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STRUCTURAL PROPERTIES OF ELEMENTARY
OPERATORS

CONSTANTIN APOSTOL AND LAWRENCE FIALKOW

1. Introduction. Let <7 and % denote complex Banach algebras and let
A be a left Banach «#module and a right Banach #-module. If

A=(4,....,4,) € "™ and B=(By,...,B,) < B,

we define the bounded linear elementary operator R(A, B), acting on ./,
by

R(A, BY(X) = X A,XB,.

i=1

For the case #/ = o/ = %, elementary operators were introduced by
Lumer and Rosenblum [19], who studied their spectral properties. In this
setting many authors subsequently studied spectral, algebraic, metric, and
structural properties of elementary operators, with particular attention
devoted to the inner derivations 8, (§,(x) = ax — xa) [25], general-
ized derivations 7(a, b) (7(a, b)(x) = ax — xb) [9, 10], and elemen-
tary multiplications S(a, b) (S(a, b)(x) = axb), including left and
right multiplications L, and R, [11]. In the case when &/ = H(F), the
algebra of all bounded linear operators on a separable complex Hilbert
space 5% a fairly complete spectral analysis of elementary operators,
including the Fredholm theory of such operators, is given in [11, 12, 13].
This theory also extends to the case when & = # = HA¥) and A is a
norm ideal of #(5¥) in the sense of [24].

These results show that spectral properties of R(A4, B) reflect the joint
spectral properties of the elements of 4 or B, and in the sequel we
illustrate analogous results concerning structural properties of elementary
operators. We shall work in the following settings:

1) 4 = LAH#, ), the space of bounded linear operators from 5 to
J,, where 5] and 5, are separable infinite dimensional complex Hilbert
spaces. ./ is a left module for &/ = £() and a right module for
B = L) (under the usual composition of operators).

) M = DT = LOF, H)IH K, H), where H(H,, H) is the
space of compact operators from 5] to ;. A is a left module for
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—_——
o = LOR) = LAY )
and a right module for
T~
B = LOB) = LOB)IAHB).

To explain the properties of elementary operators that we will in-
vestigate we need some definitions. Let 2" be a complex Banach space and
let L&) denote the algebra of bounded operators on Z For every
T € AZ), A € C, define

%0\ = {x € Zlim_,, | (T — Vx| = 0},
z arlg = {x € % There exists a monic polynomial p = p, such
that p(T)x = 0}.

Clearly, Zp(A) and & a}lg are T-hyperinvariant linear manifolds in Z. We
say that T has the strong spectral splitting property (s.s.s.p.) if

X = clm. Zr(A);
AeC
this property is stronger than the spectral splitting property studied in [1];

note that if (7), the spectrum of 7, is finite, say o(T) = {A,..., A},
then

Z =2\ + ...+ 2R, (18, 23],

while if £ = Z;(A), then o(T) = {A} [6, p. 28]. We say that T is
- pseudoalgebraic if

=@
recall that T is algebraic, i.e., T satisfies a monic polynomial, if and only
if

ade — o [21, p. 63].
The operator T is pseudodiagonal if

Z = clm. ker(T — M).
reC

T is finitely diagonal if there exist idempotents E|, . . ., E, € AZ),
P
2 E =1y, EE =3§8,E, ET=TE,

i
i=1 Y

such that
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for distinct scalars A, .. ., A,- Thus T is finitely diagonal if and only if
Z=ke(T — ) + ...+ ken(T — A

and in this case T is clearly pseudodiagonal. Using [2, 6] it is not difficult
to verify the following implications:

T is pseudodiagonal = T is pseudoalgebraic = T has the s.s.s.p.

In Section 4 we shall describe the elementary operators R(A, B) on

L, ), having any of the latter three properties, in terms of the norm
closed algebras generated by 4 and B. In Theorem 4.7 we show that
R(A, B) has the s.s.s.p. if and only if it has finite spectrum and
that R(4, B) is pseudoalgebraic if and only if it is algebraic. In Theorem
4.8 we prove that R(4, B) is pseudodiagonal if and only if it is finitely
diagonal.

Elementary operators on £, /) are less tractable, but in Section 5
we present partial analogues of the preceding results for this setting.
Complete results are obtained in special cases, e.g., for generalized
derivations (Theorem 5.10).

Let Z denote a 2-sided ideal of L(>¢). J. G. Stampfli [25] proved that
if # # {0}, then # ¢ Ran(8,) (4 € LA¢)). In [11, Theorem 2.3] it is
proved that Ran R(4, B) contains a nonzero 2-sided ideal if and only if
R(A, B) is right invertible in AZ(¥) ). In Section 3 we consider the range
inclusion

Ran R(4, B) C £
For the cases £ = {0} or £ = X(5¢) this inclusion was characterized
by Fong and Sourour [15]. They proved in [15, Theorem 1] that if
{B,,...,B,} is independent, then R(4, B) = 0 (i.e., Ran R(4, B) C
{0}) if and only if 4, = 0 (1 = i = n). Analogously, if {B,,..., B,}is
independent modulo X#(5#), then

Ran R(A4, B) C X(#)
if and only if 4, € H#(>¢) (1 =i = n)[15, Theorem 3]. In Theorem 3.1
we prove that if Zis a proper 2-sided ideal of #(#) and {B,, ..., B,} is
independent modulo ) (5¢), then

Ran R(4, B) C ¢
ifandonlyif 4, € # (1 =i = n).

The hypothesis that {B, . . ., B, } is independent modulo X (5¢) cannot
be weakened to independence modulo £ Indeed, if # = C; (the
trace class) and if 4 and B belong to the Hilbert-Schmidt ideal C,, then
AXB € C, for every X in F(»¢) whether or not A or B belongs to C,. The
range inclusion problem for the case when {B,,..., B,} is dependent
modulo X (5#) has been studied in [14], where it is solved for the operators
7(A, B) and S(A, B); for arbitrary elementary operators, a complete
characterization of range inclusion remains unsolved.
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In [15] Fong and Sourour conjectured that there is no nonzero compact
elementary operator on the Calkin algebra F(5¢)/X#(#) and we verify
this conjecture as a consequence of a more general result (Theorem 4.1).
In this connection we recall some terminology. For a Banach space
X, A (Z) denotes the ideal in LX) of all compact operators on Z;

T AX) = LX)/ HX)

denotes the canonical projection onto the quotient Banach algebra. For
T € LX), we usually denote m(T) by T and we set

ITll, = ITIl and o,(T) = o(T).

Acknowledgement. The main results of Sections 3 and 4, including the
proof of the Fong-Sourour conjecture, were presented to a seminar at
the University of Toronto in January, 1983 by the second-named author;
he wishes to thank Professors P. Rosenthal, C. Davis, and C. K. Fong
for their hospitality. After completing this manuscript we learned that
B. Magajna has recently and independently found two proofs of the
Fong-Sourour conjecture, one of which is quite different in spirit from
ours.

2. Banach algebra prerequisites. In this section we record for future
reference several results concerning elements of commutative Banach
algebras, particularly commutative subalgebras of the Calkin algebra. We
begin by recalling some standard results about the maximal ideal space of
a commutative Banach algebra.

Let &7 denote a commutative Banach algebra with identity e, and let
(/) denote the maximal ideal space of oZ Thus, from the Gelfand-
Mazur Theorem [8], M € #(«) if and only if there exists a (unique)
complex homomorphism

S =t —C

such that M = ker f), (and we frequently identify M with f},). Note that
for each a €

a — fyla)e € M.

Since f,, € &7* (the dual space of &), #(27) is given the w*-topology
relative to the embedding .o/ & &7**; thus, for a € ./ the function

a:M(2) — C,

defined by cAz(Mf) = f(a), is continuous. For a compact space X, C(X)
denotes the Banach algebra of continuous complex functions on X under
the sup norm. The Gelfand transform

Nl — C(M(H))
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is defined by A(a) = a, and we denote its range by 2/". Recall that the
Shilov boundary of #(«7), I'(«7), is defined by the relation
llall = supyrerlaM)|, Va € & [22,p. 132].
For a € 4/ let o(a) denote the spectrum of a. Denote the radical of &7
by Rad < i.e.,

Rad & = N
MeMst)

Since ./ is commutative, Rad .« coincides with the ideal of all quasi-
nilpotent elements of 27 [22, p. 57], i.e.,
Rad & = {a € #:0(a) = {0} };
thus a € . is quasinilpotent if and only if a = 0. More generally, a
subset S C &7 is independent modulo quasinilpotents (i.e., the image of S in
&Z/Rad </ is independent) if and only if S” is independent.
Let X be a nonempty set and let #(X) denote the vector space of

complex functions on X. We record without proof the following
elementary fact.

LEMMA 2.1. {f}, ..., [,} © F(X) is independent if and only if there exist
distinct points x,, . . ., x,, € X such that

det[fl(xj) ]|§i,j§n # 0.

