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ABSTRACT. In order to interpret observed short- term variations of the sliding velocity of a glacier the 
effect of a variable subglacial water pressure on the sliding velocity has been studied using an idealized 
numerical model. In particular the transient stages of growing or shrinking water-filled cavities at the ice­
bedrock interface were analysed. It was found that the sl iding veloci ty was larger when cavities were growing 
than when they had reached the steady-state size for a given water pressure. The smallest sliding velocities 
occurred while cavi ties were shrinking. When cavitation is substantial a small drop of water pressure below 
the steady-state value (e.g. by 0.5 bar) can temporarily cause backward sliding. A limiting water pressure at 
which sliding becomes unstable is derived. The consequences of more realistic assumptions than those of the 
model are discussed. 

RESUME. Injluence de la pression hydrauligue sous-glaciaire sur la vitesse de glissement d'un glacier dans un modete 
numerigue idealise. Dans le but d'interpreter les variations de vitesse a court terme qui ont ete observees, on a 
etudie a l'aide d'un modele numerique idealise l'effet exerce par une pression hydraulique sous-glaciaire 
variable sur la vitesse de glissement d'un glacier. On a etudie en particulier les etats transitoires de la 
croissance et de la decroissance des poches d'eau situees a l'interface glace-bedrock. II s'est revele que 
pendant la phase de croissance des cavites, la vitesse de glissement est plus grande qu'a l'etat stationnaire 
pour une pression hydraulique donnee. Les vitesses de g lissement les plus faibles se produisent lors du 
retrecissement des cavites. Lorsque le volume des cavites est suffisamment grand, une faible diminution de la 
pression (p.ex. de 0,5 bar) peut temporairement provoquer un glissement vers l'amont. On a determine une 
valeur limite de la pression hydraulique pour laquelIe de glissement devient instable. On discute les conse­
quences d'hypotheses plus realistes que celIes sur lesquelles le modele repose. 

ZUSAMMENFASSUNG. Der Einjluss des suhglazialen Wasserdruckes au] die Gleitgeschwindigkeit eines Gletsehers, 
untersueht mit einem idealisierten numerischen Modell. Mit dem Ziel, beobachtete kurzzeitige Geschwindigkeits­
schwankungen zu erklaren, wurde der EinAuss eines veranderli chen subglazialen Wasserdruckes auf die 
Gleitgeschwindigkeit mit einem idealisierten numerischen Modell untersucht. Insbesondere wurden die 
Ubergangsphasen von wachsenden od er sch rumpfenden, wassergefUllten Hohlraumen an der GrenzAache 
von Eis und Felsbett analysiert. Es zeigte sich, dass die Gleitgeschwindigkeit grosser war, wenn Hohlrliume 
zu wachsen begannen, als wenn sie die fUr einen bestimmten Wasserdruck endgUltige Grosse erreicht hatten. 
Die kleinsten Gleitgeschwindigkeiten kamen vor, wlihrend die Hohlraume schrumpften. Bei genugendem 
Ausmass der H ohlraumbi ldung kann ein geringfUgiges Absinken des Wasserdruckes unter den Gleich­
gewichtswert (z.B. urn 0,5 bar) vorUbergehend Ruckwlirtsgleiten verursachen. Ein Grenzwert des 
Wasserdruckes, bei dem das Gleiten unstabil wird, wird hergeleitet. Die Auswirkung weniger spezieller 
Annahmen als derer, die dem Modell zugrundeliegen, wird diskutiert. 

INTRODUCTION 

Surface measurements of glacier movement have occasionally revealed significant changes 
of horizontal velocity within short periods of time, a few days or even a few hours (e .g. Iken, 
[1978] ). More recent short-term measurements included vertical velocity which showed 
related variations. The dependency of the velocity variations on melt- or rain-water supply 
suggested that the variations were caused by changes in subglacial water pressure. In parti­
cular the substantial variations of vertical velocity observed in a detailed study have been 
interpreted as variations of water storage at the bed. * A mechanism explaining the typical 
features of the observations is now sought. The following water-pressure-dependent sliding 
mechanisms have been proposed in the past: 

Sliding over a lubricated, undulating, or three-dimensionally rough bed with formation 
of water-filled cavities (Lliboutry, 1968, 1979; Kamb, 1970). 

• Paper in preparation: Iken, A., and others. The uplift of the Unteraargletscher at the beginning of the 
melt season-a consequence of water storage at the bed, by A. Iken, A. Flotron, W. Haeberli, and H. Rothlisberger. 
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Change of thickness of the lubricating water film between ice and bedrock (Weertman, 
1962). 

