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Abstract

Let B be an infinite r.e. repére, W an infinite dimensional r.e. space such that W < L(B).
A condition is derived that is both necessary and sufficient for the existence of an infinite subset
B < B such that L(B) W is not an a-space. Examples which satisfy this condition are exhibited,
proving that the class of o-spaces is not closed under intersections.

Introduction

Dekker (1969) and (1971), introduced and studied an N,-dimensional re-
cursive vector space Uy over a countable field F. Briefly, it consists of an infinite
recursive set & of numbers (that is, non-negative integers), an operation + from
&r @ €p into g and an operation - from F x g into & If the field F is identified
with a recursive set, both + and - are partial recursive functions. Let § be a
subset of &;. We call § a repére, if it is linearly independent; § is a r.e. repére if
f is a r.e. set, and f is an a-repére if it is included in some r.e. repére. A subspace
V of Ug is an a-space, if it has at least one a-basis, that is, at least one basis
which is also an a-repére. A subspace V is isolic if it includes no infinite r.e.
repére; it is r.e. if it is r.e. as a set. The word ‘‘space’’ is used in the sense of
“‘subspace of Ur,”’ and we denote ““W is a subspace of V>’ by “W < V.”’ We
usually write (0) for {0}, and U for U;. We identify a(n) and a,, for every function
a(n); and a bar over a set (or space) is generally intended to indicate recursive
enumerability. We write ““L.C.”” for ‘‘linear combination’’ and “L.C.N.Z.C.”
for ‘“‘linear combination with non-zero coefficients.”” Let a < & If a = &,
L(x) = (0). If « # &, L(«) denotes the span of «, that is, the set of all L.C. (with
coefficients in F) of finitely many elements of a. If &« = {a,, -}, we usually write
L(ag, -++) instead of L({ag, - }).

The results presented in this paper were taken from the author’s doctoral dissertation written
at Rutgers University under the direction of Professor J.C.E. Dekker.
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The repéres § and y are independent if they are disjoint and their union is a
repére. The spaces V and W are independent if V. N\ W = (0). The sets § and y
are separable [written: ,Bly], if they can be separated by r.c. sets. The a-repéres
B and y are a-independent [written: B ” y], if they can be separated by independent
r.e. repéres. The spaces V and W are a-independent [written: V ” W1, if there are
independent r.e. spaces ¥ and Wsuchthat V < Vand W £ W.

Let S, C, V, W be spaces and consider the following three statements:

(a) V,W a-spaces = V N W a-space,

(b) V a-space, W r.e. space = ¥V N W a-space,

(c) S®C=Vand S ” C and V an a-space = both S and C are a-spaces.
Clearly, (a) implies (b); (c) is a conjecture that appears in Dekker (1971; page 493),
and is established in Fowler (to appear) in the case S (or C) is isolic or r.e. Assume
the hypothesis of (c), and suppose W, Z are two independent r.e. spaces such
that S £ W, C £ Z. It can be easily shown that S =V N W,and C=V N2
hence (b) implies (c).

In this paper, we provide several counterexamples to (b); hence a-spaces
are not closed under intersections, and the above approach to (c) is fruitless.
More specifically, if B is an infinite r.e. repére and W is an infinite dimensional
r.e. space such that W < L(p), we derive a condition that is both necessary and
sufficient for the existence of an infinite subset § = B such that L(f) N W is not
an a-space. We exhibit examples in which this condition is satisfied, regardless
of the cardinality of F. We take our notation from Dekker (1969) and (1971)
and the reader is assumed to be familiar with their contents.

2. The condition

NortaTiONS. Let p, = 2, p, = the n-th odd prime for n = 1. Then 5 = pe,
is the recursive canonical basis for Ug, where e, = p, — 1 (see the specific Godel
numbering used in Dekker (1969)). If B is a repére, x € L(f) and ¢ < L(f), then

B. = {be /J‘] x has a non-zero coordinate with respect to b if expressed as a

L.C.N.Z.C. of elements in ff},
B, = U {B,|xea}.

DEFINITION. Let W be an Ny-dimensional r.e. space and B a r.e. repére such
that W < L(B). Then B has property A with respect to W if there is no 1 — 1 re-
cursive function d(n) enumerating a basis of W for which U ;. ;(Bysy N Bagy) is
finite.

REMARKS. (a) Let W < L(B) where W is a r.e. space and J is a r.c. repére.
Then W < L(Bw), Bw < B, where By is also a r.e. repére; moreover, B, c Bw
for every x € W. Hence By has property A with respect to W if and only if B
has property A with respect to W.
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(b) If B has property A with respect to W and d(n) is a 1 — 1 recursive func-
tion enumerating a basis of W, then the sequence (B, of (finite, non-empty)
sets does not have a tail of mutually disjoint sets.

DEFINITIONS.
(a) The r.e. space W is decidable relative to the r.e. space V, if
(i W<V,
(ii) the set V\Wis r.e.
(b) The r.e. space W is recursive relative to the r.e. space V, if
i Wer,
(ii) there is some r.e. space Zsuchthat Z N W =(0)and W Z = V.
(c) If the r.e. space W is decidable (or recursive) relative to Uy, we say that
W is decidable (respectively recursive).