LEMMA 2.2. Let {T, },_, denote a sequence in s such that {T}}Y, _, is
independent in &/". Then there exists {M, Y, _, C &) such that

det[T;(My) i jx=, * 0.
Proof. The isometric linear mapping
ret” — C(I())
defined by
r(a) = all'(«/)
maps {T;},_, to an independent set, so the result follows from Lemma
2.1

Recall from [28] that a nonempty subset ¥ C &/ consists of joint
topological divisors of zero if for any finite subset {s,...,s,} C &£

inf{§ Ils;x]|:1x]] = 1} = 0.

LeMMA 2.3. If o is a separable commutative Banach algebra and & C o/
consists of joint topological divisors of zero, then there exists {x,}n., C
S, |Ix, || = 1V n, such that

lim [|xs]l =0 Vs € &£
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Proof. Let {s;};, be a dense sequence in .2 For n = 1, there exists
x, € & |Ix,|l = 1, such that

n
> lx,sll < 1/n;

i=1
thus

lim, ., |lx,sil = 0 for each i,
and the result follows.

LEMMA 2.4. Let S be a Hilbert space and let T € L¢), ||T|| = 1.
Let M be a finite dimensional subspace of X If {a,}°., € RV satisfies
a; — 0, then there exists an orthogonal sequence {x; };>_ | C H © M such
that

x|l =1+ a, and |ITx;ll = 1, Vk = 1.

Proof. Having chosen x|, ..., x,_, satisfying the above requirements,
let

%k = <xl,...,xk71> @.ﬂ.

Then
1Tl = 171 = 1,

so there exists xj € //l,f, llxill = 1, such that
Tx |l = 1/(1 + ap);

let

x, = (U/Tx} )xp.
LEMMA 2.5. If {x, )}, C Hsatisfies

X, "0 and Tm Ix,ll = 1,
then for T € L),
Im || Tx,ll = [I7].
Proof. For each compact operator K,
[|Kx,|l =0 and
(T + Kx,ll = I1Kx,ll = ITx, )l S (T + Kox, | + [1Kx,l,
whence
Tim |,/ = Tm [ (T + K)x,| = Tm |7 + K]l Ix,)l = 1T + KII.

so the result follows.

https://doi.org/10.4153/CJM-1986-072-6 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1986-072-6

ELEMENTARY OPERATORS 1491

LEMMA 2.6. Suppose </ is a commutative separable subalgebra of éi\_’%”),
where 3 is a complex separable infinite dimensional Hilbert space. Then for
each M € T(), there exists a self-adjoint projection Py, € LK) such
that

Py,+#0 and TP, = T"(M)P,, VT € «

Proof. Since M € T'(«/) consists of joint topological divisors of zero
[28], Lemma 2.3 implies that there exists a sequence {R,}.>, C
[IR,Il = 1V n, such that

lim ||[R,S|| =0 VS € M.

Let {S }J _ be a dense sequence in &£ For k = 1, there exists n, € N,
n, > n,_,, and T, € L¥), such that T, = R, and

"y
1S = S;MNTI =37F for1 =)=k
We claim that there exists a sequence {/}};-, € S such that
Il = 1 + 1/k,
{Th,}:2, is an orthonormal sequence, and
(S, — S; M) Tl = 275 for1 =j = k.

Suppose that A4}, ..., h’ have been chosen to satisfy the above require-
ments for all j, k with 1 = j = k = p. Let

M= (T, T
and let &/ = H#© A. Since dim A4 < oo, Lemma 2.4 implies that there
1s an orthogonal sequence

(YL e
such that for each k = 1,
I = 1+ 1/pk and ||T,, xll = 1.
Clearly,
X" %0 and kli_)—m IxP) = 1,
so Lemma 2.5 implies that forj = p + 1,
Im (165, = ST, 71 = 1S = Si)T, 4l
= 370Fh,

It follows that for some fixed k (sufficiently large) and h,,, = xﬁj’ ),

1S, = ;ML il <27¢70 1=j=p+ 1.
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Let P, denote the orthogonal projection of 5#onto the closed subspace
spanned by {T;4,},~,. Clearly, P,, # 0, and since

2 11(S; = S; M) Tyl < oo,
k=1

it follows that (S; — §7(M) )Py is trace class. Thus

5Py = S;MOF Vi,
the result now follows from the density of {S‘;} and the continuity of
I

We conclude this section by recalling two results of D. Voiculescu [27]
concerning subalgebras of the Calkin algebra

IH) = LOE)KH(H).

Let 5 be a separable Hilbert space and let T be in A(#¥). A closed
subspace A C #is essentially T-invariant if
(1 - P,)TP, € X(¥),

where P, denotes the orthogonal projection of »# onto . For a norm
closed subalgebra .o/ C 2(5¢), let Lat .« denote the set of all self-adjoint
projections p € 2(3¢) such that

1—pxp =0 Vx € &

Since projections in 2(5¢) lift to projections in A(¥) [5, Theorem 2.4], it
follows that

Lat o/ = {P,: A/ is an essentially T-invariant subspace of J for
every

T € L) such that T € ).
Following [27], we let
Alg(Lat &) = {y € 20¢):(1 — p)yp = 0 Vp € Lat &}.

We will have occasion to use a reflexivity theorem of D. Voiculescu
[27, Theorem 1.8] which states that if o/ is a separable norm-closed
subalgebra of 2(5#) containing the identity, then

Alg Lat o = &/

We also require the following variant of D. Voiculescu’s non-commutative
Weyl-von Neumann Theorem [27, Theorem 1.5]: Let 5 5# be com-
plex separable infinite dimensional Hilbert spaces, let € D X#(¢) be a
separable C*-subalgebra of A(5), and let

p:% — LAH)
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be a faithful *-representation. Then there exists a unitary operator
U:5#— ¢ @ 5 such that

T — UNT® o(T))U € X(¥), VT € &

3. On range inclusion and ideals. In this section we present our
characterization of the range inclusion Ran R(4, B) C _Z Throughout this
sectionA4 = (A,...,A4,)and B = (B, ..., B,) denote arbitrary n-tuples
of operators in A(¥). Let Z denote a proper 2-sided ideal in F(¥). A
subset & C HAF) is independent (resp., dependent) mod # if the image
of & in HA#¥)/# is independent (resp., dependent). Given a linear
manifold ¥~ C H(F), a subset & C ¥ spans ¥ mod ¢ if

Vol + =S+ JS e(¥HJ e F}
(where (%) denotes the (not necessarily closed) linear span of .%).

Let J denote the ideal set corresponding to £ Let 5, i = 1, 2, 3,
denote separable infinite dimensional complex Hilbert spaces, and let
T € X(#, ). Recall from [3] that T is affiliated with ¢ if, when the
eigenvalues of (T*T)]/ 2 are arranged in a sequence (counting multi-
plicities), that sequence belongs to J. Recall also that if T € A, 53) is
affiliated with £

Q € L, #,), and S € L, H),

then QT and TS are also affiliated with #[3].

The main result of this section is the following characterization of
Ran R C #for ¢ # % (the ideal of all finite rank operators in Z(5¢) ).
The extension of this characterization to ¢ = % will be obtained as a
-corollary.

THEOREM 3.1. Let £ denote a proper 2-sided ideal of L(¥), F + F If
{B,.....,B,} is independent mod X'(5¢), then

Ran R(4, B) Cc ¢
ifand only if A, € (1 =i = n).

Before proving Theorem 3.1, we require several preliminary lemmas. In
the sequel, for T in A(5¢), P(T) denotes the orthogonal projection onto
# © ker (T), the initial space of T.

LEMMA 3.2. Let L in A(¥) be an operator that is not compact. For
1 = n < oo, let {K;}/_, denote a sequence of compact operators in L(¥).
Let ¢ # % denote a proper 2-sided ideal in LA(). Then there exists an
orthogonal projection P = P(L) such that LP is not compact and K.P is
infg(l =i =n)

Proof. The proof is by induction on n. Let n = 1 and let P, = P(L).
Since L|Po¥ is not compact, there exists an infinite rank projection

https://doi.org/10.4153/CJM-1986-072-6 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1986-072-6

1494 C. APOSTOL AND L. FIALKOW

Q = P, such that L|Qs#is bounded below. Let # = Qi Since K,|.#
is compact, there exists an infinite dimensional subspace ¥ C . such
that

K, = K| — #

is affiliated with ¢ [3, Theorem 2.1]. Let P denote the orthogonal
projection of # onto £ Then K,P:5¢— 5is also affiliated with £ hence
K\Pisin Z Since P = Q = P, = P(L), then L|P>#is bounded below, so
LP is not compact and the proof is complete in this case.

Assume the result for n — 1. Since L is not compact, the induction
hypothesis implies that there exists an orthogonal projection P; = P(L)
such that LP, is not compact and K;P;isin #(1 =i =n — 1). Let

Py = P(LP) = P(P)) = P, = P(L).

