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Primes Dividing Invariants of CM Picard
Curves

Pınar Kılıçer, Elisa Lorenzo García, andMarco Streng

Abstract. We give a bound on the primes dividing the denominators of invariants of Picard curves of
genus 3 with complexmultiplication. Unlike earlier bounds in genus 2 and 3, our bound is based, not
onbad reduction of curves, buton a very explicit typeof good reduction. his approach simultaneously
yields a simpliûcation of the proof andmuch sharper bounds. In fact, unlike all previous bounds for
genus 3, our bound is sharp enough for use in explicit constructions of Picard curves.

1 Introduction

heHilbert class polynomial of an imaginary quadratic ûeldK is thepolynomialwhose
roots are the j-invariants of the elliptic curves E with endomorphism ring isomorphic
to the maximal order OK . Its roots generate the Hilbert class ûeld and are used for
constructing elliptic curves with prescribed order, which are used in cryptography.

he Hilbert class polynomial has integer coeõcients, so in order to compute it,
it suõces to numerically approximate its coeõcients up to the decimal point. hese
ideas can be generalized to curves of genus g as long as their Jacobians have complex

multiplication (CM). he imaginary quadratic ûeld needs to be replaced by a CM ûeld

K of degree 2g, that is, a totally imaginary quadratic extension of a totally real number
ûeld of degree g, and we consider curves whose Jacobian has endomorphism ring
isomorphic to OK .

Using suitable invariants for curves of genus g, this gives rise to class polynomials,
whose coeõcients are rational, but not necessarily integral. Computational methods
for numerically approximating these polynomials are known for g ≤ 3 [1–3,8,9,13,16,
18,25,27,28].
For the eõciency of themethods, aswell as a proof of their output, and a theoretical

understanding of the types of S-integers created with such constructions, we need to
know the denominators of the coeõcients of these polynomials.
For the case g = 2, these denominators are now understood, thanks to the work of

Bruinier, Goren, Lauter, Viray, and Yang [7, 10, 11, 19]. he denominators in that case
are eòectively computable products of powers of small primes, which have been used
for computing and proving correctness of CM curves of genus two [6].
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In general for g = 3, it is expected [13, §4] that such a result doesnot hold. However,
for the speciûc case of hyperelliptic curves (y2 = x8 + ⋅ ⋅ ⋅), a bound on the primes
dividing the denominators of invariants is given in [14]. Its proof alsoworks for Picard
curves (y3 = x4 + ⋅ ⋅ ⋅), except for a technical conjecture in [14], which is a work in
progress. he bound in [14] is unfortunately too large to be practical.
All boundsmentioned so far are based on the fact that primes dividing the denom-

inators of invariants are primes of bad reduction. he diõculty that makes the bound
of [14] so large is that just knowing bad reduction of the curve does not give much
information on the endomorphism structure of the reduction of the Jacobian.

In this paper we propose an alternative set of invariants for Picard curves. With
that set of invariants, the primes dividing the denominators are primes of a certain
very explicit type of reduction (Lemma 3.1).

We use the embedding of OK into the endomorphism ring of the reduction of the
Jacobian (Jac(C)modulo p) to get a contradiction for large p. We get matriceswhose
entries are quaternion algebra elements. hese quaternion algebra elements are forced
to commute when p gets very large [10, 14]. Our explicit type of reduction allows us
to prove commutativity directly, so we do not need to assume that p is very large in
our proofs.

his drastically reduces the ûnal bound on p (heorem 2.2). In fact, we get a
formula for a small set S of small primes such that the denominators are S-units
(heorem 9.1). We also conjecture a bound on the exponents, yielding a formula
for a denominator that is small enough for practical computation (Conjecture 9.2).
Wemade a SageMath implementation of our bounds (available online [15]) and give
numerical examples in Section 10.

2 Picard Curve, Invariants, and Statement of the
Main Theorem

In this section we introduce Picard curves, a new set of invariants of Picard curves,
and the basic concepts of complexmultiplication. We also state themain theorem and
give an overview of the proof.

2.1 Picard Curves

Let L be a ûeld of characteristic not 2 or 3. APicard curve of genus 3 over L is a smooth,
projective, plane curve given by an equation of the form

(2.1) C ∶ y3 = x
4 + ax2 + bx + c,

where a, b, c ∈ L. Suppose that L contains a primitive third root of unity ζ3. he
automorphism group of C then contains ρ∶ (x , y) ↦ (x , ζ3 y) of order 3. he push-
forward ρ∗ of this automorphism is an automorphism of the Jacobian J = Jac(C),
and hence is a primitive third root of unity in the endomorphism ring. By abuse of
notation, we denote ρ∗ ∈ End(J) also by ζ3.

Two Picard curves C ∶ y3 = x4 + ax2 + bx + c and C′ ∶ y3 = x4 + a′x2 + b′x + c′

over a ûeld L of characteristic not dividing 6 are isomorphic over L if and only if there
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exists a λ ∈ L∗ with

(2.2) λ
6
a = a′ , λ

9
b = b′ , λ

12
c = c′ .

2.2 Complex Multiplication

Let C be a Picard curve. We say that C or its Jacobian J = Jac(C) has complex mul-

tiplication (CM) if there is a number ûeld K of degree 6 and an embedding ι∶K →
End(J)⊗Q. Henceforth, assume that this is the case, and let K and ι be as above. We
say that C and J have CM by the order O = ι−1(End(J)) ⊂ K.

We say that J has primitive CM if the embedding ι gives an isomorphism from K

to the endomorphism algebra End(JL) ⊗ Q of J over the algebraic closure of L. If
char(L) = 0 and J has CM, then a�er extending L, the induced representation on the
tangent space is isomorphic to a product of embeddings of K into L. he setΦ of such
embeddings is called the CM type of themap K → End(J) ⊗Q. It is known that if J
has primitive CM if and only if K is a CM ûeld and the CM type is primitive, that is, if
and only if for every CM subûeld K1 ⊊ K, the restriction of Φ to K1 is not a CM type
[17, §1.3.5].

Note that if J has primitive CM by O, then the endomorphism ζ3 of Section 2.1 is
(via ι) a primitive third root of unity inO. Conversely, if a smooth curve of genus 3 has
primitive CM by an order containing a primitive third root of unity, then the curve is
a Picard curve (this is stated in the case ofmaximal orders [16, Lemma 1], though the
ûnal sentence of the proof is wrong and needs to be replaced by [12, Lemma 7.3 and
the paragraph above it]; the proof does not use that the order is maximal, only that
the third root of unity is in the order).

his allowedKoike andWeng [16] to construct genus-three Picard curveswithCM
by orders in ûelds of the form F(ζ3) for a totally real cubic ûeld F and a third root
of unity ζ3, just as one can construct elliptic curves with CM by orders in imaginary
quadratic ûelds.

2.3 Invariants of Picard Curves

A homogeneous Picard curve invariant is a weighted homogeneous polynomial I ∈
Z[a, b, c]where a, b, c are formal polynomial variables ofweights 2, 3, 4, respectively.
For amodel as in (2.1) of a Picard curve C over a ûeld L, we get the value I(C) ∈ L by
evaluating I in the coeõcients of (2.1).
For example, we have the invariant

(2.3) ∆ = −4a3
b

2 + 16a4
c − 27b4 + 144ab2

c − 128a2
c
2 + 256c3

of weight 12, and ∆(C) is non-zero for all Picard curves C, as it is the discriminant
of the right-hand side of (2.1). An absolute Picard curve invariant is a quotient j =
u/bℓ , where u ∈ Z[a, b, c] has weight 3ℓ. For example, the three rational functions
j1 = a

3/b2, j2 = ac/b2, and j3 = c
3/b4 = j−1

1 j32 are absolute Picard curve invariants.
All Picard curves C with a(C) /= 0 can be reconstructed up to twists from the

values j1(C) and j2(C) of the invariants j1 and j2 as follows. Given a Picard curve C
over a ûeld L, the curve D ∶ y3 = x4 + j1(C)x

2 + j1(C)x + j1(C) j2(C) is isomorphic
to C over the algebraic closure L.
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Moreover, the three invariants j1, j2, and j3 generate the ring of all absolute Picard
curve invariants. Indeed, an absolute Picard curve invariant is a linear combination of
monomials aAcC/bB with 2A+ 4C = 3B, and each such monomial is a non-negative
power of j2 times a monomial with A = 0 or C = 0, which in turn is a power of j3
or j1.

Instead of the quotients b2/a3 = 1/ j1 and c/a2 = j2/ j1 used byKoike andWeng [16],
we consider j1, j2, j3 because the primes dividing the denominators of our invariants
have nice properties that we can use to ûnd good bounds for them (Lemma 3.1 and
Proposition 3.3).

Remark 2.1 If C is a Picard curve of genus 3 over a number ûeld L with primitive
CM and j = u/b l is an absolute Picard curve invariant, then b(C) ≠ 0 and j(C) ∈ L.
his is because if b(C) = 0, then the curve C admits a non-constant morphism to
an elliptic curve (formula in (3.1)) and hence its Jacobian is not simple, which gives a
contradiction with having a primitive CM-type.

In particular, for every sextic CM of order O with ζ3 ∈ O, the class polynomials

HO,1(X) =∏
C
(X − j1(C)),(2.4)

ĤO,2(X) =∑
C

j2(C)∏
D/≅C

(X − j1(D)),(2.5)

(with sums and products ranging over the isomorphism classes of curves overCwith
primitive CM by O; see [9]) are well deûned.

