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Abstract

Examples of Fitting classes generated by certain periodic infinite groups are presented in this
paper. The groups in question are finite extensions of direct products of quasi-cyclic (Priifer)
groups and are, in particular, Cernikov groups. The methods applied follow closely those used
for constructing Fitting classes of finite groups, especially in the case of nilpotent length three.

1991 Mathematics subject classification (Amer. Math. Soc.): 20 F 16, 20 F 17, 20 D 35.

Introduction

A Fitting class of finite groups is a set, X, of finite groups with the following
properties:

(a) If G e X and H * G then H e X;
(b) If N < G G X then NeX;
(c) If G = GXG2 with Gt < G and <?, e X then GeX.

Minimal Fitting classes of finite groups of nilpotent length three have been
studied in, among other papers, Bryce [3], Bryce, Cossey and Ormerod [4],
Dark [5] and the present author in [7, 8, 9]. The construction of Dark in [5]
has proved to be a basic source of inspiration for most other minimal Fitting
class constructions.

In this paper we examine Fitting classes based on certain infinite groups.
The groups in question are elements of the class <£ of soluble Cernikov
groups. In particular, they are periodic (that is, every element has finite
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[2] On minimal Fitting classes 305

order) and it is to be noted emphatically that their structure is such that the
methods of [3, 5, 8] may be applied in an analogous, albeit at times suitably
modified, fashion.

The class <£ is a subclass of the class of 6 x-groups, for which a the-
ory of injectors has been developed in, for instance, Beidleman, Karbe and
Tomkinson [1], Beidleman and Tomkinson [2] and Menegazzo and Newell
[10]. Following Menegazzo and Newell, we define a Fitting class of ^-groups
to be a subclass X of <S such that:

(i) If N<GeX then N&X;
(ii) If G is an element of <S such that G = {Nk\k e K), where Nk < G

and NkeX for all k in K, then G&X.

Note that, since subgroups and factor groups of Cernikov groups are also
Cernikov groups, the class £ itself is a Fitting class of (E-groups (which is
closed with respect to factor groups). We note also that Beidleman, Karbe
and Tomkinson use a different definition of a Fitting class of 6 j-groups,
in that the normality conditions in (i) and (ii) are replaced by analogous
ascendancy conditions. The above definition is used in this paper since it
mirrors more precisely the definition of a finite Fitting class given above.

For a given (S-group, G, we define 3^(6) by:

»it(G)= f]X
G€X, a Fitting class of S-groups

Thus $it(G) is a Fitting class of (S-groups which contains G and is clearly
the minimal such class. In what follows the term Fitting class will be used, for
the sake of brevity, to denote a Fitting class of (S-groups. We begin with the
Fitting class generated by Cp . Section 2 then provides us with some useful
definitions and results. The example of Section 3 shows that certain periodic
infinite, metanilpotent Fitting classes are not as complicated as their finite
counterparts, while Section 4 provides us with a Fitting class construction
similar to that of [7].

I would like to acknowledge the support and encouragement of the math-
ematics seminar at Waterford Regional College while writing this paper. I
would also like to thank the referee for his/her comments which have helped
improve this paper.

The following well-known result provides information about Cernikov sol-
uble groups which will be used later on. For the prime p, we recall the
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306 Brendan McCann [3]

definition of the Priifer, or quasi-cyclic, p-group:

C p o o = { x l , x 2 , . • • \ x \ — 1 , x - + i — x l • , i — 1 , . . . ) .

PROPOSITION 1.1. If G e <£ then there exists a normal subgroup H < G
such that G/H is finite and H is divisible of finite rank, that is H = Hx x
••• x Ht, for a suitable t, where Hi = C «>, for suitable primes, px, ... , pt.
In particular, H is characteristic in G since it is the unique maximal normal
divisible subgroup of G.

Using the description of Cp=o given above, we see that Cp<» = (N(\i =
1 , 2 , . . . ) , where Nt = (JC() = Cpi, i = 1, . . . . This is clearly a normal
product and, since C , e 3tt(C ) , for i = 1, . . . , we conclude that C •» e
5it(Cp). In addition, since Cp S (JC,) < Cp» , we see that Cp e 5it(Cp»).
We thus conclude that $H(Cp) = 5it(Cpoo). Proposition 1.2 now gives us a
more detailed description of this minimal Fitting class.

PROPOSITION 1.2. 3it(C ) is the class of groups which satisfy:

(i) G = AB;
(ii) A = Cpoo x • • • x Cp<» with t factors for a suitable t (with possibly

t = 0, that is G = B);
(iii) B is a finite p-group;
(iv) [A,B] = l.

(Thus G is the central product of a finite p-group with the direct product of
finitely many copies of Cp~.)