REMARKS.

(a) If V is an Nj-dimensional r.e. space, there are many recursive iso-
morphisms from ¥ onto U ; pick one, say h. Then W is decidable (or recursive)
relative to ¥ if and only if h(W) is decidable (respectively recursive).

{b) Well-known results concerning decidable and recursive spaces carry
over to the relative case by (a); in particular, the following two results due to
Guhl (to appear):

(i) If F is finite, W recursive <> W decidable,

(ii) if F is infinite, W recursive = W decidable, but not conversely.

PROPOSITION Pl. Let W be an Ny-dimensional r.e. space and B a r.e.
repére such that W < L(B). Then W not recursive relative to L(Bw) = Bw has
property A with respect to W.

PrROOF. We may assume without loss of generality that By = B. We shall
prove the contrapositive, that is,

B does not have property A with respect to W =

W recursive relative to L(f).
Assume the hypothesis. Then there is a 1 — 1 recursive function d, ranging over
some r.e. basis § of ¥ and a finite subset {by, -, b,,} of B such that

(Vi)(Vj)[i #Jj= Bd(i) N Bd(j) = {b09""bm}]'

Denote {bg, -, b,,} by p.

Note that for each number j we can

(i) effectively test whether B,;, < p,

(i) if not [B,, < p], effectively list both the elements of B,; N p and
those of B, ;)\p. Define

5 = {dne‘}-’|ﬁd(n) < p}'
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Then by (i) both § and 7\ are r.e. Only finitely many elements d,c7 have the
property B, < p; this follows from the fact that the span of all these elements
d,c7 is a subspace of the finite dimensional space L(p), while 7 is an infinite
repére. Thus 8 is a finite repére. Clearly if d,ed, then d,e L(p). Then we have
L(d) £ L(p). Combining this with the fact that d and p are finite repéres, we see
that there is a finite repére &, such that § = &, and L(&,) = L(p). The sets &,
and &, \d are finite, hence r.e. We note that 7\5 is infinite and r.e. For every
d;€7\0, we have

not [ﬁd(j) < P], Bd(j) \p #

(1) Biciy = Baciy\P) Y (Bayy O p),

dj EL(ﬁd(j)), d; ¢ L(Bd(j) N p).
For d;e7\4, put

c; = min {B,,(j) \P}, T; = [(Bd(j) \p)\{C,}] v {di}'
It follows that
(2) djETj and L(ﬁd(j)) = L(Tj) ® L(Bd(j) N P)
We now define
& = U {1;|d;e7\3}

and we claim that

(@) L(@,) + L(&) = L(p),

(b) d, is a r.e. repére,

(©) L@ N L&) = (0),

(d) &, and &, are disjoint and &, U &, is a r.e. basis for L(f),
(e) W is recursive relative to L(j).

Re (a). L(@)+ L&) = L(p) + L( U {1;]d;€7\8})
= Lip) + Z{L(zp)|d,e7\8}
= X{L(Bu;)|d;€7}, since By = B, d;€d
implies L(B,;) £ L(p), and (2).
Hence L(&,) + L(&,) = L(p), again since By = B.

Re (b). Let ' = {z j‘d ;€7\0}. Then T is a r.e. class of non-empty finite
sets, hence &, is a r.e. set. It follows from the definition of 7; that I" consists of
finite repéres. To prove that &, is also a repére, it therefore suffices to show that
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{ if djoy, -+, diay are distinct elements of 7\, then

3 L(timy) O [L(tio) + -+ + L(ty041))] = (0).

Assume the hypothesis of (3) and suppose that

X EL(T.'(,.)) N [L(Ti(O) + -+ L(Ti(n—n)],
say
X = Idiy + Yo = Todioy + -+ + Iy 1dyn—y

+y0 + +yn—1a
where ry, -, r,€ F, and for every k < n,

yi € L(0,), where o, = (ﬁdl’(k) \p) \{C.‘(k)}-
Then

C) 0 = r,dimy — [rodioy + *** + Tuo1dign-1))
+ Y=o+ + Yao1)

The family {(B.;,\p)|d;€7\8} consists of mutually disjoint finite subsets of f,
hence its union is a repére. This fact and the definition of ¢;, for d;e\6 imply
the two relations

(%) {o, | k < n} is a family of mutually disjoint finite subsets of §,

hence its union is a repere.

(6) Cun $( U {o|k < n}) U p, for k < n.

Let us now look at (4). By the definition of B, the element d,, €7\ has a
non-zero coordinate with respect to each element of B, when expressed as a
L.C. of elements in §, in particular, with respect to ¢;.,,. Suppose d,,, for some
0 £ k £ n — 1, also had a non-zero coordinate with respect to c;,, when expressed
as a L.C. of elements in B. Then ¢;(,) € Buimy N Buiw, implies that ¢, € p, contrary
tO Ci(n € Baicny \p- Thus d,, has no non-zero coordinate w.r.t. c;.,, when expressed
as a L.C. of elements in B. We note that (6) implies that none of y,, -+, y, has a
non-zero coordinate with respect to c;,, when expressed as a L.C. of elements
in B. Thus (4) implies that r, = 0. Similarly we can prove that (4) implies that
ro = 0,---,r,_y = 0. Using (4) once more we see that

Ya—Wo+ -+ y,o1) =0.

