomorphic. Relative to the decomposition 

(3) tf=J(®J{^, 

the operator matrix of B is of the form 

[B\\ B\i\ 
\K B12)' 

with K <= 3f(Jt, ^ _ L ) , and the matrix of Cx is of the form 

\DX C22)> 

with Dx e <£{M, Jt^) and Dx not compact. 
Let F denote an isomorphism of Ji1- onto Jf\ thus KD] G S£(Jt) 

is not compact and VK e ££(Jt) is compact. It follows from Lemma 2.2 
(applied with ^replaced by ^#) that there exists an orthogonal projection 
Q e <£(J{) such that VDXQ is not compact and F ^ g e J^^T) is affiliated 
with Ji Relative to the decomposition (3), let 

* - ( s s ) 
and let 

Vo or 
Let 

and note that 

*. - *<* - ( T % 
which is not compact. Another matrix calculation shows that 
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since FA:g is affiliated with & Lemma 2.3 implies that TBR = VKQ @ 
Ojy± belongs to J. It thus follows from (2) that for each X in JSfpO» 

(4) AXXLX + . . . + ^ - ^ L ^ , = [ ^ ( X O Q 

+ . . . + ^ . 1 ( * T ) C I I . _ 1 

+ ^ t Y T ) * ] * - AnX(TBR) G / 

Since Lj is not compact, Lemma 3.3 implies that there exists 
an orthogonal projection P ^ P(LX) and an integer k, 1 = /c = « — 1, 
such that (after perhaps reordering L2, . . . , Ln__x (and 4̂2> • • • »^w-i 
correspondingly) ) 

is independent mod Jf(Jf ) and spans 

<£.,/>,...,£.„_,/»> mod.* 

Thus if A: < n — 1, then for 1 ^ / ' ^ n — 1 — A, there exist scalars 
clX, ..., cik and there exists / , e ^/such that 

(5) Lk+lP = c,xLxP + ... + clkLkP + 7,, 

Since, for each X in -Sfpf), 

,4,*L,P + . . . + ^ . X L . P + Ak+xXLk+xP 

+ ... + An_xXLn_xP e ^ 

then (5) implies that 

^ L . P + . . . + ^ * L A P + ^ ^ ( c ^ P + . . . + c uL*P) 

+ . . . + ^ n _ ,A ' (c„_ 1 _ M L 1 P 

+ ... + c„_i_kJcLkP) e ^ 

and thus 

(6) (Ax + cuAk+l +... + cn_x„kJAn_x)XLxP 

+ ... + (Ak + cXkAk + x + ... + cn^x^ktkAn_x)XLkP e Jf. 

Note that the validity of the theorem for n — 1 readily implies its validity 
for j whenever 1 ^ j ^ n — 1. In particular, since {LXP, . . . , LkP) is 
independent mod Jf(J^) and k ^ n — 1, the induction hypothesis and (6) 
imply that 

Ax + C n ^ + i + . . . + cn_x_k^An_x 

belongs to^X i-e., {Ax,. . . , An} is dependent mod.X 
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Case 2. In the remaining case, every essentially P-invariant subspace is 
essentially invariant for Cl9 . . . , Cn_v Let srf = C*(B). If P is in Lat(s/)9 

then 

(1 - P)BP = 0, 

whence 

(1 - P)CtP = 0 ( l g / ^ u - 1 ) . 

Thus each C, is in Alg(Lat(j/) ). The reflexivity theorem of D. Voiculescu 
[27, Theorem 1.8] implies that 

Alg(Lat(j/) ) - ^ 

and thus Cy G ^ (1 ^ / â n - 1). Thus, since P i^ 0, there exist 
continuous functions 

Vi:oe(B) -> C 

such that 

Cz = <pz(P) (1 S i ^ * - 1). 

(Recall that C*(5) « (:((*<,(£) ) [11].) 
Since Bn = BU and 2?w is not compact, then B ¥= 0, so there exists 

À G c^(P) such that X # 0. Since 

X G oe(B) = (^(P) , 

there exists an infinite rank projection P such that 

(P - X)P = 0, 

i.e., 5 P = XP, whence 

V ,(5)P = V|-(X)P ( l ^ i ^ n - 1). 

Thus there exists Kt e ^ p f ) such that 

Cf./> = <pz(X)P + A,- (1 ^ * ^ * - 1). 

Similarly, there exists Kn e j T p f ) such that 

BP = \P + Kn. 

Since, for each X in J2pO, 

then 

AXXCXP + . . . + ,*„_,*(:„_jP + ^ X B P G ,# 

whence 

(7) ^,^(V l(X)P + * , ) + • • • + ^ . ^ ( ^ - i ^ + *„_, ) 

+ AnX(XP + Kn)&S. 
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Lemma 3.2 implies that there exists an infinite rank orthogonal projection 
Q ^ P such that KtQ e J (\ ^ i ^ n). Thus (7) implies that for each X 
in £pt?), 

AxX<px(X)Q + . . . + An_xX*n_x(\)Q 4- ^ A g e ^ 

Thus 

(Vl(XMi + • • • + v w - i (AK, - i + ^ „ ) * G e X 

for every operator X in j£p^) . Since Q is not compact, it follows from the 
case n = 1 that 

Vl(XMi + • • • + vw_i(XM„-i + ^ G / ; 

since X ¥= 0, then {^4b . . . , An) is dependent mod f. The proof of 
Theorem 3.1 is now complete. 

COROLLARY 3.5. Let J denote a proper 2-sided ideal of JPffl). If 
[Bx, . . ., Bn] is independent mod J f p f ), then 

Ran(/2(^, B) ) c / 

if and only if At ^ f (1 ^ / ' ^ «). 

Proof. The result follows from Theorem 3.1 if ̂  ^ J^ so it remains to 
consider the case when 

Ran{R(A, B)) a & 

In this case, since & c # for every proper ideal X Theorem 3.1 im­
plies that At e ^ f o r each proper ideal J ¥" J*T Since the intersection of 
all such ideals is equal to & [4, Corollary 4.7], it follows that i ;- G 5" 
(1 ^ / S /i). 

4. Elementary operators on «£p^, ^ ) . In this section we analyze the 

structure of elementary operators on the space ^{J^x, J^), particularly 
with respect to compactness, pseudoalgebraicity, the strong spectral 
splitting property, and pseudodiagonalizability. 