PROOF. Let X be the class of groups described above. Since ^ (C^) =
£it(Cp«.), and since it is well known that all finite /7-groups are in $H(Cp), we
see that each element of X is a central, whence normal, product of elements
of $it(Cp). Thus we see Cp e X c $it(Cp), and it remains to show that X
is a Fitting class.

First we demonstrate closure with respect to normal products. Let G be
an <£-group with G = {Nk\k e K), where Nk € X and Nk < G for each
k e K. Then G is clearly a p-group. Assuming that G is not finite, we see
by Proposition 1.1 that there exists H < G such that H — Hx x • • • x Ht (t
finite), with Hi = C_°°, i — 1 , ... , t, and G/H is finite. Thus there exists
a finite subset S c K such that:

G = H{Ns\s e S).

re As and Bs an
proposition. Now, AJ(AsnH) = ASH/H which is isomorphic to a subgroup

We let A^ = ASBS, where As and Bs are as in the statement of the
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of G/H, which is finite. Since As is divisible, it has no non-trivial finite
factor groups, so we conclude that As < H. If we let pm be the exponent
of the finite group Bs, then Ds = {n e Ns\ o{n)\pm) is a finite characteristic
subgroup of Ns, so H normalises Ds. Since H/CH(DS) is isomorphic to a
subgroup of Aut(DJ), which is finite, and since H has no non-trivial finite
factor groups, we conclude that H centralises Ds. We let B = (DJs e S).
Then B is a finite normal subgroup of G such that [B, H] = 1 and G =
BH. We conclude that G is an element of X.

To demonstrate closure with respect to normal subgroups, we let G =
AB be as in the statement of the proposition and let N < G. Applying
Proposition 1.1, we let Ax < N be such that N/A{ is finite and A{ is
divisible of finite rank. As above, Ax < A < Z(G). Since N/A{ is finite,
there exists a finite set {n{, ... , rij] C iV with N — Al{nl, ... , rij-). We let
Bx = {nx, ... , nf). By Robinson [11, 5.4.11], Bx is finite. Thus N = AXBX,
where A{ and 5 , satisfy (ii), (iii) and (iv).

The following facts about i?it(Cp) may be of interest.
REMARK 1.3. 3W(Cp) is closed with respect to factor groups and sub-

groups.
PROOF. Let G = AB be as in Proposition 1.2. If N < G, then G/N =

{AN/N)(BN/N). Now AN/N s A/(NnA) is divisible, since it is isomorphic
to a factor group of the divisible group A. Also BN/N is clearly finite, so
we see that G/N € £it(Cp). In addition if U is any subgroup of G then U
is subnormal in G, since G is nilpotent. Thus, by (sub)normal subgroups,
U is also an element of

2. Preliminary results

PROPOSITION 2.1. Let p, q and r be distinct prime numbers and let 1 be
the class of ^-groups G which satisfy:

(i) G has a normal subgroup N with N e ^ (C, . ) ;
(ii) G has as normal subgroup M with M/N e jit(C ) ;

(iii) G/Me$it(Cp).

Then X is a Fitting class of ^-groups which is closed with respect to factor
groups.

The proof of Proposition 2.1 follows more or less by definition, along with
Remark 1.3. The groups we will be dealing with will mainly be in the universe
T, for some suitable primes p, q and r.
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DEFINITION 2.2. If G is a periodic group and re is a set of primes then

0n{G) = {ge G\g is a Tr'-element).

(If re contains just one prime p, then it is customary to use the notation

PROPOSITION 2.3. Let G be a periodic group. Then

(i) If M <G is such that G/M is a n-group, then 0n(G) < M;
(ii) 0*(G) is a characteristic subgroup of G;

(iii) If N <G then 0n(N) < 0"(G);
(iv) If G = (Gk\k e K) where, for all k e K, Gk < G, then

n = (0*{Gk)\kcK).

These straightforward properties of 0n(G) will be used without comment
in the rest of the paper.

DEFINITION 2.4. For the group G we define G by:

G~=(N<G\[G,N] = N).

G is a characteristic subgroup of G and, if G is finite, G coincides with
the nilpotent residual.

PROPOSITION 2.5. (i) If M < G is such that G/M is nilpotent then G <
M;

(ii) _
(iii) If H<G then H <G.

LEMMA 2.6. If G is a soluble periodic group and n is a set of primes, then
G/G = P/G x Q/G, where P/G is a n-group and Q/G is a n -group.

PROOF. For notational convenience we assume, by Proposition 2.5(ii), that
G - 1. Let x{ and x2 be any re-elements of G. Then (xx, x2) is a finitely
generated, periodic, soluble group. By Robinson [11, 5.4.11], (x,, x2) is
finite. Now, (x{, x2) < G = 1, so (JC, , x2) is nilpotent. In particular
(xl, x2) is a re-subgroup of G, so x{x2 is a re-element. We let P = {g e G\g
is a re-element} and Q = {g e G\g is a re'-element}. From above we see that
P and Q are, respectively, a characteristic re-subgroup and a characteristic
re'-subgroup of G and, since G is periodic, we conclude that G — P x Q.

