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Abstract

The transmission control protocol (TCP) is a transport protocol used in the Internet. In
Ott (2005), a more general class of candidate transport protocols called ‘protocols in
the TCP paradigm’ was introduced. The long-term objective of studying this class is
to find protocols with promising performance characteristics. In this paper we study
Markov chain models derived from protocols in the TCP paradigm. Protocols in the TCP
paradigm, as TCP, protect the network from congestion by decreasing the ‘congestion
window’(i.e. the amount of data allowed to be sent but not yet acknowledged) when there
is packet loss or packet marking, and increasing it when there is no loss. When loss of
different packets are assumed to be independent events and the probability p of loss is
assumed to be constant, the protocol gives rise to a Markov chain {Wn}, whereWn is the
size of the congestion window after the transmission of the nth packet. For a wide class
of such Markov chains, we prove weak convergence results, after appropriate rescaling of
time and space, as p → 0. The limiting processes are defined by stochastic differential
equations. Depending on certain parameter values, the stochastic differential equation
can define an Ornstein–Uhlenbeck process or can be driven by a Poisson process.
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1. Introduction

The congestion avoidance algorithm of the TCP is designed to prevent network congestion
during the transmission of data over a computer network. It does this by controlling the
congestion window, i.e. the amount of data ‘transmitted but not yet acknowledged’ by a sender.
What follows is a simplified description of a more general class of transport protocols.

Under appropriate units, the congestion window W determines the maximum amount of
data that a source can send without acknowledgement. The ‘TCP paradigm’ (see [34]) is a class
of protocols that includes the TCP (and other transport protocols). For each protocol in the
TCP paradigm there are two functions, incr(·) and decr(·). If, while the congestion window
equalsW , a packet is found to be lost (or marked, under explicit congestion control (ECN); see
[19] and [44]), then the congestion window is reduced by decr(W). However, the congestion
window is never reduced below some fixed minimum value � ≥ 0. If the packet is not lost,
then the congestion window is increased by incr(W). For protocols in the TCP paradigm,
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Asymptotics of congestion avoidance 619

incr(W) = c1W
α and decr(W) = c2W

β . In the special case of TCP, we have c1 = 1, α = −1,
c2 = 1

2 , and β = 1. Another special case of interest is when α = 0 and β = 1. This is the
algorithm which Kelly calls ‘scalable TCP’ in [22] and [23].

Let Wn denote the size of the congestion window after the transmission of the nth packet,
or, more accurately, after receipt of the nth ‘good’ acknowledgement. Let χn be the indicator
function of the event that thenth packet is lost, or, more accurately, that there is a loss between the
(n− 1)th and nth ‘good’ acknowledgement. We shall assume that the χns are independent and
identically distributed (i.i.d.). In particular, we are assuming that p = P(χn = 1) is a constant
that does not change with time. Under these assumptions, we are led to the parameterized
family of Markov processes

Wp,n+1 = (Wp,n + c1W
α
p,n(1 − χp,n+1)− c2W

β
p,nχp,n+1) ∨ �, (1.1)

where a ∨ b denotes the maximum of a and b. We place the following assumptions on the
various parameters in the model:

• {χp,n}∞n=1 is an i.i.d. sequence of {0, 1}-valued random variables,

• p = P(χp,n = 1),

• c1 > 0 and c2 > 0,

• −∞ < α < β ≤ 1 and � ≥ 0,

• if β = 1 then c2 < 1, and

• if β < 1 then � > 0.

We will frequently drop the dependence onp from our notation and simply refer to the processes
{χn} and {Wn}.

We are interested in studying the asymptotic behavior of {Wn} as p → 0. To this end, we
define the continuous-time process

Zp(t) = pγW�tp−ν�, (1.2)

where γ = (β − α)−1 and ν = (1 − α)γ . For the case in which β = 1, we will show that Zp
converges weakly as p → 0 to the process Z defined by

Z(t) = Z(0)+ c1

∫ t

0
Z(s)α ds − c2

∫ t

0
Z(s−) dN(s), (1.3)

where N is a unit rate Poisson process, independent of Z(0) = limZp(0). (Note that this is
the conjecture given in [34, p. 362].) We will also show that, when � > 0, the stationary distri-
butions of the discrete-time Markov chains {pγWn} converge weakly to the unique stationary
distribution of Z. Questions about the convergence of the stationary distributions when β = 1,
as well as the rate of convergence, are addressed in [36] and [38] using techniques that differ
from those used in this paper.

For the case in which β < 1, we will show that Zp converges to the process ζ defined by

ζ(t) = ζ(0)+
∫ t

0
(c1ζ(s)

α − c2ζ(s)
β) ds, (1.4)

where ζ(0) = limZp(0). With the exception of the initial condition, the process ζ is entirely
deterministic. The convergence of Zp to ζ is therefore a law of large numbers type of result.
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620 T. J. OTT AND J. SWANSON

Hence, for the case in which β < 1, we can extend our analysis and study the fluctuations of
Zp around this central tendency. Unfortunately, it will not suffice to center Zp by ζ . We must
rather define

ζp(t) = ζp(0)+
∫ t

0
(c1(1 − p)ζp(s)

α − c2ζp(s)
β) ds, (1.5)

where ζp(0) → ζ(0), and consider the processes

ξp(t) = p−τ (Zp(t)− ζp(t)), (1.6)

where τ = (ν − 1)/2. We will show that ξp converges weakly as p → 0 to the process ξ
defined by

ξ(t) = ξ(0)+
∫ t

0
(c1αζ(s)

α−1 − c2βζ(s)
β−1)ξ(s) ds (1.7)

− c2

∫ t

0
ζ(s)β dB(s), (1.8)

where B is a Brownian motion and ξ(0) = lim ξp(0).
A special case of this last result is worth mentioning. For each p ∈ [0, 1), define

cp =
(
c1(1 − p)

c2

)γ
, (1.9)

so that ζp(t) = cp is an invariant solution to (1.5). Also, ζ(0) = lim ζp(0) = c0 is an invariant
solution to (1.4). Hence, for an appropriate choice of Zp(0), ξp converges to the Ornstein–
Uhlenbeck process defined by

dξ = −µξ dt + σ dW, (1.10)

where W = −B,

µ = c2β

(
c1

c2

)γ (β−1)

− c1α

(
c1

c2

)γ (α−1)

= (β − α)c
−(1−β)/(β−α)
1 c

(1−α)/(β−α)
2 ,

and

σ = c2

(
c1

c2

)γβ
= c

β/(β−α)
1 c

−α/(β−α)
2 .

