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Abstract

Let ft be an infinite r.e. repere, Wan infinite dimensional r.e. space such that W ^ L(B).
A condition is derived that is both necessary and suflRcient for the existence of an infinite subset
/?c/5 such that L(fi) O W is not an a-space. Examples which satisfy this condition are exhibited,
proving that the class of a-spaces is not closed under intersections.

Introduction

Dekker (1969) and (1971), introduced and studied an Xo-dimensional re-
cursive vector space UF over a countable field F. Briefly, it consists of an infinite
recursive set ef of numbers (that is, non-negative integers), an operation + from
% © £F m t o EF a n d an operation • from F x eF into eF. If the field F is identified
with a recursive set, both + and • are partial recursive functions. Let /? be a
subset of ef. We call ft a repere, if it is linearly independent; /? is a r.e. repere if
P is, a r.e. set, and P is an a-repere if it is included in some r.e. repere. A subspace
V of UF is an a-space, if it has at least one tx-basis, that is, at least one basis
which is also an a-repere. A subspace V is isolic if it includes no infinite r.e.
repere; it is r.e. if it is r.e. as a set. The word "space" is used in the sense of
"subspace of UF," and we denote "W is a subspace of V" by "W ^ K" We
usually write (0) for {0}, and U for DF. We identify a(n) and an, for every function
a(ri); and a bar over a set (or space) is generally intended to indicate recursive
enumerability. We write "L.C." for "linear combination" and "L.C.N.Z.C."
for "linear combination with non-zero coefficients." Let a c eF. If a = 0,
L(a) = (0). If a # 0 , L(a) denotes the span of a, that is, the set of all L.C. (with
coefficients in F) of finitely many elements of a. If a = {a0, •••}, we usually write
L(a0, • • •) instead of L({a0, •••}).

The results presented in this paper were taken from the author's doctoral dissertation written
at Rutgers University under the direction of Professor J.C.E. Dekker.
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[2] Intersections of a-spaces 399

The reperes ft and y are independent if they are disjoint and their union is a
repere. The spaces V and W are independent if V n W = (0). The sets /? and y
are separable [written: /? | y], if they can be separated by r.e. sets. The a-reperes
ft and y are a-independent [written: ft || y], if they can be separated by independent
r.e. reperes. The spaces V and W are a-independent [written: V || W~], if there are
independent r.e. spaces Pand fFsuch that V ^ Fand W ^ W.

Let S, C, F, W be spaces and consider the following three statements:
(a) V, W a-spaces => V n W a-space,
(b) K a-space, W r.e. space => V n W a-space,
(c) S © C = K and S | C and V an a-space => both S and C are a-spaces.

Clearly, (a) implies (b); (c) is a conjecture that appears in Dekker (1971; page 493),
and is established in Fowler (to appear) in the case S (or C) is isolic or r.e. Assume
the hypothesis of (c), and suppose W, Z are two independent r.e. spaces such
that S g IF, C ^ 2 . It can be easily shown that S = V n W, and C = V nZ
hence (b) implies (c).

In this paper, we provide several counterexamples to (b); hence a-spaces
are not closed under intersections, and the above approach to (c) is fruitless.
More specifically, if /5 is an infinite r.e. repere and W is an infinite dimensional
r.e. space such that W £ L(ft), we derive a condition that is both necessary and
sufficient for the existence of an infinite subset fi c ft such that L(fi) n W is not
an a-space. We exhibit examples in which this condition is satisfied, regardless
of the cardinality of F. We take our notation from Dekker (1969) and (1971)
and the reader is assumed to be familiar with their contents.

2. The condition

NOTATIONS. Let p0 = 2, pn = the n-th odd prime for n ^ 1. Then n = pen

is the recursive canonical basis for DF, where en = pn — 1 (see the specific Godel
numbering used in Dekker (1969)). If ^ is a repere, xeL(fi) and a <= L(/?), then

/?r = {be fi\x has a non-zero coordinate with respect to b if expressed as a
L.C.N.Z.C. of elements in fi},

A, = U {flx\xeo}.

DEFINITION. Let W be an X0-dimensional r.e. space and /? a r.e. repere such
that W ^ Lift). Then ft has property A with respect to W if there is no 1 — 1 re-
cursive function d(n) enumerating a basis of W for which U j^jifiw) '"'/Lo)) 1S

finite.

REMARKS, (a) Let W ^ L(fi) where \V is a r.e. space and fi is a r.e. repere.
Then W ^ L{ftw), pw c ft, where J5W is also a r.e. repere; moreover, ftx c ftw

for every x e W. Hence ftw has property A with respect to W if and only if ft
has property A with respect to W.
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(b) If [i has property A with respect to W and d(n) is a 1 — 1 recursive func-
tion enumerating a basis of W, then the sequence (/^o)/* of (finite, non-empty)
sets does not have a tail of mutually disjoint sets.

DEFINITIONS.

(a) The r.e. space W is decidable relative to the r.e. space P, if
(i) W g f,_
(ii) the set V\W\s r.e.