Let # = P, Since LP,|.# is not compact, there exists an infinite rank
orthogonal projection Q = P, such that LP||Q> is bounded below.
Since K, |Q5# is compact, [3, Theorem 2.1] implies that there exists an
infinite rank projection P = Q such that

K |PH#.PH# — H#
is affiliated with Z so that K, P is in £ Note also that
KP=(KP)Pe g (1l=i=n—1.

Since P = Q, then L|P>#is bounded below; thus LP is not compact and
the proof is complete.

LEMMA 3.3. Let #denote a proper 2-sided ideal in L(¥), F + F If n = 1
and Ly, . .., L, is a sequence of operators in L(H#) with L, not compact, then
there exists an orthogonal projection P = P(L)) such that {L,\P, ..., L, P}
contains a subset & that is linearly independent mod X (3¢) and which spans
(LyP,...,L,P) mod ¢

Proof. The proof is by inductiononn = 1. Let n = 1. Let P = P(L));
since L, is not compact, then L,P is not compact. Thus & = {L,P} is
independent mod X(5¢) and spans (L,P) mod ¢

Assume the result is true for n — 1. Let P, = P(L,) and note that L,P,
is not compact. If {L,P,, ..., L, P} is independent mod X (5¢), then the
result follows by setting

P=P and ¥={LP, ...,L P}

If {L,P,...,L,P} is dependent mod X(5¢), then since L,P; is not
compact, we may assume (by relabelling L,, ..., L, if necessary) that
there exist scalars ¢, ..., c,_; and K € X () such that

LnPl = C]LlPl + ...+ Cn__an_lPl + K.

https://doi.org/10.4153/CJM-1986-072-6 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1986-072-6

ELEMENTARY OPERATORS 1495

Since L, P, is not compact and K is compact, Lemma 3.2 implies that there
exists an orthogonal projection R = P(L,P)) (= P)) such that L,P|R is
not compact and KR is in £ Since PR = R, it follows that L;R is not
compact and

LR =c LR+ ..  +c

The induction hypothesis, applied to L|R,..., L, R, implies that
there exists an orthogonal projection Q = P(L,R) and a subset

& c {LiRQ,...,L, RO}

such that ¥ is independent mod )¢ (5) and spans
(LiRQ, ...,L, \RQ) mod ¢

Note that since ker(R) C ker(L,R), then
Q = P(L\R) = P(R) =R,

so that RQ = Q. If we set P = Q, then
L c{L/P,...,L, P}

is independent mod X¢(5¥) and spans
(L\P,...,L, Py mod_Z

L, R + KR.

n—1

Moreover,

LP=LRP=cLP+...+c¢,_ L, P+ (KR)P,
so ¥ spans

(LyP,...,L,P) mod #
Since P = R = P(L,), the proof is complete.

Let #denote a proper 2-sided ideal in A(¥), £ # % and let A4 denote
a proper infinite dimensional subspace of J#

LEMMA 34. If S € AM) is affiliated with & then T = S © 0,1 is
in %

Proof. Since S is affiliated with £ each characteristic sequence for S

belongs to J, the ideal set of £ It follows from [5, Lemma 1.2] that each
characteristic sequence for T = S @ 0 ,. also belongs to J and thus T is

in ¢
Proof of Theorem 3.1. Assume that Ran(R(4, B)) C £ and that
{B,,...,B,} is independent mod X#(5#). We seek to prove that 4, € ¢

(1 =i = n). The proof is by induction on n = 1.
For the case n = 1, suppose that 4,XB, € #for every X in #(5¢) and
suppose that {B,} is independent mod X (5¢). Since B, is not compact,
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there exists an infinite dimensional subspace .# C . such that B|.Z is
bounded below. Thus there exists L € #(5¢) such that LB P = P, where
P denotes the orthogonal projection of 5# onto .. Let V denote an
isometry in A¥) whose range is .#. Then

VELB|V = V¥V = 1,
so A; = [A,(V*L)B,]V is in £ and the proof of this case is complete.

Assume that the theorem is valid for n — 1, and consider the case
when

Ran(R(4, B)) C £

where 4 = (4,,...,4,), B = (B),...,B,) and {B,,...,B,} is in-
dependent mod X (5#). Suppose first that {4,,...,4,} is dependent
mod £ Then there exist scalars ¢y, . . ., ¢,, not all zero, such that

ClAl +...+ann:J€j

We may assume (by reordering the A,’s and B;’s) that ¢, # 0, and thus we
may further assume that ¢, = 1, i.e.,

A] =J - C2A2 - ... CnAn.
For X in AU¢),
(J - C2A2 T e e s T ann)XBl + AzXBz + ... + AVIXBVI

is in £ and since J € g it follows that
*) A, X(By — ¢,B)) + A3 X(By; — 3By)
+...+4,X8B, —c¢,B) €2

Since {B,, ..., B,} is independent mod X#(5¢), it follows readily that
{B, — ¢;B;}!_, is independent mod X#(¥), so (*) and the induction
hypothesis imply that 4, € ¢ (2 =i = n). Since

Ran(R(A4, B)) c ¢
it now follows that
AXB, € ¢ for every X € HK),

and since B, is not compact, the case n = 1 (above) implies that 4, € ¢
Thus 4, € #(1 =i = n) and the proof is complete in this case.

To complete the induction it thus suffices to assume the result for n — 1
and to prove that if

Ran(R(4, B)) C ¢

and {B,,...,B,} is independent mod X#(¢), then {4,,...,4,} is
dependent mod ¢ We have

(D) A XB, + ...+ A,XB, € ¢ for every X in L(¥).
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Moreover, B, = BU, where B¥ = U*B denotes the polar decomposition of
B thus B = 0 and U is a partial isometry such that BUU* = B. Let

n’
C,=BU* (1=i=n-—1)

1
(1) implies that
2) A XC, + ...+ A4, ,XC,_, + A, XB € #for each X in L(¥).
We distinguish two cases.
Case 1. Suppose there exists an essentially B-invariant subspace .# that
is not essentially invariant for all of C,...,C,_;. We may assume
without loss of generality that .# is not essentially invariant for C; in

particular, we may assume that .# and .#" are infinite dimensional, hence
1somorphic. Relative to the decomposition

3) A= MDM,

the operator matrix of B is of the form

(B n B 12)
K 322 ’
with K € X (M, #~), and the matrix of C, is of the form
(Cll C12)
Dl C22

with D, € A, ///L) and D, not compact.

Let V denote an isomorphism of M+ onto M, thus VD, € AMA)
is not compact and VK € A4 ) is compact. It follows from Lemma 2.2
(applied with J#replaced by ) that there exists an orthogonal projection
Q € AM) such that VD, Q is not compact and VKQ € A ) is affiliated
with Z Relative to the decomposition (3), let

- ()

and let

Let
L =TCR (1=i=n-1)
and note that

VD,Q 0),

L,:TCIR:< 0 o

which is not compact. Another matrix calculation shows that
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since VKQ is affiliated with £ Lemma 2.3 implies that TBR = VKQ ©
0 41 belongs to £ It thus follows from (2) that for each X in £(5¢),

(4  AXL, + ...+ A, XL,_, = [4,(XT)C,
+...+ 4, (XT)C,_,
+ A,(XT)BIR — A, X(TBR) € £

Since L; is not compact, Lemma 3.3 implies that there exists
an orthogonal projection P = P(L;) and an integer k, 1 = k =n — 1,
such that (after perhaps reordering L,,...,L, | (and A4,,...,4,_,
correspondingly) )

& = {L\P,..., L,P}
is independent mod X#(3¢) and spans
(L\P,...,L, P) mod_¢Z

Thus if Kk < n — 1, thenfor1 =i = n — 1 — k, there exist scalars
¢1s - - .~ €y and there exists J; € _# such that

(5) L, P =c LiP+ ...+ cyL,P+J,.
Since, for each X in A(5¢F),
AXL\P + ...+ A XLP + A, | XL, P
+...+ A4, XL, P € Z
then (5) implies that
AXL\P + ...+ AXLP + Ay X(cy L/P + ...+ e LyP)
+ ...+ A, X, Ly P
+ ..ot lyP) €L
and thus
(6) Ay +epdpr ot o4, DXL P
+.oo A tepyd oo o A, DXLP € F

Note that the validity of the theorem for n — 1 readily implies its validity

for j whenever 1 = j = n — 1. In particular, since {L,P,..., L, P} is
independent mod X () and k = n — 1, the induction hypothesis and (6)
imply that

Ay +oepdpy oo o4
belongs to Z i.e., {A4,,....4,} is dependent mod £

https://doi.org/10.4153/CJM-1986-072-6 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1986-072-6

ELEMENTARY OPERATORS 1499

Case 2. In the remaining case, every essentially B-invariant subspace is
essentially invariant for C|, ..., C,_;. Let & = C*(B). If P is in Lat(«¢),
then

(1 — P)BP =0,
whence
1—P)CP=0 (1=Si=n-—1).