(Note that this is the conjecture given in [34, p. 364].) We will also show that the stationary
distributions of the discrete-time Markov chains, {p−τ (pγWn − cp)}, converge weakly to the
unique stationary distribution of the above Ornstein–Uhlenbeck process.

It should be remarked that in this paper we use so-called ‘packet time’. That is, the progress
of time is expressed in the number of data packets sent, or, more accurately, the number of
good acknowledgements received. Several papers analyzing TCP use ‘clock time,’ where the
progress of time is expressed in the number of round trip times (RTTs) elapsed. If the congestion
window is the only limit on the ‘flight size’ (i.e. the amount of data transmitted by the source for
which no acknowledgement has yet been received), all packets contain one maximum segment
size (MSS) of data, and the congestion window is expressed in MSSs, then clock time, tC,
and packet time, tP, are related by dtP = W dtC, where W denotes the size of the congestion
window. Stationary distributions for ‘packet time’ and ‘clock time’ are related but are not the
same. The relationship is given in [39].
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2. Related work

When results like those in this paper are applied to the ‘classical TCP’, which has α = −1
and β = 1, they predict throughput for a (large) TCP flow in the order of 1/

√
p. This is called

the ‘square root law’ for TCP, and original papers in this area were often identified with the
square root law for TCP. Work in this area started with [39], which among other things gave
the stationary distribution of the limit process for the case in which β = 1, and the relationship
between ‘packet time stationary distributions’ and ‘clock time stationary distributions’. This
work gave the stationary distribution of the limit process Wp,n for p ↓ 0 and assumed the
weak convergence results which strictly speaking were not proven until [36] and this paper.
The paper [39] was presented at a workshop of the IFIP WG7.3 during Performance 1996 in
Lausanne (October 1996) and also in a DIMACS workshop at Rutgers University in November
1996.

Another paper of historical interest is [33], which was presented in a workshop at ENS,
Paris 2000. This paper first explicitly formulated the conjectures proven in this paper. It later
appeared, in rewritten form, as [34].

In a nondistributional sense, some of the 1/
√
p results had been anticipated in [25].

The first papers identified with the ‘square root law’ that made it into the open literature
were [1], [21], [27], [32], [41], and [42]. Of these, [32] was the first to use the language of
stochastic differential equations. It used clock time and assumed that the probability of a drop
in an RTT is independent of the size of the congestion window, i.e. the drop-probability per
packet is roughly inversely proportional to the size of the window.

An extensive bibliography and discussion of previous work can be found in [16], which,
among other things, includes a study of the effect of a congestion window limited by a send
window or receive window (through the advertised window).

The first papers to use ‘clock time’ were [1] and [32]. Other papers to use clock time were
[17] and [20].

Another paper of particular interest is [15], which uses stochastic differential equations, in
clock time, to study joint evolution of RTT and congestion window size. The parameters of the
two-dimensional stochastic differential equation were obtained from Internet measurements,
not from postulating a particular behavior of sources and routers.

Other papers worth mentioning are [6], where (as in [15]) the RTT depends on the flightsize,
[2], which is an ambitious attempt to build an all-encompassing model where many flows keep
each others’ RTTs and drop probabilities in equilibrium, [8], which analyzes the performance
of scalable TCP (α = 0, β = 1), [3], [4], [5], [7], [9], [10], and [26].

The papers [11], [12], [13], [14], [28], [29], [30], [31], and [40] use ‘square root law results’
and include analysis with, for example, drop probabilities that depend on the current size of the
congestion window. The dependence was modeled by assuming ECN and a queuelength in the
router which is a simple function of the flightsize.

The conjectures proven in this paper are formulated in [34], within which a number of other
results linked to ‘practicality’ of control schemes were also obtained, such as relaxation times,
typical numbers of dropped or marked packets per RTT, etc.

An alternative proof of the stationarity of the processes (Wp,n)
∞
n=0 studied in this paper is

given in [38].
For a more complete review of the literature, the reader is referred to [16].
Among papers of possible future interest are [35] and [37]. In [35] a start is made with

investigating the impact on stability of one RTT delay in the feedback. Ott and Kemperman
[37] studied the transient behavior of the limit process we obtained in the case in which β = 1,
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and thus, insofar as limit results apply, can be used to predict the amount of clock time it takes
to transfer a very large file using the file transfer protocol or similar protocol.

3. Main results

We first consider the case in which β = 1 and begin by cataloging some properties of the
limit process Z.

Lemma 3.1. If Z(0) > 0 almost surely (a.s.) then the stochastic differential equation (1.3)
has a unique solution Z. With probability 1, Z(t) > 0 for all t ≥ 0. Moreover, if τ = inf{t ≥
0 : Z(t) = c0}, where c0 is given by (1.9), then τ < ∞ a.s.

Proof. For each realization of the Poisson process, (1.3) can be solved deterministically and
the solution is unique. Let

T = inf{t ≥ 0 : Z(t) /∈ (0,∞)}.
Since Z decreases only at the jump times of the Poisson process, and, with probability 1, these
jump times have no accumulation points, it follows that T = ∞ a.s.