(b) The r.e. space W is recursive relative to the r.e. space P, if
(i) W g P,
(ii) there is some r.e. space Z such that Z n W = (0) and W © Z = P.

(c) If the r.e. space W is decidable (or recursive) relative to UF, we say that
IV is decidable (respectively recursive).

REMARKS.

(a) If P is an N0-dimensional r.e. space, there are many recursive iso-
morphisms from V onto DF ; pick one, say h. Then W is decidable (or recursive)
relative to P if and only if h{ W) is decidable (respectively recursive).

(b) Well-known results concerning decidable and recursive spaces carry
over to the relative case by (a); in particular, the following two results due to
Guhl (to appear):

(i) If F is finite, W recursive « . W decidable,
(ii) if F is infinite, W recursive => W decidable, but not conversely.

PROPOSITION PI. Let W be an X0-dimensional r.e. space and /? a r.e.
repere such that IV S L(fi). Then W not recursive relative to L(/?jp) => Pw has
property A with respect to IV.

PROOF. We may assume without loss of generality that Jlw = /?. We shall
prove the contrapositive, that is,

J5 does not have property A with respect to W =>
W recursive relative to L()5).

Assume the hypothesis. Then there is a 1 — 1 recursive function dn ranging over
some r.e. basis y of IV and a finite subset {b0, •••, bm) of ft such that

D e n o t e {b0, •••,bm) by p.

Note that for each number j we can
(i) effectively test whether pd(j) <= p,
(ii) if not \_PdU) c P~\> effectively list both the elements of ftd(J) O p and

those of Pd(j)\p- Define

S = {dney\pd(n)czp}.
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Then by (i) both 5 and y \S are r.e. Only finitely many elements dn e y have the
property pdM <= p; this follows from the fact that the span of all these elements
dn e y is a subspace of the finite dimensional space L(p), while y is an infinite
repere. Thus 5 is a finite repere. Clearly if dn e 5, then dn e L(p). Then we have
L(3) £ L(p). Combining this with the fact that $ and p are finite reperes, we see
that there is a finite repere at such that J c a t and U&i) = L(p). The sets ô
and aiy \S are finite, hence r.e. We note that y \S is infinite and r.e. For every
dj e y \S, we have

U) ] (J, 0

(1) 1

For rfy e y \5, put

It follows that

(2) dj e ty and UPdiJ)) = L(rj) © L(^(y, n p).

We now define

«2 = ^{Ty|dy

and we claim that

(a) L(a,) + L(a2) = L(^),
(b) a2 is a r.e. repere,
(c) L(a,) n L(a2) = (0),
(d) a1 and a2 are disjoint and a.i U a2 is a r.e. basis for L(fi),
(e) W is recursive relative to L(p).

Re (a). L(a,) + L(a2) = L(p) + L( U {T,- | dy e y \5})

= I {L(&a)) | rfy e y}, since ^^ = p, dj e 5

implies L(pd0)) ^ Up), and (2).

Hence L ^ ) + L(a2) = Up), again since /?,p = p.

Re (b). Let F = {Tj\djey\8}. Then F is a r.e. class of non-empty finite
sets, hence d2 is a r.e. set. It follows from the definition of x}. that F consists of
finite reperes. To prove that a2 is also a repere, it therefore suffices to show that
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if dim, •••,^i(n) are distinct elements of y\S, then

( 3 ) 1 L(zm) n [L(Tj(0) + - + L(T/(n+ „)] = (0).

Assume the hypothesis of (3) and suppose that

xeL(T/(n)) n [L(T, ( 0 ) + ••• + £(!,.(„_„)],
say

* = rndm + yn = rodiiO) + ••• + /•„_!</,.<„_

+ yo + ••• + y » - i ,

where ro,---,rneF, and for every k ^ n,

yk e L((Tk), where ak = (#,,<*, \p) \{clW}.
Then

(4) 0 = rndm - [rodi(O) + ••• + rn_1rfKB_1>]

The family { ( ^ 0 ) \p) | dj e y \S} consists of mutually disjoint finite subsets of /?,
hence its union is a repere. This fact and the definition of c,, for djey\S imply
the two relations

(5) {ak | k Sj n) is a family of mutually disjoint finite subsets of /?,

hence its union is a repere.

(6) cmt{ U {<rA| fc ̂  «}) U p, for k g n.