2.4 Statement of the Main Result and Overview of the Proof

A weak version of our main theorem is as follows.

heorem 2.2 Let C be a Picard curve of genus 3 over a number ûeld L with End
(Jac(C)L̄) isomorphic to an order O of a number ûeld K of degree 6. Let K+ be the real
cubic subûeld of K. Let µ ∈ Z + 2O be such that K+ = Q(µ).

Let j = u/bℓ be an absolute Picard curve invariant. Let p be a prime of L lying over

a rational prime p. If ordp( j(C)) < 0, then

p ≤ trK+/Q(µ
2)3

and p ≤ ( 1 +
16
π
∣∆(O+)∣

1/2)
3
< 196∣∆(O+)∣

3/2 .

In Sections 3–8 we prove heorem 2.2. We give a stronger version in Section 9.
he stronger version gives an algorithm for computing a set of primes, instead of just
a bound on the primes. In Section 9 we also give a conjecture about the powers to
which such primes appear in the denominators of the invariants. A SageMath im-
plementation is available online [15]. In Section 10 we give examples that show that
the resulting denominator bounds are small enough for practical class polynomial
computations.

he ûrst step of the proof of heorem 2.2 is the explicit type of reduction that
is implied by the appearance of a prime p in the invariant b. his type of reduc-
tion is given in Lemma 3.1. Proposition 3.3 then shows how this type of reduction
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makes the reduction of the Jacobian decompose into a product of an elliptic curve A1
and a principally polarized abelian surface A2. he rest of Section 3 is the proof of
Proposition 3.3.

Once we know this decomposition of the reduction J of the Jacobian J = Jac(C),
the endomorphisms of J give rise to matrices consisting of homomorphisms between
the components A1 and A2 of J. his will make A2 decompose further and give our
endomorphisms as matrices over the endomorphism ring R of A1 (see Section 4).
An important part of the earlier proofs in genus 2 and 3 [10, 14] is to force these

matrices to have entries in a ûeld instead of in the quaternion ring R. his was al-
ways done by an argument from [10] that uses the fact that elements of small norm
of quaternion algebras of large discriminant commute. In order to be able to use this
fact, the prime p needs to be very large, which is why bounds based on that type of
argument typically are very large (see [19] for an exception that is more complicated
and has not yet been generalized to genus 3). In Section 5 we use the explicit endo-
morphism ζ3 = ρ∗ and the fact that this induces an endomorphismofA1 andA2 to get
commutativity. his greatly simpliûes our proof and drastically reduces the resulting
bounds.

In Section 6 we use primitivity of the CM type, via the tangent space, to show that
primes with our type of reduction divide the exponent n of the kernel of the isogeny
J → A3

1 . his argument is exactly the same as in [14], hence that section is very short
and is basically a reference to [14]. In genus 2 [10] such an argument is not needed;
see [14, § 5] for details.

In Section 7 we bound the exponent n mentioned in the previous paragraph. For
this, we need to have a well-chosen isogeny in Section 4 on which to base the expo-
nent n, andwe need to look atwhat happenswith the polarizations (which give rise to
positive deûnite matrices) under our isogenies. his completes the proof of the ûrst
inequality ofheorem 2.2.

Section 8 uses geometry of numbers to derive the second inequality from the ûrst.

3 Reduction of Picard Curves

In this sectionwe give the explicit type of reduction that follows from a prime dividing
the invariant b of a Picard curve. Lemma 3.1 gives the three possible reduction types
of the curve, and Proposition 3.3 shows what this implies for the decomposition of
the reduction of the Jacobian.

Lemma 3.1 Let C be a Picard curve of genus 3 over a number ûeld L and let p ∤ 6 be
a prime of OL . Let j = u/bℓ be an absolute Picard curve invariant.

If ordp( j(C)) < 0, then a�er replacing L with an extension and C with an isomor-

phic curve, we are in one of the following cases.

(1) C ∶ y3 = x4 + ax2 +bx + 1 with a, b ∈ OL such that b ≡ 0 and a ≡ ±2 modulo p. he

reduction of this equation ( from OL to OL/p) is the singular curve y
3 = (x2 ± 1)2 of

geometric genus 1.
(2) C ∶ y3 = x4 + x2 +bx + c with b, c ∈ p. he reduction of this equation is the singular

curve y3 = (x2 + 1)x2 of geometric genus 2.
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(3) C ∶ y3 = x4 + ax2 + bx + 1 with a, b ∈ OL such that b ≡ 0 and a /≡ ±2 modulo p.
he reduction of this equation is the smooth curve y3 = x4 + ax2 + 1 of genus 3, where

a = (a mod p).

Proof Let m0 = min{ 1
2v(a),

1
3v(b),

1
4v(c)} , where v = ordp is the p-adic valua-

tion. By our assumption that p divides the denominator of j(C), this minimum is not
attained by 1

3v(b).
If it is attained by 1

4v(c), then we scale the curve over L as in (2.2) so that c = 1. As
theminimum is not attained by 1

3v(b), we get that the reduction is y3 = x4 + ax2 + 1,
where the right-hand side has discriminant 16(a−2)2(a+2)2. In particular, if a /= ±2,
then we are in case (3).

If a = ±2, then the reduction is y3 = (x2 ± 1)2. Let Y = (x2 ± 1)/y. hen we get
Y 3 = (x2 ± 1), that is, the curve C is birational to the elliptic curve x2 = Y 3 ∓ 1 with
j-invariant 0.

he only remaining case is the case where theminimum is not attained by 1
4v(c).

As the minimum is not attained by 1
3v(b), we ûnd that it is only attained by 1

2v(a).
Now we scale the curve so that a = 1. We get that the reduction is y3 = x4 + x2 =
(x2 + 1)x2. Let Y = y/x. hen we get xY 3 = x2 + 1, which is the hyperelliptic curve
x2 − Y 3x = −1 of genus 2. In fact, taking X = 2x − Y 3, we get the hyperelliptic curve
X2 = Y 6 − 4. ∎

Example 1 Let K = K+(ζ3), where K+ = Q[y]/(y3 − y2 − 4y − 1) = Q(ζ13)+ is
totally real abelian of discriminant 132 and conductor 13. Let

C ∶ y3 = x
4 − 2 ⋅ 72 ⋅ 13x2 + 23 ⋅ 5 ⋅ 13 ⋅ 47x − 52 ⋅ 132 ⋅ 31.

he curve C was computed by Koike and Weng [16, §6.1(3)], who conjectured that
its Jacobian has CM by OK of primitive CM type. his curve and its reductions also
appear in [5, §5.2].

We compute

j1 = −
76 ⋅ 13

23 ⋅ 52 ⋅ 472 , j2 =
72 ⋅ 13 ⋅ 31
25 ⋅ 472 , j3 = −

52 ⋅ 132 ⋅ 313

212 ⋅ 474 .

We ûnd that theprimes in the denominatorsof j1, j2, and j3 are 2, 5, and 47. Lemma 3.1
does not apply to the prime 2 as it divides 6. he prime 5 is of case (2) in Lemma 3.1.

he prime 47 is of case (3) in Lemma 3.1 as follows. Take an integer r ≡ 11 modulo
47, let α =

√
r and L = Q(α). hen C is isomorphic over L to the curve given by

y
3 = x

4 − α6 ⋅ 2 ⋅ 72 ⋅ 13x2 + α9 ⋅ 23 ⋅ 5 ⋅ 13 ⋅ 47x − α12 ⋅ 52 ⋅ 132 ⋅ 31,

which modulo 47 is C ∶ y3 = x4 + 19x2 + 1.

Remark 3.2 We know of no examples of Picard curves with primitive CM by a
sextic ûeld that have a reduction as in Lemma 3.1 (1).

Proposition 3.3 Let C be a Picard curve of genus 3 over a number ûeld L containing

a primitive third root of unity ζ3. Let p ∤ 6 be a prime of L. Suppose that C is given

(over L) by an equation as in one of the three cases of Lemma 3.1.
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Let J = Jac(C) be the Jacobian of C, let J be its Néron model over Zp and let J be

its reduction modulo p. Assume that J has CM or that we are in case 3 of Lemma 3.1.
Recall that ζ3 = ρ∗ is a third root of unity in End(J); it induces endomorphisms of J

and J that we also denote by ζ3.

hen there are abelian subvarieties A i (with inclusion maps I i ∶A i ↪ J ), surjective

homomorphisms s i ∶ J → A i and endomorphisms e i ∈ End(J ) for i ∈ {1, 2}, and an
integer d ∈ {1, 2} such that the following hold for all i , j ∈ {1, 2}.
(i)

e1 + e2 = [d] ∈ End(J ),

e
2
i = [d]e i ∈ End(J ),

e1e2 = e2e1 = 0 ∈ End(J ),

e
†
i = e i ∈ End(J ), where † denotes the

Rosati involution,

e i = I i s i ∈ End(J ),
s i I i = [d] ∈ End(A i),

if i /= j, then s i I j = 0 ∈ Hom(A j ,A i).

Here and later, we write simply f g for f ○ g in order to keep the notation clean and

concise.