The next result is an application of Proposition 2.6.
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LEMMA 2.7. Let X be the class described in Proposition 2.1. Then ifGeT,

0p[0p'(G)] = 0p'(G).

The proposition which follows is, like Lemma 2.7, a restatement of a result
for finite groups. The proof is the same as that of [7, II.6].

PROPOSITION 2.8. If G = AB, where A and B are normal subgroups of
G and both A and B satisfy the minimal condition for normal subgroups,
then,for N<G, H = (NnA)(NnB).

The final results of this section are standard results from finite group theory
which are adapted to cover some particular infinite cases.

PROPOSITION 2.9 (cf. Corollary to the theorem of Krull-Remak-Schmidt,
Huppert [6, 1.12.6]). / / G = G, x ••• x Gn, where 1 / G. is directly in-
decomposable and Z{Gt) = 1 (i = 1, . . . , n), then, apart from reordering
the factors, this is the only direct decomposition of G into finitely many non-
trivial, indecomposable factors. In particular, if a e Aut(G), then G° e

PROOF. Let G = A{ x • • • x Am be a decomposition of G into finitely many
non-trivial, indecomposable factors. Since Z(G) — 1, we have Z(Aj) = 1,
j = I, ..., m. We let n,: G —> A. be the projection of G onto Aj and let

W = G2x-xGn. Then Aj = (fx> Wn>. Now, Gr[> and W*t commute

elementwise so, since Z(A.) = 1, we have G*; n W*J = 1. Thus A. -

G^' x W*> and, since A. is directly indecomposable, we have either G\> - 1

and WKi = Aj or G*J = Aj and WKt = 1.

We assume the indices to be such that G"J = A., j = I, ... , s and

GjJ = 1, j = s + I,... , m . Then we have:

G j < A x x •• • x A s a n d W < A s + l x ••• x A m ,

whence, in fact, G, = A{ x • • • x As and W = As+l x • • • x Am . Since Gx is
directly indecomposable we now have G, = Ax and sufficient repetition of
this argument will complete the proof in a finite number of steps.

PROPOSITION 2.10. (cf. Theorems of Zassenhaus, Huppert [6, 1.18.1, 2]).
Let G be an <E-group which has a normal n-subgroup N such that G/N is
a n -group. Then N has a complement in G and any two complements for
N in G are conjugate in G.
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PROOF. Applying Proposition 1.1, we let H < G be such that G/H is
finite and H is divisible of finite rank. We see that H — P x Q, where
P is a re-group and Q is a re'-group. We now work modulo Q, that is
we let G* = G/Q and N* = NQ/N(* N). Then G*/N* is a finite n-
group. We let G*/N* = {glN*, ... , gkN*}, where k is a suitable natural
number. Then, by Robinson [11, 5.4.11], W = (gx, ... , gk) is a finite
group. In addition, G* = WN*. WnN* is a re-group and W/(WnN*) is
isomorphic to G*/N*, which is a re'-group so by Huppert [6,1.18.1], WnN*
has a complement AT* in W. Clearly K* is a complement for iV* in G*.
We let K* = K/Q and see that K is a complement for N in G.

Now let A', and .K2 be any two complements for N in G. Since the Kt

are maximal re'-subgroups of G, Q < Kt (i* = 1,2). We let K* - KJQ
and see that K* and K^ are complements for N* in G* and, in particular,
are finite. As above, we see that D — (K*, K^) is also finite. Thus K* and
K\ are both complements for DON* in the finite group D, so by Huppert
[6, 1.18.12], K* and K^ are conjugate in D and hence in G*. It follows
that Kx and AT2 are conjugate in G.

3. A metanilpotent Fitting class

PROPOSITION 3.1. Let q and r be distinct primes and let X be the class
of groups which satisfy the following conditions:

(i) G has a normal subgroup, M, such that M e tfi^C,.);
(ii) G/Memcq);

(iii) 0*[0*'(G)] = Alx---xAs, (s = 0 means that 0*[0*'(G)] = 1) ;
(iv) ^ , . S C r « , i = 1 , . . . , 5 .

Then X is a Fitting class of <B-groups.

(For an example, see the group U(y) of the next section).
PROOF. We note that the groups which satisfy (i) and (ii) form a Fitting

class, so we shall concentrate on (iii) and (iv). We first demonstrate closure
with respect to normal subgroups. Let N <GeX and let W = 0*[09 {N)].
Then W < <f[(p'(G)], so by Robinson [11, 4.2.11], W = Bx x • • • x Bt x D,
say, where Bi = Croo and D is an finite abelian r-group. Let Q be a

complement to W in 0* (N). Note that 0* (N)/W is a ^-group, so such a
complement exists by Proposition 2.10. From Proposition 1.2 and the proof
of Proposition 2.10, we see that Q is of the form Q = QlQ2, where Qx is
a finite Q-group and Q2 is a divisible #-group with Q2 < Z[09 (N)]. If we
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assume W ̂  1, then we also have Qx / 1, since 09 (N) = QW. We may
assume, in fact, D ^ 1, since otherwise we are finished.