Thus each C; is in Alg(Lat(/) ). The reflexivity theorem of D. Voiculescu
[27, Theorem 1.8] implies that

Alg(Lat()) =

and thus 5,- € (1 =i =n — 1). Thus, since B = 0, there exist
continuous functions

(piioe(B) —C
such that
Ci=¢B) 1=si=n-—1.

(Recall that C*(B) =~ C(s,(B)) [11].) B
Since B, = BU and B, is not compact, then B # 0, so there exists
A € o,(B) such that A # 0. Since

A € 0,(B) = 0,(B),
there exists an infinite rank projection P such that
(B — MNP =0,
i.e., BP = AP, whence
¢ (B)P = MNP (1=i=n— 1.
Thus there exists K; € A¢) such that
CP=9qMNP+K, (1=i=n—1).
Similarly, there exists K, € X(5) such that
BP = \P + K,,
Since, for each X in £¥F),
A XC,+ ...+ 4, XC,_, + A, XB € £
then
A, XCP+ ...+ A4, XC, \P + A XBP € £
whence
@) A X(@eMNP +K)+ ...+ A4, X, (MNP + K,_))
+ 4,XAA\P + K,) € 2
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Lemma 3.2 implies that there exists an infinite rank orthogonal projection
Q = Psuchthat K,Q € ¢ (1 =i = n). Thus (7) implies that for each X
in L),

A Xe MO + ...+ 4, 1 Xe,_ (MO + 4,X\Q € Z
Thus
(M)A, + ...+ ¢, (MA,_y + A,)X0 € 2

for every operator X in #(5¢). Since Q is not compact, it follows from the
case n = 1 that

(pl(>\)Al + . o + q)n_l(A)An_l + AA" (S /;

since A # 0, then {4,,...,4,} is dependent mod £ The proof of
Theorem 3.1 is now complete.

COROLLARY 3.5. Let # denote a proper 2-sided ideal of L(F). If
{B,,...,B,} is independent mod X (¢), then

Ran(R(4, B)) Cc #
ifand only if A, € § (1 =i = n).

Proof. The result follows from Theorem 3.1 if # * & so it remains to
consider the case when

Ran(R(4, B)) € &
In this case, since % C _# for every proper ideal ,£ Theorem 3.1 im-
plies that 4, € #for each proper ideal # # % Since the intersection of

all such ideals is equal to % [4, Corollary 4.7], it follows that 4, € F#
1 =i=n).

/_\/
4. Elementary operators on #(#], 5). In this section we analyze the

N~
structure of elementary operators on the space A5, 54), particularly
with respect to compactness, pseudoalgebraicity, the strong spectral
splitting property, and pseudodiagonalizability.

THEOREM 4.1. The canonical quotient map
ALy ) — ALT I VLAY )
is isometric on elementary operators.
Proof. Invoking unitary equivalence, we may suppose that
A= M= A

Let R = R(4, B), A = (A4,,...,4,), B = (B,,...,B,). Let €denote
a separable C*-subalgebra of #(#’) such that X (0¢) C 4 A4, B, € €
(I =i = n), and such that
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IRIl = sup{ IR(X) [I:IX]| = 1, X € ).
Let p:@ — #(#) be a faithful representation of infinite multiplicity. By
Voiculescu’s Theorem, we can find a unitary operator
(e o)
U#— .GBI H
j=
such that
T—U(TOp(T)®.. ®p(T)D.. ) U € X(H#) VT € &

Since R is unitarily equivalent to the operator R’ obtained by replacing
4;, B; by

A =A,®pd)O.. . 0pd) ...,
B/ =B ®pB)®...0pB)O...,

it suffices to prove that
— _ —_ _ [ee]
[|R'|| = inf{llR’ — R{ll:Ry € 9((2'(6‘ 9?)) .
Jj=

Let € > 0 and let

Ry e f(,@(%l 9?))
e
For X € %€ ||X]|| = 1, let
(o)
Q}; C Q(@I .}f)
e

be the linear manifold
{7(0 ® a,p(X) © a3p(.7) ®...)},
where only a finite number of the «,’s are nonzero. Since p has infinite
multiplicity, if X # 0, then
-
p(X) # 0,
and thus
dim 2% = co.

Since R}, is compact, it follows that Ry|Zy is not bounded below; thus
there exists X’ € 25 such that

IIX’ll = IX]l and [IRYX) Il <e
We have
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IR(X) || = “g @ [aj §1 p(Zi)p()?)p(Ei)] I '

- HE eaa,p(ﬁ()?nHe
j=2
= (sup le|) llo(R(X)) Il,
I
= llo(R(X)) Il
= IR I
(since p has infinite multiplicity). Now
IR | = IRX) | = IR — Rpy(X) |
+ e = IR — Ryl +

\.ﬂ\

SO

I

IR'Il = IIR]| sup [I[R(X) || = [IR" — Ryl + e
Xew
I1X]=1
Since € and ﬁf) are arbitrary, then
RNl = IR,
and the proof is complete.

Remark. The preceding result shows that there are no nonzero compact
elementary operators on

N
LA, H);
this answers a question of Fong and Sourour [15].
We next begin the spectral analysis of elementary operators on
TN
L, )
PrROPOSITION 4.2. Let {R,};2., be a sequence of nonzero elementary
operators acting in L, ). Then for every a, 0 << a < 1, there exists

X, € W)
such that
||)~(0H =1 and dist()?o, ker ﬁk) =Za Vk=1.
Proof. We may assume that
Rk — R(Z(k), E(k))’

where

https://doi.org/10.4153/CJM-1986-072-6 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1986-072-6

ELEMENTARY OPERATORS 1503

4% _ {Aj(-k)}'-'kzl C AH),
B® = By ¢ 208,

and A% and B®) are each linearly independent n,-tuples. Let %, %) de-
note the C*-algebras generated by {Aj(-k)}j‘k, X(5), resp. by {B](l‘ Yo
X(587), and let

p1:% — L) and 0, — L)

be faithful representations of infinite multiplicity. By Voiculescu’s
Theorem (Section 1), there exist unitary operators

oo
U‘;Qfl —),}ﬁ/ = 2 D /7,
J=1

Uyioty — )

> 04,
j=1

such that
T—UNTOp(D®... ©p(T)®...)U, € ¥(F), VT € &,
—U3(S®@pyS)®...DpyS) ... U, € #(4), VS € %,.

Let

T =T®p(T)®.. ©p(TH®..., T € %
and

P5(S) = S®p(S)D .. O p)(S)D...,S € &,
Thus

~ —~ LT /\T(/ — /—\k)/
R (X) = 2 Uy oAU, XU (B,
j=1

Define the elementary operator R on A5, /') by
Hy,
Ri(Y) = 21 Py AR Yp (BR));
j=

thus Y € ker R} if and only if
N ~
U,*YU, € ker R,

so it suffices to prove that there exists
- N— -
Yy € Lo, ), |IYll =1,

such that
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dist(Y,, ker(R})) = a Vk = 1.
For k = 1, define the elementary operator S, on A, %) by

g
SuX) = 2 pa A} )Xy (B,
P

Since p, and p, have infinite multiplicity and 4*’ and B*’ are each
linearly independent, the sequences

—~— ——~—
(P AN Yk, (paBI) Yy

are each independent, so [15, Theorem 3] implies that §k 1S a nonzero
elementary operator on

T~
LA, ).

Riesz’ Lemma implies that there exists Y, € A, ), ||)7k|| = 1, such
that

dist(Y,, ker ;) = a.

Let Q; denote the projection of " onto the j-th coordinate space. Let
P, denote an isometry of 5% onto the j-th coordinate space of 5%’ ; thus

H = ZOQA and A = X P
j=1 : j=1

Let

M

It

Yy = P Y00 € L8, ).

J

For Y € Lo, ), let (Y;) denote the operator matrix of Y with
respect to the preceding decompositions of 5% and #’. Note that for
eachm = 1, them + 1, m + 1 entry of Rj(Y) is equal to S, (Y,,,)- If
Y € ker R/, then R;(Y) is compact, and thus

Si(Yp) € A8, ).
If K € X (#, #)), then
1Yy — Y + Kl Z 1Y, — Yy + Kyll Z 1Y, — Yl
= disi(Y,, ker ;) = a.
Thus ||¥, — Y|| = a and it follows that
dist(Y,, ker R}) = a Vk.

Since clearly ||Y,|| = 1, the proof is complete.
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Observe that if Z is a B-space, T € AX) is pseudoalgebraic, and o(7T)
is countable, then there exists a sequence of monic polynomials { p; }72,
such that

il - Y, ker p(T) and

ker p,(T) C kerp, . ((T) Vk = 1;
indeed, it is not difficult to check that the polynomials
p(x) = (x — A L (x = A
satisfy the requirements, where
o(T) = (M )20
TueoreM 4.3. If R is a pseudoalgebraic elementary operator on

A, ) with countable spectrum, then R is algebraic.