(ii) he abelian variety A i has dimension i and we have a commutative diagram

J
( s1

s2
)
//

[d]

;;A1 × A2
(I1 I2) //

[d]

::J
(

s1
s2
)

// A1 × A2 .

(iii) if i /= j, then we have s i ζ3I j = 0 ∈ Hom(A j ,A i).

We prove Proposition 3.3 separately in the smooth case (Lemma 3.1 (3) and in the
singular cases (Lemma 3.1 (1) and (2)). he smooth case is themain case and the proof
is in Section 3.1. he proofs of the singular cases are in Section 3.2.

3.1 The Smooth Case: y3 = x4 + ax2 + 1

We now prove Proposition 3.3 in the smooth case (3) of Lemma 3.1, wherewewill see
that it holds with d = 2. We consider the Picard curve

C ∶ y3 = x
4 + ax2 + 1.

he automorphism group Aut(C) contains the elements σ ∶ (x , y)↦ (−x , y) of order
2 and ρ = ρC ∶ (x , y)↦ (x , ζ3 y) of order 3.
As C has good reduction at p, we have J = Jac(C); we associate the OK ,p-scheme

Pic0(C) with C. By [4,heorem 9.3.7], the special ûber of Pic0(C) is Jac(C) and it is
smooth. Finally, by [4,heorem9.5.1],we have that Pic0(C) is aNéronmodel J of the
Jacobian of C. In particular, the special ûber of Pic0(C), i.e., Jac(C), is isomorphic to
the special ûber of J, that is, J.
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he curve C is a 2-cover of the elliptic curve E ∶ v2+av = u3− 1withCM byZ[ζ3].
Indeed, we have

ϕ∶C Ð→ E(3.1)

(x , y)z→ (u, v) = (y, x2).

he curve E also has an automorphism ρ = ρE ∶ (u, v) ↦ (ζ3u, v) of order 3, and we
have ρE ○ ϕ = ϕ ○ ρC , or simply

(3.2) ρϕ = ϕρ.

For every curve morphism f ∶D1 → D2, we get a push-forward morphism
f∗∶ Jac(D1) → Jac(D2) and a pullback morphism f ∗∶ Jac(D2) → Jac(D1). With this
notation, let

e1 = ϕ
∗
ϕ∗ , e2 = [2] − e1 ∈ End(J ).

Let A i be the image of e i and let s i be deûned by the commutative diagram

J s i
// //

e i

@@A i
� �

I i
// J .

Let d = 2. he equality e1 + e2 = 2 is the deûnition of e2. As ϕ is a 2-cover, we get
ϕ∗ϕ

∗ = [2] ∈ End(E). In particular, we get e21 = ϕ∗ϕ∗ϕ
∗ϕ∗ = ϕ∗[2]ϕ∗ = 2e1 and

e22 = 4 − 4e1 + e21 = 2e2. We also get e1e2 = e1([2] − e1) = 2e1 − 2e1 = 0 and similarly
e2e1 = 0.
By Mumford [21, pp. 327–328], if f ∶D1 → D2 is a non-constant curve morphism

and (Jac(D i), λ i) is the Jacobian of D i with its polarization, then

( f∗)
∨ = λ1 f

∗
λ
−1
2 and λ

∨

i = λ i .

Taking duals, we also have ( f ∗)∨ = λ2 f∗λ
−1
1 . In particular, we get

e
†
1 = λ

−1
C (ϕ∗ϕ∗)

∨
λC = λ

−1
C (ϕ∗)

∨(ϕ∗)∨λC = ϕ
∗
ϕ∗ = e1 ,

e
†
2 = [2]† − e†1 = [2] − e1 = e2 .

he identities e i = I i s i are the deûnition of s i . To compute s i I j , we compose with the
surjectivemap s j and the injectivemap I i . If i = j, then we get I i(s i I i)s i = e2i = 2e i =
I i[2]s i . By surjectivity of s j and injectivity of I i , this gives s i I i = [2]. If i /= j, then we
get I i(s i I j)s j = e i e j = 0 = I i[0]s j , hence again by surjectivity and injectivity we get
s i I j = 0. his proves (i).
Commutativity of the diagram follows from I1s1+ I2s2 = e1+ e2 = 2 and the formu-

las for s i I j . he dimension of A1 is the dimension of E, which is 1. he commutativity
of the diagram shows that A1 ×A2 has the same dimension as J, hence A2 has dimen-
sion 2, which proves (ii).
Finally, we prove (iii). Since I i is injective and s j is surjective, it suõces to prove

I i s i ζ3I js j = 0, that is, e i ζ3e j = 0.
Recall ζ3 = ρ∗, and by (3.2), we have ϕ∗ρ∗ = ρ∗ϕ∗. Hence we get

e1ζ3e1 = ϕ
∗
ϕ∗ρ∗ϕ

∗
ϕ∗ = ϕ

∗
ρ∗ϕ∗ϕ

∗
ϕ∗ = ϕ

∗
ρ∗[2]ϕ∗

= ϕ
∗
ϕ∗ρ∗[2] = 2e1ζ3 .
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In particular, we get e1ζ3e2 = 2e1ζ3 − 2e1ζ3 = 0.
We also have ρ∗ρ∗ = 1, so ζ3 = (ρ∗)−1. herefore, we also have

e1ζ3e1 = ϕ
∗
ϕ∗(ρ

∗)−1
ϕ
∗
ϕ∗ = ϕ

∗
ϕ∗ϕ

∗(ρ∗)−1
ϕ∗ = ϕ

∗[2](ρ∗)−1
ϕ∗

= [2](ρ∗)−1
ϕ
∗
ϕ∗ = 2ζ3e1 .

In particular, we get e2ζ3e1 = 2ζ3e1 −2ζ3e1 = 0. his proves Proposition 3.3with d = 2
in Lemma 3.1 (3). ∎

Remark 3.4 We did not need towrite A2 as the Jacobian of an explicit curve for our
work. However, for those who are interested, if C ∶ y3 = x4 + ax2 + 1 with a /= 0,−2, 2
in a ûeld of characteristic not 2 or 3, then a special case by Ritzenthaler and Romagny
[23,heorem 1.1] gives J ∼ E × Jac(H) with E as in Section 3.1 and

H ∶ −ay2 = (x2 + 2x − 2) ⋅ (x4 + 4x3 + (2a2 − 8) x − a2 + 4).

3.2 The Singular Cases

In the singular cases, by [14, heorem 1.1], we already have a bound p < 1
8B

10 under
the hypotheses ofheorem 2.2. However, we will see that we can do better.

In this section, we prove Proposition 3.3 in the singular cases of Lemma 3.1 (1)
and (2), where we will see that it holds with d = 1. In case (g) for g ∈ {1, 2}, let Ag
be the Jacobian of the smooth model Cg of the curve of geometric genus g listed in
Lemma 3.1 (g).

Since the curve C has CM, Proposition 4.2 in [5] applies, so the reduction C of a
stable model C of C is tree-like and the reduction J of its Jacobian J = Jac(C) is the
polarized product of the Jacobians of the irreducible components of C.

hen by [5, Corollary 4.3], the reduction of the stable model is a union of either
three smooth curves of genus 1 or a smooth curve of genus 1 and a smooth curve of
genus 2. By Lemma A.1 (see also Corollary A.2), one of these curves is isomorphic
to the curve Cg . We conclude that the reduction of the stable model is the union of
a copy of Cg and up to two additional smooth curves of total genus 3 − g. Let Ag
be the Jacobian of Cg and let A3−g be the polarized product of the Jacobians of those
additional curves, so

(3.3) J = A1 × A2

as principally polarized abelian varieties.
For i ∈ {1, 2}, let I i be the inclusion map of A i into J and let s i be the projection

map of J onto A i . Let e i = I i s i . hen we get s i I j = 0 if i /= j and s i I i = [d] with d = 1.
As (3.3) is an identity of principally polarized abelian varieties,we get e†1 = e1, e

†
2 = e2,

and e1 + e2 = [1]. he identities e2i = e i and e1e2 = e2e1 = 0 now follow from the
identities in terms of I i and s i , and the commutativity of the diagram follows from all
the given identities. his proves (i) and (ii).

Next we prove (iii). As I i is an injective map and s j is a surjective one, it suõces
to prove I i s i ζ3I js j = 0, that is, e i ζ3e j = 0. By the Néron mapping property, the auto-
morphism ρ of C uniquely extends to an automorphism of the stablemodel. And by
the explicit equations in Lemma 3.1, it also extends to an automorphism of order 3 of
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Cg . Let ζ3 denote not only ρ∗ on J , but also ρ∗ on Ag . hen we get sgζ3 = ζ3sg and
ζ3Ig = Igζ3. So we get

egζ3eg = Igsgζ3Igsg = Igsg Igsgζ3 = Igsgζ3 = ζ3Igsg = egζ3 = ζ3eg .

In particular, we get

egζ3e3−g = egζ3 − egζ3 = 0, and eg−3ζ3eg = ζ3eg − egζ3eg = 0.

his proves Proposition 3.3 in cases of Lemma 3.1 (1) and (2). Case (3) was done
in the previous section. ∎

4 Decomposition and Matrices

If a prime p does not divide 6 and does appear in the denominator of j(C), then
Section 3 shows that J is isogenous (via the isogeny F0) to a product of abelian varieties
A1 and A2 of lower dimension. We also got much information about the isogeny F0,
and how it behaves with respect to the third root of unity ζ3 = ρ∗ ∈ End(J) (see
Proposition 3.3).

