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ASCENDING HNN-EXTENSIONS AND
PROPERLY 3-REALISABLE GROUPS

FRANCISCO F . LASHERAS

In this paper, we show that any ascending HNN-extension of a finitely presented
group is properly 3-realisable. We recall that a finitely presented group G is said to
be properly 3-realisable if there exists a compact 2-polyhedron K with ni(K) = G
and whose universal cover K has the proper homotopy type of a (PL) 3-manifold
(with boundary).

1. INTRODUCTION

The most useful constructions in Combinatorial Group Theory are amalgamated
free products and HNN-extensions, and they are the two basic examples in the theory
of graphs of groups due to Bass and Serre (see [9]). We recall that given a group G

and a subgroup H ^ G together with monomorphisms (respectively homomorphisms)
ip,ip : H —> G, the group determined by the presentation

is an HNN-extension (respectively pseudo HNN-extension) of G over H, with stable letter
t (see [12]). In case H — G and I/J = idc, this HNN-extension is called an ascending
HNN-extension, and it will be denoted by G*v.

We are concerned with the behaviour of the property of being properly 3-realisable
(for finitely presented groups) with respect to these constructions. Recall that a finitely
presented group G is said to be properly 3-realisable if there exists a compact 2-
polyhedron K with iri(K) = G and whose universal cover K has the proper homotopy
type of a p.l. 3-manifold. It is worth mentioning that the property of being properly
3-realisable has implications in the theory of cohomology of groups, in the sense that
if G is properly 3-realisable then for some (equivalently any) compact 2-polyhedron K
with TTI(K) = G we have H2(K;Z) free Abelian (by manifold duality arguments), and
hence so is H2(G\ ZG) (see [10]). It is a long standing conjecture that H2(G; ZG) be free
Abelian for every finitely presented group G. See [1, 6] to learn more about properly
3-realisable groups.
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In [1] it was shown that amalgamated free products and HNN-extensions of properly
3-realisable groups over a finite cyclic group are properly 3-realisable. The main results
of this paper follow.

THEOREM 1 . 1 . Any ascending HNN-extension G*^ of a Snitely presented group
G is properly 3-realisable.

Observe that the only property required is that G be finitely presented. More gen-
erally, the techniques used in the proof of Theorem 1.1 yield the following.

THEOREM 1 . 2 . Let G be a 1-ended finitely presented group. If the fundamen-
tal pro-group of G at infinity is pro-(finitely generated free) and semistable, then G is
properly 3-realisable.

COROLLARY 1 . 3 . Let G be an infinite finitely presented group, without torsion
in case G has infinitely many ends. IfG is simply connected at inGnity, then it is properly
3-realisable.

Recall that, given a compact 2-polyhedron K with K\{K) = G and having K as
universal cover, the number of ends of G is the number of ends of K which equals 0,1, 2
or oo (see [9, 15]); and G is said to be simply connected at infinity if K is so, that is, for
every compact subpolyhedron L c K there is a compact subpolyhedron J D L so that
any map S1 —> K — J extends to a map B2 —> K — L.

Note that if G is 1-ended, then any ascending HNN-extension of G is simply con-
nected at infinity [14]. A particularly interesting example is Thompson's group

F = {xk, k ^ 0; x~lXjXi = xj+1, if i < j)

= (xo,xu

whose cohomology modules H*(F,ZF) are trivial [3] (and hence F is 1-ended, see [9]);
and it is an infinitely iterated HNN-extension. See [4] to learn more about F and similar
groups defined by Thompson.

2. T H E MAIN RESULTS

In this section, we prove Theorems 1.1 and 1.2 and Corollary 1.3.
PROOF OF THEOREM 1.1: Let G be a finitely presented group and <p : G —> G be

a monomorphism. It is known, by ([14, Theorem 4.1]), that the corresponding ascending
HNN-extension G*v is either 1-ended or 2-ended, depending on whether G is infinite or
not. In the second case, we know that G*v is properly 3-realisable by ([1, Corollary 1.2]).
Thus, we may assume that G is infinite and hence G*^ is 1-ended. Note that if ip = idc,
then G*v = G x Z and the conclusion follows from ([6, Theorem 1.1]).