Deformation of saturated sediments below a glacier (Boulton, 1979; J ones, 1979). 
Participation of subsole drift in the sliding process (Engelhard t and others, 1978; 

Kamb and others, 1979; Boulton and others, 1979) . 
Slip along water-activated shear planes within a glacier (Tyulina, 1976). 

If the velocity variations are indeed caused by short-term water-pressure variations which are 
synchronous over large areas of the glacier bed, then high permeability of the subglacial 
drainage system is an essential assumption. This requirement is best satisfied ifbed separation 
is extensive. Extensive bed separation also provides an appropriate explanation for the 
variations of vertical velocity which may then be understood as the result of simultaneous 
growth (or shrinkage) of subglacial, communicating cavities. I-t thus appears probable that 
the velocity variations in the quoted field examples were a direct consequence of sliding over an 
undulating bed with bed separation controlled by a varying subglacial water pressure. 
Certainly, other mechanisms may have played a part; in particular, friction between rock 
particles in the ice sole and below has probably modified the observed variations of the sliding 
velocity. The present paper will be confined, however, to an understanding of the principles. 
It concentrates on the idealized problem of sliding on a perfectly lubricated bed with the 
action of an imposed water pressure. To a large part this problem is well known, owing to the 
comprehensive sliding theories of Kamb (1970) and Lliboutry (1968, 1979). The pioneering 
ideas on the action of the subglacial water pressure were developed in the original work of 
Lliboutry, yet the transient stages of cavity growth and shrinkage have not been analysed so 
far. It is exactly these phases, however, which seem to determine the velocity variations in 
question. 

FUNDAMENTAL CONSIDERATIONS OF THE EFFECT OF THE SUBGLACIAL WATER PRESSURE ACTING ON 

A GLACIER SOLE WITH NON-UNIFORM PRESSURE DISTRIBUTION 

In the absence of a basal shear stress the pressure which the ice exerts on its bed is every­
where Po, the ice overburden pressure. If, however, the basal shear stress is not zero, the 
pressure on the bed is no longer uniform, but is larger than Po on the stoss faces of bedrock 
protuberances and smaller on the lee faces, so that equilibrium of forces is maintained. It is 
in the low-pressure zones at the lee faces where a change of water pressure caused by, say, a 
change of water input into the subglacial drainage system can affect motion of the glacier even 
if the water pressure stays well below the ice overburden pressure. The lower bound of water 
pressure which has an effect is the minimum pressure occurring at the lee faces, the separation 
pressure. At a larger water pressure a part of the ice sole is separated from the bed. The 
separation pressure has been introduced and given in quantitative terms in the sliding theories 
of Lliboutry (1968), Nye (1969), Kamb (1970), Morland (1976), and others. For the special 
case of a sinusoidal bed the separation pressure Ps is 

AT 
Ps = Po- 1Ta 

where T is the basal shear stress, A the wavelength, and a the amplitude (one half of the 
difference of the maximum and minimum of the sine function). 

Another important parameter is the limiting water pressure above which the sliding 
becomes unstable, that is to say, a non-zero acceleration term enters into the balance of forces. 
This pres;ure is well below the ice overburden pressure. C. F. Raymond and H. Rothlisberger 
(personal communications) have independently arrived at the prediction of this pressure and 
have derived an explicit expression. 
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Fig. I . Diagram illustrating the derivation of the limiting water pressure of stability. An ice slab of thickness d is resting on a 
stepped bed with a mean slope oc. 

A simple derivation is as follows: Consider a plane-parallel slab of thickness d and oflarge 
lateral extent resting on a lubricated, undulating bed with a mean slope ex. For a moment we 
will assume a particularly simple shape of the bed: a bed consisting of rectangular steps (Fig. 
I). An ice column of unit width and length l rests on the faces band c of the steps, its weight 
is Fi = pgdl. The component perpendicular to face b is 

Fb = pgdl cos(f3-ex) 

and the component perpendicular to face c is 

Fc = pgdl sin (f3 - ex) 

where p is the density of the (ice) slab, g the acceleration due to gravity, ~ the angle which 
the stoss faces make with the down-slope direction x (Fig. I ) , and f3 -ex the angle between 
the stoss faces and the horizontal, i.e. the backward inclination of the steps. 