THEOREM 4.1. The canonical quotient map 

seises j^2) ) -* se(se{j?x, J^) y j r c s ^ , J^2) ) 
is isometric on elementary operators. 

Proof. Invoking unitary equivalence, we may suppose that 
<y//? -v£? -\//P 

c/tx = Ji<2 = = «^« 

Let R = R(A, S), A = (Ax, . . .,An), B = (Bx, . . . , Bn). Let ^denote 
a separable C*-subalgebra of «^(JT) such that J fpT) c #, ,4Z, 5, G <g 
(1 ^ / ^ «), and such that 
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| |£ | | = sup{||£(J0l|: | | tf | | = LA- e <g). 

Let p : # —> J£p^) be a faithful representation of infinite multiplicity. By 
Voiculescu's Theorem, we can find a unitary operator 

oo 

7 = 1 

such that 

r - U*(Tep(f)e...ep(?)e... )t/ <= jf(jtr) vr G « 

Since i? is unitarily equivalent to the operator /£' obtained by replacing 
Aj, Bj by 

A) = 4 e P(4) ©... e p(2y) ©.. . , 

5j = Bj © p(fl,) © . . . © p{Bj) © . . . , 

it suffices to prove that 

||£'|| = inf{||£' - R'0\\:R'0 G jr(j(.© Jf)) J. 

Let c > 0 and let 

R'0 G xr\A © ̂ rjj. 

For X G «; ||j?|| = 1, let 

If> •*) 
be the linear manifold 

{TT(0 0 a 2 p( l ) 0 a3p(^) © . . . ) }, 

where only a finite number of the a^'s are nonzero. Since p has infinite 
multiplicity, if X =£ 0, then 

and thus 

dim %x = °°-

Since JRQ *S compact, it follows that R'offix *s n o t bounded below; thus 
there exists Xf e 9C% such that 

HX'II = 11*11 and \\R'^X')\\ < £ . 

We have 
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oo r n I 

IIW) II = 112 © U 2 piÂMXMz*) 
j=2 L / = l J 

oo 

2 © a.P(R(X) ) 
7=2 

= (Sup\aJ\)\\p(R(X))\\e 

i 

= \\P(R(X))\\e 

= \\R(X) II 

(since p has infinite multiplicity). Now 

\\R(X) || = \\R'(X') || ^ || (£ ' - £&)(*') || 

+ € ^ ||# - i^|| + C, 

so 

| |£ ' | | = | |£ | | = SUp | | £ ( * ) | | ^ | |* ' - R'Q\\ + £. 

11*11=1 

Since 6 and T̂ Q are arbitrary, then 

11*11 ë ll*% 
and the proof is complete. 

Remark. The preceding result shows that there are no nonzero compact 
elementary operators on 

this answers a question of Fong and Sourour [15]. 

We next begin the spectral analysis of elementary operators on 

PROPOSITION 4.2. Let {^}^Li be a sequence of nonzero elementary 

operators acting in &(3#\, J^)- Then for every a, 0 < a < 1, there exists 

such that 

\\XQ\\ = 1 and dist(J?0, ker Rk) ^ a Vk ^ 1. 

Proof We may assume that 

£* = tf^, £ (A)), 

where 
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A(k) = {AWyjii c s?w2\ 
B(k) = {B^Jli c jS f^ ) , 

and À(k) and B(k) are each linearly independent «^-tuples. Let ^2, fâ de­
note the C*-algebras generated by {^f }}y> ^ ( ^ 2 ) , resp. by {^*'},-,*, 
JT(^5), and let 

p, : t j -> ^ ( J ^ ) and p2: t 2 -> J^pf2) 

be faithful representations of infinite multiplicity. By Voiculescu's 
Theorem (Section 1), there exist unitary operators 

00 
jj . -y£? v ^ / ^ m ^2? 

7 = 1 

0 0 

U2.Jt2 *^2 ^ - ^ ^ «^2' 
7 = 1 

such that 

T- u\(T®px(T)e...ePl(T)®...)u} G jr(^), v r G #„ 
5 - t/f (s e p2(S) e . . . e p2(§)... )u2 G jrp^), vs G <%. 

Let 

and 

Thus 

P\(T) = r e p,(f) e . . . e Pl(r) e . . . , r G ^ 

P£(S) = s e p2(£) e . . . e P2(s
r) e . . . , s G ̂ 2. 

«it 
— 1 

7=" 
**W = 2 U2*p'2(A?^XU^p^Bfw, 

Define the elementary operator R'k on ££($?{, 3tif{ ) by 

^(10 = 2 çiJAf ̂ Yp^Bf >); 
7 = 1 

thus Y G ker /£^ if and only if 

t / ^ y ^ G k e r ^ , 

so it suffices to prove that there exists 

% G sfptr{9j^)9 \\%\\ = 1, 

such that 
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dist(Y0, ker(R'k)) ^ a \fk ^ 1. 

For k ^ 1, define the elementary operator Sk on o£?p^, J^2) by 

7 = 1 

Since p, and p2 have infinite multiplicity and A( and 5<A> are each 
linearly independent, the sequences 

are each independent, so [15, Theorem 3] implies that Sk is a nonzero 
elementary operator on 

Riesz' Lemma implies that there exists Yk e S£(J^V 3f2), \\Yk\\ = 1, such 
that 

dist(F*, ker Sk) ^ a. 

Let Q- denote the projection of 3tf{ onto they-th coordinate space. Let 
Pj denote an isometry of J^f2 onto the y'-th coordinate space of JF{ ; thus 

OO OO 

&{ = 2 © &-#T and #{ = 2 7>,Ĵ . 
7 = 1 7 = 1 

Let 

OO 

7 = 1 

For 7 e J2p^ ' , ^ ' ) , let (1^.) denote the operator matrix of Y with 
respect to the preceding decompositions of 3tiP{ and J^{. Note that for 
each m ^ 1, the m + 1, m + 1 entry of Rk(Y) is equal to Sk(Ymm). If 
Y <= ker #A , then Rk(Y) is compact, and thus 

If K G J T p ^ ' , ^ 2 ' ) , then 

l|y0 - y + jf|| ^ | |y, - y „ + * J | ^ ||yA. - ?kk\\ 

S dist(fA, ker SA) ^ a. 