This implies that y, = 0,---, y, = 0 by (5). Since r, = 0 and y, = 0, we conclude
that x = r,d;,, + ¥, = 0. This completes the proof of (3) and thereby of (b).
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Re (¢). Recall that L(&,) = L(p). We wish to prove that

L(p) N L(a;) = (0),
that is, that

) xeL(p) N L(a,) = x = 0.
Assume the hypothesis, say
® x = robg + - + rpby = sodio) + - F Suimy + Yo + - + Y
where rg, -+, s So, -+ *5 S, € F, i(0), --+, i(n) are distinct, and
for k £ n, y, € L(6), where
{Uk = (Baitwy \P) \{€iar}-

As observed in the proof of (b), d;,, has a non-zero coordinate with respect to
the element ¢y, € By, \p, While none of d;), ***,d;(s-1y» Yo, ¥, has a non-zero
coordinate w.r.t. ¢,,, when expressed as a L.C. of elements in j. Since ¢, ¢ p
= {bg, ***, by}, it follows from (8) that s, = 0. Similarly we prove that
So =0,+--,5,-4 = 0. Then (8) yields

9)

(10) x=r0b0+"'+rmbm=y0+"'+yl/'

However, (U{o,|k <n}) np =g, while (U{o |k =< nupc B imply
x = 0 since B is a repére. This completes the proof of (c).

Re (d). Since &, and &, are repéres, neither contains 0. Thus (c) implies that
&, and &, are disjoint and that &, U &, is a repere. The set &; U &, is r.e., since
both &, and &, are r.e. Finally, &, U 4, is a basis of L(}) by (a).

Re (€). We have 7 = 8 N (7\9). Also, § = &, by the definition of &, and
7\0 « &, by the definition of &,. Then ¥ c &, U &,, where &, and &, are disjoint,
hence

(0_‘1 v &2) \? = (al \5) U [O_‘z \(}-’ \5)]

However, @, \J is r.e., and the definitions of &, and ; imply that &, \(7\0) is r.e.
We conclude that the set (&, U &,)\7 is also r.e. Thus,

L(y) @ L((&; U &)\9) = L@, U ay),
where both spaces on the left are r.e. Hence
W ® L% v a)\j) = L(p),

and W is recursive relative to L(f).
Consider the following example: let f(n) be a 1 —1 recursive function
ranging over an infinite r.e. but not a recursive subset of £\{0}. Let d(n) = ¢, + ¢,
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+ -+ + e;). Then d, is a 1 — 1 recursive function. Let W = L{d,,|nes}. Then
W is clearly r.e., but not decidable, and hence not recursive. Note that 5 = 7.
By P1 then, n has property A w.r.t. W.

The next proposition shows that the converse of P1 is false,

PROPOSITION P2. There exists an Ny-dimensional r.e. space W, and a
r.e. repére B such that W < L(P) is recursive relative to L(B) and By has property
A with respect to W.

Proor. We define a function ¢, by
Co=¢ept e, C3=¢€ +eg, Cg=¢€5+ €1y, Co = €7+ e,
Cp =€yt ey € =€ teyg € =es+eg Cig=e+ e,

C; =€ +eg Cs==e3+ e, €3 =e;+e5 €1 = e +eyy, etc.

51 = pcn’ ,V = L(Sl)’
52 = {eO, €1,€3, e5,"'}, Z = L(SZ)'

Note that if py, py, P2, -+ Is the enumeration according to size of the set of all
positive primes, then e, + e, = p,p, — 1 (see the specific Gdel numbering used
in Dekker (1969)). Thus ¢, is a strictly increasing recursive function, §, an infinite
and W an Ny-dimensional r.e. space. It is readily seen that 8, is a repére; thus
d, is a r.e. basis of W. Note that W+ Z = U. For every number n,

L(CO’ "',C,,) N L(eO’ela "'9eZn+1) = (0)’

hence W N Z = (0). Thus W @ Z = U and since Z is clearly r.e., we conclude
that W is recursive relative to U. Furthermore, W < L(1), where ng = 7, hence
W is recursive relative to L(ny). It remains to show that 5 has property A w.r.t. W.
Let § be any r.e. basis of W and d, any | — 1 recursive function ranging over 7.