In this section we show that if J has complex multiplication, then we can use an
element µ of the endomorphism ring of J to decompose A2 further.

Just the fact that A2 is decomposable is not enough. In order to have small and
explicit bounds in the end, it is crucial that we can compute the degree of the isogeny
A2 → A1 × A1 in terms of elements of O.

Suppose henceforth that we are in the situation of the hypotheses of themain the-
orem (heorem 2.2). In other words, we have End(JL) = O for an order O in a sextic
CM ûeld K, we have a totally real element µ ∈ Z + 2O/Z, an absolute Picard curve
invariant j, and a prime p of L lying over a rational prime p such that ordp( j(C)) < 0.

Suppose for now that p /= 2, 3.
We get ζ3 ∈ O (see Section 2.2) and hence K = K+(ζ3) for the totally real cubic

ûeld K+ of K.
Our goal is only to bound p, so without loss of generality we assume that all ele-

ments of End(JL) and the isomorphisms andmodels of Lemma 3.1 are deûned over L.

Remark 4.1 In [14], a µ is taken with µ2 ∈ K+ totally negative. In our situation, we
can switch between totally negative and totally positive µ2 by replacing µ by (2ζ3+1)µ,
and the proof remains roughly the same. To make the proof as simple as possible, we
will work with totally positive µ2, that is, totally real µ.

Let F0 = (I1 I2)∶A1 × A2 → J be the isogeny from Proposition 3.3 (ii), and let s i
and d also be as in that proposition. We get an embedding

ι0∶ End(J )⊗QÐ→ End(A1 × A2)⊗Q,

α z→ F
−1
0 αF0 =

1
d
(
s1

s2
) ○ α ○ (I1 I2) =

1
d
(
s1αI1 s1αI2
s2αI1 s2αI2

)

sending

(4.1) Z + 2O ⊂ Z + d End(J )Ð→ End(A1 × A2).
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Write

ι0(µ) =

⎛
⎜
⎜
⎝

x y

z w

⎞
⎟
⎟
⎠

,

where the size of a box re�ects the dimension of the domain and codomain of the
homomorphism. As µ ∈ Z + 2O, by (4.1) we get

x =
1
d
s1µI1 ∈ End(A1), y =

1
d
s1µI2 ∈ Hom(A2 ,A1),

z =
1
d
s2µI1 ∈ Hom(A1 ,A2), w =

1
d
s2µI2 ∈ End(A2).

Lemma 4.2 We have

ι0(2ζ3 + 1) =
⎛
⎜
⎜
⎝

r1 0

0 r2

⎞
⎟
⎟
⎠

,

where r i ∈ End(A i) satisfy r2i = −3.

Proof he oò-diagonal boxes are zero by the equalities s i ζ3I j = s i I j = 0 of Propo-
sition 3.3 (i, iii). his gives the shape of the matrix. As its square is −3, we get
r2i = −3. ∎

Lemma 4.3 he homomorphism

F1 =

⎛
⎜
⎜
⎝

1 0 0

0 z wz

⎞
⎟
⎟
⎠

∶A1 × A1 × A1 Ð→ A1 × A2

(P,Q , R)z→ (P, z(Q) +wz(R))

is an isogeny.

Proof It is necessary and suõcient to prove that the map A1 × A1 → A2 given by
(Q , R) ↦ z(Q) + zw(R) is an isogeny. But this is analogous to [14, Lemma 3.1], and
the proof is identical. We only use that µ does not have degree 1 or 2 over Q. ∎

Remark 4.4 An alternative choice of isogeny F1∶A
3
1 → A1 × A2 is obtained by re-

placing wz by z′ = 1
2 (zx + wz). Indeed, write µ = i + 2 j with i ∈ {0, 1} and j ∈ O.

hen we get 1
2 (µ

2 − i) = 2( j2 − i j) ∈ 2O. As z′ is the lower le� entry of ι0( 1
2 (µ

2 − i)),
it is in Hom(A1 ,A2). hen instead of F1 use

⎛
⎜
⎜
⎝

1 0 0

0 z z′

⎞
⎟
⎟
⎠

∶A1 × A1 × A1 Ð→ A1 × A2

(P,Q , R)z→ (P, z(Q) + z
′(R)).
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his gives a bound in the end whose valuation at 2 is better, but still non-optimal. As
it makes the formulas more complicated,wewill not consider it further in this article,
but we give this choice as an option in our SageMath implementation.

Let R = End(A1) and B = R ⊗ Q. We get an isogeny F = F0F1 and ring
homomorphisms

ι1∶ End(A1 × A2)Ð→M3×3(B)

f z→ F
−1
1 f F1 ,

and

ι = ι1 ○ ι0∶ End(J )Ð→M3×3(B),

α z→ F
−1
αF .

Take n ∈ Z>0 such that

(4.2) [n]ker(F1) = 0.

In (7.2) below, we will take a speciûc n.

5 Using Commutativity to Get Matrices Over a Field

In this section we use the fact that we have an explicit ζ3 that commutes with µ in
order to ûnd that the entries of the 3 × 3 matrix ι(µ) from Section 4 all lie in the
same quadratic ûeld. In the proof of the previous bounds ([10] for g = 2 and [5, 14]
for g = 3), we had no such ζ3; the proof that the entries were in a quadratic ûeld
was based instead on the fact that “small” elements of large-discriminant quaternion
algebras commute, hence that argument worked only for very large primes. Because
of our explicit decomposition, our proof is much simpler and our results are much
sharper.

We also get various relations between the entries, which we use in Section 7 to
bound the entries.

Lemma 5.1 Let µ and ι be as in Section 4, let R = End(A1), and let n be as in (4.2).
(i) For every α ∈ Z+ 2O, the entries of the 3× 3 matrix ι(α) are in 1

nR, and the entries

of the top row are in R.

(ii) We have

ι(µ) =
⎛
⎜
⎝

x a b

1 0 e
0 1 f

⎞
⎟
⎠

with x, a, b, ne, n f ∈ R.

(iii) We have

ι(2ζ3 + 1) =
⎛
⎜
⎝

r1 0 0
0 s t

0 u v

⎞
⎟
⎠

with r1, ns, nt, nu, nv ∈ R, and r31 = −3.
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Proof Let G∶A1 × A2 → A1 × A1 × A1 be the isogeny satisfying GF1 = [n] that exists
because of (4.2). hen we have

F1 =

⎛
⎜
⎜
⎝

1 0 0

0 z wz

⎞
⎟
⎟
⎠

and F
−1
1 =

1
n
G =

1
n

⎛
⎜
⎜
⎝

n 0
0 g1

0 g2

⎞
⎟
⎟
⎠

for some g i ∶A2 → A1 satisfying 1
n (

g1
g2
)(z,wz) = ( 1

0
0
1 ).

For i , j ∈ {1, 2}, the (i , j)-entry of ι0(α) is in Hom(A j ,A i). Now because of the
shape of F1 and F

−1
1 , thematrix ι(α) = F−1

1 ι0(α)F1 has entries in 1
nR with the entries

of the top row in R. his proves (i).
For (ii), we now only need to compute the lower le� 2 × 2 block, so

ι(µ) = F−1
1 ι0(µ)F1 =

1
n

⎛
⎜
⎜
⎝

∗ ∗
0 g1

0 g2

⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎝

∗ ∗

z w

⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎝

1 0 ∗

0 z ∗

⎞
⎟
⎟
⎠

=
⎛
⎜
⎝

∗ ∗ ∗
1 0 ∗
0 1 ∗

⎞
⎟
⎠
.

For (iii), we note that by Lemma 4.2 we are multiplying block-diagonal matrices as
follows:

ι(2ζ3 + 1) = F−1
1 ι0(2ζ3 + 1)F1 =

⎛
⎜
⎝

1 0
0 ∗
0 ∗

⎞
⎟
⎠

⎛
⎜
⎜
⎝

r1 0

0 ∗

⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎝

1 0 0

0 ∗ ∗

⎞
⎟
⎟
⎠

=
⎛
⎜
⎝

r1 0 0
0 ∗ ∗
0 ∗ ∗

⎞
⎟
⎠
.

∎

Remark 5.2 Lemma 5.1 (ii) and its proof are analogous to Lemma 3.2 of [14] and
its proof.

he following lemma is one of the things that distinguishes our proof from the
proofs of earlier denominator bounds. It shows that all entries of the matrices in
Lemma 5.1 commute. Contrary to the previous bounds, it shows this without assum-
ing that small elements in large-discriminant quaternion rings commute, and hence
without assuming that p is large.

Lemma 5.3 In the notation of Lemma 5.1,we have v = s = r1 and u = t = 0. Moreover,

all of x, a, b, e, f , and all entries of ι(α) for all α ∈ K are in Q(r1).