Thus ||y0 - ? | | ^ a and it follows that 

dist(y0, ker R'k) ^ a VA:. 

Since clearly ||y0|| = 1, the proof is complete. 
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Observe that if S£ is a 5-space, T e £?(3T) is pseudoalgebraic, and o(T) 
is countable, then there exists a sequence of monic polynomials {pk}

(^==] 

such that 

1 °° 

# 7 g = U ker pk(T) and 
À = 1 

ker pk(T) c ktrpk+x(T) VA: ^ 1; 

indeed, it is not difficult to check that the polynomials 

Pk(x) = (x - X j ) * . . . ^ -\k)
k 

satisfy the requirements, where 

THEOREM 4.3. If R is a pseudoalgebraic elementary operator on 

cJSPpfJ, ^ ) with countable spectrum, then R is algebraic. 

Proof. Let {pk}^L\ be a sequence of monic polynomials such that 

^(^je2)f
g= U ker/>*(£) and 

kerpk(R) c ker/>„ + 1(£) V£ g 1. 

Clearly pk(R) is an elementary operator, so if pk(R) ¥= 0 V /: ^ 1, then 
Proposition 4.2 implies that 

0 0 ^ 

kU} kerpk(R) 

is not dense, contradicting the hypothesis that R is pseudoalgebraic. Thus 
for some k ^ 1, pk(R) = 0, whence, R is algebraic. 

In the remainder of this section A and B will be commutative ^-tuples. 
Let P <= J2p^) and Q e J2pg) be such that^P* ^ CLte a jointly invar­
iant idempotent for A* (i.e., P2 = P and /M,P = PA^X^ 1 Ç n) ) 
and g ^ 0 is a jointly invariant idempotent for B (i.e., 2 = Q a n d 

#,<? = QStQ{\ = ' = " ) ) • L e t P^^T^2)Q denote the space 

{PXQ.X e jgpfj, j ^ ) } , 

a closed subspace of «^(Jfj, ^2). Define the operator R(pA, BQ) on 

PJ2p?j, ^r2)Q by 

i?0^,2?g)(X) = 2 PAkXBkQ 
k = \ 
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LEMMA 4.4. 1) R(pA, BQ) is equivalent {via an isometric isomorphism of 
B-spaces) to 

R(À', S') G j?(<?{Q3e{, pje^ ), 

where 

A>k = PAk\P^B'k = QBk\Q#\. 

2) R(A, B) has the s.s.s.p. => R(pA, BQ) has the s.s.s.p. 
3) R(A, B) is pseudoalgebraic => R(pA, BQ) is pseudoalgebraic. 
4) R(Ay B) is pseudodiagonal =» R(pA, BQ) is pseudodiagonal. 

Proof. 1) the equivalence is implemented by 

U:SP(Q#\9 PJP2) -> P£p?\9 Jf?2)Q 

defined by 

U(T) = PTQQ (T:Q#[ -> PJf?2). 

Parts 2), 3), 4) follow from the fact that if p(z) is a polynomial, then 

p(R(pÂ, BQ))(PXQ) = Pp(R(A9 B))(X)Q. 

LEMMA 4.5. Let Q e J ^ ( ^ ) satisfy Q2 = Q and Q ^ 0. Lef T <= j£p*|) 
be polynomially compact and let p(z) be the monic minimal polynomial of T. 

Define R on J2p?j, ^ ) g fey £ ( * ) = fX. If R is pseudodiagonal, then p 
has simple roots. 

Proof Let Tf be a compact perturbation of T with minimal polynomial 
/?(z) [20]. Suppose X is a multiple root of p(z); we may assume X = 0. 
It follows from [10, Lemma 2.14] that there is an invertible operator 
J e J^p^) and an orthogonal decomposition 

(4.i) 3V2 = &x®se2 

such that the matrix of J~]T'J relative to (4.1) is of the form 

Vo TJ l2> 

where Tx is nilpotent and T2 is invertible. 
Consider the decomposition 

S£x = ker Tx G (£C} G ker T{); 

the matrix of J T'J relative to 

(4.2) je2 = ker T, G <£?, G ker r ,) G :S?2 

is of the form 

/ 0 4 0 \ 
( 0 C 0 \ 
\0 0 r j 
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where C is nilpotent, and it follows readily that I I is not compact. 

Thus P = A*A + C*C = 0 is not compact, so there is an orthogonal 
decomposition of «£?/ = ££x 0 ker Tx, 

(4.3) se{ = X[ © JT2, dim Xx = oo 

such that relative to (4.3), P = Px © P2 with Px invertible. 
Consider the orthogonal decompositions 

^ • ^ ^ 2 = ker Tx © J2\' © JS?2. 

Suppose Z : ^ —» J ^ satisfies 

(£ - «)(*) = 0 for some a. 

The matrix of J~lX relative to (4.4) is of the form 

(^11 ^12 \ 

^21 ^22 ) 

^31 ^ 3 2 / 

and since TX = aX, then 

J~lT'JJ~lX = aJ~]X, 

whence 

(4.5) AX2X = a l n , CX21 = a*21. 

If a ^ 0, then since C is nilpotent, it follows that X2X = 0. If a = 0, then 
(4.5) implies that PX2X is compact. Relative to (4.3), P = Px © P2 and 

and since Pj is invertible, X ^ is compact. Thus, in either case, the matrix 
of J~ X relative to 

(4.6) 3#\ = Qtfx® (Ô^î)-1 and J^2 = ker ^ © X[ © Jf2 © ^ 2 

is of the form 

(4.7) 

^ T l ^ 1 2 

vO) vO) 
A 2 1 A 2 2 
y(2) y(2) 

^31 ^32 

with X^2\ compact. 
Let V:QJ$?\ —> JfJ denote an (infinite rank) isometric mapping. Now 

Q e ^(J^x) has a matrix of the form 
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lo 0/ 
relative to 

JV\ = Q#\@ (Q#\y 
Let Y:Jif\ 

relative to (4.6); thus 

Y e £ptrl9 Jf2)Q. 

If 

X0 e J2p?|, ^ ) and X = X0Q G= V ker(£ - a), 

then J~XX has a matrix of the form (4.7), 

\\JY - X\\ = \\J(Y - J-]X) || ^ (l/\\J-l\\ )\\Y - J-]X\\ 

^( l /HJ-^DIlF-^Vll = l/\\J-l\\ (using (4.7)). 