Let X be a compact 2-polyhedron having ni(X) = G, and X as universal cover.
Let / : X —> X be a cellular map inducing the homomorphism (p on the fundamental
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group, and let / : X —• X be a proper lifting of / . Observe that such a map / exists as

/ . = v : tfiPO —> fti(X) is a monomorphism (see [9]). On the other hand, let Y denote

the mapping torus of / , that is, Y is obtained as a quotient space from the disjoint union

{X x [0,1]) U X by identifying (x, 0) with x and (x, 1) with f{x), for all x e X. One can

check that TTI(F) = G*v, and it is not hard to see that the universal cover Y of Y can

be seen as a collection of copies of the mapping cylinder Mr of / attached each other

along the copies q(X x {0}), q{X) C Mj of X, where q : (X x [0, l ] ) u l —> Mj is

the corresponding quotient map for a generic copy of Mr in Y, that is, (z, 1) and f(z)

{z € X) get identified via q (see [14]). Moreover, no two copies of Mr in Y intersect

along the corresponding subcomplex q(X x {0}) of each of them.

We are going to compute the pro-isomorphism type of the fundamental pro-group

pro - 7Ti(y), see the Appendix. For simplicity, we shall take care of neither base rays nor

base points in what follows.

A collection Xa,Xa+i, • • • ,Xa+r (r > 1) of copies of X in Y form a chain within

Y if for each 0 ^ j ^ r — 1, there are copies M o j of Mr in Y having Xa+i, Xa+j+i as

the corresponding subcomplexes q(X x {0}), q(X) C Mr respectively. Observe that such

a chain is unique from Xa to Xa+r, as Y is simply connected. On the other hand, we

say that two different copies Xa,Xb of X in Y are at the same level if there is r ^ 1

and two chains Xa, Xa+i,..., Xa+r and X(,,Xb+i, • • •, X\,+T within Y with Xa+r = Xb+T.

From now on, we shall fix an infinite chain within Y, that is, we fix copies Xn(n e Z)

of X in Y so that for each n € Z, there is a copy Mn of Mr in Y having Xn, Xn+i as

the corresponding subcomplexes q{X x {0}),q(X) C Mr respectively. Thus, we shall

say that a given copy of X in Y is at level n if it is as the same level as Xn c Y. Let

us fix a sequence C\ C C-i C •• • C X of compact subcomplexes with X = (J Q. For

any n ^ 1 and any chain 7 within V from a copy of X at level —n to Xn, we define a

compact subcomplex Dnn C Y as follows. Let

vi-r) y(l) yh) y{-r) _ y

be those copies of X which occur in 7, and denote by M^i+1 C y the copy of Mr

containing X_^+jt. and X _ n + J + 1 i + i . Next, using back and forth the cylinder structures,

one can build inductively compact subcomplexes

satisfying:

(i) K"n+j ^ Cn (as subsets of a generic copy of X), for each 0 ^ j ^ 2n.

(ii) /~1(A'"n+,-+1) = K"n+j, for each 0 ^ j ^ 2n, where / is regarded as a map
W (7)
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(iii) K™ D K£ (again as subsets of a generic copy of X) whenever m ^ n and
for any indexes — m < a ^ m, -n ^ /? < n.

We define
2n- l

A,,7 =
>=o

where

U ^ - n

so that Dnn deformation retracts (using the mapping cylinder structures) onto K% C Xn.
2n-l . . 2n-l .