To show that τ < ∞ a.s., it will suffice to assume that Z(0) = x > 0 is deterministic. We
first consider the case in which x ≤ c0. Suppose that τ(ω) = ∞. Then Z(t, ω) < c0 for all
t ≥ 0. Find u > r such that u− r > γ c−1

2 and N(u, ω) = N(r, ω). Then, for all t ∈ (r, u],

Z(t, ω) = Z(r, ω)+ c1

∫ t

r

Z(s, ω)α ds.

Since the solution to this integral equation is unique

Z(t, ω) = (c1(1 − α)(t − r)+ Z(r, ω)1−α)γ .

Therefore,
c0 > Z(u, ω) > (c1(1 − α)(u− r))γ > c0

is a contradiction. Hence, τ < ∞ a.s.
Next we consider the case in which x > c0. Define

σ1 = inf{t ≥ 0 : Z(t) < c0} and σ2 = inf{t ≥ σ1 : Z(t) = c0},
so that τ ≤ σ2, and it will suffice to show that σ2 < ∞ a.s. Fix L > x and define ρ = inf{t ≥
0 : Z(t) /∈ [c0, L]}. Suppose that ρ(ω) = ∞. Then Z(t, ω) ∈ [c0, L] for all t ≥ 0. Let

K = inf{uα : c0 ≤ u ≤ L} > 0.

Find u > r such that u− r > (L− c0)/(c1K) and N(u, ω) = N(r, ω). Then

L ≥ Z(u, ω) = Z(r, ω)+ c1

∫ u

r

Z(s, ω)α ds ≥ c0 + c1(u− r)K > L

is a contradiction. Hence, ρ < ∞ a.s.
Now, observe that

Z(t ∧ ρ) = x +
∫ t∧ρ

0
(c1Z(s)

α − c2Z(s)) ds − c2

∫ t∧ρ

0
Z(s−) dM(s),

https://doi.org/10.1239/jap/1189717533 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1189717533


Asymptotics of congestion avoidance 623

whereM(t) = N(t)− t is the compensated Poisson process. If s < t ∧ρ, where a∧ b denotes
the minimum of a and b, thenZ(s) ≥ c0 = (c1/c2)

γ . This implies that c1Z(s)
α−c2Z(s) ≤ 0.

Since M is a martingale, E[Z(t ∧ ρ)] ≤ x. Letting t → ∞ gives E[Z(ρ)] ≤ x. Hence,
P(Z(ρ) = L) ≤ x/L. Note that either Z(ρ) = L or Z(ρ) < c0. Therefore,

P(σ1 = ∞) ≤ P(Z(ρ) = L) ≤ x

L
.

Letting L → ∞ shows that σ1 < ∞ a.s.
As in Theorem V.6.35 of [43], Z is a strong Markov process. Therefore,

P(σ2 = ∞) = E[PZ(σ1)(τ = ∞)].
But Z(σ1) < c0, and we have already shown that Px(τ = ∞) = 0 for all x ≤ c0. Hence,
σ2 < ∞ a.s.

We are now prepared to state our main results for the case in which β = 1. If µp and
µ are Borel measures on a metric space S, then the notation µp ⇒ µ will mean that µp
converges weakly to µ as p → 0, that is,

∫
S
f dµp → ∫

S
f dµ as p → 0 for all bounded,

continuous f : S → R. If Xp and X are S-valued random variables, then Xp ⇒ X will
mean that PX−1

p ⇒ PX−1. When Xp and X are processes, we will take our metric space to
be DRd [0,∞), the space of càdlàg functions (i.e. functions that are right continuous with left
limits) from [0,∞) to R

d , with the Skorohod metric. See [18, pp. 116–154] for details.

Theorem 3.1. Suppose that β = 1. Let the processes Zp be given by (1.2) and suppose that
Zp(0) ⇒ Z(0), where Z(0) > 0 a.s. Let Z be the unique solution to (1.3). Then Zp ⇒ Z.

Theorem 3.2. Suppose that β = 1 and � > 0. Then the Markov chain {Wn} has a unique
stationary distribution. Moreover, the process Z given by (1.3) has a unique stationary
distribution η on (0,∞). For each p > 0, let ηp be the stationary distribution for the Markov
chain {pγWn}. Then ηp ⇒ η.

For some results on stationary distributions for the case in which β = 1 and � = 0, see [36]
and [38]. For the case in which β < 1, we need some preliminary definitions. Assume that,
for all p ∈ (0, 1), the processes {Wp,n} are defined on the same probability space (�,F ,P).
Define the σ -algebra by

F0 = σ(Wp,0 : 0 < p < 1) ∨ N , (3.1)

where N denotes the collection of events D ∈ F with P(D) = 0.

Theorem 3.3. Suppose that β < 1. Let the processes Zp be given by (1.2). Suppose that
Zp(0) ⇒ ζ(0), where ζ(0) > 0 a.s. Let ζ be the unique solution to (1.4). Then Zp ⇒ ζ .
Moreover, if Zp(0) → ζ(0) in probability, then Zp → ζ in probability.

Theorem 3.4. Suppose thatβ < 1. Let the processesZp be given by (1.2). For eachp ∈ (0, 1),
let ζp(0) be a strictly positive random variable defined on (�,F ,P). Assume that ζp(0) is
F0-measurable and Zp(0) − ζp(0) → 0 in probability. Define ζp and ξp by (1.5) and (1.6),
respectively.

Suppose that there exists a pair of random variables (ξ(0), ζ(0)), defined on (�,F ,P), such
that ζ(0) > 0 a.s. and (ξp(0), ζp(0)) ⇒ (ξ(0), ζ(0)). Let B be a standard Brownian motion
independent of (ξ(0), ζ(0)) and define the processes ζ and ξ by (1.4) and (1.7), respectively.
Then (ξp, ζp) ⇒ (ξ, ζ ).
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Theorem 3.5. Suppose that β < 1. Then the Markov chain {Wn} has a unique stationary
distribution. For each p > 0, let ηp be the stationary distribution for the Markov chain
{p−τ (pγWn − cp)}. Then ηp ⇒ η, where η is the stationary distribution of the Ornstein–
Uhlenbeck process given by (1.10).