The corresponding mean pressures on faces band care 

cos (~-ex) 
Pb = Fb/b = pgd r:l 

cos t' 

and 
sin ( ~- ex) 

Pc = Fc/c = pgd . r:l • 
sm t' 

Thus, if a water pressure pw > Pc opposes Pc there will be a net force on the ice which will 
move it upward along faces b with accelerating velocity. The limiting pressure pc will in the 
following be designated Pt-

Equivalent expression for Pt are: 

Po sin (f3-ex) (tan ex) T 

PI = cos IX sin f3 = Po I - tan ~ = Po - tan f3 . 

The ice overburden pressure is Po = pgd cos ex and T = pgd sin IX is the basal shear stress. 
The last expression in Equation (2) is also appropriate if the basal shear stress is given by the 
more general expression T = fpgd sin ex wherefis a shape factor taking into account the drag 
of the valley sides. The validity of Equation (2) is not restricted to a bed consisting of 
rectangular steps; the equations hold for other two-dimensional bed undulations as well if the 
steepest tangents on the stoss faces make an angle f3 with the mean bed slope. This is readily 
seen if one assumes that the spaces between the stepped bed and another bed, for example the 
one which is sketched on the right of Figure I, are filled with a weightless liquid. Inserting 
the liquid does not affect the balance of forces and the pressure is constant over the surface 

https://doi.org/10.3189/S0022143000011448 Published online by Cambridge University Press

https://doi.org/10.3189/S0022143000011448


4 10 JOURNAL OF GLACIOLOGY 

of the liquid. Further, the equations apply also to three-dimensionally rough beds if the 
projection of the total area exposed to the water pressure on a plane which is normal to the 
direction (3 is the same as in the two-dimensional case. 

For the special case of a sinusoidal bed the steepest tangent of the stoss face is 

(tan (3) max = 27Ta/ A, 
and thus 

In the formulation of the overall force balance the material properties of the glacier are 
irrelevant. However, there are differences in the pressure distribution and size of contact 
areas when the glacier is assumed to be viscous rather than rigid. When the water pressure 
rises to the limiting value, a rigid body on an undulating (e.g. sinusoidal) bed is in contact with 
the bed only at the inflexion points of the stoss faces. A viscous body, however, touches the 
bed on finite areas so that extreme stress concentrations are avoided. Consequences of this 
difference will not be pursued further in this paper. 

A stability limil for sliding under the action of a water pressure has already been derived 
by Lliboutry in a different way. For the case of a sinusoidal bed he has found a maximum, 
limiting value of the reduced frictionfwlfo of 1.325 (Lliboutry, 1968, p. 34). This value refers 
to a maximum size of stable cavities, they cover one-half of the sinusoidal bed. By definition 
fw = T andio = 1.7T (2a/ A)(pO - PW), hence Lliboutry's limiting value of the water pressure is 

Po-h/( 1.3257Ta ). (4) 
This value is smaller than that derived above (Equation (3)). The difference may result 
from Lliboutry's assumption of a symmetric pressure distribution on a (large) contact area, 
which has its centre well above the inflexion point of the stoss face (Lliboutry, 1968, p. 33). 

The remaining part of this paper deals with water pressures below the limiting pressure 
which correspond to the stable range of sliding velocities. Before discussion of the numerical 
analysis, the effect of a water pressure which is in the range between the separation pressure 
and the limiting water pressure will be described in a qualitative manner. 

When water at the pressure pw in this range penetrates to the lee faces of the protuberances 
of the glacier bed, a part of the ice sole is subjected to the boundary pressure pw and is thus 
separated immediately from the bed, a separation which includes not only that part where 
the normal stress had originally been smaller than pw but a larger zone as a result of a canti­
lever effect. In the subsequent process of cavity growth, the ice in the central part of the 
separated zone no longer moves parallel to the bed but away from it. The lower edge of the 
separated zone moves further along the bed while the upper edge retreats only a little from its 
original position. Thus, the extent of that part of the ice sole which is supported by water 
at the pressure pw becomes much larger in the course of time. When the cavity has grown to 
its final, steady form the ice at the ceiling moves parallel to it. 

ASSUMPTIONS FOR THE NUMERICAL MODEL 

The present analysis is based on several assumptions: 
I. No tangential stresses at the ice-bed interface. 
2. A linear flow law for the ice. The ice is taken to be nearly incompressible in time; more 

specifically, that parameter which is the linear viscous analogue of Poisson's ratio in 
elasticity is assigned the numerical value 0.499. Perfect incompressibility in time would 
require the numerical value 0.5, which is not acceptable for the finite-element program. 