Furthermore, the closure of \J M™.^ — Dn,7 in (J A/^j deformation retracts onto

a (non-compact) subcomplex of Xn — int(A'^).
Finally, we shall build a particular sequence of compact subcomplexes D\ C D2

C • • • C Y with Y = |J D\, and study the inverse sequence of groups

{1} <— IT, (Y - int(A)) ^— wi ( ? - int(D2)) <

More precisely, we declare Dn C Y to be the compact subcomplex Dn = \J Dnrt, where 7
7

ranges over all possible (finitely many) chains within Y from a copy of X at level —n to
Xn. Thus, Dn contains all copies of X in Y at level —n. It is easy to check that the Z)n's
meet the required properties, by construction. Also, observe that each Dn deformation
retracts onto K" C Xn. The picture below roughly describes what Dn may look like for
n = 1.

Given n ^ 1, we define subcomplexes Vn,W ,̂ c V a s follows. We take Vn C Y to be
the union of those copies of Mj in Y involved in the construction of Dn; and Wn c Y
to be the union of those copies Mk of Mj in Y containing Xk, Xk+i, for all k ^ n. Note
that K, deformation retracts onto Xn, and both Vn and W^ are simply connected. One
can check that Y — int(Z?n) deformation retracts onto

Zn = (Vn - int(Z?B)) U Wn.
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Moreover, if X _ n l , . . . , X _ n J n are all copies of X in Y at level - n , then

Z'n = cl(zn-\JX-n>T)cZn
^ r=l '

deformation retracts onto Wn (by construction of the Dn's), and hence Z'n is simply
connected. Thus, using an argument similar to that in ([6, Theorem 1.1]), one can show
that 7Ti(y - int(Dn)) = ir\{Zn) can be expressed as an iterated pseudo HNN-extension
starting off from the fundamental group of the (simply connected) complex obtained by
gluing each of the copies AT_n)i,..., X-njn to Z'n along the corresponding copy of a fixed
connected component of X — K"n, where each stable letter represents a free generator
for TTI (Zn). More precisely, if X — K\ has ln connected components then iri(Zn) is a free
group of rank jn(ln — 1) ^ 0. Furthermore, since K"n C #2^11 (as subsets of a generic
copy of X) then

r a n k e r - int(Dn+1))) ^ r a n k ^ F - int(Dn))).

Finally, note that the following towers of groups are pro-isomorphic

{1} f - Tn {Y - int(D!)) A - TT, {Y - int(D2)) A - • • •

{1}<—Im i ^ I m i j A -

and it is not hard to check that the latter may be regarded as a telescopic tower P (see the
Appendix), as / maps connected components of X — KZn-i m t o connected components
of

X - Kn_tl CX-K1n(n> 1),

by construction. Therefore, we conclude that the fundamental pro-group of Y is pro-
isomorphic to a telescopic tower P.

Next, let p : Y —> Y be the covering projection, and pick a base ray w in Y.
Since Y is 2-dimensional and one-ended, there exist spherical objects S^ and S^ and
a proper homotopy equivalence Y V S£ ~ B(P) V S£,, by Theorem 3.2. Let V C K
be the set of vertices in a>([0,oo)), with p(V) — {vi,...,vr} C Y, and denote by Y
the polyhedron obtained from Y V 5^ by attaching one sphere S2 through every vertex
in p~l(p{V)) — w([0,oo)). Thus, Y is the universal cover of the compact 2-polyhedron
obtained from Y by attaching one sphere S2 at each of the vertices v\,... ,vT (which is
homotopy equivalent to a wedge Fv(Vj=152)). On the other hand, Y is proper homotopy
equivalent to a polyhedron Q obtained from B{P) V £& by attaching infinitely many
spheres 52 in a proper way (that is, via the corresponding proper homotopy equivalence
given by Theorem 3.2). Finally, the proper homotopy type of the proper wedge B(P)vS^,
can be represented by the closed subpolyhedron in R3 shown in the figure below. It is
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then easy to check that the proper homotopy type of Q can also be represented by a

closed subpolyhedron Q in R3.