Put
o = UMy O nygiy)-
i#j
We now show that ¢ is infinite by proving for every n = 1,

{e2n-13e4n+2’ e4n +4} No :Ié g

Since the reasoning is similar for every n = 1, we restrict our attention to the
case n = 1, and prove

ay {ey, e 65} No # .
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Consider the elements ¢, = e; + e, and ¢; = ¢, + eg of W, say

c; = ey + e = rodyoy + - + Ipdigmy »

¢; = e +eg = sodyoy+ -+ 54y

where rg, -+, Py S, -+, S € F, i(0), --+, i(m) are distinct, and j(0), ---, j(I) are distinct.
Each of the elements d;), -, di(m) 40> **»d ) belongs to W, where W = L(3,).
The only element of 8, which has e; as a term is c,, hence at least one of
d;0y, ***» dimy has a non-zero coordinate with respect to ¢, when expressed as a
L.C.N.Z.C. of elements in §,. Choose one, say d;,), where 0 < p < m. Similarly,
at least one of d;,, ---,d;,) must have a non-zero coordinate with respect to c;,
when expressed as a L.C.N.Z.C. of elements in d,. Choose one, say d;,, where
0 < g £ 1. Now assume that both d,(,, and d;,, are expressed as L.C.N.Z.C. of
elements in J,.

Case 1. d;,, has coordinate 0 w.r.t. ¢; and d
respect to ¢,. Then clearly e, €145,y N 14y < 0.

i@ has coordinate 0 with

Case 2. Either d;,, has a non-zero cordinate with respect to c5 or d;,, has
a non-zero coordinate with respect to ¢,. We may assume without loss of generality
that the former holds. Since ¢, = ¢, + e4 does not have ey as a term, at least one
of dy), for0 < s < mand s # p, must also have a non-zero coordinate w.r.t. c;.
Then eg € n4i¢,y N Nyigs) < O

3. The equivalence

We have proved the existence of N,-dimensional r.e. spaces W and r.e.
repéres B such that

W < L(B) and B has property A with respect to W.

In both of our examples, B = By = 7, in one case W was recursive relative to
L(Bw) and in the other case it was not. Now suppose that W is an N,-dimensional
r.e. space and f a r.e. repére such that W < L(p). Consider the statement

() there is an infinite subset § of B such that L($) N W is not an a-space.

This section is devoted to showing that () holds if and only if § has property
A with respect to W. We first demonstrate the sufficiency. The technique was
developed with the help of insight gained by reading Soare’s proof of Osofsky’s
result concerning the existence of non-xz-spaces (see Soare (1974; Section 1)).

PROPOSITION P3. The intersection of a r.e. spuce and an a-space need not
be an a-space.
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ProOF. Let W be an N,-dimensional r.e. space and B a r.e. repére such that
W < L(P) and B has property A with respect to W. We may assume w.l.g. that
B = Bw. Let all infinite r.e. repéres in W be enumerated without repetitions in
the sequence {&g,&;,---». Let a,, be a function of two variables such that for
every n, d,, is a 1 — 1 recursive function of m with &, as range. Let b,bea 1 —1
recursive function ranging over B. We shall write

Bnm = Ba(n,m)’

that is,

ﬁnm

{beﬂ|a,,m has a non-zero coordinate w.r.t. b when ex-
pressed as a L.C.N.Z.C. of elements in B}.

We shall define by induction an infinite sequence {x,, X,,--> of elements in W.
For every number k, we define

Q’ lf Xk ¢ L(&k),

4, = {a e&klxk has a non-zero coordinate with respect to a,
if expressed as a L.C.N.Z.C. of elements in &},
otherwise.

B, = {beB|x,, has a non-zero coordinate with respect to b,

when expressed as a L.C.N.Z.C. of elements in §}.

The goal of the following construction is to choose for every number n, an element
x, in W in such a manner that if

and S = L(f) N W, then
(Vn)[x,eS and x,¢ L(&, N S)].

Since every a-basis of S is of the form &, N S, for some n, this would imply that
S is not an a-space. The sequence {xq, X;, **+,» of elements in W we wish to define
is such that for every number n,

(1,n) xq,, x, are distinct and linearly independent,

@nm (Vi 2 4 # & = ALY By # 21

(3,n) (Vi < m)[x;€ L(&;) < codim WL(@@) < R,].
Basis: n = 0. If codimpL(&,) = N, we define

xo = min [ W\L(&y)].
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Then x, exists, since L(&,) < W and (1,0) holds, because x, # 0. The fact that
X ¢ L(&,) implies that 4, = ¢J, hence (2,0) is true. Finally, (3,0) holds, since
xo¢ L(%,). Now consider the case that codimWL(&,) < N,. Then the r.e. repére
&, can be extended to a r.e. basis ap of W such that o\, is finite. By remark (b)
following the definition of property A, there are two distinct elements a,; and a;
in ag N &, such that By, N By, # &. Let

ag; = rb,; + robyoy + - + by,
ao; = sb, + sobj0) + -+ + sibjy,

where Fy¥os 5Ty 8580,y 1 € F\(O)r )4 ¢ {iO’ B Ik} and p ¢ {jO’ 1]!} Define
xO = r—lam - s_laoj.
Note that ay;, a,; are distinct elements of a repére, namely &, ; this implies (1,0).
The element a,; has a non-zero coordinate with respect to b,, but b, ¢ B, by
definition of x,. Hence a,, ¢ L(B,) and since A, = {ay;,ao;} we conclude that
aq; € Ag\L(B,); thus (2,0) holds. Finally, (3,0) is true, for x € L(&,) by the de-
finition of x,.
Inductive Step. As inductive hypothesis, assume that n = 1 and elements
X, ***» Xn— have been defined such that