3. Plane-strain, periodic bed undulations in the xz plane. 
4. Instant supply or drainage of water of a given pressure at all lee faces of the undulating 

bed. 
5. No regelation. 
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GEOMETRY OF THE MODEL 

The finite-element analysis was applied to a section representing in two dimensions a small 
part of a glacier at its base. This section (Fig. 2) was taken to be 25 m high and 60 m long. 
It is resting on an undulating bed which has a mean slope of 4°. The wavelength of the 
undulations was chosen to be 20 m, the amplitude 1.5 m. This section is part of an infinitely­
wide ice mass which is 3 I 0 m thick (measured vertically in space) and has a surface- and bed­
slope of 4°. Thickness and slope are the same as at the central part of the Unteraargletscher 
where series of short-term movement measurements have been made. 

I 
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~ 
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glacier 

I 
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Fig. 2. Modelled section at the bottom of a glacier. Surface slope and mean bed slope of the glacier is cc = 4°. Bed undulations 
have a period of ,\ = 20 m. 

METHOD OF NUMERICAL ANALYSIS 

The calculations were carried out with the finite-element program ST AUB. This 
computer program and a related plotting program were developed at the Institut fUr 
Strassen-, Fels-, und Eisenbahnbau, Eidgenossische Technische Hochschule, Zurich, for the 
purpose of stress and strain analysis in tunnel construction work (Kovari and others, 1976). 
Different program versions for elastic and plastic materials and for substances with composite 
properties exist. For the present purpose the elastic version (Kovari, 1969) has been used; 
this is equally applicable to the analysis of a ewtonian liquid because there is a complete 
analogy between the elastic stress-strain relations and the linear viscous stress-strain-rate 
relations. In this application the shear modulus is replaced by a viscosity which was arbitrarily 
assumed to be TJ = 2.273 X 10 13 Pa s (= 7.208 bar a). This particular assumption does not 
affect the calculated stress field, but only the scale of the velocity vectors. 

BOUNDAR Y CONDITIONS 

(a) Lower boundary 

The ice at point Pi on the ice-rock interface moves parallel to the interface; in the finite ­
element approximation this direction was specified to be parallel to the line connecting the 
two neighbouring nodal points Pi - I and Pt+ 1 on the interface. (Vice versa, the movement 
of a nodal point, calculated by the program, was considered to be parallel to the interface, 
if the same condition was satisfied.) 
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Where the ice sole was supported by water of a given pressure, the corresponding force 
per unit width at a nodal point Pi was calculated as 

Fi = O.5Pwibi. 

Here pwi is the water pressure at the depth of the point Pi and bi is the distance between two 
neighbouring nodal points P i - I and Pi +I on the interface. Because of the cantilever effect 
mentioned above, the extent of the area on which a given water pressure can act is not known 
exactly at the beginning. Therefore, after running the program, it was necessary to make 
sure that the points on the edges of the separated zone did not move downward into the bed 
but parallel to the interface or upward. On the other hand, the pressure calculated by the 
program for a point remaining on the assumed ice- rock interface ought to be larger than 
the given water pressure; if this was not the case the extent of the ice-water interface was 
changed and the program was run again. 

(b) Upper boundary 

Normal stress Ps and shear stress TS on the upper boundary result from the weight of the 
ice layer on top of the modelled section. In a real glacier the drag of the valley sides reduces 
the shear stress. In order to account approximately for this reduction a shape factor f = 0.5 
has been assumed in the calculation of TS. 

Thus 

TS = fpg!:!.h cos ex sin IX = 0.875 bar 

and 

Ps = pg!:!.h cos2 ex = 25.0 bar 

where !:!.h = 285 m and IX = 4 0 (see Fig. 2). p is the density of the ice and g the acceleration 
due to gravity. 

Components of the force acting at a nodal point Pi on the upper boundary are 

Fxi = Tsbi (unit width) f2 
Fzi = Psbi (unit width) f2 

where bi is the distance between the two neighbouring points Pi- I and Pi+ I on the boundary. 

(c) Sides of the modelled section 

Since the stresses vary in a non-linear way along the sides of the section, the force com­
ponents in a nodal Pi were calculated from the stresses at the three successive points Pi- ll Pi, 
and Pi+! on the boundary according to an interpolation formula commonly used in statics. 
The stresses on the lateral faces were, however, not known at the beginning and had to be 
determined by means of an iteration. In the first step these stresses were tentatively assumed 
to be equal to those on a vertical cut in a plane-parallel inclined slab of ice which is frozen to 
the bed. On this assumption, stresses in the interior of the modelled section were computed, 
from which the boundary stresses for the second iteration step were deduced as follows: 
Consider a line parallel to the x-axis which is drawn through a nodal point Pi on the left side 
of the section. The points on this line at distances A, 2,x, and 3 A from Pi are labelled Pill Ph, 
and Pi3 . The arithmetic mean of the stresses in PiI and Pi2 was assigned to the boundary 
point Pi. The same mean stresses but with opposite sign were allocated to the boundary point 
Pt3 . If the iteration were continued entirely in this way a possible superimposed longitudinal 
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stress could not be eliminated. Therefore the arithmetic mean of computed velocities in Pil 
and Piz was prescribed at Pi (and Pi3 ) in every second step. The iteration was continued until 
the velocity did not vary along the upper boundary by more than 3.5 %. 

