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A POINTWISE ERGODIC THEOREM IN L,-SPACES
M. A. AKCOGLU

1. Introduction. Let (X,.% , u) be a measure space and L, = L,(X,-% , u),
1 £ p = o, the usual Banach spaces. A linear operator 7 : L, — L, is called a
positive contraction if it transforms non-negative functions into non-negative
functions and if its norm is not more than one. The purpose of this note is to
show thatif 1 < p < o andif T: L, — L, is a positive contraction then

lim 1 > T

s M k=1
exists a.e. for each f € L,. Related results in this direction were obtained by
E. M. Stein [6], A. Ionescu-Tulcea [5], R. V. Chacon and J. Olsen [3] and by
R. V. Chacon and S. A. McGrath [4]. It has been shown by Burkholder [2]
that this theorem is false if 7" is not positive (see also [1]).

It is well known (see, e.g. [5]) that to prove this result it is enough to prove

the following theorem.

(1.1) THEOREM. Let 1 < p < 00 and letT : L, — L, be a positive contraction.
For each f € L,, let

flx) = sup %Z‘é ka(x)\ i
Then
P
17l = pa il

If the statement of this theorem is true for an operator then we will say that
the Dominated (Ergodic) Estimate holds for this operator. In Section 2 it will
be shown that the Dominated Estimate holds for a positive contraction on a
finite dimensional L,-space, by reducing this case to the case considered by
A. Tonescu-Tulcea in [5]. In Section 3 the theorem will be proved for the
general case.

Theorem 1.1 answers a question raised by Chacon and McGrath in [4].
This question was the starting point of the present work. It may be noted that
the elementary results (2.4) and (2.5) also appeared in [4], but in a different
context.
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2. Finite dimensional L,-spaces. In this section the indices ¢ and j will
range through the integers 1, 2, ..., n where n = 1 is an arbitrary but fixed
integer. Let m,’s be strictly positive fixed numbers and introduce a norm on
R" as ||7]|, = [2ZriPm]'?, r = (r;) € R* We denote the resulting L,-space
by /,. Let T": I, — [, be a positive contraction determined by a matrix (7';;) as
(Tr); = 24T 47, First we will assume the following two conditions:

21) T,>0
2.2) (7], = 1.

(2.3) LEMMA. There exists a vector w € 1t so that ||ull, = ||Tull, = 1

Proof. Let K = max ||Tul|, where the maximum is taken over the vectors
u € I,* with ||ul|, = 1. It is clear that K < 1 and if K = 1 then the lemma
would follow. If K < 1, then for any r € I, ||Tr||, = ||Trt — Tr[,=
||Trt + Tr ||, < ||t + ||, = ||7||- This contradicts (2.2).

We now also consider the adjoint space /,* and identify this, as usual, with
ly ¢ = p(p — 1)71, so that a vector s € [, acts as functional on /, defined as
(ry s) = 2arisimy, v € L, The adjoint of T° will be a positive contraction
T*:1,—1, so that (Ir, s) = (r, T*s) for all »r € 1,, s € 1,. Since (T7, s) =
SomysioLyre = Yoamr; > ;(mj/mi)T s, we obtain that

mi
(T*S)l = Z WT-Z Tiij.

7
For each » € [,* there is a unique * € [,;* so that (r, v*) = ||7||,F = ||7*||,%
This vector is given as r*;, = r/?~L.

(2.4) LEMMA. Let u be the vector obtained in Lemma (2.3) and let v = Tu.
Then u* = T*v* and both u and v have strictly positive coordinates.

Proof. Since 1 = (v, v*) = (Tu, v*) = (u, T**) and since || T*v*||, = 1 we
see that u* = T*v*. Because of (2.1), v = Tu and u* = T*v* have strictly
positive coordinates. Hence u also has strictly positive coordinates.

(2.5) COROLLARY. There exist two vectors u = (u;) andv = (v;) with strictly
positive coordinates so that

(2-6) V; = Z T”u,,
@7 mal =3 mTp
J
Given a positive contraction T : I, — [, satisfying (2.1) and (2.2) we are

now going to construct a measure space (Z,%# , u) and a transformation r : Z
—Z.
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The space Z will be a subset of the two dimensional cartesian space Oxy.
The o-algebra # will be the class of two dimensional Borel subsets of Z and
the measure p will be the restriction of the two dimensional Lebesgue measure
to % . One and two dimensional Lebesgue measures will be denoted with [ and
12, respectively and no distinction will be made between /2 and x. The differen-
tials of / and /2 will also be denoted as dx and dxdy, respectively.

Let I,'s be n disjoint intervals on the x-axis and J,'s »n disjoint intervals on
the y-axis so that [(I;) = m;and I(J;) = 1. Let I = U;[;and E; = I; X J;
and finally Z = U E..