(1,n — 1) xq, -+, x,—, are distinct and linearly independent,

@n—1) (ViSn—D[A #J = A,-\L( U B,-) + &),
Jjsn-1
(3,n = 1) (Vi £ n—1)[x;e€ L(&) = codimpL(&;) < Ny].
Case 1. Codim wL(&,) = N,.
Suppose x, is any element such that

(i) x,€ W\L(@,)
and
(ii) x,,¢L( U B,.).
jsn-1
Such an element x, exists, since L(&,) has infinite co-dimension with respect to
W and B, U -+ U B,_, is a finite set. Then (3, n) holds by (i). By the definition
of Bjforj<n-1,

s < U B)

jEn—1

hence x,¢ L(xg,**,X,-1) by (ii); thus (1,n) holds. Since A4, will be empty for
each such element x,, condition (2, n) is equivalent to
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(iii) (v, <n-— 1)[A,~ # > A,\L( U B,.) # Q].

JjEn

We now show that an element x, satisfying (i) and (ii) can be chosen so that (iii)
holds as well. Put fori < n —1,

g, if A;=&
C, = {beB|some ac 4;\L (st,.J-'l B; ) has a non-zero coordinate
w.r.t. b if expressed as a L.C.N.Z.C. of elements in B},
otherwise.

Then C, U +-- U C,_, is a finite set, since A,, -+, 4,_, are finite. Define

%= )|y PG wd BN U (B,UC) - 2.
j=n—1
Note that x, exists, since L(&,) has infinite codimension with respect to W, while
U,<n-1(B; U C)) is a finite set, say of cardinality p. Then by linear algebra,
we can find p + 1 elements <y,, -, y,»> distinct and linearly independent such
that L(yg,-+,y,) N L(a,) = (0) and such that at least one non-zero ze L(y,, -*,y,)
satisfies

B.n U (B;uC)=g.

Jj€n-1

It follows from the definitions of x, that x,# 0 and

B,,n( U (B; U cj))=g.

jEn—-1

Thus, from x,e L(B,) we conclude that (ii) holds. It remains to be shown that
(iii) is true. We claim that

(12) A,-\L( U B,.) c A,.\L( U Bj), fori <n—1.

jsn—1 Jjzn

For let us assume that

aeA,.\L( U Bj),where i<n-—1.

jsn-1

Then a only has non-zero coordinates w.r.t. elements of B which belong to C,
hence to U ;.,_; C;. All elements in

HYm),Lm)

have at least one non-zero coordinate w.r.t. some element in B,, where

B,n U (B,UC)=(.

jZn—1
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Hence
aeA,-\L( U B; )
J<n

This proves (12). Then (iii) follows from (2,n — 1) and (12). Summarizing, we
see that x, has been defined so that the conditions (1,n), (2,n) and (3,n) are
satisfied.

Case 2. CodimwL(&,) < N,.
Let d be the finite codimension of L(&,) relative to W. Then the r.e. repére
&, can be extended to a r.e. basis a, of W by adjoining d distinct elements, say
ho, -+, hy_ ;. We shall use the following enumeration of a, without repetitions:

(Hl) hO""ahd—l’anO’anla""

We define
m= (px)(‘v’y)[y > x = b”¢~<L_)1 (B; v Cj)].

Since B has property A with respect to W, we can, no matter how far out we go
in (III), find two distinct elements ¢ and e in a, such that

Bc N Be # & and not [ﬁc N Be < {bo""’bm}]'

In particular, we want to go out a finite distance 7 + 1 in (III), that is, to a, ,_,
such that

(i) all the remaining elements of (III) are in &,,

(i) all the remaining elements of (I1I) are not in

L[ U (B;u Cj)],
jsn—1
let t — d = h. We distinguish two cases.

Subcase 2.1. There exist distinct elements i,j > h such that

ﬁni N an # Q and (Bni v an) nk U (Bk v Ck) = g'

sn—1t

We select such an ordered pair {i,j) of elements. Let

bp € Bm‘ n an?
and

ay; = rb, + robyoy + -+ + by,
a,,j = pr + SObj(O) + - + slbj(l)!
where r oy =5 Iy, S, so;"'1SIEF\(0)7 p¢ {i()?"'aik} and p¢ {jo,"'ajl}' Define
-1 -1

X, =T a,;—s ‘a,.
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We proceed to show that (1, n), (2, n) and (3, n) hold.

Re (1,n). x, # 0, since a,; and a,; are distinct elements of a repére, namely
a,. By the definition of a,; and a,;,

(Bni N an) v ' U (Bk v Ck) = Q

sa-1

Using the two relations

xe LBy UB) =~ ¢l U B),

k=n-1

{X0, s Xp-q} < L( U Bk),

k=n—1

we conclude that x, ¢ L(x,, -+, x,_ ). This implies (1, n).