A PROBLEM IN MODELLING WATER-FILLED CAVITIES 

Let nodal points situated on the bedrock profile be labelled PI> Pz, P3, ••.• Points on the 
ceiling of a cavity are marked with a star. The point Pi (_ Pi*) at the corner of a cavity 
(Fig. 3) is in contact with the bed and should move parallel to the original bed, that is parallel 
to the line connecting Pi-I and Pi+l. In accordance with the specification given above, 
however, the point moves parallel to the line connecting the points Pi_l* and Pi+1" (Disregard 
of the specification would imply that forces act on a surface which is not closed.) Calculations 
carried out for various positions of point Pi- I * showed that the overall sliding velocity depends 
nearly linearly on the direction of movement of the point Pi. The dependency is negligible for 
small cavities but very strong for large ones. For example, in the case of the largest cavity 
modelled (Fig. 6b) a variation of the direction of movement of point Pt by 10 caused a change 
of the sliding velocity by 16% at a water pressure close to the steady-state value. The difficulty 
is avoided to a large extent by putting Pi - I * approximately on the bedrock surface at a very 
small distance from Pi. A change of the distance between Pi- I * and Pt affects the sliding 
velocity very little. In the case already quoted, an increase of this distance by 33 % caused a 
change of the sliding velocity by 1.2 % only. Some uncertainty, however, remains. Indeed, 
not even the "slope of the original bed" is well defined in the finite-element approximation if 
distances of nodal points are varied. The tolerances shown in the final plot of sliding velocities 
(Fig. 8) refer to the uncertainty. 

Fig. 3. Finite-element approximation of a water-filled cauiry. The nodal point PI marks the edge of the cauiry. 

MODELLING OF STEADY CAVITIES 

These are cavities which are neither shrinking nor expanding at the given water pressure; 
at the cavity ceiling the ice moves parallel to it, the sliding velocity does not change with time 
as long as the water pressure is constant. 

The appropriate cavity geometry was found by a trial-and-error approach, an arbitrary 
shape was assumed at first. Running the finite-element program with boundary conditions 
corresponding to this cavity shape revealed that a cavity was shrinking in some places and 
expanding in others. Accordingly, nodal points of the cavity ceiling were put into slightly 
different positions in the next iteration (e.g. the cavity was made wider where it had been 
expanding). This procedure was continued until nodal points of the cavity ceiling moved 
(approximately) parallel to the ceiling. 

https://doi.org/10.3189/S0022143000011448 Published online by Cambridge University Press

https://doi.org/10.3189/S0022143000011448


JOURNAL OF GLACIOLOGY 

RESULTS OF THE NUMERICAL MODELLING 

List of numerical values to which results refer 

ice density 
viscosity 
mean bed slope 
period of bed undulation 
amplitude 
shape factor, assumed for calculation of shear 

stress above the modelled section 
shear stress on top of modelled section* 
basal shear stress (at z = 0, Fig. 2) 
ice overburden pressure (at z = 0) 
maximum slope of stoss faces in finite-element 

model 
limiting water pressure 

p = 0.9 X IQ3 kg m-3 

TJ = 2.273 X 1OI3 Pa s (= 7.208 bar a) 
(:( = 4° 
,\ = 20 m 
a = 1.5 m 
f = 0·5 

7'8 = 0.875 bar = 8.92 t/m2 
7' = 1.029 bar = 10.49 t/m2 

Po = 27.2 bar = 277.6 t/m2 
(3 - (:( = 23'3°-4° = 19·3° 

PI = 24.8 bar = 253.3 t /m2 

The flow on a nearly sinusoidal bed was modelled as a reference. Then the shape of the 
lee faces was modified while the shape of the stoss faces and the periodicity were held un­
changed in all cases studied. The velocity fields on the nearly sinusoidal bed and on a bed 
with steeper lee faces are shown in Figure 4b and a. Figures 5a to 6b illustrate the effect of 
water pressure pw = 24. I bar. In Figure 5a and b the stage at which cavity growth begins 
on the beds of Figure 4a and b is shown. Figure 6a represents the sliding over water-filled 

a 

b 
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" ........ ..... 