To define the transformation r: Z — Z, let

S ~ U
28)  fy =Ty,
J

p—1
. v my
(2.9) Ny = 1y ﬁjrﬁ ,
where (u#;) and (v;) are as given by Corollary (2.5), and note that > ;&;; = 1
and > ;n;; = 1. Now divide each I, into % disjoint subintervals I1;, Ij, . . ., I,;
and also divide each J; into n disjoint subintervals J;1, Jio, ..., Ji, so that

(1) = Egmyand I(Jy;) = n45. Let Ry; = I, X Jyy;and Sy = I,; X J;. Note
that E; = U,;R;; and E; = U,Sy;.

For each (7, j) we can now find four constants a;;, byj, ¢4, dy; so that the
affine transformation

7i(%, ¥) = (ayx + bujy iy + diy)
transforms R;; onto S;;, up to an /?-null set. Let 7 : Z — Z be defined as 7,; on
each R ;.

The transformation 7 : Z — Z is invertible and measurable in both direc-
tions. Also, u(B) = 0 if and only if u(+—'B) = u(rB) = 0. Let v = ur~! be
the measure obtained by transporting p by 7. It is clear that v is absolutely
continuous with respect to u and its Radon Nikodym derivative is given as

d u(Ry)) ( g )
p=—= XSij = —_ XSij
du zZ] w(Syy) 7Y 12; Uy Y
where x denotes the characteristic function of a set.

This transformation 7 : Z — Z is an automorphism, in the terminology of
(5]. Hence (Qf) (x,3) = [p(x, M1 f(+7 (%, %)), (,5) € Z,f € L, = L,(Z,F , )
defines a positive invertible isometry Q : L, — L,, for which the Dominated
Ergodic Estimate holds [5]. From this fact we will now obtain the same theorem
for T as follows.

Let {E;} be the partition of Z as defined above and let E : L, — L, be the
conditional expectation operator with respect to {E;}. More explicitly, let

1
Ef= Zl XEinTi fEifd#y f € Lp-
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Note that this operator is a positive contraction of L; and L, simultaneously,
and hence a positive contraction £ : L, — L, for each p, 1 < p < 00.

(2.10) LEMMA. Let f, g € L, be two functions on Z depending only on the x-coordi-
nate of a point (x,y) € Z. If Ef = Eg then EQf = EQg.

Proof. Let F: I — R be a function so that f(x, y) = F(x), (x,y) € Z. We
will compute EQf as follows:

(), 2) = X 6™ 9))xsu, 9)

fE. QOf du = ;vt_]l fS”f(Tifl(xy y))dxdy

M

v; u(Syy) f f(x, y)dxdy

“i.u(Rij) Rij

v, \7
Uy Ii

1

m

] ] Il
™ M M

This means that

1
(2.11) EQf = Z XEj Z Tij;’;f fdu.
7 i i Eq
If £Ef = Eg then

ffd#=f gdu,
Ei Ei

which shows that EQf = EQg.

(2.12) LEMMA. If v € [, then

EQ( T ron) = T 1)

i J

Proof. This follows directly from the formula (2.11) obtained above.
(2.13) THEOREM. For any r € I, and for any integer k = 0,
EQk E ViXEi = Z (Tk")jXEj-
1 J

Proof. We apply induction on k. The theorem is trivial for £ = 0. Assume
that it is true for an integer k. First note that if f € L, depends only on the
x-coordinate then the same is also true for Qf, as follows from the definition of
Q. Hence Q%Y .r:xr: depends only on the x-coordinate. Hence, by Lemmas

https://doi.org/10.4153/CJM-1975-112-7 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1975-112-7

AN ERGODIC THEOREM 1079
(2.10) and (2.12) and by the induction hypothesis,
EQ™ X roxs:i = EQEQ" 3. rixss
EQ Zl (T ixz:
= 2,: (THI’)]‘XE:‘-

(2.14) THEOREM. The Dominated Ergodic Estimate holds for a positive con-
tractron T : I, — I, satisfying (2.1) and (2.2).

Proof. It is enough to prove the theorem for a positive vector. Let r € [,*
and let

=
7i=sup = > (T*).
k1 K k=0

We have to show that

7l = 4’

p 1
Define f € L,*(Z) asf = X i xgs and let

f= 3;1;;[% > 0.

k=0
Then we have that || f ||, = ||7]|, and hence that
171l = —2= Tl = P 7 Il
by the result of [5].
Now, since

%;EW§E

for all K = 1, we also have that

K—1
sup = ! >, EQY £ Ef.
K>1K k=0
But
1 K—1 K—
sup EQ'f = sup Z Z (T%) ixzs
K>1 k=0 K>1 k=0
= Z 74X E
Therefore

Pl = || roce

< |15 1l < 52 lIrll
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(2.15) THEOREM. The Dominated Ergodic Estimate holds for amy positive
contraction 1" : I, — 1, without any additional hypotheses.