Proof. Let { p, };2_, be a sequence of monic polynomials such that
~ ~—- 1 o ~
L, )5S = Y, ker p(R) and

ker p,(R) C kerp, , (R) Vk = 1.

Clearly p, (R) is an elementary operator, so if p,(R) # 0V k = 1, then
Proposition 4.2 implies that

Y, ker Pr(R)

is not dense, contradicting the hypothesis that R is pseudoalgebraic. Thus
for some k = 1, p, (R) = 0, whence, R is algebraic.

In the remainder of this section 4 and B will be commutative n-tuples.
Let P € #(#%) and Qe Q()i”) be such that P* # 0 is a jointly invar-
iant 1dempotent for A* (ie., P? = P and PAP = PA(1 =i = n))

and O # 0 is a jointly invariant idempotent for B (e, Q2 = Q and

BQ0 = 0B,0(1 =i = n)). Let PW)Q denote the space
e —~—
(PXO:X e St 7 ),

R g ~ o~
a closed subspace of A, ). Define the operator R(3A4, By) on
~ 7 N ~
PAA, H)Q by

R(pA, By)(X) = El PA,XB,Q.
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LEMMA 4.4. 1) R(p;f, §Q~) is equivalent (via an isometric isomorphism of
B-spaces) to

- - TN
R(A’, B") € ALAQH|, PA3)),
where
Aj = PA,|P, B, = QB,|0A.

2)R(A B)havthesssp =>R(PA B)haszhesssp
3) R(A B) is pseudoalgebraic = R( PA BQ) is pseudoalgebraic.
4) R(A, B) is pseudodiagonal = R(5A, Bp) is pseudodiagonal.

Proof. 1) the equivalence is implemented by
TN . T
U204, PHy) — PLA,, )0
defined by
U(T) = PTQQ (T:Q#, = PA5).
Parts 2), 3), 4) follow from the fact that if p(z) is a polynomial, then
p(R(A, B3) \PXQ) = Pp(R(A, B) \(X)0.
LEMMA 4.5. Let Q € LK) satisfy Q° = Qand Q # 0. Let T € L(H5)
be polynomially compact and let p(z) be the monic minimal polynomial of T.

Define R on L(#,, #)Q by R(X) = TX. If R is pseudodiagonal, then p
has simple roots.

Proof. Let T’ be a compact perturbation of T with minimal polynomial
p(z) [20]. Suppose A is a multiple root of p(z); we may assume A =
It follows from [10, Lemma 2.14] that there is an invertible operator
J € H(4) and an orthogonal decomposition

@) b =209
such that the matrix of J ~'T"J relative to (4.1) is of the form
(i Y
0 T
where T is nilpotent and 7, is invertible.
Consider the decomposition
&L = ker T) © (& © ker Ty);
the matrix of J~'T"J relative to
42y o =kerT, ©& OkerT) @Y,

is of the form

04 0
0 C 0
00 T
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where C is nilpotent, and it follows readily that ('é) is not compact.

Thus P = A*4 + C*C = 0 is not compact, so there is an orthogonal
decomposition of # = &, © ker T},

43) L = A ® KA, dim X, = co

such that relative to (4.3), P = P; © P, with P, invertible.
Consider the orthogonal decompositions

Ay = QA ® (@) and
H, =kerT\ @4 ©%.

Suppose X:5#, — #, satisfies
(R — a)(X) = 0 for some .

(4.4)

The matrix of J~ ' X relative to (4.4) is of the form

Xll X12
X21 X22
X3l X32

and since TX = aX, then

whence

If a # 0, then since C is nilpotent, it follows that X,;, = 0. If a = 0, then
(4.5) implies that PX,, is compact. Relative to (4.3), P = P, © P, and

(1)
X
2
X5
and since P, is invertible, X (21,) is compact. Thus, in either case, the matrix
of J 71X relative to

(4.6) A = 0 ® ()" and A = ker T, © X, © A, © L)

X2l =

is of the form

X X
o [
x5 X9
X3 Xy

with Xgll) cbmpact.
Let V:0x#, — X denote an (infinite rank) isometric mapping. Now
Q € A7) has a matrix of the form
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(o ©)

relative to
H = 08 © (0A)
Let Y:5#] — 5 have the matrix

0 0 00
VVD_VO(]D)
0 o) (o0 ofloo
0 0 00

relative to (4.6); thus
- TN
Y e 2, #)0.
If
X, € LA, #) and X = X,0 € Vker(R — a),

then J~'X has a matrix of the form 4.7),
WY =X =17 —T 'l =0T Ny — 7 'x
=WAT IO — X0 = 11T 7'l (using (4.7)).
Thus

disti7Y,Vker(R — &)1 = 1/|IT ! > 0

and so R is not pseudodiagonal; the proof is complete.

LEMMA 4.6. Let Q € L) satisfy Q° = Q, Q # 0. For T € L),
define R on W)Q by R(X) = TX. Then we have

1) R has the s.s.s.p. = o(T) is finite.

2) R is pseudoalgebraic = T is algebraic.

3) R is pseudodiagonal = T is a linear combination of commuting idem-
potents that are polynomials in T.

Proof. 1) Let W € L3, ) be a‘partial isometry with initial space
Q> that maps onto J4. Let IV = WQ; since V is right invertible, there
exists 8 > 0 such that if

X € L0f, ) and X — V| <3,

then X is right invertible and XX* € ,% is invertible. Since R has the
. - /\/ —
s.s.s.p., there exists X € A, 5#,)Q such that

m
IX -7 <8 and X = X X,
j=1
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where
lim |[(T — \)*XJI"* =0 for some A,

k—o0
Thus

1/k
= 0’

im ||I1(T - A%
j=1

k—0o0
and since XX * is invertible, it follows that

1/k
lim = 0.
k—00

Since
H (T - >‘j)
j=1

is quasinilpotent, the spectral mapping theorem implies that o(T) is
finite.
2) If R is pseudoalgebraic, we define V' and

m
j=1

as above, except now p; (T)Xj = 0 for a monic polynomial p;. Then
P =PpiPr---Pm SatISfICS p(THX = 0, whence

p(T) = p(DXX*XXH Y =0

thus 7 is algebraic.

3) If R is pseudodiagonal, then 2) implies that T is algebraic, and
Lemma 4.5 shows that the minimal polynomial of 7 has simple roots.
Thus the operator T’ in the proof of Lemma 4.5 is similar to a normal
operator with finite spectrum and so is a linear combination of commuting
idempotents that are polynomials in 7”. Since 7’ = T, the result
follows.

THEOREM 4.7. Suppose {Ek Y. _ | is independent modulo quasinilpotents
and o(BA) = {0}, k > p. Let o denote the closed algebra generated by
T Al, .. A Then we have

1) R(A B)has the s.s.s.p. = dim & < co;

2) R(4, B) is pseudoalgebraic = dim &7 < oo;

3) R(4, B) is pseudodiagonal = dim &/ < co and </ is semi-simple.

Proof. Let # denote the closed algebra generated by T, El, e En. The
hypothesis implies that {B7, ..., E;} is independent. Lemma 2.2 implies
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that there exists {M, }; _, C I'(#) such that

(4.8)  det[B/(M})],<,4=, # O.

Lemma 2.6 implies that for each k, 1 = k = p, there exists an orthogonal
projection P, P, # 0, such that

(49) BP, = B{(M)P, j=1,...,n Py

A calculation using (4.9) shows that if ¥ € (%, #) and X = YP,,
then

P
(4.10) R(4, Bp)(X) = (ZI E;(Mk)Aj))?
J=

(since Ef = 0 forj > p).
~ p ~ ~
(4.11) Let A, = 21 ByM)A, (1 =k = p).
j=

1) If R(4, B) has the s.s.s.p., then so does R(4, Eﬁk) (1=k=p
(Lemma 4.4 (2)). Lemma 4.6 (1), (4.10), and (4.11) imply that o(4}) is
finite, so (4.8) implies that (A4, ) is finite (1 = k = p). Thus there exists a
polynomial p, such that

o(pe(4;)) = {0},
whence
A =p(A4) =0 (1 =k =p);

it follows that 7" is finite dimensional.

2) If R(A, B) is pseudoalgebraic, then we may proceed as above (using
Lemma 4.4 (3), Lemma 4.6 (2), (4.10), and (4.11) ) to conclude that Z;‘, is
algebraic (1 = k = p); thus (4.8) and (4.11) imply that 4, is algebraic
(1 = k = p) and so dim &/ < co.

3) If R(4, B) is pseudodiagonal, then Lemmas 4.4 (4) and 4.6 (3) imply
that A, is a linear combination of commuting idempotents that are
polynomials in /T;( (1 = k = p). It follows from (4.8) and (4.11) that each
A, is a linear combination of idempotents in .2 and the result follows.