Thus 

dist[Jf, V ker(£ - a) ] â 1/||J_1 | | > 0 
a 

and so R is not pseudodiagonal; the proof is complete. 

LEMMA 4.6. Let Q (= ^ ( ^ ) .wtf/.s/y <?2 = Ô, Ô ^ 0. ^ T e J£p^) , 

define jl on SfpPl9 Jf2)Q by R(X) = TX. Then we have 
1) J? Aas the s.s.s.p. => a(T) is finite. 
2) /? w pseudoalgebraic =$> T is algebraic. 
3) i? is pseudodiagonal =$> T is a linear combination of commuting idem-

potent s that are polynomials in T. 

Proof. 1) Let W e J^p^ , J^ ) be a partial isometry with initial space 
Q%\ that maps onto J^2. Let F = W<2; since V is right invertible, there 
exists 8 > 0 such that if 

X G SfpPl9 Jt?2) and ||X - V\\ < 5, 

then X is right invertible and XX* e «^(#2) is invertible. Since i? has the 

s.s.s.p., there exists X e JSfl^, ^ ) g such that 

m 

||X - V\\ < Ô and X = 2 X, 
7 = 1 
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where 

Thus 

lim 
A:—>oo 

lim 
k-^oo 

(T Xjfxf" = 0 for some X-. 

Vkx 
\/k 

= 0, 

and since XX* is invertible, it follows that 

lim 
k—>oo 

II (f 
7 = 1 tf 

\lk 

= 0. 

Since 

n (T - x,.) 

is quasinilpotent, the spectral mapping theorem implies that o(T) is 
finite. 

2) If R is pseudoalgebraic, we define V and 

2 4 
as above, except now p-(T)Xj = 0 for a monic polynomial /?. Then 
/> = P\P2 - - -Pm satisfies /?(T)X = 0, whence 

p ( f ) = p(T)X(X*(XX*)~l) = 0; 

thus T is algebraic. 
3) If R is pseudodiagonal, then 2) implies that T is algebraic, and 

Lemma 4.5 shows that the minimal polynomial of T has simple roots. 
Thus the operator Tf in the proof of Lemma 4.5 is similar to a normal 
operator with finite spectrum and so is a linear combination of commuting 
idempotents that are polynomials in Tf. Since T' = T, the result 
follows. 

THEOREM 4.7. Suppose {Bk}
p
k = l is independent modulo quasinilpotent s 

and o(Bk) = {0}, k > p. Let stf denote the closed algebra generated by 
1, A j , . . . , A . Then we have 

1) R(A, B) has the s.s.s.p. =» dim sfA < oo; 
2) R(A, B) is pseudoalgebraic => dim stf < oo; 
3) i?(^4, 5 ) is pseudodiagonal => dim J^/ < oo #«d J ^ /s semi-simple. 

Proof. Let ^ denote the closed algebra generated by 1, B]9.. . , Bn. The 
hypothesis implies that {B\, . . . , i?*} is independent. Lemma 2.2 implies 
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that there exists {Mk)
p
k=] c Y(38) such that 

(4.8) dct[B;(Mk)]^jkSp * 0 . 

Lemma 2.6 implies that for each k, 1 ^ k ^ p7 there exists an orthogonal 
projection i^, P^ ^ 0, such that 

(4.9) SjPk = S;(M*)P*, 7 = 1, . . . 9n. ^ ^ 

A calculation using (4.9) shows that if Y e J2p^ , J^ ) and X = YPh 

then 

(4.10) R(A,BPk)(X) = ( 2 5 ; ( M , M 7 ) z 

(since £y
A = 0 for j > /?). 

(4.11) Let 2^ = 2 5 ; (M,M y (1 ^ k ^p). 
7 = 1 

1) If # ( 2 , 5 ) has the s.s.s.p., then so does R(A, Bpk) (1 ^ k â /?) 
(Lemma 4.4 (2)). Lemma 4.6 (1), (4.10), and (4.11) imply that o(Ak) is 
finite, so (4.8) implies that o(Ak) is finite (1 ^ A: = p). Thus there exists a 
polynomial pk such that 

a ( ^ a , ) ) = {0}, 
whence 

Pk(Àl) = ^ a , ) A = 0 ( l S ^ f ) ; 
it follows that J / A is finite dimensional. 

2) If R(A, B) is pseudoalgebraic, then we may proceed as above (using 
Lemma 4.4 (3), Lemma 4.6 (2), (4.10), and (4.11) ) to conclude that A'k is 
algebraic (1 ^ k ^ p); thus (4.8) and (4.11) imply that Ak is algebraic 
(1 ^ k = p) and so dim s& < 00. 

3) If R(A, B) is pseudodiagonal, then Lemmas 4.4 (4) and 4.6 (3) imply 
that Ak is & linear combination of commuting idempotents that are 
polynomials in Ak (1 ^ k ^ p). It follows from (4.8) and (4.11) that each 
Ak is a linear combination of idempotents in J ^ and the result follows. 

We recall that if S and T are commuting Banach space operators then 

o(S + T7) c a(S) + a ( r ) [7, 22]; 

in particular, if o(T) = {0}, then 

o(S + r ) = a(S). 

If ^ = {^4/}"==1 and B = {Bi}"=l are commutative «-tuples in Sfpf?) 
and 
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R,(X) = A,XBl (X e £>(3t) ), 

then 

o(R,) = o{À,)o(B,) [17] (cf. [9] ), 

and thus 

n 

o(R(Â, B)) c 2 oiÂMBt) (cf. H ) . 

THEOREM 4.8. 1) R(Â, B) has the s.s.s.p. if and only if o(R(Â, B) ) is 
finite. 

2) R(A, B) is pseudoalgebraic if and only if R(A, B) is algebraic. 