Let us now look at (4). By the definition of /?,;,•(„), the element d^n)ey\S has a
non-zero coordinate with respect to each element of /5dl(ll) when expressed as a
L.C. of elements in /?, in particular, with respect to c1(B). Suppose dm, for some
0 ^ k ^ n — \, also had a non-zero coordinate with respect to cl(n) when expressed
as a L.C. of elements in p. Then cl(n) e j5dl(B) n p ^ , implies that cl(n) e p, contrary
to cl(n) e /?,,,•(„) \p. Thus f/i(t) has no non-zero coordinate w.r.t. cj(B) when expressed
as a L.C. of elements in p. We note that (6) implies that none of y0, •••,yn has a
non-zero coordinate with respect to cj(n) when expressed as a L.C. of elements
in p. Thus (4) implies that rn = 0. Similarly we can prove that (4) implies that
r0 = 0, •••, /•„_! = 0. Using (4) once more we see that

This implies that y0 = 0, •••,yn = 0 by (5). Since rn = 0 and >>„ = 0, we conclude
that x = rndi{n) + yn = 0. This completes the proof of (3) and thereby of (b).
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Assume the hypothesis, say

(8) x = r o b o + ••• + r m b m = sodi(0) + ••• + sndi(n) + y 0 + ••• + y n ,

where r0, • • -, rm, so,---,sneF, i(0), • • •, i(ri) are distinct, and

• for k g n, yt e LCffi), where

( 9 )

f for fe

I .I <rt =

As observed in the proof of (b), di{K) has a non-zero coordinate with respect to
the element cme$im\p, while none of di{0),---,diin-i), yo,—,yn

 has a non-zero
coordinate w.r.t. ci(k) when expressed as a L.C. of elements in ft. Since c,(n) ^ p
= {fc0, •••, bm}, it follows from (8) that sn = 0. Similarly we prove that
s0 = 0, •••,5I1_1 = 0. Then (8) yields

(10) x = r 0 b 0 + ••• + r m b m = y 0 + ••• + y,,.

However, (U {<rk\k ^ «}) O p = 0 , while ( U {<jk| A; ^ «) u p <= p imply
x = 0 since ^ is a repere. This completes the proof of (c).

.Re (d). Since ocl and a2 are reperes, neither contains 0. Thus (c) implies that
dtj and a2 are disjoint and that Sj u a2 is a repere. The set at U a2 is r.e., since
both Sj and a2 are r.e. Finally, a, U a2 is a basis of L(fi) by (a).

Re (e). We have f = 5 r\ (y\S). Also, 5 c Sj by the definition of otlt and
7 \S c: a2 by the definition of a2. Then j c a( U a2, where aj and a2 are disjoint,
hence

(S, U«2)\y = (5,\5)U[S2\(y\5)].

However, at \5 is r.e., and the definitions of a2 and T,- imply that a2 \(y\S) is r.e.
We conclude that the set (Sj u a2) \y is also r.e. Thus,

0 ^ (a ! u a2) \y) = L(aj u a2),

where both spaces on the left are r.e. Hence

W ® Ufa \j a2)\7) = UP),

and Jf' is recursive relative to L(fi).
Consider the following example: let f(n) be a 1 — 1 recursive function

ranging over an infinite r.e. but not a recursive subset of a\{0}. Let d(n) = e0 + et
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+ ••• + e/(B). Then dn is a 1 — 1 recursive function. Let W = L{dn\nee}. Then
W is clearly r.e., but not decidable, and hence not recursive. Note that r\w = r\.
By PI then, n has property A w.r.t. W. j

The next proposition shows that the converse of PI is false. j

PROPOSITION P2. There exists an Ko-dimensional r.e. space W, and a
r.e. repere ft such that W ̂  L(fl) is recursive relative to L(j5) and fiw has property
A with respect to W.

PROOF.

co = *>o

Ci = e0

c2 = ei

We define

+ e2, c3 =

+ e4, c4 =

+ e6, c5 =

a function

= et + e8 ,

= *3 +^10,

= ^3+^12,

cnby

c6 =

Cl =

c8 =

es-\

•• e 5 -

: e7 -

l -e 1 6 ,

l-e1 8 ,

c9 —

ClO =

C U ~

e 7 + ^20.

^9 + <*22»

eg + e24,6 8 u 24 etc.

Put

5t = pcn, W = L$x),

^2 = {eo,ei,e3,es,---}, 2 =

Note that if Po»i>i>P2>" ' is the enumeration according to size of the set of all
positive primes, then en + em = pnpm — 1 (see the specific Godel numbering used
in Dekker(1969)). Thus cn is a strictly increasing recursive function, St an infinite
and W an K0-dimensional r.e. space. It is readily seen that 5, is a repere; thus
(5, is a r.e. basis of W. Note that W + Z = 0. For every number n,

L(co,-" ,cJ nL(eo ,e i , - - - ,e2 n + 1) = (0),

hence W n Z — (0). Thus JF © Z — U and since Z is clearly r.e., we conclude
that W is recursive relative to U. Furthermore, W ̂  L(rf), where rj^ = n, hence
f^is recursive relative to L{nw). It remains to show that n has property A w.r.t. W.
Let y be any r.e. basis of W and dn any 1 — 1 recursive function ranging over y.