Proof As thematrices ι(µ) and ι(2ζ3 + 1) commute, we have

⎛
⎜
⎝

r1x r1a r1b

s t se + t f

u v ue + v f

⎞
⎟
⎠
=
⎛
⎜
⎝

xr1 as + bu at + bv
r1 eu ev

0 s + f u t + f v

⎞
⎟
⎠
.
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We immediately read oò s = r1 and u = 0, and once we use u = 0, we also get t = 0
and v = s. Now ι(2ζ3 + 1) is r1 times the identity matrix, hence the fact that the two
matrices commute implies that all entries of the matrices commute with r1. As r1 is
not in Q, this implies that these entries are in the quadratic ûeld Q(r1). Finally, as µ

and 2ζ3 + 1 generate the ûeld K, we get that all entries of ι(α) are in Q(r1). ∎

In the rest of this section,we express b, e, and f in terms of x, a, and the coeõcients
of theminimal polynomial of µ.
As µ is a cubic integral overZ,wehave µ3−t1µ

2+a1µ−N = 0,where t1 = trK+/Q(µ),
N = NK+/Q(µ), and a1 are in Z and depend only on µ.

Lemma 5.4 We have

f = t1 − x , e = −(a1 + x
2 + a − t1x),

b = N − (x3 − t1x
2 + 2xa + a1x − t1a).

Proof As ι is a ring homomorphism, we ûnd that thematrix

M = ι(µ)3 − t1 ι(µ)
2 + a1 ι(µ) − NId3×3

is the zero matrix, where Id3×3 is the 3 × 3 identity matrix.
As the entries of ι(µ) are given explicitly in terms of x , a, b, e , f in a ûeldQ(r1),we

can easily computeM in terms of these quantities and t1 , a1 ,N . he le�most column
is exactly

⎛

⎝

x3 − t1x
2 + (2a + a1) x − t1a + b − N

x2 − t1x + a + e + a1
x + f − t1

⎞

⎠
,

which proves the result. ∎

6 Tangent Spaces and Primitive CM Types

As in (4.2), let n ∈ Z>0 be such that [n]ker(F1) = 0. In this section, we prove the
following proposition implying that in order to bound p, it suõces to ûnd a small n.
In (7.2) below, we choose a speciûc n.

Proposition 6.1 For C and p as in the hypotheses ofheorem 2.2, let n ∈ Z>0 be such

that [n]ker(F1) = 0. hen p ≤ 3 or p ∣ n.

Proof Suppose p ∤ 6n. We claim that primitivity of the CM type implies that the
matrix ι(2ζ3 + 1) has two distinct eigenvalues.

Note that having two distinct eigenvalues contradicts the ûrst statement of
Lemma 5.3,whichwas the equality ι(2ζ3+1) = r1Id3×3. In particular, the result follows
once we prove the claim.

he idea behind the claim is as follows. Note thatprimitivity of theCM type implies
that the action of 2ζ3+1 on the tangent space of J has two distinct eigenvalues. If p does
not divide 6n, then these two eigenvalues induce distinct eigenvalues for the action
on the tangent space of J via F and [2n]F−1. his proves the claim.
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In more detail, the proof of the claim is the same as the proof of [14, Proposition
5] with δ = 3 and

√
−δ = 2ζ3 + 1, except for the following changes.

● We use F as above andwe use A1 instead of E, and 2n instead of n. LetG = [2n]F−1.
● Instead of [14, Proposition 4.1], use Lemma 5.3; so in particular the condition p >

1
8B

10 is not needed.
● he reductions of ±

√
−δ are distinct aswe have p ∤ 2δ = 6. his also does not need

any additional bounds on p.
● he invertibility of 2n modulo p follows from our assumption p ∤ 6n and also does

not need additional bounds on p. ∎

7 Using the Polarization to Get Bounds

By Proposition 6.1, it now suõces to ûnd a suõciently well-bounded n ∈ Z>0 with
[n]ker(F1) = 0. In this section, we do exactly this, using the polarization that C
induces on A3

1 via F1. he key here is that we constructed F1 very explicitly, and that
polarizations give rise to positive deûnite matrices. Compared to [14], our matrices
are a bit simpler, since in our situation we are able to prove that the entries are in a
ûeld, where [14] needs the bounds in order to prove exactly that.

Let λ = F∨λCF be the polarization induced on A3
1 by the polarization λC of J . We

identify A1 with its dual via the natural polarization λA1 , which we sometimes leave
out from the notation. hen λ can be viewed as an endomorphism of A3

1 , and the
following result gives it as amatrix.

Lemma 7.1 ([14, Lemma 4.3]) We have

λ =
⎛
⎜
⎝

m 0 0
0 α β

0 β∨ γ

⎞
⎟
⎠
.

with m, α, γ ∈ Z>0, and β ∈ R with αγ − ββ∨ > 0. Moreover, we have m ∣ 2.

Proof Recall from just above the statement of the lemma that λ is deûned as a ho-
momorphism A3

1 → (A∨1 )
3 by λ = F∨λCF, and as an endomorphism of A3

1 by λ =
(λ−1

A1
× λ−1

A1
× λ−1

A1
)F∨λCF. he symmetry of λ now follows from the symmetry of λC

[22, (3), p. 190].
We now prove that the oò-diagonal entries of the ûrst row and column of λ are

zero. Since F = F0F1, we write

λ = diag(λ−1
A1
, λ−1
A1
, λ−1
A1
)F∨1 (I1 I2)

∨
λC(I1 I2)F1 , where F∨1 =

⎛
⎜
⎜
⎝

1 0
0 z∨

0 z∨w∨

⎞
⎟
⎟
⎠

.

To see that four entries are zero, we only look at the oò-diagonal entries of the ûrst
row. his suõces by symmetry. By Proposition 3.3 (i), we get e∨1 λC e2 = λC e

†
1 e2 =
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λC e1e2 = 0. As e i = I i s i and s i is surjective, we get I∨1 λC I2 = 0. herefore we have

(I1 I2)
∨
λC(I1 I2) =

⎛
⎜
⎜
⎝

∗ 0

∗ ∗

⎞
⎟
⎟
⎠

,

and hence the oò-diagonal entries of the ûrst row of λ are zero.
From the ûnal paragraph ofMumford [22, Application III, p. 210], we get that λ is

positive deûnite, hence m, α, γ, αγ − ββ∨ > 0.
It remains only to prove m ∣ 2. We have m = I∨1 λC I

,
1 since we deûned m to be the

ûrst diagonal entry of (I1 I2)∨λC(I1 I2).
Recall that by Proposition 3.3 (i) we have e1 = e

†
1 . his implies e1 = λ−1

C e
∨

1 λC
and by e1 = I1s1, we get I1s1 = λ−1

C s∨1 I
∨

1 λC . herefore, we have λC I1s1I1 = s∨1 I
∨

1 λC I1,
hence λC I1[d] = s∨1 I

∨

1 λC I1. Since λC is an isomorphism and I1 is injective, we get that
ker(s∨1 I

∨

1 λC I1) = A1[d]. Hence, ker(I∨1 λC I1) ⊆ A1[d], and we know that m = I∨1 λC I1
is a positive integer. So we ûnally get m = 1 or 2. ∎

Since µ ∈ K+, it equals its complex conjugate µ. Moreover, (analogously to [5,
Proposition 4.8]), we have for every η ∈ K,

λ
−1
ι(η)∨λ = (F∨λCF)

−1(F−1
ηF)∨F∨λCF

= F−1
λ
−1
C η

∨
λCF = ι(η†) = ι(η).

Hence ι(µ)∨λ = λι(µ), so that

⎛
⎜
⎝

mx∨ α β

ma∨ β∨ γ

mb∨ e∨α + f ∨β∨ e∨β + f ∨γ

⎞
⎟
⎠
=
⎛
⎜
⎝

mx ma mb

α β αe + β f
β∨ γ β∨e + γ f

⎞
⎟
⎠
.

his tells us that

(7.1) α = ma, hence a ∈ Q>0 ∩R = Z>0 ,

β
∨ = β = mb,

x = x
∨ , hence x ∈ Z,

γ = αe + β f .

Combining this with Lemma 5.4, we ûnd explicit expressions for all entries of ι(µ)
and λ in terms of x, a, m, and the coeõcients of the minimal polynomial of µ. In
particular, these entries are all in Z.

Let

(7.2) n = αγ − ββ∨ = m(aγ −mb
2) ∈ mZ.

hen Lemma 7.1 and the deûnition of λ give

⎛
⎜
⎝

n/m 0 0
0 γ −β
0 −β∨ α

⎞
⎟
⎠
F
∨
λCF = [n],
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so that in particular the condition [n]ker(F) = 0 from (4.2) is satisûed. We have
already expressed α, γ, and β in terms of x, a, m, and the coeõcients of theminimal
polynomial of µ. As m is 1 or 2, it suõces to bound x and a in order to bound n.
As the 3×3matrix ι(µ2) overQ satisûes the (cubic)minimal polynomial of µ2 over

Q,we ûnd that its (matrix) trace is the trace of µ2 from K+ toQ,which is t2 ∶= t21 −2a1.
We get

t2 = x
2 + 2a + 2e + f 2

= x
2 + 2a +

2
α
γ −

2
α
β f + f 2

= x
2 + 2a +

2
α
γ − (

β

α
)

2
+ (

β

α
− f )

2

= x
2 + 2a +

γ

α
+

n

α2 + (
β

α
− f )

2
(7.3)

≥ x
2 + 2a.

In particular, we get

(7.4) ∣x∣ ≤
√

t2 and 0 < a ≤
1
2
(t2 − x

2).

Moreover, by (7.3), we get n ≤ t2α
2 and 2a ≤ t2. hen by (7.1), we obtain n ≤ t2α

2 ≤
t2m

2a2 ≤ t32 as m ∣ 2. By Proposition 6.1, we have p ≤ 3 or p ∣ n. Hence we get the
bound p ≤ max{3, t32}.