We recall that if S and T are commuting Banach space operators then
o(S + T) C ofS) + o(T) [7, 22];
in particular, if o(T) = {0}, then
o(S + T) = o(S).

If 4 = {4,}/_, and B = {B;}/_, are commutative n-tuples in F(¢¥)
and
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Ri(/?) = A, XB, X e Zﬂ—(})/)»
then

o(R;) = o(4,)a(B;) [17] (cf. [9]),
and thus

h
o(R(A, B)) ¢ 2 o(A)o(B) (cf.[T)).
i=1
THEOREM 4.8. 1) R(A, B) has the s.s.s.p. if and only if o(R(A, B)) is
finite.
2) R(A, B) is pseudoalgebraic if and only if R(A, B) is algebraic.
Proof. We may assume that {B,};_, is linearly independent modulo

quasinilpotc:nts2 {/T P }jizl is independent modulo quasinilpotents, and for
k > p, either 4, or B, is quasinilpotent. Let

A=A, ....,4), A" = A, ....4,),

B = (Fl, R Ep), and B” = (§p+l’ ceey En);
then

o(R(A”, B")) = {0}

(see the preceding remarks).

1) Assume that R(A, B) has the sss.p. Since R(A”, B”) is
quasinilpotent and commutes with R(4, B), it follows that R(4’, B’)
has the s.s.s.p., so the proof of Theorem 4.7 (1) shows that 0(2,) is finite
(1 = i = p). Similarly, since R(B'*, A’*) has the s.s.s.p., then o(B)) is
finite (1 = i = p); thus

p
o(R(A, B)) = o(R(A", B")) € 2 o(d,)o(B))

i=1

is finite. The converse in 1) is true in general.

2) If R(4, B) is pseudoalgebraic, then R(A, B) has the s.s.s.p. Thus by
1), o(R(A, B)) is finite, and Theorem 4.3 implies that R(4, B) is
algebraic. The converse is clear.

In the sequel let T be a finitely diagonal operator on a B-space Z. Let
{E}- c L&Z)
be a family of commuting idempotents such that

D E = lg

i=1
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EE, =0 fori#j, and
n
T = X o, for certain scalers {o;}"_,.
i=1
We record without proof the following elementary result.

LemMma 4.9. 1) If S € AX) is pseudodiagonal, T (as above) is finitely
diagonal, and SE; = ES(1 = i = n), then T + S is pseudodiagonal.

N If S € LAX) is a linear combination of commuting idempotents, then S
is finitely diagonal.

TueoreM 4.10. The following are equivalent:

1) R(A, B) is pseudodiagonal;

2) R(A, B) is finitely diagonal,

3) R(A, B) = R(A’, B") where A’ = (A},...,A}) and the A}’s are
simultaneously finitely diagonal (i.e., finitely diagonal with respect to the
same family of idempotents), and B' = (B, ... ,5,’)) and the B)’s are
simultaneously finitely diagonal.

Proof. 2) = 1) is clear, and 3) = 2) follows from Lemma 4.9 (2), since in
this case R(A, B) may be expressed as a linear combination of p2 idem-
potents (each of the form X — EXF, where E and F are idempotents).

Assume now that R(A4, B) is pseudodiagonal; we may rewrite R
so that {4,,...,4,} is independent, {B,,...,B,} is independent,
{B,. ..., B,} is independent modulo quasinilpotents, and o(B,) = {0} for
i > p. The proof of Theorem 4.7 (3) shows that each 4, (1 = k = p)
is a linear combination of idempotents in the algebra .o/ generated by
T,4,,... ,Zp, from which it follows that 4, ... ,/Tp are simultaneously
finitely diagonal.

Moreover, Theorem 4.7(3) shows that & i1s semi-simple, so
{4,.... ,/Tp} is independent modulo quasinilpotents. Thus, by taking ad-
joints and applying the preceding argument, we conclude that By, ..., B,
are simultaneously finitely diagonal using idempotents generated by
By.....B,. It follows readily that

P
2 LiRg,

is finitely diagonal, so Lemma 4.9 (1) implies that
p
S =R, B) — El L; Rg,
is pseudodiagonal. Since S is also quasinilpotent, Theorem 4.8 (2) implies
that S is pseudodiagonal and nilpotent; hence § = 0 and 3) follows.

(Moreover, [15, Theorem 3] implies that p = n.) The proof is now
complete.
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S. Elementary operators on (¥, 5;). In this section we study
pseudoalgebraic and pseudodiagonal elementary operators on H(H#], J5).
We record for future use the following elementary observation: if .# and
& are (not necessarily closed) linear subspaces of a Hilbert space 5% with
dim % < oo and dim # = oo, then

dim 4 N (F') = .
LEMMA 5.1. Let 5¥ be a complex separable infinite dimensional Hilbert
space. Let
{T o c 200 (=1,2,...)
be given, with n; < oo and rank T | = oo for each j = 1. Then there exists
an orthonormal sequence {e; }j,l such that
T.e,#+ 0 and L 54 forj+ k,

where

H = clm{T e},

m

i satisfy

Proof. We can determine the e j ’s successively. Indeed, if {e;};
the requirements for some m = 1, we can choose

ept1 € Ran(T, 1y 1%), lle, il =1

such that e, | is orthogonal to

F = clm. { {e/ }j’_":l U §>J§ m+ l,A**%f} 5

lkgl

IIA —

this is possible since
dim # < co and dim Ran R, | * = oo.

ProrosITION 5.2. Let R(A, B) € ALH, H3)) be such that both
{A,...,A,} and {B,, ..., B,} are linearly independent modulo the ideal
of finite rank operators. Then the range of R(A, B) is not contained in the
set of finite rank operators in LA, ).

Proof. Apply Lemma 5.1 to the system {7, };% ,j = 1,2,..., where
m; =nand T, = B, (1 = k = n). (Note that B, is not a flmte rank
operator.) Thus there exists an orthonormal sequence {e;};° such that
Bie; # 0 and A, L M for j # h, where

M, = clm.{Be },,l
Let P, denote the orthogonal projection onto (e;). Since

B \Pe; = Bie; # 0,
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there exists a maximal linearly independent subset of {B,P, ., B,P} of
the form {B\P, B;P,...,B; P}; equivalently, {Be; B, e,, ... B; ¢}
is a maximal mdependent "4bset of {Bie}i_1- Let Ji = 1; then
fori = 1,

1]
- > ¢.,B P
ik 7
=1 YTk

where
clp = O
For X € 2#, 75),

> AXBP, = » (2 i )XBjkP/-.

i=1 k=1 “i=1

Let

2 cUkA

i=1

Note that since ¢;;; = 1 and {4, ..., 4,} is independent modulo finite
rank operators, then

n
Ajl = 2 Cilei

has infinite rank for each j = 1.
We may now apply Lemma 5.1 to the system {Ajk}}:f:},j =12,...;
thus there exists an orthonormal sequence

{/}2 ¢ 4
such that 4; f, # 0 and A L A} forj # h, where
u/tf= Clm{ 'kf.'}k=l'
We define X € H#, ) as follows. For j = 1, there is a unit vector
u € M; O (B Fepy_
such that (Bye;, u;) # 0. We define
Xu; = f; and X|#O ({4};2,) = 0;
thus
X(Bie;) = af; with a; # 0.

Now

https://doi.org/10.4153/CJM-1986-072-6 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1986-072-6

ELEMENTARY OPERATORS 1515

n "y
R(A, B)(X)e; = (2 AiXBin)ej = El A; XB, Pe; = oA, [,

i=1

and it follows that {R(4, B)X(X )e; }fil is an orthogonal sequence. Since

R(A, B)(X) has infinite rank, the proof is complete.

Let J be an ideal set. For a separable infinite dimensional Hilbert space
M let £, denote the unique ideal in FA(¥) with ideal set J. For Hilbert
spaces J¢|, ), H| = i, =~ H let /XH , denote the operators in (4], 73)
affiliated with Z,. We use £ to denote any of the sets %, jxf, faf, O We
omit the proof of the following elementary result.

LEMMA 5.3. Let R(A, B) be an elementary operator on L, ,), where
A= (A,....A4,), B = (By,...,B,). Then for a given ideal ¢ of L(¥),

)4 r n
R= X LRy + X LpRy + X L,Rg,
i=1 t i=p+1 ' i=r+1 L

where {AY'_, (C {(A,,...,A,)) is independent modulo ¢ {B}}_,
(c (By,...,B,)) is independent modulo %,

Fegn{4,... Ay(pt+1=i=r) and
G e fgnN(B,....,.B) (r+1=i=n).
(One or more of the three sums may be absent.)

We refer to any such decomposition of R as a standard form of R relative
to Z Note that if Ran R C Fand p = 1, then

P
Ran X LRy C £
i=1

Proposition 5.2 shows this cannot occur when ¢ = % the ideal of finite
rank operators, and thus we have the following result.