Put

° — U (^(i) n '/d(j))-

We now show that a is infinite by proving for every n ^ 1,

Since the reasoning is similar for every n S: 1, we restrict our attention to the
case n = 1, and prove

(11) {ei,e6,e8} n o * 0.
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Consider the elements c2 = el + e6 and c3 = ex + e8 of W, say

c2 = et+ e6 = rQdi(0) + ••• + rmdi(m),

C3 = e \ + e8 ~ S 0" j (0 ) + ••" + sl"j(l) >

where r0, ••-,rm,s0, •••,s, e F , /(0), •••,/(m) are distinct, and ;(0), •••,./( 0 are distinct.
Each of the elements di(0), •••,di(m), dJ(0), •••,dm belongs to W, where W = L(<5,).
The only element of 5t which has e6 as a term is c2, hence at least one of
dnO),---,di(m) has a non-zero coordinate with respect to c2 when expressed as a
L.C.N.Z.C. of elements in <5j. Choose one, say di(p), where 0 ^ p ^ w. Similarly,
at least one of dJ(0), •••,dJU) must have a non-zero coordinate with respect to c3,
when expressed as a L.C.N.Z.C. of elements in 5t. Choose one, say dJ(q), where
0 g <j g /. Now assume that both di(p) and rfj(,) are expressed as L.C.N.Z.C. of
elements in 5{.

Case 1. di(p) has coordinate 0 w.r.t. c3 and dj(q) has coordinate 0 with
respect to c2. Then clearly e1 er)di(p) n rjdJ(q) a a.

Case 2. Either t/l(p) has a non-zero cordinate with respect to c3 or djiq) has
a non-zero coordinate with respect to c2- We may assume without loss of generality
that the former holds. Since c2 = et + e6 does not have e8 as a term, at least one
of di(s), for 0 ^ s g m and s # p, must also have a non-zero coordinate w.r.t. c3.
Then e8 e ̂ 1(p) n ^ . (^ c ff.

3. The equivalence

We have proved the existence of N0-dimensional r.e. spaces W and r.e.
reperes p such that

W g L(fi) and ^ has property A with respect to W.

In both of our examples, P — pw = r\\ \n one case W was recursive relative to
UPw) and in the other case it was not. Now suppose that W is an K0-dimensional
r.e. space and ft a r.e. repere such that W i£ L(fi). Consider the statement

(*) there is an infinite subset ft of /? such that L(/J) n Iff is not an a-space.

This section is devoted to showing that (*) holds if and only if ft has property
A with respect to W. We first demonstrate the sufficiency. The technique was
developed with the help of insight gained by reading Soare's proof of Osofsky's
result concerning the existence of non-a-spaces (see Soare (1974; Section 1)).

PROPOSITION P3. The intersection of a r.e. space and an a-space need not
be an a-space.
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PROOF. Let W be an K0-dimensional r.e. space and ft a r.e. repere such that
W ^ L(P) and J5 has property A with respect to W. We may assume w.l.g. that
/? = fiw. Let all infinite r.e. reperes in W be enumerated without repetitions in
the sequence < a 0 ) a 1 , - > . Let anm be a function of two variables such that for
every n, anm is a 1 — 1 recursive function of m with an as range. Let bn be a 1 — 1
recursive function ranging over /?. We shall write

Pom = Pa(n,m)>
that is,

/Ln = {i>^P\anm has a non-zero coordinate w.r.t. b when ex-

pressed as a L.C.N.Z.C. of elements in ft}.

We shall define by induction an infinite sequence <xo,Xj,--> of elements in W.
For every number k, we define

0, if xk$L{xk),

{a e &k | xk has a non-zero coordinate with respect to a,
if expressed as a L.C.N.Z.C. of elements in ak},
otherwise.

Bk = {be/?|x* has a non-zero coordinate with respect to b,
when expressed as a L.C.N.Z.C. of elements in /?}.

The goal of the following construction is to choose for every number n, an element
x. in W in such a manner that if

and S = L(jS) n ^ , then

(V«)[xneSand

Since every a-basis of S is of the form an n S, for some n, this would imply that
S is not an a-space. The sequence <xo,x1, ••-,> of elements in W we wish to define
is such that for every number n,

( l ,n) x0, •••,xB are distinct and linearly independent,

(2,n) (Vi ^ n%At ¥= 0 =>At\L(\J Bj) # 0 ] ,

(3,n) (Vi ^ ^[Xj

Basis: n = 0. If codimjpL(a0) = Xo, we define
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Then x0 exists, since L(x0) < JPand (1,0) holds, because x0 # 0. The fact that
xo£L(ao) implies that Ao = 0 , hence (2,0) is true. Finally, (3,0) holds, since
xo^L(ao). Now consider the case that codim#X(a0) < Ko. Then the r.e. repere
a0 can be extended to a r.e. basis a'o of W such that a.'o \a0 is finite. By remark (b)
following the definition of property A, there are two distinct elements aOi and a0J

in <x'o n a0 such that POi O ft0J / 0 . Let

aoi = rbp; + robi(0) + ••• + rkbi(k),

aoj = sbp + sobJ(O) + ••• + s,bm,

w h e r e r,r0, •••,rk,s,s0, • • • , s , e F \ ( 0 ) , p${io,---,h) a n d P${jo, •••,}(}• D e f i n e

x 0 = r ~ 1 a O l - s 1 a O j -

Note that aOi, a0J are distinct elements of a repere, namely a0 ; this implies (1,0).
The element aOi has a non-zero coordinate with respect to bp, but bp$B0 by
definition of x0. Hence aOl^L(Bo) and since Ao = {aOi,a0J} we conclude that
a0fe/40\L(B0); thus (2,0) holds. Finally, (3,0) is true, for xeL(a 0 ) by the de-
finition of x0.