Proof. We may assume that {Bk}
p

k = ] is linearly independent modulo 
quasinilpotents, {Ak}

p
k = l is independent modulo quasinilpotents, and for 

k > p, either Ak or Bk is quasinilpotent. Let 

A = (Aj,..., Ap\ A = (Ap + \, . . . 9An)9 

B' = (£„ . . . , £p) , and B" = (£, + „ . . . , 5„); 

then 

a ( / i a " , 5 " ) ) = {0} 

(see the preceding remarks). 
1) Assume that R(Â, B) has the s.s.s.p. Since R(Â", B") is 

quasinilpotent and commutes with R(A, B), it follows that R(A\ B') 
has the s.s.s.p., so the proof of Theorem 4.7 (1) shows that o(At) is finite 
(1 ^ / ^ p). Similarly, since R(B'*, A'*) has the s.s.s.p., then a(5y) is 
finite (1 ^ / = p)\ thus 

_ _ p _ _ 

a(R(A9 B)) = o(R(Â', B') ) c 2 a ^ M ^ - ) 
/ = i 

is finite. The converse in 1) is true in general. 
2) If R(A, B) is pseudoalgebraic, then R(A, B) has the s.s.s.p. Thus by 

1), o(R(A, Z?) ) is finite, and Theorem 4.3 implies that R(A, B) is 
algebraic. The converse is clear. 

In the sequel let T be a finitely diagonal operator on a 5-space $£ Let 

{£,.}?_, c J W 

be a family of commuting idempotents such that 

n 

1 = 1 
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E,E: = 0 for /' ¥= /, and 
n 

T = 2 «/£/ for certain scalers {^j-Li-
7 = 1 

We record without proof the following elementary result. 

LEMMA 4.9. 1) If S e J^f(^) is pseudodiagonal, T (as above) is finitely 
diagonal, and SE; = ^ ^ ( l = i = n), then T + S is pseudodiagonal 

2) If S ^ ^(3C) is a linear combination of commuting idempotents, then S 
is finitely diagonal. 

THEOREM 4.10. The following are equivalent'. 
1) R(A, B) is pseudodiagonal; 
2) R(A, B) is finitely diagonal; 
3) R(A, B) = R(A\ B') where A' = (Â\, ...,Â'p) and the A\ys are 

simultaneously finitely diagonal (i.e., finitely diagonal with respect to the 
same family of idempotents), and Bf = (B\, . . . , B') and the By s are 
simultaneously finitely diagonal. 

Proof. 2) => 1) is clear, and 3) ^> 2) follows from Lemma 4.9 (2), since in 
this case R(A, B) may be expressed as a linear combination of/? idem­
potents (each of the form X —* EXE, where E and F are idempotents). 

Assume now that R(A, B) is pseudodiagonal; we may rewrite R 
so that {Ax, . . . ,An} is independent, {Bx, . . . , Bn} is independent, 
{Z?j, . . . , Bp) is independent modulo quasinilpotents, and o(Bt) = {0} for 
/ > p. The proof of Theorem 4.7 (3) shows that each Ak (\ ^ k = p) 
is a linear combination of idempotents in the algebra stf generated by 
1, Ax, . . . , A from which it follows that A{, . . . , A are simultaneously 
finitely diagonal. 

Moreover, Theorem 4.7 (3) shows that s/ is semi-simple, so 
{Ax, . . . , Ap) is independent modulo quasinilpotents. Thus, by taking ad-
joints and applying the preceding argument, we conclude that i?,, . . . , Bp 

are simultaneously finitely diagonal using idempotents generated by 
Bx, . . . , B . It follows readily that 

p 

2 LÀh
RBk 

k = \ 

is finitely diagonal, so Lemma 4.9 (1) implies that 
_ _ p 

S = R(A,B) - 2 LrRg 
k = \ k k 

is pseudodiagonal. Since S is also quasinilpotent, Theorem 4.8 (2) implies 
that S is pseudodiagonal and nilpotent; hence S = 0 and 3) follows. 
(Moreover, [15, Theorem 3] implies that p = n.) The proof is now 
complete. 
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5. Elementary operators on J^p^ , J^). In this section we study 
pseudoalgebraic and pseudodiagonal elementary operators on J£?p^, J^) . 
We record for future use the following elementary observation: if Jt and 
J^are (not necessarily closed) linear subspaces of a Hilbert space 3% with 
dim 3F < oo and dim Jt = oo, then 

d i m ^ n (J^±) - oo. 

LEMMA 5.1. Let J^be a complex separable infinite dimensional Hilbert 
space. Let 

{TjjXi=\ C ^ W ( 7 = 1 , 2 , . . . ) 

be given, with n- < oo and rank T x = oo for each j = 1. Then there exists 
an orthonormal sequence {e-}°^j swc/z fite 

T]XeJ ^ 0 a«J j Ç 1 4 /or7 ^ A:, 

w/zere 

^ = c . l . m . { 7 ; , ^ ^ = , . 

Proof. We can determine the e-'s successively. Indeed, if {ey}Jlj satisfy 
the requirements for some m = 1, we can choose 

em + \ G R an( r m + l i l * ) , |km + 1|| - 1, 

such that em + i is orthogonal to 

^-c.i.m.{{, /};=1u x^m rw + u*^} ; 

this is possible since 

dim J^ < 00 and dim Ran Rm + 1 j * = 00. 

PROPOSITION 5.2. Let R(A, B) e J^(j£?p^, j ^ ) ) 6e swc/z r t o fotfft 
{Ax, . . . , An} and {2?b . . ., Bn} are linearly independent modulo the ideal 
of finite rank operators. Then the range of R(A, B) is not contained in the 
set of finite rank operators in £f(J0\9 J^). 

Proof Apply Lemma 5.1 to the system {Tjk}p=l,j = 1, 2, . . . , where 
mj = n and T-k = Bk (1 ^ k tk n). (Note that Bx is not a finite rank 
operator.) Thus there exists an orthonormal sequence {ej}JZ\ such that 
Bxe- ^ 0 and Jfj _L Jth for j =£ /z, where 

Jtj = c . l . r a . { ^ } ^ , 

Let Pj denote the orthogonal projection onto (e-). Since 

BxPfij = *,<?,• * 0, 
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there exists a maximal linearly independent subset of {B}Pj, . .., BnPj) of 
the form {BxPp Bj2Pp. . ., Bjfj}; equivalent^, {Bxep B^ep . .., B^} 
is a maximal independent subset of {Bte,}"=i- Let j \ = 1; then 
for i è 1, 

Bfj = i cgkBJtPj, 
k= 1 

where 

c\jk = ^k\-

Vox X e J ^ ( ^ , ^ ) , 

tA^B^ = ±(±cljkA)xBJkPr 
i = 1 k = \ v / = l / 

Let 

i = l 

Note that since c} j = 1 and {Ax, . . . , An} is independent modulo finite 
rank operators, then 

Ai = 2u ci-lAi 
i=\ 

has infinite rank for each j = 1. 
We may now apply Lemma 5.1 to the system {Ajk}%=l,j = 1, 2, . . . ; 

thus there exists an orthonormal sequence 

such that ^ 7 i ^ T̂  0 and ^-L J^forj ^ /z, where 

^ • = c . i . m . { ^ y ; . } ^ 1 . 