Re (2,n). We wish to prove

s 4t @~ 4 U)# 2],
kZ<n

and we split this up into two parts, namely

@ 424\ UB)E D,

k=n

b ¥V, <n- 1)[A,- # &> A,.\L( U Bk) # g].

k=n
Re (a). A, = {a,; a,,,-}, hence A, # . We have to prove
e U B)* 2.
k=n
Since a,; € 4,, it suffices to show that
(13) ant L U B).
ksn

The definition of x, implies b, ¢ B,. Moreover,

behusnd funr( U B =@ =b¢ U B

sn—-1

It follows that b, ¢ U, <, B;. However, b,,eﬁ,,,., that is , a,; has a non-zero co-
ordinate with respect to b, when expressed as a L.C.N.Z.C. of elements in j.
Thus (13) and (a) are true.

Re (b). Recall that we know by the inductive hypothesis

Vi<n-— 1)[A,- £ = A,.\L( U B,‘) # g].

kZn—1
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It therefore suffices to prove

(14) AL ( U Bk) c Ai\L( UBk),for i<n—1.

k=n—1 ksn

Assume that a belongs to the left side of (14), where i £ n — 1. Then a only
has non-zero coordinates with respect to elements in C;. If on the other hand,

et (UnE Y. )

then a has at least one non-zero coordinate with respects to some element in
B,, where

-B,c B, v an and (B,; U an) NC =gd.

We conclude that if a belongs to the left side of (14), for some i < n — 1, then

cafys) (. 2)
so that a also belongs to the right side of (14).
Re (3,n). x,€ L(&,), since {a,;a,;} < &, Thus (3, n) holds.

Subcase 2.2. We have

Vi) > h)[ﬁn. ARy # @ ~@BaUB)n U B UC)# Q]

k=n—1

~ Letp = card Ui <n—1(By U C). We now choose p+1 ordered pairs {a,, i), @n,j(s)?>
for s < p, of elements in &, such that a, ;. @u 0y ***> Qn,ip)» @, j(p) aTe distinct and

(c) i(s),j(s) > hfors < p,

() Boicey O Basjisy # B, for s < p,

(&) (Vs = pX3Ix)[bs€ B is) N Ba.jis) and by {bo, -, bp}]-
Note that by the definition of m,

be¢{bo, ", bm} = b¢ U (B;U C).

jsn-—-1

Define
m(s) = (#x)[bxeﬁn,i(s) N Bn,j(s) and bx¢ {b09 "';bm}]’ for s é D,
L = {bnor " bmp} YV U 1(Bj U C)), q = cardT,
jsn—

D = {a, i0) n,jc0y "> Unicpy Qn, i)}
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According to the definition of b,

bm(s)eBn,i(s) N Bn.j(s) and
(f) for s =< p, bm(s)¢{b0s ) bm}’
busyE N (B; Y C)).

JjEn—-1

The elements by, ***, bm(p) are not necessarily distinct, but none of them belongs
to U <,—1(B; VY C)), hence

(2) p+1=<qg=2p+1.

We proceed to prove

there is an element ye L(D)\(0) such that when
(h) expressed as a L.C.N.Z.C. of elements in j, y has
coordinate 0 with respect to each element in T,
thatis, B, N T = (.
To prove (h), we put
B=ppuT, V=LAp.
Then f is a finite subset of §; let I = card(f). Clearly
L(D) £ L(P) = V and dim ¥V = I.

Let b.,), -, b, be an enumeration without repetitions of the basis f of V such
that

T = {bety s beigphs BAT = {begrny s beay}-
Every element v of ¥ can be uniquely expressed in the form
v=rby+ -+ b, where ry,---, reF.
Let
W={veV|r, =01, =0}
then dim W = I — ¢, and
dim[W N L(D)] + dim[W + L(D)]
= dim W+ dimL(D) = |~ q + 2p + 2,
q £2p+ 1 =dim[W N LD)]+dim[W+ L(D)] = 1 +1,
W+ L(D) £ V=dim[W+LD)] £l
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Hence dim[W N L(D)] = 1, that is, (0) < W N L(D). Then every non-zero
element y eW N L(D) satisfies the requirements. This completes the proof of (h).
Define

x, = (uy)y e (W N L(D)\(0)].
Then we shall show that (1, n), (2, n) and 3, n) hold.

Re (1,n). B, is disjoint from I, hence also from U,.,_, B;. Since x, # 0,
we obtain

xntl{ U B) xox) <L U B,

jsn—1 jgn-1

and (1, n) follows in the usual way.

Re (2,n). We wish to prove
(Vi < n)[Ai 2= a\L( U B,-) " @],

and we split this up into two parts, namely

U) An # Q§:3 An\L(/}J l&) #:Qa’
0 (Vi <n— 1)[,4,. * 3= 4)( U Bi) # @].

Re (i). Since x,e L{D)\(0), we know that A4, # ¢, hence all we have to
show is

AL U Bj) £ 0.
jEn

Since x,, # 0, there is a number t £ p such that a,, ;, € 4, or a, ;i€ 4, ; we may
assume without loss of generality that a, ;, € 4,. It now suffices to prove that

(s ot L( UB,).

jZn
By the definition of b,,), the element a, ,,, has a non-zero coordinate with respect
to b,,. However, b, does not belong to U ;<,-; B; by (f). Moreover, x, has
coordinate 0 with respect to each element in I', in particular with respect to

bu); this implies b, ¢ B,. Hence b, ¢ U;<,B; and we conclude that (15)
holds.