4. General definitions

Define
�n = (�−Wn−1 − c1W

α
n−1(1 − χn)+ c2W

β
n−1χn) ∨ 0,

so that
Wn+1 = Wn + c1W

α
n − (c1W

α
n + c2W

β
n )χn+1 +�n+1.

If we let W(t) = W�t�, where �a� denotes the greatest integer less than or equal to a, then we
can rewrite this recursive relation as the integral equation

W(t) = W(0)+ c1

∫ t

0
W(s−)α dm(s)−

∫ t

0
(c1W(s−)α + c2W(s−)β) dS(s)+ L(t),

where

m(t) = �t�, S(t) =
�t�∑
j=1

χj , and L(t) =
�t�∑
j=1

�j .

Using (1.2), it is then easy to see that

Zp(t) = Zp(0)+ c1

∫ t

0
Zp(s−)α dmp(s)− c1p

∫ t

0
Zp(s−)α dSp(s)

− c2

∫ t

0
Zp(s−)β dSp(s)+ Lp(t), (4.1)

where

mp(t) = pνm(tp−ν), Sp(t) = pν−1S(tp−ν), and Lp(t) = pγL(tp−ν).

Note that, if we define the filtration

F
p
t = F0 ∨ σ(χp,j : j ≤ �tp−ν�),

then mp, Sp, and Lp are all {F p
t }-adapted.

Define the R
2-valued càdlàg {F p

t }-semimartingale by

Yp = (mp, Sp)
T

and define the function Gp : R
2 → R by

Gp(x) = (c1x
α,−c1px

α − c2x
β) 1{x>0} .

Then (4.1) becomes

Zp(t) = Zp(0)+
∫ t

0
Gp(Zp(s−)) dYp(s)+ Lp(t).
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To show that Zp converges as p → 0, we will apply the methods of [24]. This approach,
however, comes with two technical difficulties. The first is the presence of the local time term
Lp; the second is the fact that Gp may have a singularity at the origin. To deal with these
issues, we introduce the process Zεp, defined as the unique solution to

Zεp(t) = Zp(0)+
∫ t

0
Gεp(Z

ε
p(s−)) dYp(s), (4.2)

whereGεp = Gp(ε) 1(−∞,ε)+Gp 1[ε,∞). To quantify the sense in which Zp and Zεp are close,
we define the functional hε : DRd [0,∞) → [0,∞] by

hε(x) = inf{t ≥ 0 : |x(t)| ∧ |x(t−)| ≤ ε},
and the stopping times τp(ε) = hε(Z

ε
p), and we observe that

Lp = 0 and Zp = Zεp on [0, τp(ε ∨ pγ �)). (4.3)

By (3.5.2) of [18], if two càdlàg functionsx andy agree on the interval [0, t), thend(x, y) ≤ e−t ,
where d is the metric on DRd [0,∞).

5. Convergence of Zp

In this section, we will prove Theorems 3.1 and 3.3 by applying the methods of [24] to the
processes Zεp given by (4.2). Therefore, we must define the processes to which they converge
for the cases in which β = 1 and β < 1.

LetG(x) = (c1x
α,−c2x

β) 1{x>0} andGε = G(ε) 1(−∞,ε)+G 1[ε,∞), and note thatGεp →
Gε uniformly on compacts as p → 0. Let N be a unit rate Poisson process, define

Y (t) = (t, N(t))T and y(t) = (t, t)T ,

and let Zε and ζ ε be the unique solutions to

Zε(t) = Z(0)+
∫ t

0
Gε(Zε(s−)) dY (s), (5.1)

ζ ε(t) = ζ(0)+
∫ t

0
Gε(ζ ε(s−)) dy(s),

where Z(0) and N are independent. Note that if β = 1, then Zε = Z on [0, hε(Zε)) and
hε(Z

ε) = hε(Z) → ∞ a.s. as ε → 0. Hence, d(Zε, Z) ≤ exp(−hε(Z)) → 0 a.s. That is,
Zε → Z a.s. inDR[0,∞). Similarly, if β < 1, then ζ ε = ζ on [0, hε(ζ ε)), hε(ζ ε) = hε(ζ ) →
∞ a.s., and ζ ε → ζ a.s. in DR[0,∞).

We will show that Zεp ⇒ Zε and ζ εp ⇒ ζ ε. To pass from this to the conclusions of
Theorems 3.1 and 3.3, we will need the following lemma, which is easily proved using the
Prohorov metric. (See [18, Section 3.1].)

Lemma 5.1. Let (S, d) be a complete and separable metric space. Let {Xp}p>0 be a family
of S-valued random variables and suppose that, for each ε, there exists a family {Xεp}p>0 such
that

lim sup
p→0

E[d(Xp,Xεp)] ≤ δε,

where δε → 0 as ε → 0. Also, suppose that, for each ε, there exists Y ε such that Xεp ⇒ Y ε as
p → 0. Then there exists an X such that Xp ⇒ X and Y ε ⇒ X.
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Proof of Theorem 3.1. Suppose that β = 1,Zp is given by (1.2), andZp(0) ⇒ Z(0), where
Z(0) > 0 a.s. Let Z be the solution to (1.3).