Therefore, the universal cover of the compact 2-polyhedron Y V (V[=15
2) (with

7Ti(y V (Vj_xS
2)) = G*v) turns out to be proper homotopy equivalent to the 3-manifold

obtained by taking a regular neighbourhood of Q in R3, and hence G*v is properly

3-realisable. D

REMARK 2.1. Note that the argument used in the proof of Theorem 1.1 above gives an

alternative proof of the fact that any ascending HNN-extension of a (finitely presented)

group is semistable at infinity (see [14]).

P R O O F OF THEOREM 1.2: Let X be a compact 2-polyhedron with KI(X) = G and

having X as universal cover, and let K\ C K2 C • • • C X be a sequence of compact

subsets so that X = \J Kt. The inverse system

{1} <— Vl{X - Kx) ^ni(X-K2)^----

is then pro-isomorphic to a tower F_ = {Fo «-*- Fi «^_ F2 <— • • • } of finitely generated

free groups which is semistable, by hypothesis. It suffices to show that F. is in fact pro-

isomorphic to a telescopic tower P, and then apply the same argument as in the proof of

Theorem 1.1, as G is 1-ended.

For this, recall that F_ is said to be semistable if for each k there is n ^ k so that for

every m ^ n w e have Im(^jt+1 • • • <j>m) = Im(<^t+1 • • • <j>n) C Fk- It is well known that if F

has this property then it is pro-isomorphic to a tower of groups

p rp Jh p Jh_ p , i

where the bonding maps ipn are all epimorphisms. Moreover, there is a level morphism

{in} inducing this pro-isomorphism such that every tn : Pn —> Fn is a monomorphism

between finitely generated groups (see [13]). Thus, P is a tower of finitely generated free

groups in which all bonding maps are epimorphisms. Finally, since ipn : Pn —> Pn-\

is an epirnorphism between free groups, it follows from [8] that Pn is a free product

Pn = P'n* P£, where ipn{Pn) = {1} and ipn | P^ is an isomorphism. Therefore, each ipn

is a projection and hence P can be regarded as a telescopic tower, as each P% is finitely

generated by the Grushko-Neumann theorem. U
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P R O O F OF COROLLARY 1.3: Let G be an infinite finitely presented group, and
suppose G is simply connected at infinity. We show that G is properly 3-realisable. Of
course, if G is 2-ended then it is properly 3-realisable by ([1, Corollary 1.2]). On the other
hand, if G has infinitely many ends, then G splits as a non-trivial free product (as G is
torsion-free, by hypothesis) by the Stallings' Structure theorem (see [15]), and one can
easily check that each of the factors must be simply connected at infinity. Moreover, this
splitting process must terminate after finitely many steps, by Dunwoody's accessibility
result [7]. Thus, we may as well assume that G is 1-ended and simply connected at
infinity, since the free product of properly 3-realisable groups is properly 3-realisable,
by ([1, Lemma 3.2]). For this, note that in this case pro— TT\(K) is pro-isomorphic to
the trivial (telescopic) tower, where AT is a compact 2-dimensional CW-complex with
ni(K) = G and having K as universal cover (see [9]). Therefore, using an argument
similar to that of Theorem 1.1 (as A" is 1-ended), one shows that G is indeed properly
3-realisable. D

3. APPENDIX

This section is intended to provide the background and notation needed in the previ-
ous section, as well as to indicate what is behind those results. In what follows, we shall
be working within the category tow —Gr of towers of groups whose objects are inverse
sequences of groups

A = {Ao A- Al A- A2 i }

A morphism in this category will be called a pro-rnorphism. See [2, 13] for a general

reference.

A tower L is a free tower if it is of the form

L = {LQ i h\ i Li i " • ' }

where Li = {B^ are free groups of basis Bt such that Bi+i C Bi, the differences
oo

Bt — Bi+i are finite and f\ Bi = 0, and the bonding homomorphisms i* are given by the
i=0

corresponding basis inclusions. On the other hand, a tower P is a telescopic tower if it is

of the form

where Pi = (Di) are free groups of basis A such that Dt-\ C Dit the differences

Di — Di-x are finite (possibly empty), and the bonding homomorphisms pk are the obvious

projections.