If D is not elementary abelian we let rk be the exponent of D and let

Rk = {w e W\wT = 1). Then Rk is a finite, characteristic subgroup of
W and so is normal in G. We let O = ®(Rk) (the Frattini subgroup of
Rk). Then O is normal in G and, since O is finite, W/Q> = 5 , 0 / 0 x
• • • x 2?,O/<D x Z><J>/<D, where 2?(4>/<D = Cr<» and Z>O/O is a non-trivial,

elementary abelian r-group. Since 0*[09 (iV/O)] = 09[09'(JV)]/O, we can
work modulo O so, for ease of notation, we assume O = 1.

k

We let B = B{ x • • • x Bt. Then B = (w \w e W) is a characteristic
subgroup of W. Now let R = (w € W |̂o(io) = r ) . Then I? is a finite, nor-
mal elementary abelian r-subgroup of iV. By Maschke's Theorem, Huppert
[6, 1.17.9], R = (B n R) x K, where A" is a complement for B n R in i?
which is normalised by Qx, and hence by Q. We see D = ir (^ 1) and
we have: ^ = B x ^ . Now we must have [Q, K] = K. Otherwise, again
by Maschke's Theorem, K = Kx x K2, where Q, normalises both Â , and

K2, K2^\ and [Q,, A\] = 1. Then 09'{N)/(B n A"2) is nilpotent and has

a Sylow r-subgroup isomorphic to .K,. But, by definition, 0* (N) and all its
factor groups are generated by ^-elements, and a contradiction ensues.

We let H = (g e 09[09'(G)]\gr € K). Then, by the description of

0*[0*'(G)] given by (iii) and (iv), H is a finite subgroup of 0*[0*'((?)].
In addition / / is normalised by Q and Hr — K, where Hr = (hr\h e H),
or, equivalently, AT = O(/ / ) . We also have B n H = B nR, so, again by
Maschke's Theorem, we have a decomposition: H/K — (BnR)K/K x H{K,
where // , / .£ is normalised by the induced action of <2 and H[ = K (since
{(B n R)K)r = Rr = 1).

Thus J/j is normalised by Q, <!>(//,) = K, and:

Hinw = HlnBK = K(Hl r\B)=K.

Moreover Hl is an r-group which is not centralised by Q so, by a result
of Philip Hall (Huppert [6, III.3.18]), Q, , and hence Q, induces a non-
trivial group of automorphisms on Hxl<^{Hl) = H{/K. It follows that, for
S = [Q ,Hi], we have K£S. In addition:

S<[09'(N),G]<09'(N),

and, by comparison of orders, S < W. This is a contradiction to the fact
that K =WnH{. Thus we conclude D = 1, whence N € X.

To demonstrate closure with regard to normal products, we let G be an
element of <B such that G = (Gk\k € K), where Gk < G and G t e J , for
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all k e K. We let

O9[O9'(Gk)] = A k l x - - x A k S k ,

where the Akj are isomorphic to Cr<» . Thus, for W = 09[09 {G)], we have

W = ((f[(f'(Gk)]\k eK) = (Akj\k €K, j= 1, ... , sk). Since, by (i), (ii)
and Remark 1.3, W is an element of Sit(Cr), we have, as in the proof of
Proposition 1.3, W = A{ x ••• x As, for a suitable s, where Ai = Cr«.,

/ = 1, . . . , s. Thus 0*[0*' ((?)] is of the desired form, so G e £ .

The following corollary is a straightforward deduction from Proposition
3.1 and Lemma 2.7.

COROLLARY 3.2. Le* ^ ana? r be distinct primes and let G be an element
of the class X, as described in Proposition 3.1. Then all finite groups in $\i(G)
are nilpotent. (Equivalently, if £ is the class of finite groups and 01 is the
class of nilpotent groups, then ^ ( G ) n 5 c 9T).

We note here that this paper deals only with finite extensions of divisible
groups of finite rank. It is probable that the construction of Fitting classes
similar to those dealt with in this paper, but based on, say, torsion-free ex-
tensions of divisible groups will prove to be a somewhat more difficult task.

4. Some minimal Fitting classes of nilpotent length three

For the remainder of this paper we introduce the following notation: p, q
and r will be distinct primes with:

(i) ? T ( r " - l ) ;
(ii) q\{rn-\), 0<n<p;

(hi) p \ ( r - l ) .