Inductive Step. As inductive hypothesis, assume that n ^ 1 and elements
x0, • -,xn-l have been defined such that

(1,« — 1) x0, •••,xn_1 are distinct and linearly independent,

(2,n - 1) (V/ g n - 1)IA, * 0 ~ A,\L( \J B \ * 0 ] ,
\ y s n - i /

(3,n - 1) (V/ g n - l)[Xi6L(a,)ocodim^L(a,) < Ko].

Suppose xn is any element such that

(i) xn

and
(ii) xB*L

jSn-l

Such an element xn exists, since L(aJ has infinite co-dimension with respect to
IP and Bo U ••• U Bn_, is a finite set. Then (3,M) holds by (i). By the definition
of Bj for 7 ^ « - 1,

( U J?;),(„ v "I r
X ^ O J ''' y ^n ~ 1 / —

hence xn£L(x0,• " ,x B . i ) by (ii); thus (1,«) holds. Since An will be empty for
each such element xn, condition (2,«) is equivalent to
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(iii) (V, g n - 1)U * 0 => 4\Z.( U By) # 0 ] .
L V/Sn / J

We now show that an element xn satisfying (i) and (ii) can be chosen so that (iii)
holds as well. Put for i ̂  n — 1,

C; = -<

0, ifA, = 0

{b e ft I some a e At \L I (J B • I has a non-zero coordinate
VjSn-l /

w.r.t. b if expressed as a L.C.N.Z.C. of elements in /?},
otherwise.

Then Co U ••• U Cn_t is a finite set, since Ao, •••,^4n_1 are finite. Define

^\^(«n) and /?, fl U (By U Cy) = 0 ] .

Note that xn exists, since L(an) has infinite codimension with respect to W, while
u j g n _ 1 ( B J u Cj) is a finite set, say of cardinality p. Then by linear algebra,
we can find p + 1 elements (y0, ••-,)>p} distinct and linearly independent such
that L(yo,---,yp) OL(an) = (0) and such that at least one non-zero zeL(yo,--,yp)
satisfies

&n U (BjUCj) = 0.
jgn-l

It follows from the definitions of xn that *„=£ 0 and

B n ( U (Bj U Cy)) = 0 .

Thus, from xneL(Bn) we conclude that (ii) holds. It remains to be shown that
(iii) is true. We claim that

(12) A,\L( (J BJ) C A,\L( U BJ), for » g n - 1.
\jgB-l / \ j i n I

For let us assume that

aeAt\Li (J B j , where i1 ^ n - 1.
\jgn-l /\jgn

Then a only has non-zero coordinates w.r.t. elements of /? which belong to Cit

hence to U j^n-i Cj- AH elements in

\L ( U BJ)
\jgn-l /

have at least one non-zero coordinate w.r.t. some element in Bn, where

Bnn u {BjVCj) = 0.
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Hence

aeA,\L([JBj ).

This proves (12). Then (iii) follows from (2,n - 1) and (12). Summarizing, we
see that xn has been defined so that the conditions (1,«), (2, n) and (3,n) are
satisfied.

Case 2. Codim ̂ (a,,) < Xo.
Let d be the finite codimension of L(an) relative to W. Then the r.e. repere
an can be extended to a r.e. basis a'n of W by adjoining d distinct elements, say
ho,---,hd-l. We shall use the following enumeration of a'n without repetitions:

(HI) ho,--,hd-uanO,anU---.

We define

m = U*xtfy)\y > x => b,i (J (Bj U Cj)).
L JS«-I J

Since fi has property A with respect to W, we can, no matter how far out we go
in (III), find two distinct elements c and e in aB' such that

Pc n Pe ¥= 0 and not [& O & <= {fc0, ••-, fc.}].

In particular, we want to go out a finite distance t + 1 in (III), that is, to an,,-,(
such that

(i) all the remaining elements of (III) are in dn,
(ii) all the remaining elements of (III) are not in

L |J (Bj u C

let t — d = h. We distinguish two cases.

Subcase 2.1. There exist distinct elements i,j > h such that

hi r\ hi * 0 and {hi u /J.y) n ^U («» u Q) = 0 .

We select such an ordered pair <I,J> of elements. Let

and

where r,ro,---,rk,s,so,---,s,eF\(0), p${io,---,ik} and p4{jo,--J,}. Define
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We proceed to show that (1, n), (2, n) and (3, ri) hold.

Re (1,B). xn / 0, since ani and aB,-are distinct elements of a repere, namely
an. By the definition of ani and anj,

( ^ , n ^ ) u U (B*UQ) = 0 .