CoROLLARY 5.4. Every elementary operator R = R(A, B) on L(H, 3)
whose range is contained in the finite rank operators is of the form

14
R = X LRy,
k=1

where for each k at least one of Aj, or Bj, is a finite rank operator; moreover,
A, e t(I1=k=p)andB, € B(1 =k = p).

For an elementary operator R on A5, 5#,) and projections P €
L), Q € L), define

pRo € AL, H))
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by
pRo(X) = PR(X)Q.

LEMMA 5.5. Let R = R(A, B) be an elementary operator on A K|, 7).
Suppose X € Ran R and 3 is an infinite dimensional linear manifold
contained in 3, © ker X. Let M, be a finite dimensional subspace of £,
i = 1, 2. Then there exist rank one projections P € L)), Q € Lt5) and
finite dimensional subspaces ' C #© M, i = 1,2, such that

1) oRp # 0, i.e., there exists Y € A, ;) such that QR(Y)P # 0.
2) QR(Y)P = QR(Py YPy )P VY € LH, H5);
3) For 0 < a < 1, there exists X € LA, H#,) such that
X = Py XPyp, Xl =1, dist(X, ker 4Rp) = a, and
loRp(X) I Z allgRl.
Proof. Let
M = clm{Bh:l =k =nh € A}
and let
N =clm{X*4,h:1 =k =n h € M}.

Let # = M4 N N4 C H#; since dim @ < oo, there exists a unit vector
x € Pt N H. Let

A =clm{Bx,...,B,x}, P =P,,
A = (ATXx, ..., AXx), Q = Py

clearly 5 1 #\-and 565 | M,.
1) Let Y € A#, ) be such that R(Y) = X; then

(oRp)(Y)x = QR(Y)Px = QXPx = Xx # 0.
2) For each h € H#], Y € L4, 55) we have

QR(Pyy YPy)Ph = 2 QA Py YPy (h, x)x

i=1
n
= > QA,Py, YB.Ph.
i=1 -
Now
0 =(1 = Pg)drXx = (1 — Py)ArQXx,

SO
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n nh
2 QA.Pyy YBPh = 2 QA,YBPh = (oRp)(Y)h;
i=1 i=1

thus
OR(Y)P = QR(Py; YPy)P.

3) Let

W = {X € L0t #):X = Py XPy },

a closed subspace of A(H#], 73). Since
Rl — Lo, H)

is nonzero (by 1) and 2)), for 0 < a < 1 there exists X €
such that

dist(X, ker oRp|W) = a and || (GRIW)X) Il =
thus 2) implies

loRp(X) 1| Z allgRyll.
Relative to the decompositions

A= O @) and B = o © OB,

the operator matrix of X is of the form
X 0
X = (0 0)
X e Lo, ), X'l = 1. If Y € ker oRp and
Y, Y,
Y = ( 11 12)
LETRI £7)
then since

0 Y,
Y = ( 12)
Y2l Y22

is in ker ,Rp, then Y — Y’ € ker oRp|W. Thus
IX—YIZIX - Yll=IX- (- Y)[Za
and it follows that
dist(X, ker 4Rp) = a.

1517

WXl =1,

a”QRpi wi;

PROPOSITION 5.6. Let {R; }j'il be a sequence of elementary operators on

Lo, ) such that
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Ran R; ¢ F(H, ) V.
Then for 0 < a < 1, there exists X, € L, ), I Xy|l = 1, such that
dist(X,, ker R)) = a, Vj.

Proof. Let 0 < a < 1. We seek to produce sequences {M(lj )'};’il,
(MY )/}fil consisting of finite dimensional subspaces of ] and /% res-
pectively, and to produce rank one projections Q;, € L43), P, € L)),
and X, € At ;) such that for each j = 1,

1) R, # 0,
(Yl
D) oRp(Y) = QR(Py(YYPLVIE VY € LU, ).
3) XJ = Pﬁz(j)’)gPﬂl(j)’, ||Xj|| =1, dist(Xj, ker QjRij) = q,
and

”QJR,pj(XJ) Il = a”Q/.ijjH-
Let Y, € £#, ;) be such that W, = R,(Y)) has infinite rank. Let
AR ker(Wll) and let

MY = {0y c o, Y = {0} c 8.

Lemma 5.5 implies that there exist rank one projections P, € £(f)),
0, € HH), finite dimensional subspaces

#Vcgoun’, i=12 and
X, € AA, )

such that 1)-3) hold for j = 1. Suppose we have chosen .2, .4, Q.
Py, and X, satisfying 1)-3) for 1 = k = j — 1. Choose Y, € LA, 7))
such that W, = R;(Y)) has infinite rank, and let '

M = A © (ker W)).
Let
, j—1 : _ J—1
D =N g% and 4V ="v gt
! k=11 2 k=1"72
Lemma 5.5 implies that there exist rank one projections P, € A7),
Q;, € L), finite dimensional subspaces
M oM (i =1,2), and
/Yj € g('}ﬁ’ %)9

such that 1)-3) hold for j, so 1)-3) hold for all j = 1.
Note that the construction shows that

M L aF forj # k and
M LM for j # k;
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we may thus define
o0

X, = 2 X
Jj=1

(convergence in the strong operator topology), and clearly || X,|| = 1. If
Y € ker R;, then 2) shows that

Pf%j)r YP'#(II)/ € ker Q/R/Pj’
so from 3) we have
X, — Yl = Hny), XoPyti — Py YP“%I;),II
= IIXJ — Pfgj)rYB#<|1>/I| = g
the proof is complete.

THEOREM 5.7. If R(A, B) is pseudoalgebraic, then there exist projections
P € B, Q € & such that rank(l1 — P) < oo, rank(l — Q) < oo, and
R(pA, Bp) is algebraic.

Proof. Since R(A, B) is also pseudoalgebraic, we may use Theorems 4.7
and 4.8 and a spectral decomposition to reduce to the case when R(A, B)
is nilpotent.

Suppose

Ran(R(4, B)) ¢ FH;, #5) Vj = 1

and let 0 < a < 1. Apply Proposition 5.6 and its proof to the sequence
{Rj’.}fil, where R; = R(4, B)’: thus there exist projections Q,, P, and
X; € L(H,, H;) satisfying 1)-3) of Proposition 5.6. We have '

Il = 1. dist(X, ker gR/p) = a, and
HQ}RJ'p/(X/) = aHQ/Rj/'ij,

so if
Ry = A/ligRjpl o R

then [[R;(X)) || = q
Since R(A4, B) is pseudoalgebraic, there exist operators

X; € ker(R(4, B) — \,)™

(for certain scalars A, and natural numbers m;,), h = 0, 1, .. ., r, such that
Ay =0,A, # 0for h > 0, and

Since R(A, B) is nilpotent, the defining properties of X}, and A, imply

r

X = 2 X
h=0

= a/2.
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that Xj, is compact for & > 0. Since the sequence {P%’}j’il of Proposi-
tion 5.6 satisfies

Py 5o,
it follows that

7 pU)r

X, — 0,
whence

IR(X) Il =0 (h>0).

Since Rj(Xé) = 0 forj large and Rj(XO) = R(X)) (from (2) of Proposition
5.6), we have '

= lim [[R)(Xy) || = lim |IR(X) |l =
Jj—oo J—0

a/2 = Tim HRJ-(XO - EO X;,)

Jo0

]

which is impossible.
We may thus assume that

Ran R(4, B)" c F(#, ;) for some m =

IV

From Corollary 5.4 we may write

p
R" = X LRy, Al € o B €%,
i=1 0
and A or Bj has finite rank (1 = i = p). For 1 = i = p, if A] has finite
rank, let P, denote the spectral idempotent of A; corresponding to
{0} < a(4)); if 4] has infinite rank, let P, = 1; in either case,

P, € Alg4)) ¢ o
and 1 — P, has finite rank. Thus

is an idempotent in .4 1 — P has finite rank, and PA] = A/P = PA/P
is nilpotent (1 = i = p). We may similarly construct an idempotent
Q € % rank(1 — Q) < oo, such that QB, = B/Q = QB/Q is nil-
potent (1 = i = p). Clearly, PR'"Q is nilpotent, so it follows that pR,, is
nilpotent (equivalently, R(pA4, By) is nilpotent).

THEOREM 5.8. Suppose {Bl,...,Bp} is linearly independent modulo

essentially quasinilpotent operators with finite spectra and B,, k > p, is
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an essentially quasinilpotent operator with finite spectrum. Then we have

1) R(A, B) is pseudoalgebraic = A, is algebraic, 1 = k = p.

2) R(A, B) is pseudodiagonal and algebraic = A, is similar to a normal
operator with finite spectrum, 1 = k = p.