(For example: p = 3, q = 7, r= 107). We let

U ^ Crco x • • • x Croo

and Ui: = {u e U\u — 1} , / = 1, . . . . Then Uj is a characteristic subgroup
of U, with

In addition £/. <Ui+1, / = ! , . . . and U = | J~ , U,.
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We note that each element a of Aut(C/) can be considered as a sequence
a = {ar, a2,...), where ai e Aut((/J) and ai+l \v = a( (and where the com-
position of automorphisms is componentwise). Equivalently, the elements
of Aut((7) may be considered as invertible p x p matrices over the ring of
p-adic integers.

LEMMA 4.1. If A and B are finite subgroups of Aut{U) such that A\v =
B\v , for all i, then A = B.

PROOF. Let b = (bl, b2, ...) be an element of B such that b £ A . Note
that, for a = (a , , a2,...), if a, = b{, then

so ai_j = bt_j, j = 1, . . . , / - 1. By contrast, if a. ^ b(, then ai+k / bi+k

for all k. Now, since b is assumed not to be in A, there exists, for each
a e A, a subscript ia with a, ^ 6f . We let im = max{/a|a e A} . Since A
is finite, im is a well-defined natural number. But then

b €B\ =A\V ,
" 'm 'm

so b, = a , for some a £ A, which is a contradiction. This demonstrates
m 'm

B <A, and A < B is similarly shown.

LEMMA 4.2. //" a = (a , , a2,...) is an r -automorphism of U {that is o(a)
is finite and coprime to r), then ax±\.

PROOF. Assume a, = 1. Then we show inductively that a, = 1, for all / .
So assume a( = 1 (for some / > 1). Then ai+l\v — a,, so ai+l centralises
Ui. We let x be any element of Ui+l. Since xr G Ui we have (xr)a'+l = xr =
{x"M)r, so (x, xa'+l) has order at most ro{x) and so is isomorphic either
to (x) or to (x) x Cr. Since i > 1 and Ut = {u e Ui+l\u

r = 1} , we see, in
particular, that x~lxa'+1 e Ut, whence jca'+1 = xu, for some u e Ui. But,
since a(+1 centralises Ut, we see that x is centralised by a°^ . But o(u)
is a power of r and al+1 is an /-automorphism of Uj+l, so we conclude
x"M = x, whence ai+l — 1.

LEMMA 4.3. For Z. = CAut( [ / ,([/,.), vve have Aut(C/.+1)/Z. ^ Aut(t / ( ) .

{Equivalently, every automorphism of £/ is induced by an automorphism of
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PROOF. We have:

I p

= (r"< _ r ^ ' V ' - /V-W) ... {fPi - ^

since £/, is elementary of abelian of order r9 (whence Aut(C/[) isisomorphic
to the general linear group GL(p, r)). In particular we see |Aut(f//+1)| =

If we let {ux,..., up) be a minimal generating set for Uj+l, then Zt con-

sists precisely of those automorphisms b which satisfy u\ = uxzx, ... ,ub =

upzp , where z{, ... , zp are any elements of Ui. Thus there are r* such
automorphisms and, since Aut(C/+,) /Z( is isomorphic to a subgroup of
Aut(C/(), we conclude, by comparison of orders that Aut(£/(+1)/Z(. = Aut(C/().

We now let B — (x, y]^ = y" — 1, x~xyx = yr) and note that if 5 is
such that s" = 1 mod(^) and 5 ^ 1 mod(#) , then B ^ (*,, y{ |xf = yf = 1,
Jc1~

Iy,JC1 = yj) (that is, all non-abelian groups of order pq are isomorphic
to B).

To construct a group on which to base a Fitting class of nilpotent length
three, we will use the information about Aut([/) contained in the next result.

PROPOSITION 4.4. (i) Aut(C/) has a unique, non-empty conjugacy class of
Sylow q-subgroups, all isomorphic to Cq ;

(ii) Aut(t/) has a unique, non-empty conjugacy class of subgroups isomor-
phic to B (as above);

(iii) Aut(C/) does not have any subgroups isomorphic to B x Cp.

PROOF. By our conditions on p, q and r, we see that qJ\ Aut(f/,)|, so,
by Lemma 4.2, to show that Aut(C/) has a Sylow ^-subgroup (that is, a
maximal ^-subgroup) is equivalent to showing that Aut( U) has an element
of order q. We show inductively that there is a sequence a = (a,, a2,...)
with ai € Aut({/,), o(a() = ? , and a^Jy. = at, i = 1, . . . .

Now, Aut(t/,) does have an element a, of order 9 , so we assume that we
have found a suitable a{ e Aut(C/(). By Lemma 4.3 there exists an element

d € Aut(£/-+1) with d\v - ar Since |Z(.| = r" we see that there is a

suitable power, k, of d such that o(rf ) = q and d \v= an so we may
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let ai+x = dk. Then, for a = (ax, a2,...), (a) is a Sylow ^-subgroup of
Aut(C/) which is isomorphic to C .