"'" 
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' ' ' 

_ x "'---- _-=- _ _=__ 
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- ----- -

Fig. 4. Velocity field in Newtonian liquid on a peifectly lubricated bed with periodic undulations. a. Bed with steep lee faces; 
b. nearly sinusoidal bed. The scale of the velocity vectors refers to a viscosity '7 = 2.273 X IO l 3 Pa s (= 7.208 bar a). 

* A column of water, one metre high, exerts a pressure of I t /m2. 
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Fig. 5. A water pressure qf 24. [ bar = 246 tlm2 (arbitrary pressure in the stable range) acts on the lee faces of the beds shown 
in Figures 4a and b. Shading indicates the separated zone. The dotted line traces a flow line. 
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Fig. 6. Water-filled cavity. a. Approximately steady at the pressure of 24.[ bar j b. shrinking at 24.[ bar. This cavity is 
steady at a water pressure of approximately 24.4 bar. The dotted lines trace flow lines. 
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Fig. 7. The same cauiry as in Figure 6a, but with a water pressure qf 23.6 bar = 211 tlm2. 

cavities which have almost grown to their steady size, in Figure 6b larger cavities are shrinking 
at the given water pressure. Their shape was derived for steady conditions with the water 
pressure at 24.4 bar. In Figure 7 the water pressure is reduced to 23.6 bar; the cavities are 
the same as in Figure 6a. This small pressure drop causes the ice initially to slide backwards. 

The actual sliding velocity had to be derived in an additional computation from the 
velocity at a sufficient height above the bed, in the present case the velocity on top of the 
modelled section was used. From this velocity the proportion due to internal shear in the ice 
below was subtracted. The sliding velocity obtained in this way for the nearly sinusoidal bed 
is 12 % less than the theoretical value deduced for an exactly sinusoidal bed (e.g. ye, 1969). 
The main reason for this disagreement appears to be that the modelled undulations have a 
relatively large roughness a/ A while the quoted theory is strictly valid for beds with small 
roughness only. The present result agrees well with a theoretical prediction by Raymond, 
which allows for the actual roughness (c. F. Raymond, personal communication). 

In Figure 8 the x-components of sliding velocities are plotted against water pressure for the 
different shapes of lee faces considered in the models: Curve I refers to the geometry of Figure 
4a, Curve 11 refers to the nearly sinusoidal bed (Fig. 4b), lines III and IV represent sliding 
with the cavities shown on Figure 6a and b . The horizontal branch III depicts the sliding 
velocity when the cavity ceiling in Figure 6a is replaced by bedrock. The dotted line gives the 
steady-state sliding velocities; i.e. the sliding velocities when steady cavities have formed. 
Below this line cavities are shrinking. 

From the examples in Figures 4 to 7 and from the diagram in Figure 8 the following trends 
are apparent: 

The smoother the ice-sole profile, the larger the sliding velocity (the velocity increases 
in the sequence of Figures 3a, 3b, and 6a). This is what one would expect. 

When a given water pressure is applied, the resulting increase in the sliding velocity is 
the larger, the steeper the ice sole at the lee side of humps or, more specifically, the smaller 
the separation pressure of the particular bed. Indeed, not only is the velocity increase 
larger when the ice sole at the lee faces is steeper, but also the absolute magnitude of the 
sliding velocity becomes larger provided that the water pressure is sufficiently large. This 
effect would be much more marked if actual roches moutonnees were considered rather than 
the modelled smooth glacier beds. (Of course, when the water pressure becomes so large 
that spontaneous separation reaches a point on the common stoss face, the differences 
between the sliding velocities on beds with different lee faces disappear. ) 

Th~ response of the sliding velocity to a change of water pressure is the more sensitive 
the larger the area of the ice sole which is subjected to the imposed water pressure. This is 
evident from the slopes of the velocity-pressure curves in Figure 8. A closer inspection, 
however, shows that it is not simply the size of the area subjected to the water pressure 
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Fig. 8. Plot of sliding velocity versus water pressure. u is the x-component of the sliding velocity; the index s refers to (steady­
state) sliding on the sinusoidal bed at the separation pressure. u/us is the x-component of the sliding velocity expressed as a 
fraction of the sliding velocity on the sinusoidal bed at the separation pressure. PI is the limiting water pressure al which 
sliding becomes unstable. Curves I to IV show the initial, transiClZt sliding velocity at the instant when the water pressure is 
applied (except for the horizontal parts and two points on lines III and IV which show steady-state sliding). Curve I refers 
to sliding on the bed shown in Figure 4a, curve II refers to the sinusoidal bed, lines III and IV refer to sliding wilh the 
water-filled cavities if Figures 6a and b, respectively. The horizontal branch III depicts the sliding velocity when the cavity 
ceiling in Figure 6a is replaced by bedrock. The dotted line marks steady-state sliding, below this line cavities are shrinking 
(indicated by broken lines). 

which determines the slope of the velocity- pressure function, but the orientation of this 
area is also influential. 