Let Zεp and Zε be as given by (4.2) and (5.1), respectively. We first show that Zεp ⇒ Zε.
Recall that Gεp → Gε uniformly on compacts. Also, observe that Sp ⇒ N ; see, for example,
Problem 7.1 of [18]. Hence, since Zp(0) and Yp are independent, (Zp(0), Yp) ⇒ (Z(0), Y ) in
DR3 [0,∞). Hence, by Theorem 5.4 of [24], it will suffice to show that Yp has a semimartingale
decomposition, Yp = Mp +Ap, into a martingale part and a bounded variation part such that,
for each t ≥ 0,

sup
p

E[[Mp]t + Tt (Ap)] < ∞, (5.2)

where [Mp]t is the quadratic variation process of Mp and Tt (Ap) is the total variation of Ap
on the interval [0, t]. For this, define

S̃p(t) = Sp(t)−mp(t) = pν−1
�tp−ν�∑
j=1

(χj − p),

so that S̃p is an {F p
t }-martingale. Note that Tt (mp) = mp(t) and

E[S̃p]t = p2ν−2
�tp−ν�∑
j=1

E |χj − p|2 = p2ν−2�tp−ν�p(1 − p) ≤ tpν−1. (5.3)

Since β = 1 implies that ν = 1, this verifies (5.2) and shows that Zεp ⇒ Zε.
By passing to a subsequence, we can assume that there exists a [0,∞]-valued random

variable σ(ε) such that (Zεp, hε(Z
ε
p)) ⇒ (Zε, σ (ε)). By (4.3), we have

lim sup
p→0

E[d(Zp,Zεp)] ≤ lim sup
p→0

E[exp(−τp(ε ∨ pγ �))]

= lim sup
p→0

E[exp(−hε(Zεp))]

= E[exp(−σ(ε))].

We claim that E[exp(−σ(ε))] ≤ E[exp(−hε(Zε))]. To see this, let us assume that, by the
Skorohod representation theorem (see Theorem 3.1.8 of [18]), (Zεp, hε(Z

ε
p)) → (Zε, σ (ε))

a.s. Then hε(Zε) ≤ σ(ε) a.s., which proves the claim.
Since hε(Zε) = hε(Z) → ∞ a.s. as ε → 0, we can apply Lemma 5.1 to conclude that

Zp ⇒ Z.

Proof of Theorem 3.3. Suppose that β < 1, Zp is given by (1.2), and Zp(0) ⇒ ζ(0), where
ζ(0) > 0 a.s. Let ζ be the solution to (1.4).

Note that β < 1 implies that ν > 1. Hence, (5.3) implies that (5.2) is satisfied and S̃p → 0
in probability. Therefore, (Zp(0), Yp) ⇒ (Z(0), y) in DR3 [0,∞). By Theorem 5.4 of [24],
Zεp ⇒ ζ ε. By Corollary 5.6 of [24], if Zp(0) → ζ(0) in probability, then Zεp → ζ ε in
probability. By the same argument as above, this implies that Zp converges to ζ in distribution
or in probability, respectively.
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6. Fluctuations of Zp

In this section we prove Theorem 3.4. Let us first recall the setting of that theorem. We
have β < 1 and Zp given by (1.2). Recall that the processes Zp are all defined on the same
probability space (�,F ,P). For each p > 0, ζp(0) is an F0-measurable random variable,
where F0 is given by (3.1), such that ζp(0) > 0 a.s. and Zp(0) − ζp(0) → 0 in probability.
The processes ζp and ξp are then given by (1.5) and (1.6), respectively.

To apply the methods of [24], we wish to write ξp as the solution to a stochastic differential
equation. By (1.5) and (4.1), we have

ξp(t) = ξp(0)+ c1(1 − p)

∫ t

0
p−τ (Zp(s−)α − ζp(s)

α) dmp(s)

− c2

∫ t

0
p−τ (Zp(s−)β − ζp(s)

β) dSp(s)− c2

∫ t

0
ζp(s)

β dBp(s)+ Rp(t), (6.1)

where

Bp(t) = p−τ (Sp(t)−mp(t)) = p(ν−1)/2
�tp−ν�∑
j=1

(χj − p)

and

Rp(t) = p−τ
∫ t

0
(c1(1 − p)ζp(s)

α − c2ζp(s)
β) d(mp(s)− s)

− c1p

∫ t

0
Zp(s−)α dBp(s)+ p−τLp(t). (6.2)

Given a real number r , let us define the continuous function Fr : (0,∞)2 → R by

Fr(x, y) = xr − yr

x − y
1{x �=y} +ryr−1 1{x=y} .

Using this, (6.1) becomes

ξp(t) = ξp(0)+ c1(1 − p)

∫ t

0
ξp(s−)Dα

p (s−) dmp(s)

− c2

∫ t

0
ξp(s−)Dβ

p (s−) dSp(s)− c2

∫ t

0
ζp(s)

β dBp(s)+ Rp(t), (6.3)

where Dr
p = Fr(Zp, ζp).

Proof of Theorem 3.4. Suppose that there exists a pair of random variables (ξ(0), ζ(0)),
defined on (�,F ,P), such that ζ(0) > 0 a.s. and (ξp(0), ζp(0)) ⇒ (ξ(0), ζ(0)). By the
Skorohod representation theorem (see, for example, Theorem 2.1.8 of [18]), we can assume,
without loss of generality, that (ξp(0), ζp(0)) → (ξ(0), ζ(0)) a.s. Since the map that takes a
point x > 0 to the unique solution of (1.5) with ζp(0) = x is continuous, ζp → ζ in probability
and (ξp(0), ζp) ⇒ (ξ(0), ζ ). Also, since Fr is continuous, Dr

p → rζ(·)r−1 in probability.
Let

Up(t) = ξp(0)− c2

∫ t

0
ζp(s)

β dBp(s)+ Rp(t), and

Yp(t) = c1(1 − p)

∫ t

0
Dα
p (s−) dmp(s)− c2

∫ t

0
Dβ
p (s−) dSp(s),
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so that (6.3) becomes

ξp(t) = Up(t)+
∫ t

0
ξp(s−) dYp(s). (6.4)

We will apply the methods of [24] to this integral equation.
We first show thatRp → 0 in probability. By the martingale central limit theorem (Theorem

7.1.4 of [18]), Bp ⇒ B, where B is a standard Brownian motion; by Theorem 3.3, Zp → ζ in
probability; and by (5.3), {Bp} satisfies (5.2). Hence, by Theorem 2.2 of [24],

c1p

∫ t

0
Zp(s−)α dBp(s) → 0

in probability. By (4.3), p−τLp = 0 on [0, hpγ �(Zp)). Since hpγ �(Zp) → ∞ in probability,
p−τLp → 0 in probability.