Using the two relations

U Bk),
u§»

we conclude that xn^L(x0,-,xn_1). This implies (l,n).

Re (2, n). We wish to prove

(V, ^ «)U / 0 => At\d U B*) * 0l ,
L \*Sn / J

and we split this up into two parts, namely

(a) An*0^An\L^\JBk^0,
(b)

Re (a). An = {ani, anj}, hence /4B ̂  0. We have to prove

A.\L(U B*)#0.

Since aB1- e i4B, it suffices to show that

(13) aHiiL( |J BA.
\ k&n I

The definition of xn implies bp $ Bn. Moreover,

bpepni and pni
 n ( U B») = ̂  * ' ' r ^ U ^ «*•

It follows that bp$ KJk^nBk. However, bpeftni, that is , ani has a non-zero co-
ordinate with respect to bp when expressed as a L.C.N.Z.C. of elements in /?.
Thus (13) and (a) are true.

Re (b). Recall that we know by the inductive hypothesis

(Vi ^ n- 1)\A; * 0
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It therefore suffices to prove

/ \ / \
{14) At\L I (J BkI c y4;\Lj U Bk\, for i :g n — 1.

U S B - 1 / \ *Sn /

Assume that a belongs to the left side of (14), where i ^ n — 1. Then a only
has non-zero coordinates with respect to elements in Ct. If on the other hand,

(u**W u BX
\k£n I USn-1 /

aeL

then a has at least one non-zero coordinate with respects to some element in
: Bn, where

. Bn a pni U pnj and (/?„, U pnj) n Ct = 0 .

We conclude that if a belongs to the left side of (14), for some / :g n — 1, then

Q <fcL>\ \j Bk \\i-i I U Bk I,

so that a also belongs to the right side of (14).

Re (3, n). xn e L(an), since {ani, anJ) c an. Thus (3, n) holds.

Subcase 2.2. We have

(V/,; > /i)k,. n 0 „, u ^ ) n \J (Bkv Ck) * 0].
kgn-l J

Let p = card UA^n_, (Bk U Ct). We now choose p+1 ordered pairs <an>I(j), fln,j(S)>,
for s ^ p, of elements in an such that an>I(0),

 an,no)> "•» an.i(P)>a«,j(P)are distinct and

(c) /(s),y(s) > /1 for s ^ p,

(d) KiU) n A j W / 0 . for s ^ p,

(e) (Vs ^ pX3*)[*«e/?.,„„ n /?„,_,<„ and fr, ^ {ft0, - , 6m}].

Note that by the definition of m,

Define

U (

,,!,,, n jgnJ(s) and

U

•>^m}]> f ° r s ^

T,), q ?= card T,
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According to the definition of bm(s),

[15]

(f) for s ^ p,

iis) a n d

bm{s)$ n (

The elements bm(0), •••, bm{p) are not necessarily distinct, but none of them belongs
to U J s . _ i ( S y U Q , hence

(g)

We proceed to prove

p + 1 g q ^ 2p + 1.

(h)

there is an element yeL(D)\(0) such that when
expressed as a L.C.N.Z.C. of elements in fi, y has
coordinate 0 with respect to each element in F,
that is, Pynr = 0.

To prove (h), we put

Then $ is a finite subset of /?; let / = card(/?). Clearly

L(D) g L(J§) = K and dim P = /.

Let ftc(1), •••, b0(J) be an enumeration without repetitions of the basis ft of V such
that

r = {^c(i)» ••••>bciq)}, ft\r = {bc{q+i),---,bcU)}.

Every element v of V can be uniquely expressed in the form

v = rifcc(1) + ••• + r,bcil), where ru--,r,eF.

Let

^ = { , e ^ | r i = = 0 , - , r , = 0},

then dim W = I — q, and

dim [ ̂  n L(£>)] + dim [ ̂  + L(D)]

= dim Jf' + dim L(Z)) = / - q + 2p + 2,

q ^ 2p+ 1 ^d im[ t f ' nL(£>) ]+d im[ t f '+L(D) ] ^ / + 1,

^ + L(D) ^ V => dim{W + L(D)] g /.
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Hence dim [ tf'n L(D)] ^ 1, that is, (0) < W n L(D). Then every non-zero
element y efV n L{D) satisfies the requirements. This completes the proof of (/?)•
Define

xn=(w)\_ys(WnL(D))\(0)l

Then we shall show that (1, n), (2, n) and 3, n) hold.

Re (\,n). Bn is disjoint from F, hence also from KJJ^n_lBj. Since xn # 0,
we obtain

xniL( U B,-), {x0, •••,*„_,} C L ( U J
\jin-l 1 \ j g n - l

and (l,n) follows in the usual way.