Now let (b) be another Sylow ^-subgroup of Aut(C/), where b is given
by the sequence b = (b{, b2,...). Since, by Lemma 4.2, (a,) and (6j) are
Sylow ^-subgroups of the finite group Aut(C/1), there exists wl G Aut(C/1)
with (a,)1"1 = (6,). Again, suppose we have found wt e AutCC/,) such that
(a,-)10' = (6,-) and t o j ^ = IO^J . Then, by Lemma 4.3, there exists an

element d G Aut(f//+1) such that {ai+l)
d < (bi+i)Zi and d\v = «;.. Thus

(a,+1)</ and (bi+l) are Sylow ^-subgroups of the finite group {bi+l)Zt, so

there exists z G Zt with (ai+1) ' ' z = (6,+1) • Since dz\v — d\v = wi, we can

set wi+l = dz.
We let w = (wl, w2,...) be the element of Aut(t/) thus constructed and

see that ( a ) " ^ = (6,.) = (b)\v , for all / , so, by Lemma 4.1, (a)w = (b),
that is (a) and (b) are conjugate in A\xt(U).

Part (ii) is proved in a manner similar to part (i). We note first that by,
say, [9, II.6], there exists a subgroup 5 , < Aut(C/,) with B{=B . Assuming
a suitable Bi has been found, we apply Lemma 4.3 to show that there exists
D < Aut(C/J+1) with Z, < D and:

D\v = Bt and D/Zi £ B.

Now (IZjl, liJ/Zj-l) = 1, so by Zassenhaus' Theorems (Huppert [6, 1.18.1,
2]), there exists a complement Bi+l to Z( in D, and clearly 5,+,^ =

Bt. For the groups Bt, i — 1,2, ... , found in this manner, we let B* —
{(*>, ,b2,... )\bt G B,., bi+l\Uf = bt, i = l , . . . } . Since for 6. e 5 . , there
exists a unique Z?1+1 G 5 l + 1 with fe^jlj; = bt, we conclude that 5* is a
subgroup of Aut((/) with B* ^ B.

From now on we identify B with 5* as a subgroup of Aut(C/) and let
H < Aut(f/) with H = 5 . We let //. = i/ |y and, by Lemma 4.2, have that
H^Bj, i-1,2, ... . From, say, [9, II.2 and II.6], we see that Hl and B{

are conjugate in Aut(C/,), so we let wl G Aut(C/1) be such that (if,)"'1 = B{.
Again assume we have found a suitable wt G Aut(t/() with (i^,)"1' = Bt and
10,1^ = wj_l. Applying Lemma 4.3 we see that there is a d G Aut(C/i+1)

with Hf+l < Bi+lZt and rfly = wr Again by Zassenhaus' theorems, all
complements for Zf. in Bi+iZt are conjugate, so there exists z G Z( with
Hf^ = Bj+l, so w e m a y le t wi+1 = dz. W e a g a i n let w — (wl, w2,...)

and apply Lemma 4.1 to see Hw = B.
Finally, our third claim is just a corollary to Lemma 4.2, since our condi-

tions on p, q and r imply by, say, [9, II.3], that Aut(C/j) does not have a
subgroup isomorphic to B x C .
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Keeping the primes p, q and r fixed, we define the group G by G -
U x>B, where, by Proposition 4.4, we identify B with any suitable subgroup
of Aat(U). We note that £/, is the unique minimal normal subgroup of
U(y) (where {y) is the (normal) Sylow ^-subgroup of B), and that Ui+l/Ui

is the unique minimal normal subgroup of U{y)/Ut. In particular, we have

that [U, y] = U, whence G' = U(y). We also have (f[(f'(G)] = U(y).
Our next result shows that certain "natural" candidates are indeed elements

of 8it(G). The proof is similar to that of [7, III.3], so we just include a sketch
here.

LEMMA 4.5. Let H be such that:

(i) He<£;
(ii) There exists a normal subgroup N < H with N — D{ x ••• x Dt;

(iii) H/Nz$it(Cp);
(iv) D( <H, / = 1 , . . . , / ;
(v) £>,. 3 U(y);

(vi) Let Wi = D\ (3 U), then H/CH{W.) 3 B.

Then H e 3tt((?).

PROOF. We note first that it can be shown that Cp e 5it(G!), whence
&t(Cp) C $ii(G). Thus if H is a p-group (that is, t = 0), then / / e SJit(Cp)
whence H e J i^G) . Now suppose that t = 1. Ignoring the subscripts,
we let C = CW(JT). Then C/W e £it(Cp) and ff is an r-group, so,
by Proposition 2.10, there exists a complement K for W in C, whence
C = W x A : . By Propositions 4.4(ii) and 2.10, we see that H/K 3 G. In
addition ///Z> is an element of 3W(Cp), so H (= ///(A^ n £>)) can be seen
to be subnormally embedded in H/K x H/D, where both direct factors are
in dii(G). Thus H e Sit(G).