The sliding velocity varies linearly with the water pressure as long as the area of the 
ice sole which is subjected to the imposed water pressure is constant. The relationship 
is of the form 

(5) 

where u(Pw) is the transient sliding velocity at a water pressure pw, Ust is the steady-state 
sliding velocity for the given cavity size, p st is the water pressure at which the considered 
cavity is steady, and C is a constant which depends on size and orientation of the area 
covered by the cavity and on the geometry of the remaining contact area. Numerical 
values ef Care: 64 for line III (Fig. 8) and 5 I for line IV. 

In the finite-element model the area of spontaneous separation of the ice sole increases in 
finite steps with increasing water pressure, therefore curves I and 11 consist of finite sections 
of straight lines. Once cavities have formed, a further increase of water pressure does not 
cause an additional spontaneous separation, but only slow cavity growth-as long as the 
pressure increase is not very large. Therefore, the sliding velocity is approximately given by 
Equation (5) during a finite period of time. 

DISCUSSION 

Considering the effect of a water pressure pw, acting on the ice sole at the lee sides of bed rock 
obstacles, different phases have been distinguished: 
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(I) transient phases 

(a) instantaneous separation, which is in our terminology the instantaneous 
re-distribution of pressure by the action of the water pressure PW; 

(b ) various stages of growing or shrinking cavi ties; 

(2) steady-state sliding over cavities which are steady at the given water pressure. 

First a remark is due concerning the extent and effect of instantaneous separation. It 
has already been mentioned that the separated zone is larger than that part of the ice sole 
which had originally been subjected to a normal pressure ~pw. In other words, when 
separation takes place, the pressure on the central, steep part of the separated ice sole is 
increased while it is decreased along the edges of the separated zone. At first sight it may 
therefore appear that no net force change at the lee faces is accomplished by the action of the 
water. This is, however, not so since the separated zone is curved. Therefore, at the instant 
of separation, the positive and negative pressure changes at the ice sole correspond to force 
changes which do not compensate. Indeed, the action of the water pressure causes a net 
increase of the force exerted on the ice in the x-direction, in contrast to a slight decrease in the 
z-direction. The increase of force in the x-direction causes an equivalent increase of pressure 
on the stoss face. This effect could also have been caused by an increase of the basal shear 
stress. In either case the sliding velocity increases-linearly with the driving force when the 
flow law is linear. 

It has been seen that the effect of a water pressure pw on the sliding velocity is largest at the 
instant of separation and then gradually decreases until steady cavities have formed. It is 
informative to compare the distribution of forces on the ice sole in the different cases; for 
illustration a particularly simplified bed will be considered. In Figure ga the mean normal 
stress on face a z and on face a 4 is equal to Po, the ice overburden pressure. The mean normal 
stresses on faces a, and a 3 are p, = Po- t1p and P3 = Po+ t1p, respectively, where the magni­
tude of t1p depends on the basal shear stress. If a water pressure pw > p, separates the ice 
from the faces a, and exerts an additional force on the ice sole, the stress on a3 increases to 
p/ = (Pw-p, ) +P3' Figure gc shows the situation when cavities have grown under the 
influence of the water pressure Pw. The mean stress on faces a 3 is still p/. The stress on a z, 
however, is reduced to pw while the stress on a4 is increased to p/ = (pOa4 + (Po-Pw) az) /a4 • 

It is only this re-distribution of pressure on troughs and crests which causes the differences in 
sliding velocity at the beginning of cavity growth and when steady cavities have formed. The 
larger pressure in the wave troughs during the phase of cavity growth permits flow along 

,. p. Po 

~ ~ 

Fig. 9. Typical stress distributions, illustrated with simplified glacier bed. a. Stress distribution bifore water at a given pressure 
pw has access to the lee faces; h. a water pressure pw > PI acts on the lee faces; c. cavities have formed. 
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straighter flow lines, i.e. a nearly rigid movement of a part of the basal ice. Therefore the 
sliding velocity is larger than in the steady-state. This is generally valid and illustrated in 
Figures 5 and 6. 