We define X e - 2 p ^ , J Q as follows. For y ê l, there is a unit vector 

«j e 4 e (BjfjejW.2 

such that (^i^y, w7) ^ 0. We define 

Xuj =fj and X\J^Q ( {uj}^) = 0; 

thus 

X(Bxej) = ajfj with CLJ * 0. 

Now 
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R(A, B)(X)ÉJ = ( 2 A^Aej = 2 AjXBjPfy = a / ^ , 
\ = 1 ' k = 1 

and it follows that {JR(/1, i ^ X X ) ^ } ^ is an orthogonal sequence. Since 
R(A9 B)(X) has infinite rank, the proof is complete. 

Let J be an ideal set. For a separable infinite dimensional Hilbert space 
J% let ^ denote the unique ideal in JSPpf ) with ideal set / . For Hilbert 
spaces 3#\9 3fl9 JPX « Je2 « y%let^^, denote the operators in ^ p ^ , 3f%) 
affiliated w i t h ^ . We u s e , / t o denote any of the s e t s ^ , ^ , <$#>#>. We 
omit the proof of the following elementary result. 

LEMMA 5.3. Let R(A, B) be an elementary operator on £^(J^X9 J^)9 where 
A = (Al9 . . .9An)9 B = (Bl9 . . . , Bn). Then for a given ideal JofJ2pT), 

p r n 

R — 2u LA,RBr + 2J LFRB + 2J LARGS 
i=\ ' ' i=p+\ ' ' z = r + l 

where {A'iYi==x ( c (Ax, . . . , An) ) is independent modulo £ {B[}p
i = x 

( c (Bl9 . . . , Bn)) is independent modulo & 

Fl Œfn (Al9...,An)(p + 1 ^ / ^ r), û/irf 

G^Sn (Bl9...9Bn) (r + 1 ^ i ^ fi). 

(Oft£ or more of the three sums may be absent.) 

We refer to any such decomposition of i? as a standard form of R relative 
to f. Note that if Ran # c , / and /? ^ 1, then 

p 

Ran 2 A A ' c £ 

Proposition 5.2 shows this cannot occur w h e n ^ = J^ the ideal of finite 
rank operators, and thus we have the following result. 

COROLLARY 5.4. Every elementary operator R = R(A9 B) on £P($fx, J^) 
whose range is contained in the finite rank operators is of the form 

p 
R = 2 LA'k

RB'k> 
k = \ 

where for each k at least one of A'k or B'k is a finite rank operator, moreover, 
A'k <= j * ( l ^ k ^p)andB'k e St (1 % k ^ p). 

For an elementary operator R on J£%Jff\, Jf2)
 a n d projections P e 

&W\\ Q e «2p*2>, define 

PRQ e ^ ( J ^ ( ^ , ^ 2 ) ) 
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by 

pRQ(X) = PR(X)Q. 

LEMMA 5.5. Let R = R(A, B) be an elementary operator on J^pfj, J^). 
Suppose X G Ran R and 3tf" is an infinite dimensional linear manifold 
contained in Jfj © ker X. Let Jtt be a finite dimensional subspace of J^t, 
i = 1,2. Then there exist rank one projections P G J^p^) , Q G JSfp^) and 
finite dimensional subspaces 3%' <z J% Q Jtt, i = 1,2, such that 

1) QRP ¥= 0, i.e., there exists Y G JgfpfJ, ^ ) such that QR(Y)P ¥* 0. 

2) Ô#(7)i> = QR(P^YP^)P V 7 G ^ , ^ 2 ) ; 

3) For 0 < a < 1, there exists X G J^p^ , Jf2) such that 

X = PjqXPjf,, \\X\\ = 1, dist(X, ker QRP) ^ a, ûwrf 

\\QRP(X)\\ ^a\\QRP\\. 

Proof Let 

UfT = c.Lm.{J?£ft:l ^ ^ « , / Î G I , } 

and let 

J\T= c\.m.{X*Akh:\ ^ fc ^ n, h G ^ 2 } . 

Let ^ = J V ^ f c Jfj; since dim SP < oo, there exists a unit vector 
JC e ^ 1 n W. Let 

.*? ^ c . l . m . ^ x , . . . , ^ } , P = P(x>, 

#{ = (AfXx9...,A&x)9 Q = P{Xxy 

clearly Jf{ _L ^ a n d ^ ' _L Jt2. 
1) Let Y G j ^ p ^ , JT2) be such that # ( y ) = X; then 

(QRP)(Y)x = QR(Y)Px = QXPx = Xx ^ 0. 

2) For each / I G ^ J G jgfp^, j ^ ) we have 

n 

QR(P^YP^)Ph = 2 QA^YP^ih, x)x 

i = \ 

n 

= 2 QAfjqYBtPh. 
i = \ 

Now 

0 = (1 - P^)AfXx = (1 - P ^ M f Ô ^ 

so 
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Q^Pjq = QAt and 

n n 

2 QAf^YBfh = 2 QAJBfh = (QRP)(Y)h; 
i=\ i=\ 

thus 

QR(Y)P = QRiP^YP^P. 

3) Let 

W = {X e j g ^ , ^ 2 ) : * = J % * ^ } , 

a closed subspace of j£?p^, J^) . Since 

is nonzero (by 1) and 2) ), for 0 < a < 1 there exists X e W, \\X\\ = 1, 
such that 

dist(X, ker ô#p|W0 = a and || ( ^ I ^ O W II = a\\QRP\W\\\ 

thus 2) implies 

\\QRP(X)\\ ^ f lH^p l l . 

Relative to the decompositions 

^ = j#» 0 ( ^ ) J - and Jf2 = ^ 0 p ^ ' ) ^ , 

the operator matrix of X is of the form 

* - ft x) 
X' G jSfpr/, jtf^'), ||X'|| = 1. If F G ker £#p and 

v / 2 1 2 2 2 7 

then since 

w 2 1 2 2 2 7 

is in ker ^ P , then 7 - Yf e ker ^ P | W. Thus 

II* - y|| ^ ||*' - yu|| = y* - (7 - r> || i= a 

and it follows that 

dist(X, ker QRP) ^ A. 