Re (2, ri). We wish to prove

(Vi g n)M,- # 0 => i4,- \L( U #/ ) ̂  0 >
L \ y s n / J

and we split this up into two parts, namely

(0 A, * 0 => /l^Lf U Bk) # 0 ,

(j) ( V i g n - l ) U / 9 f e 0

£e (i). Since xBeL(D)\(0), we know that An # 0 , hence all we have to
show is

An\h( LIB,) # 0 -

Since xn # 0, there is a number t ^ p such that aniil) e ̂ 4n or fln,y(() e /!„; we may
assume without loss of generality that anJ{t) e An. It now suffices to prove that

I (15)

By the definition of bm{t), the element anJ(l) has a non-zero coordinate with respect
to bm(l). However, bm(l) does not belong to Uj^n-iBy by (f). Moreover, xn has
coordinate 0 with respect to each element in F, in particular with respect to
fcm(t); this implies bm(t)£Bn. Hence bmil)<t UJSaBj and we conclude that (15)
holds.

Re (j). Recall that by the inductive hypothesis

(Vi g n - l ) U
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It therefore suffices to prove

(16) A,\L( U Bk) c A,\L( U Bk) for i ̂  n - 1.

Assume that a belongs to the left side of (16), where i ̂  n— 1. Then a only has
non-zero coordinates with respect to elements in C,, hence in I\ If, on the other
hand,

aeL(\JBk)\L( |J Bk),

then a has at least one non-zero coordinate with respect to element of Bn, where
Bn is disjoint from F. Hence

u
tSii / \*gn-l

and a belongs to the right side of (16).

Re (3, n). xn e L(D) \(0), where D <= an, hence x e L(aB) and (3, n) holds.
This completes the inductive step. We have defined an infinite sequence

<xo,X!, •••> of elements in fPsuch that for every «,

(l,n) x0, •••,xn are distinct and linearly independent,

(2,n) (V,. g n)[A, ^ 0 => A^LiUj^Bj) # 0 ] ,

(3, n) (VJ ̂  ^[Xj-eL^,) <*• codim^^a,) < Xo].

We claim that

(17) x0,x,, ••• are all distinct and linearly independent,

(18) (Vn)|V. # 0 =* ^. \L^U«*) ?* 0],
(19) (Vn)[x. e L(aB) o

Relations (17) and (19) follow immediately from the fact that (l,n) and (3,n)
hold for every n. We now establish (18). Suppose Ak / 0 and Xt \L(Uj°=oBy.)=0,
that is 4̂k cr L(Wf=00Bj). Since i4t,B0,B1,-" are finite sets, there is a number
m ^ k such that

lY U Bj), that is, A \ 4 115;) = 0 .

contrary to (2, /n).
We define 0 = yj°°k=0Bk, V = L(0), S = F n W. Clearly, x(1e(BII), for

every n, hence {xo.X!,-} c K The elements x o , x , , - also belong to W, hence
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{xo,xu •••} c S. Thus S is an X0-dimensional space by (17), hence so is V; then /?
is an infinite subset of j? and ft = Ps. Relation (18) can be rewritten as

* 0 * Am\V * 01

Since Am <= W, An\V = An\{V n W) and we obtain

(20) (Vn)[An * 0 ~ An\S * 01

We claim that S is not an a-space. For suppose it were. Then S would have an
a-basis of the form a n S, for some infinite r.e. repere a in W, say a = aM.
Hence S = L(dLH O S). Since xneS we obtain xne£,(£„). However xB ^ 0,
hence /!„ / 0 . We now have a contradiction, for

xn e L(5, O S) => y4B c S,

An ? 0 ~ An\S * 0, by (20).

We conclude that S is not an a-space.
Let J^be an X0-dimensi6nal r.e. space and fi a r.e. repere such that W ^ L(^).

According to the proof of P3

^ has property A with respect to W =>

(3/?)[/S c= /? and ^ is infinite and

L(p) n JF is not an a-space].

We conclude this section by proving the converse of this condition. We shall
need the following two lemmas.

LEMMA L4. Let A,B,W be spaces such that A is finite dimensional and
A O B = (0). Then B C\W has finite codimension in (A © B) n W.

PROOF. Assume the hypothesis and suppose that B n l C has infinite co-
dimension with respect to (A © B) O W. Then there is an K0-dimensional space
C such that

(B nW) nC = (0) and (B n W) © C = (A © B) O W.

Let y0, yl, • • • be distinct elements in C such that {y0, J>J, • • •} is a basis of C. Define
for nee, the elements an and bn by

J'n = an + bn,aneA, baeB.

Let m = dim (A). Then <a0, •••,amy is a linearly dependent sequence of elements
in A, hence there exist elements r0, •••,rmeF, at least one of which is non-zero,
such that roao + ••• + rmam = 0. This implies
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Wo + ••• + rmym = robo + ••• + rmbm,

-+rmymeBr\C.

But C ^ W and (B r\W) n C = (0) imply that £ n C = (0). It follows that
Jo> •"» ym

 a r e linearly dependent, contrary to the fact that they are distinct ele-
ments of a repere. Hence B n W cannot have infinite codimension in {A © B) O W.

LEMMA L5. Let T = {J^|ie/} be a non-empty family of distinct a-
spaces, where I = {0, •••,n — 1} i/ card r = n > 0 and / = e otherwise. Let
S = n P. Then for all finite dimensional spaces B,

S\BoS nB = (0).