For the general case, we let Mt = D, x • • • x Dt_x x Di+{ x ••• x Dt and
from above we have that ///A/, € ^ ( G ) , i — 1 , ... , t. Finally we have
H = H/ f||=i -W,-» so H can be subnormally embedded in H/Ml x •• • x ///A/,.
We conclude H e

LEMMA 4.6. Lef / f te the normal product H = Dl---Ds, where Dt =
U{y) and Di < H, i = 1, . . . , s. Then, for a suitable enumeration, H =
Dj x • • • x DtxQ, where t <s and Q is a (finite) q-group.

PROOF. We proceed by induction as in, say, the proof of [7, III.2]. Suppose
(D,, . . . , Dj) = Dlx-xD( xQj , where Qj is a #-group and t{ < j . Then
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if D J + l f]{Dl ,...,Dj) = l,vre h a v e

(Dl,...,Dj+l) = (Dl,...,Dj)xDj+l=Dlx..xDtxDj+lxQj,

and, apart from reordering the indices, we are finished. Now, if yi is an
element of order q in D.+l and W = D'J+l, then [J^,}^] = W and,

for Wl: = {w G W\wr = 1}, / = 1, . . . , we have that Wl is the unique
minimal normal subgroup of Dj+l. Assuming 1 ^ Dj+l f](Di, ... , Dj),
we have Wl < {D{, ... , Dj), and, since Wl is an r-group, we have Wx <
D[x-xD't . Since [Wx, y,] = Wx, we see:

1 ± [y,, D\ x • • • x D^] = \y1,D[]x.~x\yl, D't]

<{Wr\D\)x---x{Wr\D't) (by normality).

Hence we may conclude 1 ^ W n D[. Thus the unique minimal normal
subgroups of D.+l and Z), must be identical and, in particular, 1 = Dj+X n
(D2 x • • • x Dt x Q.). But now we must have Wt < D[, i — 2, ... , since
otherwise we may apply a result of Philip Hall (Huppert [6, III.3.18]) and
the minimal normality of Wi+l/Wi to gain the contradiction \yx, W{] = 1.
Thus W < D[ and since, by comparison of orders, each finite subgroup of
D\ is contained in W, we conclude W — D\.

By Proposition 2.10 there exists a complement K to W in DxDj+l and
we see that K is isomorphic to either Cq or Cqx C . In the first case we
conclude Dx = D.+ 1 . In the second we note, by our conditions on p, q and
r, that CK(W) S Cq. We let (z) = Ck{W). Then (z) = Z{DlDj+l) and
Z>,Z>;.+1 = Z)j x (z). In particular, (z) < H. If we let Qj+l = Qj(z), we may
conclude that

{Dl,...,Dj+l)=Dlx..xDtxQj+l.

CONSTRUCTION 4.7. Let G be as described above. Then $\t(G) is the class
of groups, H, which satisfy:

(i) H e X (as in Proposition 2.1);
(ii) (f(H)€dii(U(y));

(iii) 0p[0p' (H)] = Dxx-xDt,fora suitable t, where
(a) Dt<*U<y) (« = 1 0 ;

(b) D.^O^'c/f);

(c) Let W( = D\, then ('

PROOF. Our proof is similar to that of [7, IV. 1]. If we let X be the class
described above, then certainly G € X and, for H € X, we have H =
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(f(H)<f'(H). By Lemma 4.5, (f'(H) 6 Sit(G), so H is the normal product
of two elements of $\t{G), whence H e 5it(G). Thus G e X c $it(G), and
it remains to show that X is a Fitting class (of ^-groups). We note that (i)
and (ii) are Fitting class properties, so we shall concentrate on property (iii).

If N < H e X then, since U(y) satisfies the minimal condition for normal
subgroups, we may apply Lemma 2.7 and Proposition 2.8 to see that

Z),) x ... x ((f[(f'(N)]nDt),

(where it is assumed that H is the group given in the statement of the con-

struction). Let / = (f[tff'{N)]r\Dl, say. Suppose / / 1. If (f'(N) cen-

tralises / , then (f'(N)/((f[(f'(N)] n (D2 x • • • x Dt)) will have a p'-factor

group isomorphic to / , which is a contradiction. In particular, (f (N) does

not centralise Wxnl. We let C, = C^ (Wx) and see that (f'(N)Cx/Cx

is a non-trivial normal subgroup of (f {H)CX/CX, which is generated by p-

elements. Thus B £ Of'{N)CJCX S Of'{N)^^. {Wx). By normality, we

see Wx = [Wx, (f'(N)] < (f[(f'(N)] and noting that (f'{N) n ( D 2 x - x D ( )
centralises Wx, we conclude Dx < (f[(f (N)]. In this manner we see N e X,
so X is closed with respect to normal subgroups.