Re (j). Recall that by the inductive hypothesis

(Vi< n- 1)[A.. ‘D = A.-\L( U B # @].

k<n—1
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It therefore suffices to prove
(16) A,-\L( U B,,) = A,-\L( U Bk) for i <n—1.
k<n—1 k<n

Assume that a belongs to the left side of (16), where i £ n— 1. Then a only has

non-zero coordinates with respect to elements in C;, hence in I. If, on the other
hand,

rer(yme (Y m)

then a has at least one non-zero coordinate with respect to element of B,, where
B, is disjoint from I'. Hence '

a¢L( UBk)\L( U Bk),

k<n ksn—1

and a belongs to the right side of (16).

Re (3,n). x,e L(D)\(0), where D < &,, hence x € L(&,) and (3, n) holds.
This completes the inductive step. We have defined an infinite sequence
{xg, X1, -+ of elements in W such that for every n,

(1,n) x,, --+, x, are distinct and linearly independent,

2,n) (Vi s 04 # & = 4\L(Y;¢,B) # ],

(3,n) (Vi < n)[x;€ L(&) <> codimpL(&;) < N,].
We claim that

a7 Xgy Xy, -+ are all distinct and linearly independent,

a8 (4% @ = 4 ( O 1) # 2],
k=0

(19) (Vn)[x, € L(&,) <> codimypL(&,) < N,].

Relations (17) and (19) follow immediately from the fact that (1,n) and (3,n)
hold for every n. We now establish (18). Suppose 4, # & and A, \L(V;Z,B)=d,

that is 4, = L(U -, B;). Since Ay, By, B,,-- are finite sets, there is a number
m = k such that

4, < L( U B,), that is, Ak\L( U B,.) =g,

JEm jsSm
contrary to (2, m).

We define f = US_oB,, V = L(B), S =V N W. Clearly, x,e(B,), for
every n, hence {xo,x,,---} = V. The elements x,, x,, --- also belong to W, hence

https://doi.org/10.1017/5144678870001613X Published online by Cambridge University Press


https://doi.org/10.1017/S144678870001613X

[18] Intersections of a-spaces 415

{x0,x1,+-} = S. Thus S is an X,-dimensional space by (17), hence so is V; then f
is an infinite subset of B and B = Bs. Relation (18) can be rewritten as

(Vn)[4, # & = A,\V # &].
Since 4, = W, A,,\V = A,\(V N W) and we obtain
(20) (Yn)[4, # & > 4,\S # J].

We claim that S is not an a-space. For suppose it were. Then S would have an
a-basis of the form & N S, for some infinite r.e. repére & in W, say & = 4,
Hence S = L(a@, N S). Since x,€S we obtain x,ecL(&,). However x, # 0,
hence A, # . We now have a contradiction, for

x,eL{@, NS)=> A, S,

A, # & = A,\S # &, by (20).

We conclude that S is not an a-gpace.
Let Wbe an X,-dimensional r.e. space and f a r.e. repére such that W < L(j).
According to the proof of P3

B has property A with respect to W =

(3P)[B < B and B is infinite and

L(B) N W is not an a-space].
We conclude this section by proving the converse of this condition. We shall
need the following two lemmas.

LEMMA L4, Let A,B,W be spaces such that A is finite dimensional and
A N B =(0). Then B N W has finite codimension in (A & B) N W.

PrROOF. Assume the hypothesis and suppose that B N\ W has infinite co-
dimension with respect to (4 @ B) N W. Then there is an N,-dimensional space
C such that

BNAW)YNC=@0)and BAW)®C=(A®B)NW.

Let yo, yy, - be distinct elements in C such that {y,, y, -} is a basis of C. Define
for n e ¢, the elements a, and b, by

Yo=a,+b,a,€A b,eB.

Let m = dim(A). Then {a,, -, a,> is a linearly dependent sequence of elements
in A, hence there exist elements ry, ---, r, € F, at least one of which is non-zero,
such that reaq + -+ + r,a,, = 0. This implies
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royo + -t + m¥m = robo + -+~ + r,b,,,
roYo+ -+ rpyw€B N C.

But C < W and (B N W) N C =(0) imply that B N C = (0). It follows that
Yos ***» Ym are linearly dependent, contrary to the fact that they are distinct ele-
ments of a repére. Hence B N W cannot have infinite codimension in (4 & B) N W.

LEeMMA LS. Let T = {V,-Iiel} be a non-empty family of distinct a-
spaces, where 1 = {0,---,n — 1}.if card T =n > 0 and I = ¢ otherwise. Let
S = N T. Then for all finite dimensional spaces B,

S| B<>S N B=(0)

ProOF. (a) = This is clear from the definition of S ” B. (b) < If dim(B)
= 0, we are done, so assume dim(B) = m = 1. We establish the result by in-
duction on m.