PROPOSITION 5.6. Let {R;}°Z\ be a sequence of elementary operators on 
J^p^ , ^2) swc/z f/10/ 
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R a n i ^ çt J * ^ , je2) V/. 

Then for 0 < a < 1, f/im? exw/s X0 G JSfpfj, ^ ) , ||X0|| - 1, swcA f/10/ 

dist(X0, ker Rj) ^ a, V/. 

Proof. Let 0 < « < 1. We seek to produce sequences { M ^ } 0 ^ , 
{ M ^ }JZ\ consisting of finite dimensional subspaces of Jff\ and Jf?2 res­
pectively, and to produce rank one projections Q- e JSfp^), i* G °^P^), 
and X7 G ^ ( ^ , ^ ) such that for each y ^ 1, ' 

1) QRjPj * 0, 

2) e / ^ . ( y ) = QjRjiPjtpïYP^UYWj VF e jgf^ , JT2) . 

3) ^ = P^UyXfaUY, UjW = L disttfy ker ^ ) i= a, 

and 

\\QRjPpCj) || ^ a||G/^|| . 

Let y, G JSfp^j, J^ ) be such that Ŵ  = RX(YX) has infinite rank. Let 
~#(1)/ = k e r ( ^ ) and let 

Jt^ = {0} c ^ , ^#(
2

1} = {0} c JT2. 

Lemma 5.5 implies that there exist rank one projections Px e j£?(^j), 
gj G JSP(^2), finite dimensional subspaces 

Jt^' c J^e^Y\ i = 1, 2, and 

such that l)-3) hold for y = 1. Suppose we have chosen J(^', Jt^'•> Qh 
Pk9 and Xk satisfying l)-3) for 1 ^ k ^ j - 1. Choose Yj e £p?\9 j^2) 
such that Wj = Rj(Yj) has infinite rank, and let 

JfU)f = Jfx e (ker Wj). 

Let 

Jt^ = JV Ji{t)f and JlW = \ JtVf. 1 k=\ l l k = \ l 

Lemma 5.5 implies that there exist rank one projections P- e j^p^j), 
Qj G jSfp^), finite dimensional subspaces 

u r p c ^ f G ^ P (1 = 1, 2), and 

such that l)-3) hold for j , so l)-3) hold for ally â 1. 
Note that the construction shows that 

Jf^' J_ ^?f>' for j * k and 

Jt^' ± Jt^' for 7 * *; 
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we may thus define 

oo 

y = i 

(convergence in the strong operator topology), and clearly ||X0|| = 1. If 
Y <= ker RJ9 then 2) shows that 

pjey> Y P ^ ' G k e r QjRjPj* 

so from 3) we have 

\\X0 - Y\\ ̂  \\P*p, Xçfap, - P ^ > YP^iM\ 

= \\Xj - P^YP^W ^ a; 

the proof is complete. 

THEOREM 5.7. IfR(A, B) is pseudoalgebraic, then there exist projections 
P G âS, Q e s# such that rank(l — P) < oo, rank(l — Q) < oo, and 
R(QA, BP) is algebraic. 

Proof. Since R(A, B) is also pseudoalgebraic, we may use Theorems 4.7 
and 4.8 and a spectral decomposition to reduce to the case when R(A, 5 ) 
is nilpotent. 

Suppose 

Rsm(R(A9 B)J) £ J ^ , Jf2) V/ ^ 1 

and let 0 < a < 1. Apply Proposition 5.6 and its proof to the sequence 
{Rj}Jl\, where R- = R(A, B)J: thus there exist projections Qj9 P- and 
Xj ë Se(Jfx, J^2) satisfying l)-3) of Proposition 5.6. We have 

\\Xj\\ = 1, dist(X7, ker QR'jP) ^ a9 and 

\\QKjPpCj) || â flll^JL 

so if 

Rj = {\/\\Qftr}\)QtfPj, 

then ||*y.(*,) H â a. 
Since i?(/l, 5 ) is pseudoalgebraic, there exist operators 

X'h e ktv(R(A9 B) - A A p 

(for certain scalars Xh and natural numbers mh)9 h = 0, 1, . . . , r, such that 
X0 = 0, \A ^ 0 for h > 0, and 

r 1 

l^o -- 2 AJ; 
h=0 ' ' 

Since i^(^4, 5 ) is nilpotent, the defining properties of Xf
h and AA imply 
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that X'h is compact for h > 0. Since the sequence {Pje'}JZ\ of Proposi­
tion 5.6 satisfies 

it follows that 

whence 

\\Rj(JCh) || -> 0 (A > 0). 

Since ^ (X^) = 0 for y' large and Rj(X0) = RJ(XJ) (from (2) of Proposition 
5.6), we have 

all â lim \\R,(X0 - 2 X'h\ 

= lim ||/?.(Ao) II = lim ||*.(*.) || is a, 
j—>oo j~~*°° 

which is impossible. 
We may thus assume that 

Ran R(A, B)m c ^{3t(\9 3f2) for some m ^ 1. 

From Corollary 5.4 we may write 

p 

Rm = 2 LA,RB,9 A\ e s/9 5J e # , 

and A\ or 5- has finite rank (I ^ i ^ p). For 1 ^ / "^ /?, if ^ has finite 
rank, let Pi denote the spectral idempotent of A\ corresponding to 
{0} c (j(/l-); if A\ has infinite rank, let Pi•. = 1; in either case, 

Pt e Alg(^;> c j ^ 

and 1 — i> has finite rank. Thus 

p-flp, 
i = \ 

is an idempotent in s/, 1 — P has finite rank, and PA\ = A\P = PA\P 
is nilpotent (1 = i = p). We may similarly construct an idempotent 
Q G ^ , rank(l - g ) < oo, such that QB[ = B\Q = QB[Q is nil-
potent (1 ^ i ^ p). Clearly, PRmQ is nilpotent, so it follows that PRQ is 
nilpotent (equivalently, R(PA, BQ) is nilpotent). 