For closure with respect to normal products, we let H e € be such that
H = (Hk\k e K), where Hk < H and Hk e X for all k e K. We let

where the Dkj are isomorphic to U{y) and (a), (b) and (c) hold in the re-
spective residuals. We let Wkj — Dkj . By Proposition 3.1, the Wkj. centralise
each other elementwise, so by Proposition 2.9, each Dkj is normalised by
(Wkj | k e K, j — 1, . . . , tk). Now let us fix two arbitrary indices in K and

denote them by 1 and 2. We show that Dxx, say, is normalised by 0** (H2).
Let yx be a ^-element of, say, D2X. If yx does not normalise Dxx then,

by Proposition 2.9, we can assume D[\ = Dx2 and D"X2 = DX3. If x is an

element of order q in Du , then [x, yx, yx] — ^(JIC"2)^1 is an element of
D2X. By normality we then have:

Wxx x Wn x Wxi = [Wxx x Wn x Wn,[x,yx, yx]]

<[HX,D2X,D2X]<D2X,

and the contradiction Wxx x Wn x Wn < W2X ensues. From this we conclude

that the Djj are normal in (f[Qf'(H)] = {(f[(f'(Hk)]\k e K). Finally, if s
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is any /?-element of Of (H2) with, say, D\l = Di2, then [x, s] — x~lxs is

a ^-element of (/ (H2), (where x, as above, is an element of order q in

Dn). Thus Wn x Wn = [Wn x Wn, [x, s]] < (f[(f'(H2)]. As in the proof
of Lemma 4.6, we may now assume Wn = Wn , but since 5 normalises D2l,
Wu is also normalised by s and the contradiction Ws

n = Wn follows. We

infer that Du is normalised by (f (H2). Since 1 and 2 were arbitrary indices

from K, we conclude that the Dkj are normal in (f'(H) = {(f'(Hk)\k e K).

Now, (f[0f'(H)] (= (Dkj\k e K, j = 1, . . . , tk)) is an element of

X, so there exists a normal subgroup N < tf[(f (H)] with N e ffit(Cr)

and (f[(f'(H)]/N e &t(Cq). In addition (f[(f'(H)]/N is generated by
(DkjN/N\k £K, j = 1, . . . , tk) and, for each choice of k and ;', DkjN/N

- Dkj/(Dkj n tf) = Dkjlwkj - (y) - c
q • T h u s <f[<f'(H)]/N is generated

by normal subgroups isomorphic to C and hence has exponent q . Since

Qf[Qf'{H)] is Cernikov, (f[(f'(H)]/N must be finite. Thus (f[<f'(H)] is
generated by a finite subset of the Dkj, modulo N, say: 0p[0p (i/)] =
{D{,..., Ds, N) where Z>,, . . . , Ds are among the Dkj . But then we see:

= <(/(/>,), . . . , 0 ? ( ^ ) , O9(N)) =

so we apply Lemma 4.6 to see that:

where t < s and Q is finite #-group. Clearly Q is characteristic in (f (H)

and, since Qn(f'(Hk) = Q D (f[(f'(Hk)] = 1, we have [Q, <f'(Hk)] <

Q n (f'(Hk) = 1 for each choice of k, whence Q < Z{(f'(H)). If we now

work modulo D, x • • • x D(, we see that Of (H)/Q is an element of #it(C ) ,

so, in particular, (f (H)/Q is nilpotent. But since Q is central in (f (H), we

have that (f (H) is itself nilpotent and has Q as a direct factor. However,

Of (H) has no non-trivial //-factor groups, so we conclude Q — 1.
Finally we let C, = CJ^AW.), where JT. = Z>'. Then, since Q =

1, we see, as in the proof of Lemma 4.6, that either Di < (f[(f (Hk)] or

Dtn(f[(f'(Hk)] = 1. Since the Hk are in X, we conclude that (f'(H)/Ci =

((/ (H^CJCjlk € K) is either isomorphic to B or is the normal product of

subgroups, all isomorphic to B. In the latter case we see that 0^ {H)ICt has
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a subgroup isomorphic to B x B or B x Cp . However, the second and third

possibilities are ruled out by Proposition 4.4, so we conclude (/ {H)ICt = B.
Thus properties (iii)(a), (b) and (c) have been demonstrated and we con-

clude that X is a Fitting class.

It should be emphasised that we have been mainly concerned with applying
well-known methods of finite Fitting class construction in an infinite context.
The periodicity and structure of the groups in question, in particular the fact
that we have been dealing with finite extensions of divisible groups of finite
rank, has played a major role in allowing the constructions to go through.
By contrast, the construction of Fitting classes based on non-periodic groups
seems likely to pose more challenging and novel problems.
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