PROOF, (a) => This is clear from the definition of S || B. (b) <= If dim(B)
= 0, we are done, so assume dim(B) = m ^ 1. We establish the result by in-
duction on m.

Basis step, m = 1. Then £ = L(p) for some p £ S . Then there must be
at least one Vt e F such that p $ \\. Pick one, say Vp and let ocj be an a-basis for
Vj, and ay c ay, where a,- is a r.e. repere. If p 4 L(&j), we are done since S | B by
<L(a,.),B>. If peL(oij), let p = roao + ••• + rtak, where r0, ••-,/•*eF\(0) and
ao,'">dkeoij. Now p<£L(tXj) ~ Vj implies that at least one of ao,---,ak is not

an element of a,-, say a0. Then S|| B by <L(5y\{a0}), B>.

Inductive hypothesis. Assume S O B = (0) implies S || B for all B such that
dim(B) ^ fc.

Inductive step. Suppose dim(B) = k + 1. Let 6e£\(0). Then by the
induction hypothesis applied to L(b), there exists a r.e. space JPsuch that S f£ W
and L(fe) n ^ = (0). Thus

(0) ^ (V n B < B, 0 ^ dim((»F n B) ^ k.

If W C\B = (0), we are done. So assume (0) < W O 5 < B. By the induction
hypothesis applied to ) F n 8 , there exists a r.e. space F such that S g F and
F n ( l F n B ) = (0). Hence Sflfl by <0TiP,B> since ( j F o F ) O B = (0)
while S ^ l F n f .

PROPOSITION P6. Let W be an ^^-dimensional r.e. space, and fi a r.e.
repere such that W ^ L(p). If there is an infinite subset P ofp such that L{§) O W
is not an tx-space, then ft has property A with respect to W.

PROOF. We may assume without loss of generality that ft = fiw. We shall
prove the contrapositive. Suppose /? does not have property A with respect to W.
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This means that there is a 1 — 1 recursive function dn enumerating a r.e. bases y
of W, and a finite subset {b0, •••, bm} of/? such that

(21) (V.XV.OC. * j'=> flm n pdU) <= {b0, -, bm}l

Define p — {b0,---, bm} O J3?. Then p is a finite subset of p. Let /? be any infinite
subset of P, and S = L(/?) n W. We wish to prove that S is an a-space. The sets
P and p are reperes, and p u p is a repere since it is included in /?. Let p' = p\p.
Then

(22) L()S) n L(p") = (0), UP u p) = L(j?) 0 L(p').

We proceed to show that

(23) S ^ Ufs) ^ LUP) ® Up')] n W.

The first inclusion of (23) is obvious, since S ^ J^and y is a basis of W. To prove
the second inclusion we shall show that

(24) dk e ys => dk e [UP) © Up')l

for trivially, rft e W. Assume the hypothesis of (24). Then there is an element x in
S which, when expressed as a L.C.N.Z.C. of elements in f, has a non-zero co-
ordinate with respect to dk; let

(25) x = rdk + sodiW + ••• + sndi(n),

where r, s0, •••,sneF\(0) and k, io, •••,/„ are distinct. Since x e S , it can also be
expressed in the form

(26) x = tobnO).+ - + tpbJ(p),

where to,---,tpeF\(O) and bj(0),---,bJ(p) are distinct elements of p. If we can
prove

(27) p i { k ) <= PU p ,

we are done, for then dk e L(pa(k)) and (27) imply </t e L(P u p), hence
dkeL(P) @ Up') by (22). To prove (27), suppose bePd(k). Either fte^g, hence
bep u p, orbePdW\p. In the latter case, &£{6,-(0), ••-,&,•(„)}, since bJW,---,bHp)

all belong to /?. Hence in (25), at least one of the di(Q),---,di(n) must also have a
non-zero coordinate with respect to b, when expressed as a L.C.N.Z.C. of element
in p, say di(<l)> where 0 g q ^ p. Then we have by (21)

be Pi(k) O #,<,(,)) => be{bo,—,bm).

Since trivially, fte/?,, we conclude that bep; again bep\j p . This completes
the proof of (27), and thereby of (24). We have now established (23). If we take
A = Up'), B = UP), W = W in L4, then A n B = (0) since UP) ^ *-(p') = (0).
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Hence B n W has finite codimension in {A © B) n W, i.e., S = L(/0 n Jr has
finite codimension in [L(/?) © L(p')] O >F. Then (23) implies that S also has
finite codimension in the a-space L(ys). Thus there is a finite dimensional space E
such that S n £ = (0) and S © £ = L(ys). Note that S = L(j8) n W, where
L(£) and fP are a-spaces. Hence S||£ by L5. We know S ©E = L(ys), S||£
and L(ys) is an a-space. Since £ is r.e. (and isolic!) we know by the established
cases of the conjecture (c) mentioned in the Introduction that S is an a-space.
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