THEOREM 5.8. Suppose {B]9...,B } is linearly independent modulo 
essentially quasinilpotent operators with finite spectra and Bk, k > p, is 
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an essentially quasinilpotent operator with finite spectrum. Then we have 

1) R(A, P) is pseudoalgebraic => Ak is algebraic, 1 = k = p. 
2) R(A, P) is pseudodiagonal and algebraic => Ak is similar to a normal 

operator with finite spectrum, 1 Ik k tk p. 

Proof. Since R(A, B) is pseudoalgebraic, there exist projections P G ^ , 
g e ^ rank(l - P) < oo, rank(l - Q) < oo, such that R(QA, BP) is 
algebraic. Since P commutes with each Bt and rank(l — P) < oo, it 
follows that {BiP}p

i=l is independent modulo essentially quasinilpotent 
operators and BkP is essentially quasinilpotent with finite spectrum 
(k > p). Thus there exists a projection P' e ^ , rank(l — P') < oo, such 
that BkPP' is quasinilpotent V/c > p, and clearly {P/PP'}f=i is indepen­
dent modulo quasinilpotents. If we can prove the conclusions of the 
theorem for QAX,. . . , QA (using R(QA, Bpp,) ), then the same conclu­
sions will hold for Ax, . . . , A (since rank(l — Q) < oo, Q e s#). 

We may thus assume that { P l 5 . . . , P } is independent modulo 
quasinilpotents, Bk is quasinilpotent for k > /?, and P(^4, P) is algebraic. 
Since {PC, . . . , P*} is independent, Lemma 2.2 implies that there exists 

such that 

(5.1) det[5;( iV,)] 1 S M S / , ^ 0 . 

L e t / b e a monic polynomial such that f(R (A, P) ) = 0. For 1 ^ k ^ p, 
let 

Wjk = B^{Nk) and BJk = BJ - B*{Nk) e ty. 

Since Py = B'jk + P^ , it follows that 

/ (P( .4 , * ) ) = / ( 2 L ^ : ) + R(T, S), 

where S cz Nk (since its elements are generated by the Bj'ks and the P^'s 
for k > p). Thus we have 

/ P \ m 
o =f(R(A,P) )(X) = / ( 2 B^NkyAj)x + 2 T;.*S,, 

7 = 1 7 = 1 

S, e Afc. 

Lemma 2.3 implies that there exists {Xh}^L] c ^ , ||JVA|| = 1 Vh, such 
that 

lim \\SjXh\\ = 0. 

If we chose yh e J% \\yh\\ = 2, such that JC/, = A^j^ is a unit vector, 
then 
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lim \\SjXh\\ = 0. 

if 

A'k= 2 B^N^Aj ( * 0), 

then there exists Jf <= jSfp^) such that 

IS Wkxxh\\ > o, 
h—*oo 

whence 

ïîïn" | |A*(^£))XcJ| > 0 . 
/*—»oo 

This contradiction implies that/(v4^) = 0 and so (5.1) implies that Ak is 
algebraic (1 ^ A: = p). In the case when i?(^4, 5 ) is algebraic and 
pseudodiagonal, the minimal polynomial/of R must have simple roots, so 
each A'k9 and thus each Ak, will be similar to a normal operator with finite 
spectrum. 

Remark. The hypothesis "R(A, B) is algebraic" cannot be discarded in 
Theorem 5.8 (2). Indeed, let 3t?x = Jtf2 = J? and let {en}n^N be an 
orthonormal basis of j£ Let T e £f(jf?) be the rank-two operator defined 
by 

Tex = ex, Te2 = ex + e2, Tek = 0, k = 2, 

and let V e j 2 p O denote the unilateral shift, 

Vek = *k + \> k = l -

It will be shown below that S(T, V)(X —> TXV) is pseudodiagonal; 
however, S(T, V) is not algebraic and Tis not similar to a normal operator 
with finite spectrum. Let 

be defined by 

s<>(y) = (o })yr ( y e ^ c 2 ) . 
To show that S(T, V) is pseudodiagonal, it actually suffices to verify 
that S0 is pseudodiagonal. Let {/j,^} ^ e t n e canonical basis for C2. For 
|X| < 1, let 

CO 

y 1 ( \ )= / 1 ® 2 ^ n 

«=0 

and 
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oo oo 

Y2{\)=fi® 2 nen\" -f2® 2 enX" 

(elements of jSPÇJÉf C2) ). It is now straightforward to check that 

M ( W ) ) = *Y{(\\ R0(Y2(X) ) = \y2(\), and 

c . l . m . ^ À ) , y2(X)}|X |<1 = JSfpÉfC2). 

The following is a direct consequence of the last theorem. 

COROLLARY 5.9. If both A and B are linearly independent modulo 
essentially quasinilpotent operators with finite spectra, then: 

1) R(A, B) is pseudoalgebraic if and only if s/ and 38 are finite 
dimensional. 

2) R(A, B) is pseudodiagonal and algebraic if and only if both s/ and 38 
are semi-simple and finite dimensional. 

Remark. If T is a normal, diagonal operator with infinite spectrum and 
S is a rank-one projection, then R = LTRS is pseudodiagonal, but the 
algebra generated by T is infinite dimensional. 

We conclude with a characterization of the pseudoalgebraic and 
pseudodiagonal generalized derivations. 

THEOREM 5.10. 1) T(T, S) is pseudoalgebraic if and only if r(T, S) is 
algebraic. 

2) T(T, S) is pseudodiagonal if and only if T and S are similar to normal 
operators with finite spectra. 

Proof 1) Suppose T(T, S) is pseudoalgebraic. If L^and S are linearly 
independent modulo essentially quasinilpotent operators with finite 
spectra, then T is algebraic (Theorem 5.8). If l ^ a n d S are not as above, 
then 5 = aljf + Q, where Q is essentially quasinilpotent and has finite 
spectrum. Since 

T(T, S) = T(T, Q) - aLXje, 

T(T, Q) is clearly pseudoalgebraic. Again, by Theorem 5.8, we deduce that 
T is algebraic. Passing to adjoints we also derive that S is algebraic, and 
thus T(T, S) is algebraic. The converse is trivial. 

2) If T(T, S) is pseudodiagonal, then the above proof implies that 
T(T, S) is algebraic. Theorem 5.8 (2) and the preceding analysis show 
that both T and S are similar to normal operators with finite spectra; the 
converse is clear. 
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