Proof. First assume that T';; > 0 but ||T[, = 1/X\, X > 1. Then the operator
AT satisfies the hypotheses of the previous theorem and we obtain
p
S =yl
for any » € /,*. But this clearly implies the same estimate for 7.
Next suppose that 1°;; = 0 for some (4, j) and that the Dominated Estimate
does not hold for 7". This means that there is an integer N = 1 and an 7 € [,*

SR
= T
supK; r

K>1

so that
1 K—1 . p
_— T > P .
IEEENK ,;, r ,  p—1 H"Hp

Then there is a number ¢ < 1 so that the same inequality holds if 7" is replaced
by ¢7". But then there isan e > 0so that 77;; = ¢T';; + e still defines a positive
contraction 17 : [, — I, for which the Dominated Estimate does not hold. This
is a contradiction, since 7" has strictly positive entries.

3. General L,-spaces. Let (X ,% , u) be a measure space and let 7" : L, — L,
be a positive contraction of L, = L,(X,#, u). If {E\, ..., E,} is a finite
partition of X then the conditional expectation operator will be defined as

Ef= E XX E iy f € pr

1

where
0, ifu(E;) =00ru(E;) = 0,
a; = 1 f .
T du, if0 < p(E) < o0.
#(Ez) Eif oot u( )
As before, E : L, — L, is a positive contraction. Furthermore, if fi, . .., fx

are finitely many members of L, and if e > 0 then there is a conditional expecta-
tion E so that

| fe — Efil| <e, k=1,..., K.

(3.1) LEMMA. Given an e > 0, an integer K = 1 and an f € L, then there is a
conditional expectation E so that

HTH — (ET)Ef|| < e
forallk,0 =k =K — 1.

Proof. Choose E so that ||T*f — ET*f || < e/K forallk =0,1,...,K — 1.
We will show that ||T*f — (ET)*Ef|| < e(k + 1)/K for all k=0, ...,
K — 1. The proof is by induction. The result is true for £ = 0. If it is true for &,
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then

[|T*¥1f — T(ET)*Ef|| < e(k + 1)/K
and hence

||ET*'f — (ET)*1Ef|| < e(k + 1)/K.
But also,

|50 f — ET*f || < e/k,
which gives that

| T*f — (ET)Ef ||, < e(k + 2)/K.

(3.2) LEMMA. Given an e > 0 and finitely many functions fi, . . ., fi in L,*,
thereis an S > 0 so thatif gi, . . . , g are K functions in L,* satisfying || fi — gdll,
<Sk=1,...,K, then

<e.
4

max f; — max g
IKk<K 1<k<K

Proof. First choose a set A € % so that u(4) < © and so that

K
€
2 ekl < g5

Next choose a X\ > 0 so that u(B) < \ implies that > s_i||xsf:|| < ¢/10. Then
let

(e 2”3
0 < S <min 10K’ Ku(d) 10)
Assume that ||g; — fi|]| < Sforeachk =1,...,K.
Let
{ > !
Br = x| [ felx) — ge(x) P > 0@ -
Then
e R
1072 (4) K10%(4)
This means that if B = U, B, then p(B) < A.
Now let

u(Bi) <

f = max f; and g = max g.
1<k<K 1<k<K

Note that

fx) — g@®)|? < W%A‘)‘ ifx € R=4NB

and

|F(x) — g@x)| < k; (folx) + ge(x)) ifx € S=R° = A°N B.
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(This last inequality is true everywhere, but we need it only on S.) Hence

17— all = lIxa(f = DIl + lIxs(f = 2II. But [Ixz(f — 2)|| <¢/10 and

lxs(f =2l = k; (lxsfell + Hxsgxl])
< 2 Clixshll + [stes — £
= ; 2“Xkal| +1£O

Since ||x sfi]| £ lxacfel| + ||xsfil], this shows that || f — || < 2¢/10 + 2¢/10 +
2¢/10 < e.

(3.3) THEOREM. The Dominated Estimate holds for any positive contraction
T:L,— L,

Proof. If the Dominated Estimate does not hold for 7" then there is an
integer IV and a function f € L,* so that

K—1

max 1 Z

1<K<VK

_r
> 1l

Then, by the previous two lemmas, there is a conditional expectation E so that

max % Z (ED)"Ef > — HEj [].
IKKLEN
Let {Ei, ..., E,} be the partition corresponding to E, and let {Ey, ..., E,}

be the atoms of this partition with finite non-zero measures. The class of L,
functions which are constant on these atoms can be identified with /, and ET
defines a positive contraction on this /,. Hence the last inequality contradicts
Theorem (2.15).
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