For the final term of (6.2), note that p−τ |mp(t)− t | ≤ pν−τ and ν − τ = (ν + 1)/2 > 0.
Hence, p−τ (mp(t) − t) → 0 uniformly. Let fp(s) = c1(1 − p)ζp(s)

α − c2ζp(s)
β . Since

ζp → ζ in probability, we can pass to a subsequence and assume that ζp → ζ uniformly on
[0, t], a.s. By (1.5), this implies that ζ ′

p → ζ ′ uniformly on [0, t], where the prime denotes
differentiation with respect to t . Hence, fp and f ′

p converge uniformly. Integrating by parts,
we have

p−τ
∫ t

0
fp(s) d(mp(s)− s) = p−τ fp(t)(mp(t)− t)− p−τ

∫ t

0
(mp(s)− s)f ′

p(s) ds,

which tends to 0 uniformly and completes the proof that Rp → 0 in probability.
It now follows from Theorem 5.2 of [24] that (Up,Yp, ζp) ⇒ (U,Y, ζ ), where

U(t) = ξ(0)− c2

∫ t

0
ζ(s)β dB(s), and

Y(t) = c1

∫ t

0
αζ(s)α−1 ds − c2

∫ t

0
βζ(s)β−1 ds,

and B is a standard Brownian motion independent of (ξ(0), ζ(0)). By Remark 2.5 of [24], we
may apply Theorem 5.4 of [24] to (6.4) and conclude that (ξp, ζp) ⇒ (ξ, ζ ), where ξ is the
unique solution to (1.7).

7. Stationary distributions

In this section we prove Theorems 3.2 and 3.5. For this, we make time continuous in a
slightly different manner than before. Let N be a unit rate Poisson process independent of
{Wn} and let X(t) = WN(t). Then X is a continuous-time Markov chain on E = [�,∞) with
generator

Aϕ(x) = p(ϕ(x − g(x))− ϕ(x))+ (1 − p)(ϕ(x + c1x
α)− ϕ(x)),

where g(x) = (c2x
β) ∧ (x − �). When β = 1, we will study the process

Ẑp(t) = pγX(tp−1),

whereas when β < 1, we will consider

ξ̂p(t) = p−τ (pγX(tp−ν)− cp),
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where cp is given by (1.9). It is easy to see that a probability measure is a stationary distribution
for {pγWn} or {p−τ (pγWn − cp)} if and only if it is a stationary distribution for Ẑp or ξ̂p,
respectively.

Lemma 7.1. If � > 0, then {Wn} has a unique stationary distribution.

Proof. It will suffice to show that X has a unique stationary distribution. Let ϕ(x) = x so
that

Aϕ(x) = −pg(x)+ (1 − p)c1x
α.

Since g(x) = c2x
β for sufficiently large x, Aϕ is bounded above and Aϕ(x) → −∞ as

x → ∞. By Lemmas 4.9.5 and 4.9.7 of [18], the family of probability measures {µt }t≥1
defined by

µt(�) = 1

t

∫ t

0
Px(X(s) ∈ �) ds

is relatively compact. By Theorem 4.9.3 of [18], any subsequential weak limit of {µt } is a
stationary distribution for X.

To show that the stationary distribution is unique, it will suffice to show that, for all x ∈ E,

τ = inf{t ≥ 0 : X(t) = �} < ∞, Px -a.s.

(See, for example, Problem 4.36 of [18].) Let x ∈ E be arbitrary and let ε > 0. ChooseM such
thatµt([�,M]) ≥ 1−ε for all t ≥ 0. Note that there exists aK > 0 such that Py(τ < ∞) ≥ K

for all y ∈ [�,M].
Define the stopping times τ0 = 0 and

τj+1 = inf{t ≥ τj + 1 : X(t) ≤ M},
and note that τj → ∞ a.s. By the strong Markov property,

P(τ = ∞, τj < ∞) = E[1{τ≥τj ,τj<∞} PX(τj )(τ = ∞)]
≤ (1 −K)P(τ ≥ τj , τj < ∞).

Letting j → ∞ shows that P({τ = ∞} ∩D) = 0, where D is the event that τj < ∞ for all j .
Note that

1Dc ≤ lim inf
t→∞

1

t

∫ t

0
1{X(s)>M} ds.

Hence, by Fatou’s Lemma, P(Dc) ≤ lim inf t→∞ µt((M,∞)) ≤ ε. Therefore, P(τ = ∞) =
P({τ = ∞} ∩Dc) ≤ ε. Since ε was arbitrary, τ < ∞ Px-a.s. and the stationary distribution is
unique.

Proof of Theorem 3.2. In what follows,C andK will denote strictly positive, finite constants
that do not depend on p and may change value from line to line.

Suppose that β = 1, � > 0, and ηp is the stationary distribution for {pγWn}. Then ηp is the
stationary distribution for Ẑp, which is a continuous-time Markov chain on Ep = [pγ �,∞)

with generator

Apϕ(x) = ϕ(x − pγ g(p−γ x))− ϕ(x)+ p−1(1 − p)(ϕ(x + pc1x
α)− ϕ(x)).
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Let ϕ(x) = x + x−1, so that

Apϕ(x) = −pγ g(p−γ x)+ (1 − p)c1x
α + pγ g(p−γ x)

x(x − pγ g(p−γ x))
− (1 − p)c1x

α

x(x + pc1xα)
.

Since x �→ 1 + pc1x
α−1 is decreasing,

1 + pc1x
α−1 ≤ 1 + pc1(p

γ �)α−1 = 1 + c1�
α−1

for all x ∈ Ep. Hence,

Apϕ(x) ≤ −pγ g(p−γ x)+ Cxα + pγ g(p−γ x)
x(x − pγ g(p−γ x))

−Kxα−2,

whenever p < 1
2 .