Lemma 7.2 Let µ be a totally real cubic algebraic integer, and let t2 be the trace of µ
2.

hen we have t2 ≥ 2.

Proof Let a, b, c be the images of µ under the three embeddings into R. hen t2 =
a2 + b2 + c2 ∈ Z. Suppose t2 < 2. hen t2 ≤ 1 and a2, b2, c2 > 0. Hence ∣a∣, ∣b∣,
∣c∣ ∈ (0, 1); so we get ∣abc∣ ∈ (0, 1). On the other hand, we have ∣abc∣ = ∣N(µ)∣ ∈ Z,
which is a contradiction. ∎

Proof of the first inequality in Theorem 2.2 As stated above,weproved the inequal-
ity p ≤ max{3, t32} under the hypotheses of heorem 2.2. As Lemma 7.2 gives t32 ≥
23 > 3, we get p ≤ t32 . ∎

8 Intrinsic Bounds From Geometry of Numbers

At the end of Section 7, we ûnished the proof of the ûrst inequality in heorem 2.2:
p ≤ trK+/Q(µ2)3. Next we show that there exists an element µ for which this right-
hand side is explicitly bounded in terms of the discriminant of K+, and hence we
prove the rest ofheorem 2.2.

Let {σ1, σ2, σ3} be the set of the real embeddings of K+. his gives us the map
σ ∶K+ → R3 by sending y to (σi(y))i . he order Z + 2O+ ⊂ K+ is a lattice of co-
volume 23−1∣∆(O+)∣

1/2 in R3. Let R = 4π−1/2∣∆(O+)∣
1/4 + є for some є > 0.

We choose a symmetric convex body in R3:

CR = {x ∈ R3 ∶ ∣x1∣ < 1, x2
2 + x

2
3 < R

2} .
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We then have vol(CR) = 2πR2 > 32∣∆(O+)∣
1/2 = 23covol(Z + 2O+). By Minkowski’s

ûrst convex body theorem [24,heorem 10], there is a non-zero µ ∈ (Z + 2O+) ∩ CR .
Note that µ generates K+. If µ ∈ Q, then µ ∈ Z. But ∣µ∣ < 1, so we get µ = 0, which
is a contradiction. hen we get trK+/Q(µ

2) = ∑i σi(µ
2) ≤ (1 + R2). Since µ is an

algebraic integer in K+, we have trK+/Q(µ
2) ∈ Z. So when we let є tend to 0, we get

t2 = trK+/Q(µ
2) ≤ (1 + 16

π ∣∆(O+)∣
1/2).

Since p ≤ t32 and ∣∆(O+)∣ ≥ 2,we get p ≤ (1+ 16
π ∣∆(O+)∣

1/2)3 < 196∣∆(O+)∣
3/2. his

ûnishes the proof ofheorem 2.2. ∎

9 Computing the Set of Primes

From the proof ofheorem 2.2, we get much more than just a bound on p as follows.
Take a totally real µ ∈ Z + 2O. hen list all a and x satisfying the bounds of (7.4) and
all m ∈ {1, 2}. For each, compute n = n(µ, a, x) using (7.1) and (7.2). hen let Nµ be
the product of the numbers n(µ, a, x). hen p divides 6Nµ by Proposition 6.1. his
is already much better than just a bound on p.

However,we can do even better. For each µ, a, x ,m,we get aQ-algebra homomor-
phism ι∶K →M3×3(Q(ζ3)) (given on generators in Lemma 5.1, coeõcients inQ(ζ3)
by Lemma 5.3, and r21 = −3). We know by Lemmas 5.1 and 5.3 that all elements of the
image of Z + 2O are matrices with entries in 1

nZ[ζ3], with the entries of the top row
in Z[ζ3]. So we compute a Z-basis of Z + 2O and throw away all triples (x , a,m) for
which an element of this basis maps to a matrix that does not satisfy the integrality
condition. We also throw away all triples (x , a, n) for which one of α, β, γ is non-
integral or for which γ or n is non-positive. Bymaking the set of pairs (x , a) smaller
in this way, the product Nµ of the numbers n(µ, a, x) becomes much smaller.

We implemented the computation of Nµ in SageMath [26] and made the imple-
mentation available online [15].

heorem 9.1 LetC be aPicard curve of genus 3 over a number ûeld L and suppose that

the endomorphism ring End(JL) of J = Jac(C) over the algebraic closure is isomorphic

to an order O of a number ûeld K of degree 6.
Let K+ be the real cubic subûeld of K andO+ = K+∩O. Let µ be a totally real element

in Z + 2O+ such that K = Q(µ)(ζ3).
Let j = u/bℓ be an absolute Picard curve invariant. Let p be a prime of OL lying

over a rational prime p. If ordp( j(C)) < 0, then p divides the number 6Nµ for Nµ as

described in the preceding paragraphs.

Conjecture 9.2 here are constants s, e ∈ Q>0 such that the following holds. Let

j = u/bℓ be an absolute Picard curve invariant.
Let O be an order in a sextic CM ûeld. Let CMK be the set of isomorphism classes

of Picard curves C over Q of genus 3 with End(JQ) isomorphic to O. Let Nµ be as in

heorem 9.1.
hen for all non-archimedean valuations v ofQ, we have

(9.1) ∑
C∈CMK

max{0, v( j(C))} ≤ ℓ(v(s) + e ⋅ v(Nµ)).

Primes Dividing Invariants of CM Picard Curves 497

https://doi.org/10.4153/S0008414X18000111 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X18000111


Remark 9.3 In fact, the examples in Section 10 suggest that when K/Q is Galois,
the constant e = 1/3 suõces. he numerology supporting the factor 1/3 is that K

has three CM types up to complex conjugation which are all equivalent, so that every
curve should be counted three times, but is only counted once in the le�-hand side
of (9.1).

To prove the conjecture, one would need to retrace our proof, but working over
prime-power quotients of OL instead of over the ûeld OL/p. Once the conjecture is
proved, our implementation of Nµ , together with an interval-arithmetic-version of
Lario–Somoza [18], would give a proven algorithm for computing CM Picard curves
andPicard class polynomials. In particular, itwould prove the conjecturedCM curves
of Koike–Weng [16] and Lario–Somoza [18].

10 Examples

Finally,we take a few example curves and compare our boundswith previous bounds,
and compare our invariants with previous choices.

Given a Picard curve C, let den1 and den3 be the denominators of the absolute
invariants j1(C) = (a3/b2)(C) and j3(C) = (c3/b4)(C), respectively. henwe deûne
the absolute denominator babs of C by

babs = ∏
p∣den1 ⋅ den3

p
max{vp(den1)/2,vp(den3)/4}

=∏
p

p
vp(b)− 1

4 min{6vp(a),4vp(b),3vp(c)} .

heorem9.1 tells us that all primes dividing b4
abs divide 6Nµ . In fact, Conjecture 9.2

implies that babs divides sN e
µ .

We deûne the absolute denominator aabs of theKoike–Weng invariants j′1 = b
2/a3

and j′2 = c/a
2 in the sameway. In otherwords, let den′1 and den

′

2 be the denominators
of j′1(C) and j′2(C), respectively. hen we deûne

aabs = ∏
p∣den′1 ⋅ den

′

2

p
max{vp(den′1)/3,vp(den′2)/2} .

Let ∆ be the discriminant invariant (2.3), which has weight 12. We deûne the
invariants

i1 =
a6

∆
, i2 =

a3b2

∆
, i3 =

a4c

∆
, i4 =

b4

∆
, i5 =

c3

∆
,

denoted j∗ in [14]. Let ∆abs denote the least common multiple of the denominators
of i1(C), i4(C), and i5(C) (equivalently, of all i∗(C)).

Let B = min{trK+/Q(αα) ∶ α ∈ OK/{0}, α = −α}. So, as conjectured
[14, Remark 1.6] that primes p of bad reduction are < 1

8B
10 and in the case where

K/Q is cyclic and C has CM byOK , it follows from [13, Proposition 4.1] that p has ex-
actly one or three prime factors inOK . henumber of such primes below this bound is
roughly 1

16B
10/ log( 1

8B
10) by the prime number theorem and the Chebotarev density

theorem. he product of them will therefore have a number of digits that is compa-
rable to B10 itself.
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Example 1 For the ûeld K+ = Q(α) = Q[x]/(x3 − x2 − 2x + 1), let K = K+(ζ3).
hen there is exactly one curvewith primitive CM by themaximal orderOK of K. See
[16, 6.1(2)] and [18, 4.1.2] for a conjectural model. Its invariants are

● i1 =
74

26 , i2 =
−72
23 , i3 =

−73
28 ,

● ∆abs = 212 ≈ 4.1 ⋅ 103, 1
8B

10 ≈ 7.2 ⋅ 1010,
● j′1 =

−23
72 , j

′

2 =
−1
22 ⋅7 , aabs = (23 ⋅ 72)

1
2 ≈ 7.31861142004594,

● j1 =
−72
23 , j2 =

7
25 , babs = 23 ≈ 8,

● N−2α2+3 = (228 ⋅ 7 ⋅ 13)3 ≈ (2.4 ⋅ 1010)3.