Proof. Since R(A, B) is pseudoalgebraic, there exist projections P € %,
Q € & rank(l — P) < oo, rank(l — Q) < oo, such that R(y4, Bp) is
algebraic. Since P commutes with each B; and rank(l — P) < oo, it
follows that {B;P}/_, is independent modulo essentially quasinilpotent
operators and B, P is essentially quasinilpotent with finite spectrum
(k > p). Thus there exists a projection P’ € %, rank(l — P’) < oo, such
that B, PP’ is quasinilpotent Vk > p, and clearly {B,PP'}/_, is indepen-
dent modulo quasinilpotents. If we can prove the conclusions of the
theorem for Q4,, ..., QA, (using R(yA, Bpp)), then the same conclu-
sions will hold for 4,, ... ,Ap (since rank(l — Q) < oo, Q € ).

We may thus assume that {B,,...,B,} is independent modulo
quasinilpotents, B, is quasinilpotent for k > p, and R(4, B) is algebraic.
Since {By, ..., B;} is independent, Lemma 2.2 implies that there exists

{(NYi_, € T(%)
such that
(5.1)  detB)(N) |y =j4=, * O.

Let /' be a monic polynomial such that f(R(4, B)) = 0. For 1 = k = p,
let

B, = B/(N,) and Bj = B, — B/(N;) € N,.

Since Bj = j’.k + jf,’(, it follows that

P
S(R(4, B)) =f(_21 LA,RB;k) + R(T. S),
Y

”

where S C N, (since its elements are generated by the s and the B)’s
for k > p). Thus we have

p m
0 =f(R(4, B) )(X) =f( 2 B;(Nk)A,)X + 2 TS,
Jj= Jj=
S; € Ny

Lemma 2.3 implies that there exists {X,},2, € %, IX,ll = 1 VA, such
that

lim [IS,X,/| = 0.
h—co

If we chose y, € 5 |ly,ll = 2, such that x, = Xy, is a unit vector,
then
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lim [[Sx,/| = 0.
h—o0

If
p
i = 2 BN, (# 0)
i

then there exists X € #A(5) such that
Lim |4} Xx,l| > 0,

h—co

whence

lim [[f(R(4, B))Xx,|| > 0.
h—oco

This contradiction implies that f(4}) = 0 and so (5.1) implies that 4, is
algebraic (1 = k = p). In the case when R(4, B) is algebraic and
pseudodiagonal, the minimal polynomial f of R must have simple roots, so
each A}, and thus each 4,, will be similar to a normal operator with finite
spectrum.

Remark. The hypothesis “R(A4, B) is algebraic” cannot be discarded in
Theorem 5.8 (2). Indeed, let 5] = 5, = 5 and let {¢,},cn be an
orthonormal basis of J# Let T € #A(5¥) be the rank-two operator defined
by

Tel = €, T62 = € + €, Tek = 0, k = 2,
and let V € A(5¢¥) denote the unilateral shift,
Vek = ek+1, k= 1.

It will be shown below that S(7, V)(X — TXV) is pseudodiagonal;
however, S(T, V) is not algebraic and 7 is not similar to a normal operator
with finite spectrum. Let

Sy € LLE C))
be defined by

Sy(Y) = ((1) })YV (Y € &K C).

To show that S(7, V) is pseudodiagonal, it actually suffices to verify
that S, is pseudodiagonal. Let {f,, f>} be the canonical basis for C>. For
Al < 1, let

YI(A) = ﬁ ® 20 enAn

and
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L) =£,0 X neN' — £, ® X e\
n=0 n=0

(elements of L C?)). It is now straightforward to check that
Ry((Y)N)) = AY,(0), Ry(¥,(0)) = AYyA), and
clm{Y,(N), (A Jy<) = LK C).

The following is a direct consequence of the last theorem.

CorOLLARY 5.9. If both A and B are linearly independent modulo
essentially quasinilpotent operators with finite spectra, then:

1) R(A, B) is pseudoalgebraic if and only if &/ and & are finite
dimensional.

2) R(A, B) is pseudodiagonal and algebraic if and only if both of and %
are semi-simple and finite dimensional.

Remark. If T is a normal, diagonal operator with infinite spectrum and
S is a rank-one projection, then R = LpRy is pseudodiagonal, but the
algebra generated by T is infinite dimensional.

We conclude with a characterization of the pseudoalgebraic and
pseudodiagonal generalized derivations.

THEOREM 5.10. 1) (T, S) is pseudoalgebraic if and only if (T, S) is
algebraic.

2) «(T, S) is pseudodiagonal if and only if T and S are similar to normal
operators with finite spectra.

Proof. 1) Suppose (T, S) is pseudoalgebraic. If 1,,and S are linearly
independent modulo essentially quasinilpotent operators with finite
spectra, then T is algebraic (Theorem 5.8). If 1,,and S are not as above,
then S = al, + Q, where Q is essentially quasinilpotent and has finite
spectrum. Since

(T, 8) = (T, Q) — aL, ,
7(T, Q) is clearly pseudoalgebraic. Again, by Theorem 5.8, we deduce that
T is algebraic. Passing to adjoints we also derive that S is algebraic, and
thus (7, S) is algebraic. The converse is trivial.

2) If (T, S) is pseudodiagonal, then the above proof implies that
7(T, S) is algebraic. Theorem 5.8 (2) and the preceding analysis show
that both 7" and S are similar to normal operators with finite spectra; the
converse is clear.

REFERENCES

1. C. Apostol, Quasitriangularity in Hilbert space, Indiana Univ. Math. J. 22 (1973),
817-825.

The correction by compact perturbation of the singular behavior of operators, Rev.

Roum. Math. Pures et Appl. 21 (1976), 155-175.

2.

https://doi.org/10.4153/CJM-1986-072-6 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1986-072-6

1524 C. APOSTOL AND L. FIALKOW

3. A. Brown and C. Pearcy, Compact restrictions of operators, Acta. Sci. Math. 32 (1971),

4.

5.

271-282.

A. Brown, C. Pearcy and N. Salinas, Ideals of compact operators on Hilbert space,
Michigan Math. J. 18 (1971), 373-384.

J. W. Calkin, Two-sided ideals and congruences in the ring of bounded operators in Hilbert
space, Ann. of Math. 42 (1941), 839-873.

I. Colojoara and C. Foias, Theory of generalized spectral operators (Gordon and Breach,
New York, 1968).

7. C. Davis and P. Rosenthal, Solving linear operator equations, Can. J. Math. 26 (1974),

1384-1389.

8. R. G. Douglas, Banach algebra techniques in operator theory (Academic Press, New York

and London, 1972).

9. L. A. Fialkow, 4 note on the operator X —> AX — XB, Trans. Amer. Math. Soc. 243

10.

11.
12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.
23.

25.
26.

(1978), 147-168.

Elements of spectral theory for generalized derivations, J. Operator Theory 3

(1980), 89-113.

Spectral properties of elementary operators, Acta Sci. Math. 46 (1983), 269-282.

Spectral properties of elementary operators II, Trans. Amer. Math. Soc. 290 (1985),

415-429.

The index of an elementary operator, Indiana University Math. J. 35 (1986),
73-102.

L. A. Fialkow and R. Loebl, Elementary mappings into ideals of operators, Illinois J.
Math. 28 (1984), 555-578.

C. K. Fong and A. R. Sourour, On the operator identity 2 A, XB, = 0, Can. J. Math. 3/
(1979), 845-857.

I. C. Gohberg and M. G. Krein, Introduction to the theory of linear nonselfadjoint
operators, Transl. Math. Monographs /8 (Amer. Math. Soc., Providence, R.I.,
1969).

R. Harte, Tensor products, multiplication operators and the spectral mapping theorem, Proc.
Royal Irish Acad. 734 (1973), 285-302.

D. A. Herrero, Approximation of Hilbert space operators I, Research Notes in Math. 72
(Pitman Books Ltd, 1982).

G. Lumer and M. Rosenblum, Linear operator equations, Proc. Amer. Math. Soc. 10
(1959), 32-41.

C. L. Olsen, A structure theorem for polynomially compact operators, Amer. J. Math. 93
(1971), 686-698.

H. Radjavi and P. Rosenthal, Invariant subspaces (Springer-Verlag, 1973).

C. E. Rickart, Banach algebras (D. Van Nostrand Co., Princeton, 1960).

F. Riesz and B. Sz.-Nagy, Functional analysis (Ungar, New York, 1955).

. R. Schatten, Norm ideals of completely continuous operators (Springer-Verlag, Berlin,
1960).

J. Stampfli, The norm of a derivation, Pacific J. Math. 33 (1970), 737-747.

Derivations on B(H): The range, Illinois J. Math. 17 (1973), 518-524.

27. D. Voiculescu, 4 non-commutative Weyl-von Neumann theorem, Rev. Roumaine Math.

28

Pures Appl. 21 (1976), 97-113.
. W. Zelasko, On a certain class of non-removable ideals in Banach algebras, Stud. Math. 44
(1972), 87-92.

Arizona State University;
Tempe, Arizona;

S.

U.N.Y. College at New Paltz,

New Paltz, New York

https://doi.org/10.4153/CJM-

1986-072-6 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1986-072-6