If x ≥ pγ �/(1 − c2), then g(p−γ x) = c2p
−γ x and

Apϕ(x) ≤ −Kx + Cxα + Cx−1 −Kxα−2.

If x < pγ �/(1 − c2), then g(p−γ x) = p−γ x − � and

Apϕ(x) ≤ Cxα + x − pγ �

xpγ �
−Kxα−2 ≤ Cxα + (pγ �)−1 −Kxα−2.

But in this case, (pγ �)−1 < Cx−1. Therefore, it follows that

Apϕ(x) ≤ C −Kx −Kxα−2

for all x ∈ Ep.
Let ε > 0. Define

L = sup
p<1/2

sup
x∈Ep

Apϕ(x) < ∞

and let m = L(1 − ε)/ε. Choose M > 0 such that x /∈ [M−1,M] implies that Apϕ(x) < −m
for all p < 1

2 . By Corollary 4.9.8 of [18],

ηp([M−1,M]) ≥ ηp({x : Apϕ(x) ≥ −m}) ≥ m

L+m
= 1 − ε.

The family of measures {ηp} is therefore relatively compact on (0,∞). By passing to a
subsequence, we can assume that ηp ⇒ η for some probability measure η on (0,∞).

Now let pγW0 have distribution ηp and letZp be given by (1.2). By Theorem 3.1, Zp ⇒ Z,
where Z satisfies (1.3) with PZ(0)−1 = η. Fix t1 ≤ · · · ≤ tn. Then

(Zp(t1), . . . , Zp(tn)) = pγ (W�t1p−1�, . . . ,W�tnp−1�)
d= pγ (W0,W�t2p−1�−�t1p−1�, . . . ,W�tnp−1�−�t1p−1�)
= (Zp(0), Zp(t2 − t1), . . . , Zp(tn − t1))+ ε,

where the components of ε = (ε1, . . . , εn) are given by εj = Zp(hj )− Zp(tj − t1) and
hj = (�tjp−1� − �t1p−1�)p. Note that hj → tj − t1 as p → 0 and, for fixed t , Z is almost
surely continuous at t . Hence, ε → 0 a.s., which gives

(Zp(t1), . . . , Zp(tn)) ⇒ (Z(0), Z(t2 − t1), . . . , Z(tn − t1)).
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But,
(Zp(t1), . . . , Zp(tn)) ⇒ (Z(t1), . . . , Z(tn)),

soZ is a stationary process, and η is a stationary distribution forZ. The uniqueness of η follows
from Lemma 3.1.

For the proof of Theorem 3.5, note that ξ̂p is a continuous-time Markov chain on Ep =
[p−τ (pγ �− cp),∞) with generator

Apϕ(x) = p−ν+1(ϕ(x − pγ−τ g(pτ−γ x + p−γ cp))− ϕ(x))

+ p−ν(1 − p)(ϕ(x + pγ−τ c1(p
τ−γ x + p−γ cp)α)− ϕ(x)). (7.1)

We will use the same argument as in the proof of Theorem 3.2; however, this time we will use
the Lyapunov function ϕ(x) = |x|r , where r is sufficiently large. Our key estimate on Apϕ(x)
is given in the following lemma and is valid as long as |x| is not too large.

Lemma 7.2. Suppose that β < 1. Let ϕ(x) = |x|r , where r ≥ 2, and let Ap be given by (7.1).
Let 0 < δ < M < ∞ be arbitrary. Then there exist a p0 > 0 and strictly positive, finite
constants C and K such that

Apϕ(x) ≤ C −K|x|r
for all p ≤ p0 and all x ∈ Ep satisfying δ ≤ pτx + cp ≤ M .

Proof. For notational simplicity, let us define yp(x) = pτx + cp so that

Apϕ(x) = p−ν+1(ϕ(x − pγ−τ g(p−γ yp))− ϕ(x))

+ p−ν(1 − p)(ϕ(x + pγ−τ c1(p
−γ yp)α)− ϕ(x)).

Either g(x) = c2x
β or g(x) < c2x

β . Note that there exists an x0 > � such that g(x) = c2x
β if

and only if x ≥ x0. Hence, if g(p−γ yp) < c2(p
−γ yp)β , then p−γ yp < x0, which implies that

x < p−τ (pγ x0 − cp). If p is sufficiently small, this implies that x < 0. Since ϕ is decreasing
on (−∞, 0], it follows that

Apϕ(x) ≤ p−ν+1(ϕ(x − pγ−τ−γβc2y
β
p)− ϕ(x))

+ p−ν(1 − p)(ϕ(x + pγ−τ−γαc1y
α
p)− ϕ(x))

for all x ∈ Ep.
Observe that

|ϕ(z)− ϕ(x)− ϕ′(x)(z− x)| =
∣∣∣∣
∫ z

x

(z− u)ϕ′′(u) du

∣∣∣∣
≤ C|z− x|2(|x|r−2 + |z|r−2)

≤ C|x|r−2|z− x|2 + C|z− x|r .
Hence,

Apϕ(x) ≤ −ϕ′(x)p−τ (p−ν+1+γ−γβc2y
β
p − p−ν+γ−γαc1(1 − p)yαp)

+ C|x|r−2(p−ν+1+2γ−2τ−2γβc2
2y

2β
p + p−ν+2γ−2τ−2γαc2

1y
2α
p )

+ C(p−ν+1+rγ−rτ−rγβcr2yrβp + p−ν+rγ−rτ−rγ αcr1yrαp ).
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We can simplify these exponents by observing that

−ν + γ − γα = 0,

−ν + 1 + γ − γβ = 0,

−ν + 2γ − 2τ − 2γα = 1,

−ν + 1 + 2γ − 2τ − 2γβ = 0,

−ν + 1 + rγ − rτ − rγβ = τ(r − 2),

−ν + rγ − rτ − rγ α = r − 1 + τ(r − 2).