Example 2 For the ûeldK+ = Q(α) = Q[x]/(x3−x2−4x−1), let K = K+(ζ3). hen
there is exactly one curve with primitive CM by OK . See [16, 6.1(3)] and [18, 4.1.3] for
a conjectural model. Its invariants are

● i1 =
(76 ⋅13)2

(2⋅5)6 , i2 =
−76 ⋅13⋅472

23 ⋅54 , i3 = −78 ⋅132 ⋅31
(22 ⋅5)4 ,

● ∆abs = (22 ⋅ 5)6 ≈ 6.4 ⋅ 107, 1
8B

10 ≈ 2.6 ⋅ 1013,
● j′1 =

−23 ⋅52 ⋅472
76 ⋅13 , j′2 =

−52 ⋅31
(2⋅72)2 , aabs = (23 ⋅ 76 ⋅ 13)

1
2 ≈ 2.3 ⋅ 102,

● j1 =
−76 ⋅13

23 ⋅52 ⋅472 , j2 =
72 ⋅13⋅31
25 ⋅472 , babs = 23 ⋅ 5 ⋅ 47 ≈ 1.9 ⋅ 103,

● N−2α2+2α+5 = (251 ⋅ 56 ⋅ 13 ⋅ 31 ⋅ 47)3 ≈ (6.7 ⋅ 1023)3.

Example 3 For the ûeldK+ = Q(α) = Q[x]/(x3+x2−10x−8), letK = K+(ζ3). hen
there is exactly one curve with primitive CM byOK . See [16, 6.1(4)] and [18, 4.1.4] for
a conjectural model. Its invariants are

● i1 =
(73 ⋅31⋅733)2

(23 ⋅23)6 , i2 = −2⋅73 ⋅31⋅472 ⋅733
236 , i3 = −75 ⋅312 ⋅734

⋅11593
(210 ⋅233)2 ,

● ∆abs = (24 ⋅ 23)6 ≈ 2.5 ⋅ 1015, 1
8B

10 ≈ 1.2 ⋅ 1017,
● j′1 =

−219
⋅472

73 ⋅31⋅733 , j
′

2 =
−11593
22 ⋅7⋅732 , aabs = (23 ⋅ 73 ⋅ 31 ⋅ 733)

1
2 ≈ 3.2 ⋅ 103,

● j1 =
−73 ⋅31⋅733
219 ⋅472 , j2 = 72 ⋅31⋅73⋅11593

221 ⋅472 , babs = 211 ⋅ 47 ≈ 9.6 ⋅ 104,
● N−α2+α+7 = (2205 ⋅ 232 ⋅ 292 ⋅ 31 ⋅ 472 ⋅ 612 ⋅ 89 ⋅ 101 ⋅ 139)3 ≈ (7.3 ⋅ 1081)3.

Example 4 For the ûeld K+ = Q(α) = Q[x]/(x3 − x2 − 14x − 8), let K = K+(ζ3).
hen there is exactly one curve with primitive CM by OK . A conjectural model is
given in [16, 6.1(5)] and [18, 4.1.5]. Its invariants are

● i1 =
(73 ⋅432 ⋅2233)2

(24 ⋅11⋅47)6 , i2 = −73 ⋅412 ⋅432 ⋅592 ⋅2233
213 ⋅114 ⋅476 , i3 = −74

⋅433 ⋅2234
⋅419⋅431

(213 ⋅112 ⋅473)2 ,
● ∆abs = (25 ⋅ 11 ⋅ 47)6 ≈ 2.1 ⋅ 1025, 1

8B
10 ≈ 3.1 ⋅ 1018,

● j′1 =
−211

⋅112 ⋅412 ⋅592
73 ⋅432 ⋅2233 , j′2 =

−112 ⋅419⋅431
22 ⋅72 ⋅43⋅2232 , aabs = (23 ⋅ 73 ⋅ 432 ⋅ 2233)

1
2 ≈ 3.8 ⋅ 104,

● j1 =
−73 ⋅432 ⋅2233
211 ⋅112 ⋅412 ⋅592 , j2 =

7⋅43⋅223⋅419⋅431
213 ⋅412 ⋅592 , babs = 27 ⋅ 11 ⋅ 41 ⋅ 59 ≈ 3.4 ⋅ 106,

● N−2α+1 = (2288 ⋅ 119 ⋅ 413 ⋅ 43 ⋅ 472 ⋅ 593 ⋅ 97 ⋅ 131 ⋅ 173 ⋅ 211 ⋅ 223 ⋅ 269)3 ≈ (4.4 ⋅ 10124)3.

Example 5 For the ûeld K+ = Q(α) = Q[x]/(x3 − 21x − 28), let K = K+(ζ3). hen
there is exactly one curve with primitive CM by OK . A conjectural model is given in
[18, 4.2.1.1]. Its invariants are
● i1 =

−39
⋅512 ⋅74

218 , i2 = 33 ⋅56 ⋅72 ⋅712
23 , i3 = 37 ⋅59 ⋅73 ⋅2621

220 ,
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● ∆abs = (28 ⋅ 3)3 ≈ 4.5 ⋅ 108, 1
8B

10 ≈ 2.1 ⋅ 1015,
● j′1 =

−215
⋅712

(33 ⋅53 ⋅7)2 , j
′

2 =
−2621

22 ⋅32 ⋅53 ⋅7 , aabs = (23 ⋅ 36 ⋅ 56 ⋅ 72)
1
2 ≈ 1.6 ⋅ 103,

● j1 =
−(33 ⋅53 ⋅7)2

215 ⋅712 , j2 = 34
⋅53 ⋅7⋅2621
217 ⋅712 , babs = 29 ⋅ 71 ≈ 3.6 ⋅ 104,

● N2α = 2433 ⋅ 355 ⋅ 711 ⋅ 313 ⋅ 473 ⋅ 593 ⋅ 613 ⋅ 713 ⋅ 1733 ≈ (1.3 ⋅ 1066)3.

Example 6 For the ûeld K+ = Q(α) = Q[x]/(x3 − 21x − 35), let K = K+(ζ3). hen
there is exactly one curve with primitive CM by OK . A conjectural model is given in
[18, 4.2.1.2]. Its invariants are

● i1 =
−212

⋅39
⋅74
⋅376

(5⋅11⋅23)6 , i2 = 26 ⋅33 ⋅72 ⋅373 ⋅1492 ⋅2572
(52 ⋅113 ⋅233)2 , i3 = 29

⋅37 ⋅73 ⋅374
⋅2683

(52 ⋅113 ⋅233)2 ,
● ∆abs = (3 ⋅ 52 ⋅ 112 ⋅ 232)3 ≈ 1.1 ⋅ 1020, 1

8B
10 ≈ 2.1 ⋅ 1015,

● j′1 =
−(5⋅149⋅257)2

26 ⋅36 ⋅72 ⋅373 , j
′

2 =
−52 ⋅2683
23 ⋅32 ⋅7⋅372 , aabs = (26 ⋅ 36 ⋅ 72 ⋅ 373)

1
2 ≈ 4.9 ⋅ 103,

● j1 =
−26 ⋅36 ⋅72 ⋅373
(5⋅149⋅257)2 , j2 =

23 ⋅34
⋅7⋅37⋅2683

(149⋅257)2 , babs = 5 ⋅ 149 ⋅ 257 ≈ 1.9 ⋅ 105,

● N−2α2+4α+28 = 2245 ⋅ 358 ⋅ 536 ⋅ 78 ⋅ 1112 ⋅ 236 ⋅ 713 ⋅ 1493 ⋅ 2573 ≈ (5.9 ⋅ 1057)3.

Example 7 For the ûeld K+ = Q(α) = Q[x]/(x3 − 39x − 26), let K = K+(ζ3). hen
there is exactly one curve with primitive CM by OK . A conjectural model is given in
[18, 4.2.1.3]. Its invariants are

● i1 =
−39

⋅512 ⋅76 ⋅116 ⋅132
(25 ⋅29)6 , i2 = 33 ⋅56 ⋅73 ⋅115 ⋅13⋅592 ⋅1492

219 ⋅296 , i3 = 37 ⋅59 ⋅75 ⋅114 ⋅132 ⋅17⋅17669
(216 ⋅293)2 ,

● ∆abs = (212 ⋅ 3 ⋅ 292)3 ≈ 1.1 ⋅ 1021, 1
8B

10 ≈ 1. ⋅ 1018,
● j′1 =

−211
⋅592 ⋅1492

36 ⋅56 ⋅73 ⋅11⋅13 , j
′

2 =
−17⋅17669

22 ⋅32 ⋅53 ⋅7⋅112 , aabs = (23 ⋅ 36 ⋅ 56 ⋅ 73 ⋅ 113 ⋅ 13)
1
2 ≈ 8.1 ⋅ 104,

● j1 =
−36 ⋅56 ⋅73 ⋅11⋅13
211 ⋅592 ⋅1492 , j2 =

34
⋅53 ⋅72 ⋅13⋅17⋅17669
213 ⋅11⋅592 ⋅1492 , babs = 27 ⋅ 11 ⋅ 59 ⋅ 149 ≈ 1.2 ⋅ 107,

● N
−

1
2 α

2+ 3
2 α+13 = 2921 ⋅ 3100 ⋅ 1121 ⋅ 138 ⋅ 296 ⋅ 533 ⋅ 596 ⋅ 1093 ⋅ 1133 ⋅ 1496 ⋅ 2333 ⋅ 3593 ⋅ 4673 ⋅

5413 ⋅ 5773 ≈ (2. ⋅ 10148)3.