Basis step. m = 1. Then B = L(p) for some p¢S. Then there must be
at least one V; €I such that p¢ V. Pick one, say V;, and let a; be an a-basis for
V;, and «; < d;, where &; is a r.e. repére. If p ¢ L(&;), we are done since S ” B by
(L(&;),B). If peL(®;), let p = roaq + -+ + r,a,, where ry,---,r,e F\(0) and
ay, -, a;,€&;. Now p¢ L(ax;) = V; implies that at least one of ay,::-,a, is not
an element of a;, say a,. Then S || B by <L(&;\{ao}), B).

Inductive hypothesis. Assume S N B = (0) implies S | B for all B such that
dim(B) < k.

Inductive step. Suppose dim(B) = k+ 1. Let be B\(0). Then by the
induction hypothesis applied to L(b), there exists a r.e. space W such that S < W
and L(b) N W = (0). Thus

(0O)< WNB<B,0<dim(WNB) <k

If W N B = (0), we are done. So assume (0) < W N B < B. By the induction
hypothesis applied to W N B, there exists a r.e. space ¥ such that S < ¥ and
V N (W N B)=(0). Hence S|B by { WNV,B) since (WNV)nB=(0)
while S S Wn V.

PROPOSITION P6. Let W be an Ny-dimensional r.e. space. and B a r.e.
repére such that W < L(B). If there is an infinite subset B of B such that L(B) "W
is not an a-space, then B has property A with respect to W.

ProOOF. We may assume without loss of generality that 8 = By. We shall
prove the contrapositive. Suppose f§ does not have property A with respect to W.
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This means that there is a 1—1 recursive function d, enumerating a r.e. bases 7
of W, and a finite subset {b,, -+, b,,} of B such that -

@n (YY) # 7= Baoy D Bacyy < {bos - bu}]-

Define p = {bg,--, b} N B;. Then p is a finite subset of B. Let B be any infinite
subset of §, and S = L(B) N W. We wish to prove that S is an a-space. The sets
B and p are repéres, and B U p is a repére since it is included in p. Let p’ = p\B.

Then

(22 LB N L(p") = (0), L(B U p) = L(B) @ L(p).
We proceed to show that

(23) S £ LGgs) = [ @ LipH] N W.

The first inclusion of (23) is obvious, since S < W and 7 is a basis of W. To prove
the second inclusion we shall show that

24 di€js =~ dye [L(B) ® L(p")],

for trivially, d, € W. Assume the hypothesis of (24). Then there is an element x in
S which, when expressed as a L.C.N.Z.C. of elements in 3, has a non-zero co-
ordinate with respect to d, ; let

(25) X = rd,, + sOdi(O) + -+ S,,d,-(,,),

where r,s,, -+, 5,€ F\(0) and k, iy,--+, i, are distinct. Since x € S, it can also be
expressed in the form

(26) X = tobjoy + * + 1,bjipy

where t,--+,1,€ F\(0) and b, -, b)) are distinct elements of . If we can
prove

27 Bd(k) < B Up,

we are done, for then d, eL(/S’,,(k)) and (27) imply d,eL(f U p), hence
d,e L(f) ® L(p’) by (22). To prove (27), suppose b e B,,,. Either be f, hence
be B U p, or be Byuy\B. In the latter case, b ¢ {b; ), > bj(,}, since bje), =+, b))
all belong to . Hence in (25), at least one of the dq), -, dy,y must also have a
non-zero coordinate with respect to b, when expressed as a L.C.N.Z.C. of element
in B, say d,,), where 0 < q < p. Then we have by (21)

be Bawy N Buiiqpy = b€ {bo, "+, by}

Since trivially, bef;, we conclude that be p; again be p U p. This completes
the proof of (27), and thereby of (24). We have now established (23). If we take
A= L(p),B = L), W = W in L4, then A N B = (0) since L(B) N L(p’) = (0).
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Hence B N W has finite codimension in (4 @ B) N W, i.e., S = L(B) N W has
finite codimension in [L(8) ® L(p’)] N W. Then (23) implies that S also has
finite codimension in the a-space L(¥s). Thus there is a finite dimensional space E
such that S N E = (0) and S @ E = L(§s). Note that S = L(B) N W, where
L(B) and W are a-spaces. Hence S "E by LS. We know S @ E = L(js), S "E
and L(js) is an a-space. Since E is r.e. (and isolic!) we know by the established
cases of the conjecture (c) mentioned in the Introduction that S is an a-space.

References
J. C. E. Dekker (1969), ‘Countable Vector Spaces with Recursive Operations, Part I', The Journal
of Symbolic Logic 34, 363-387.

J. C. E. Dekker (1971), ‘Countable Vector Spaces with Recursive Operations, Part II’, J.
Symbolic Logic 36, 477-493.

N. Fowler (to appear), ‘a-Decompositions of a-Spaces’.

R. Guhl (to appear), ‘A Theorem on Recursively Enumerable Vector Spaces’, Notre Dame Joural
of Formal Logic.

R. L. Soare (1974), ‘Isomorphism on Countable Vector Spaces with Recursive Operations’, J.
Austral Math. Soc. 18, 230-235.

Hamilton College
Clinton, New York 13323
U.S.A.

https://doi.org/10.1017/5144678870001613X Published online by Cambridge University Press


https://doi.org/10.1017/S144678870001613X