Thus,

Apϕ(x) ≤ −ϕ′(x)p−τ (c2y
β
p − c1(1 − p)yαp)+ C|x|r−2(y2β

p + py2α
p )

+ C(pτ(r−2)yrβp + pr−1+τ(r−2)yrαp ).

Since ϕ′(x) and c2y
β
p − c1(1 − p)yαp have the same sign, this gives

Apϕ(x) ≤ −r|x|r−1p−τ |c2y
β
p − c1(1 − p)yαp | + C|x|r−2(y2β

p + py2α
p )

+ C(pτ(r−2)yrβp + pr−1+τ(r−2)yrαp ) (7.2)

for all x ∈ Ep.
If r ≥ 2 and δ ≤ yp ≤ M , then

Apϕ(x) ≤ −r|x|r−1p−τ c2y
α
p |yβ−α

p − cβ−α
p | + C|x|r−2 + C.

By the mean value theorem,

ψp(x) ≤ −K|x|r−1p−τ |yp − cp| + C|x|r−2 + C

= −K|x|r + C|x|r−2 + C,

which completes the proof.

The following two lemmas provide the necessary estimates on Apϕ in the extreme regimes.

Lemma 7.3. Suppose that β < 1. Let ϕ(x) = |x|r , where r ≥ 2, and let Ap be given by (7.1).
Then there exist p0 > 0, M < ∞, and K > 0, such that

Apϕ(x) ≤ −K|x|(r−1)∧(r−1+β)

for all p ≤ p0 and all x ∈ Ep satisfying pτx + cp > M .

Proof. Letp ≤ p0 and yp = pτx+cp > M . Ifp0 is sufficiently small andM is sufficiently
large, then x ≥ Kp−τ and yp ≤ x. By (7.2),

Apϕ(x) ≤ −K|x|r−1yβp + C|x|r−2y2β
p + Cyrβp

= −|x|r−1yβp(K − C|x|−1yβp − C|x|−r+1yβ(r−1)
p ).

If β ≤ 0, then, for sufficiently small p,

Apϕ(x) ≤ −|x|r−1yβp(K − C|x|−1 − C|x|−r+1) ≤ −K|x|r−1+β.
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If β > 0, then

Apϕ(x) ≤ −|x|r−1yβp(K − C|x|β−1 − C|x|(β−1)(r−1)),

so, for sufficiently small p, Apϕ(x) ≤ −K|x|r−1y
β
p ≤ −K|x|r−1.

Lemma 7.4. Suppose that β < 1. Let ϕ(x) = |x|r , where r ≥ 2, and let Ap be given by (7.1).
Then there exist p0 > 0, δ > 0, and K > 0 such that

Apϕ(x) ≤ −K|x|r∧(r−2α/(1−β))

for all p ≤ p0 and all x ∈ Ep satisfying pτx + cp < δ.

Proof. Let p ≤ p0 and yp = pτx+cp < δ. Note that since x ∈ Ep, yp ≥ pγ �. If p0 and δ
are sufficiently small, then x < 0 and Kp−τ ≤ |x| ≤ Cp−τ . By (7.2), for sufficiently small δ,

Apϕ(x) ≤ −|x|ryαp(K|yβ−α
p − cβ−α

p | − C(p2τ y2β−α
p + p2τ+1yαp)

− C(pτr+τ(r−2)yrβ−α
p + pτr+r−1+τ(r−2)yrα−α

p ))

≤ −|x|ryαp(K − C(p2τ y2β−α
p + p2τ(r−1)yrβ−α

p )

− C(p2τ+1yαp + p(2τ+1)(r−1)yα(r−1)
p )).

Let us first estimate the term p2τ y
2β−α
p . If 2β−α ≥ 0, then p2τ y

2β−α
p ≤ Cp2τ . If 2β−α < 0,

then p2τ y
2β−α
p ≤ Cp2τ+γ (2β−α). Note that 2τ + γ (2β − α) = γ + 1. Hence, for all values of

α and β, there exist some s > 0 such that p2τ y
2β−α
p ≤ ps .

Similarly, for the remaining terms in the above inequality, we observe that

2τ(r − 1)+ γ (rβ − α) = (2τ + γβ)(r − 1)+ 1 = γ (r − 1)+ 1,

2τ + 1 + γα = γ, and (2τ + 1)(r − 1)+ γα(r − 1) = γ (r − 1).

Therefore, if p0 is sufficiently small, then Apϕ(x) ≤ −K|x|ryαp . If α < 0, then Apϕ(x) ≤
−K|x|r . If α ≥ 0, then

Apϕ(x) ≤ −K|x|rpγα ≤ −K|x|r−γα/τ .
Since γα/τ = 2α/(1 − β), this completes the proof.

Proof of Theorem 3.5. Suppose that β < 1 and that ηp is the stationary distribution for
{p−τ (pγWn − cp)}. Then ηp is the stationary distribution for ξ̂p. Let ϕ(x) = |x|r , where
r ≥ 2. By Lemmas 7.2, 7.3, and 7.4, if r is sufficiently large, there exist a p0 > 0 and strictly
positive, finite constants C and K such that

Apϕ(x) ≤ C −K|x|s

for some s > 0 and all p ≤ p0 and x ∈ Ep. As in the proof of Theorem 3.2, this implies that
the family of measures {ηp} is relatively compact on R. By passing to a subsequence, we can
assume that ηp ⇒ η for some probability measure η on R.

Letp−τ (pγW0−cp)have distributionηp, letZp be given by (1.2), and let ξp be given by (1.6)
with ζp ≡ cp. Note that ξp(0) converges in distribution, so pτ ξp(0) = Zp(0)− ζp(0) → 0 in
probability. Hence, by Theorem 3.4, ξp ⇒ ξ , where ξ satisfies (1.10) with P ξ(0)−1 = η. As
in the proof of Theorem 3.2, ξ is a stationary process, so η is the stationary distribution for ξ .
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