We shall also use the full subcategory (Gr, tow -Gr ) of Mor(tow — Gr) whose objects

are arrows A —> G, where A is an object in tow -Gr and G is a group regarded as a

constant tower whose bonding maps are the identity. Morphisms in (Gr, tow —Gr) will

also be called pro-morphisms.
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From now on, X will be a (strongly) locally finite CW-complex. A proper map
ui : [0, oo) —* X is called a proper ray in X. We say that two proper rays u>, w' define the
same end if their restrictions W|N,W'|N are properly homotopic. Moreover, we say that
they define the same strong end if u> and u>' are in fact properly homotopic.

Given a base ray ui in X and a collection of compact subsets C\ C C2 C • • • C X so
oo

that X = |J Cn, the following tower
n=i

pro — 1t\(X, U>) = S 1T\ (X,U>(0)) i— 7Ti(X — Ci,Ul(ti)) 4— 7Ti (X — C2, U>(t2)) <— " '

can be regarded as an object in (Gr, tow —Gr) and it is called the fundamental pro-group
of (X,u>), where u>([ti, oo)) C X — C{ and the bonding homomorphisms are induced by
the inclusions. This tower does not depend (up to pro-isomorphism) on the sequence
of subsets {Cj}i- It is worth mentioning that if u> and u>' define the same strong end,
then pio—ni(X, ui) and pro — TTI(X,UI') are pro-isomorphic. In particular, we may always
assume that w is a cellular map. Moreover, if X is strongly connected at each end
(that is, any two proper rays defining the same end define the same strong end), then
7Tj(X,u>) = lim pro— ir\(X,w) is a well-defined useful invariant which only depends (up
to isomorphism) on the end determined by u> (see [11]). In a similar way, one can define
objects in (Gr,tow— Gr) corresponding to the higher homotopy pro-groups of (X,u>).

DEFINITION 3.1: Given n ^ 1, a tree T and a proper ray ui : [0,oo) —¥ T, a
spherical object 5" under T is a space obtained from T by attaching finitely n-spheres
Sn at each vertex of w([0, oo)). Observe that any two of such spherical objects (along ui)
are proper homotopy equivalent (under T), by ([2, Proposition 4.5(b)]).

The following result, which can be thought of as a special case of a proper version of
Whitehead's theorem for compact 2-dimensional CW-complexes, will be crucial for the
proof of those results in Section 2.

THEOREM 3 . 2 . ([5, Corollary 6.4]) If X is a one-ended 2-dimensional locally
finite CW-complex, then the following are equivalent

(a) pro —IT i (X, ui) is pro-isomorphic to a (coproduct) tower of the form L v P .
(b) There exist spherical objects S% and S^, and a proper homotopy equivalence

(under [0, oo)j I V 5 ^ ~ B(L V P) V 5^,.

Here, ( B ( i v P ) , u ' ) is the properly based 2-polyhedron defined as the proper wedge
(that is, along a base ray) of a one-ended spherical object S^, with pro— ni(Sl,u>') = L
(ui' : (0, oo) '-¥• S* the canonical inclusion), and a proper wedge C of a decreasing sequence
(possibly infinite) of cylinders Cn = S1 x [n, oo) and/or Euclidean planes

R4 = S1 x [m,oo)/51 x {m}

attached along the half line [0, oo) for which pro —7r1(G, a/) = P_, with u/ : [0, oo) «-> C the
canonical inclusion. Thus, B(L\/P) can be seen as a "proper Eilenberg-MacLane space"
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K(LV P_, 1) and its proper homotopy type can be represented by a closed subpolyhedron

in R 3 of the type as shown in the figure below.

0 o n o --
1 n

o o
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