The present results have been obtained on the basis of very simplistic assumptions. More 
realistic assumptions would change the results in the following ways: 

I. The introduction of a tangential stress at the ice-bed contact, for instance a Coulomb 
friction law, has an effect similar to that of a reduction of the basal shear stress. Both 
the separation pressure (Equation ( I) ) and the limiting water pressure (Equation (3)) 
attain larger values. The difference in sliding velocities at the commencement of cavity 
growth and with steady cavities is reduced since in the latter case the contact area is 
smaller and so is the friction. 

2. If the linear flow law is replaced by Glen's law the difference between the transient and 
steady-state sliding velocity becomes larger presumably, because, when cavities begin 
to grow, ice deformation is more strongly concentrated in zones at the stoss faces than 
it would be in the steady-state giving a particularly small effective viscosity there 
of 7Je = tAn/Ten-I. Here Te = (crt/crt/ /2)i is the effective shear stress and A and n 
are constants in Glen's flow law: Etj = Ten-IrJt/ /A'TI. Furthermore, the straight lines 
in Figure 8 are replaced by parabolas. 

3. If, instead of periodic bed undulations, geometrically similar undulations with different 
wavelengths are assumed, the basal shear stress is no longer uniformly distributed 
amongst the different wavelengths; in order to maintain a uniform sliding velocity the 
smaller undulations require a larger proportion of the mean basal shear stress. There­
fore, separation starts at the smaller obstacles at a smaller water pressure. Nevertheless, 
instability is attained no sooner than when the water pressure rises to the same limiting 
water pressure as in the case of periodic bed undulations. If the stoss faces of bed 
undulations have different maximum slopes, a rigid-body translation is only possible in 
the direction of the steepest stoss face which therefore determines the limiting water 
pressure for stability. Of course, if steep stoss faces are few, stress concentrations are 
immense when the limiting water pressure is approached. Consequently sliding is very 
fast and ice fracturing may occur. 

4. In reality, not all low-pressure zones at lee faces are in communication with subglacial 
drainage channels as has been assumed. For this reason the computed effect of the 
subglacial water pressure is an upper bound to the true effect which depends strongly 
on the degree of branching of the subglacial drainage system of a particular glacier in a 
certain season. Furthermore, the capacity of water flow towards the low-pressure zones 
is not unrestricted. If the water pressure rises to the limiting pressure the sliding 
velocity is limited by the rate of water input into the subglacial cavity network. 

5. The contribution of regelation sliding to the total sliding velocity is negligible for the 
size of undulations modelled. However, the possibility that freezing of the ice sole 
occurs in zones where the pressure is temporarily reduced as a consequence of water­
pressure variations cannot be dismissed. This mechanism has been discussed by Robin 
(1976). It is beyond the scope of the present paper to investigate its effect on the 
variations of the sliding velocity in more detail. I t is noted, however, that some field 
observations indicate that the freezing mechanism is not influential enough to obscure 
variations of the sliding velocity which are consistent with the present model. The 
largest temporary pressure reduction takes place at the crests of bedrock obstacles at the 
time of rising water pressure in the cavities. One would therefore expect the most 
extensive refreezing of the ice sole to the bed (and consequently a small sliding velocity) 
in this time. Measured sliding velocities, however, were largest during the time of 
maximum or rising water pressure in moulins (I ken, 1974, pp. 90, 94, and 96). 
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CONCLUSIONS 

The study of the idealized model has made characteristic features of the relation of 
subglacial water pressure and sliding velocity distinct. The sliding velocity is neither simply a 
function of the subglacial water pressure nor of the size of cavities but depends on both 
variables. The result that the largest sliding velocity (in the stable range) occurs at the 
beginning of cavity growth and not when the steady-state size of cavitation is attained may 
correspond to the field observation that the maximum horizontal velocity occurs bifore the 
upward motion of the ice has reached the maximum elevation. * Backward sliding, predicted 
by the model for the case of rapidly shrinking cavities, has not yet been observed. It would be 
an indication of the significance of the cavitation mechanism. For this test short-term velocity 
measurements ought to be continued during the night. Depending on the type of glacier and 
subglacial drainage system it may, however, happen that the channels which interconnect the 
cavities become blocked, when the water pressure drops and thus the shrinking process is 
stopped. 

Of particular interest is the possibility of unstable sliding at a water pressure well below the 
ice overburden pressure. The very high velocities observed during brief periods at the 
beginning of the melt season may possibly be interpreted as short spells of locally unstable 
sliding, terminated by the loss of water from the subglacial system. 
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