Example 8 For the ûeld K+ = Q(α) = Q[x]/(x3 − 61x − 183), let K = K+(ζ3).
hen there are exactly four curves with primitive CM by OK . Conjectural models are
given in [18, 4.3.1 (corrected with respect to arXiv version 1)]. Let H j1 = HOK ,1 and
Ĥ j1 , j2 = ĤOK ,2 be the polynomials as in (2.4)–(2.5), and let H j′1 and H i1 be deûned as
in (2.4), but with the invariants j′1 and i1 instead of j1. hese polynomials are numer-
ically approximable with the methods of Koike–Weng [16] and Lario–Somoza [18]
and satisfy H j1( j1(C)) = 0 and j2(C) = Ĥ j1 , j2( j1(C))/H

′

j1( j1(C)) (see [9]). hen
the denominators of these polynomials are

● den(H j1) = 23 ⋅ 339 ⋅ 112 ⋅ 232 ⋅ 412 ⋅ 534 ⋅ 892 ⋅ 1132 ⋅ 1492 ⋅ 1912 ≈ 2.3 ⋅ 1051

den(Ĥ j1 , j2) = 25 ⋅ 339 ⋅ 113 ⋅ 232 ⋅ 412 ⋅ 534 ⋅ 892 ⋅ 1132 ⋅ 1492 ⋅ 1912 ≈ 9.9 ⋅ 1052,
● den(H j′1) = 218 ⋅ 712 ⋅ 11 ⋅ 612 ⋅ 12893 ⋅ 65513 ⋅ 207073 ≈ 7.9 ⋅ 1053,
● den(H i1) = (22 ⋅ 39 ⋅ 116 ⋅ 234 ⋅ 532 ⋅ 1312)3 ≈ 6.7 ⋅ 1072,
● N−4α2+18α+163 = (2235 ⋅ 3148 ⋅ 1112 ⋅ 236 ⋅ 373 ⋅ 413 ⋅ 533 ⋅ 61 ⋅ 89 ⋅ 113 ⋅ 131 ⋅ 149 ⋅ 191 ⋅ 367 ⋅

613 ⋅ 643 ⋅ 733 ⋅ 907)3 ≈ (1.2 ⋅ 10203)3.
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Example 9 For the ûeld K+ = Q(α) = Q[x]/(x3 − x2 − 22x − 5), let K = K+(ζ3).
hen there are exactly four curves with primitive CM by OK . See [18, 4.3.2] for con-
jectural models. In the notation of Example 8, we have
● den(H j1) = (26 ⋅ 315 ⋅ 54 ⋅ 89 ⋅ 137 ⋅ 149 ⋅ 179 ⋅ 269)2 ≈ 2.5 ⋅ 1045

den(Ĥ j1 , j2) = (26 ⋅ 315 ⋅ 53 ⋅ 89 ⋅ 137 ⋅ 149 ⋅ 179 ⋅ 269)2 ≈ 1. ⋅ 1044,
● den(H j′1) = 712 ⋅ 533 ⋅ 67 ⋅ 1073 ⋅ 1793 ⋅ 30290173 ≈ 2.7 ⋅ 1049,
● den(H i1) = (24 ⋅ 35 ⋅ 54 ⋅ 53 ⋅ 59 ⋅ 107)6 ≈ 2.9 ⋅ 1071,
● N

−
2
3 α

2+ 29
3
= (2253 ⋅ 3155 ⋅ 532 ⋅ 432 ⋅ 533 ⋅ 592 ⋅ 67 ⋅ 892 ⋅ 107 ⋅ 109 ⋅ 137 ⋅ 149 ⋅ 1792 ⋅ 223 ⋅

241 ⋅ 263 ⋅ 269 ⋅ 397 ⋅ 643 ⋅ 997 ⋅ 1087)3 ≈ (1.2 ⋅ 10224)3.

Remark 10.1 Notice that the sizes of the denominators of the absolute invariants
j1 and j2 of Section 2.3 are similar to the denominators of the Koike–Weng invari-
ants andmuch smaller than the denominators of the invariants deûned by using the
discriminant. heorem 1.3 in [14] suggests a bound for the primes appearing in the
discriminant,whilewe do not have a bound at all for the primes in the denominator of
theKoike–Weng invariants. hat the primes in the denominators of theKoike–Weng
invariants are small, and even smaller than those for our invariants, is amystery that
needs further research.
For our absolute invariants, we have the best bound. Hence among the three kind

of invariants, the more suitable ones for constructing Picard curves with CM by a
given order O are the absolute invariants j1 and j2.

A A Lemma About Components of Bad Reduction

Most of this appendix is an edited copy of an email fromBasEdixhoven to the authors.
Lemma A.1 and its proof are well known to many experts, but it seems that neither
is written down in the literature. For completeness, as we use it in our proof of the
singular case of Proposition 3.3, we state the lemma and provide details of the proof.

Lemma A.1 Let R be a discrete valuation ring with fraction ûeld M and residue

ûeld k. Let X be a projective R-scheme, of dimension 2, �at over R such that XM is

smooth, and geometrically connected over M, of genus at least 1. Let C be an irreducible

component of Xk and assume that C is geometrically irreducible and birational to a

smooth geometrically irreducible projective curve C′ over k of genus at least 1.
Suppose that there exists an open subscheme U of X such that U is smooth over R,

and such that Uk is a non-empty open subset of C.

Let M → M′ be a ûnite separable ûeld extension such that XM has stable reduction

over the integral closure R′ of R in M′. hen the open subscheme UR′ of XR′ is isomor-

phic to an open subscheme of the stablemodel of X. Moreover, the normalization of the

special ûbre of the stablemodel of X contains a copy of C′k′ , where k′ is the residue ûeld

of R′.

Proof Let XR′ be the pullback of X via R → R′,which is integral by [20, Proposition
4.3.8], and let Xstab

R′ be the (unique) stablemodel of XM′ over R′.
We apply [20, Corollary 8.3.51] to XR′ (see [20, Deûnition 8.3.39] for a deûnition

of “in the strong sense”). his gives us f ∶Xres
R′ → XR′ birational, with Xres

R′ projective

Primes Dividing Invariants of CM Picard Curves 501

https://doi.org/10.4153/S0008414X18000111 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X18000111


over R′ and regular, with f an isomorphism over the open subscheme UR′ of XR′ .
Here we use that U is smooth over R. Hence UR′ is smooth over R′; hence UR′ is
regular.

Liu [20,heorem9.3.21] stated that there is auniqueminimal regularmodel Xres
R′ →

Xmin
R′ of Xres

R′ that is in fact (see the proof) isomorphic to every relatively minimal
model. his morphism is the identity on the generic ûbres, and by the construction
(Castelnuovo’s criterion (heorem 9.3.8) and Proposition 9.3.19 in [20]), it contracts
precisely the irreducible components E of the closed ûbre of Xres

R′ such that E is iso-
morphic to P1

kE with kE ∶= H0(E ,OE) (a ûnite extension of the residue ûeld k′ of R′

over which E lies) and E ⋅ E = −[kE ∶ k′].
Note that the open subscheme UR′ of Xres

R′ is mapped isomorphically to an open
subscheme of Xmin

R′ , because its closed ûbre is an open part of a curve of genus at
least 1.
Furthermore, there is a unique morphism to Xstab

R′ from its minimal desingular-
ization (Xstab

R′ )mindes and this morphism only contracts P1’s in the closed ûbres of
self-intersection −2 [20, Corollary 10.3.25]. As the geometric special ûbre of Xstab

R′ has
no P1’s, except with self-intersection ≤ −3 [20, Deûnitions 10.3.1–2], we get that the
geometric special ûbre of (Xstab

R′ )mindes has no P1’s except with self-intersection ≤ −2.
Exactly like Xres

R′ , the surface (Xstab
R′ )mindes also has amorphism to Xmin

R′ that only
contracts curves that are (a�er ûeld extension) P1’s of self-intersection −1, and as
(Xstab

R′ )mindes has no such P1’s, this morphism is an isomorphism.

(Xstab
R′ )mindes

{{

Xres
R′

  }}
Xstab

R′ Xmin
R′ XR′

Figure 1: he ûbred surfaces in the proof of Lemma A.1.

herefore, through themaps of Figure 1, the open subschemeUR′ ⊂ XR′ ismapped
isomorphically to an open subscheme of Xstab

R′ .
Whenwe base changeUR′ to the residue ûeld k′,we get an embeddingUk′ → Xstab

k′ ,
whereUk′ is a base change of anon-empty open smoothpart ofC, hence a base change
of a dense part of C′. Let C′′ be the closure of the image of this embedding of curves.
hen we get a birational map of curves C′k′ → C′′, hence an isomorphism to the
normalization. ∎

Corollary A.2 Let R be a discrete valuation ring with maximal idealm, ûeld of frac-

tions M, and residue ûeld k = R/m of characteristic not 2 or 3. Let D be a smooth

projective, geometrically irreducible curve over M and suppose that R is such that D has

stable reduction over R.

(i) If D over M is given by y3 = x4 + ax2 + bx + 1 with b, a ± 2 ∈ m, then the stable

reduction D of D has an irreducible component birational to the elliptic curve C′ ∶
Y 2 = X3 ± 1,
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(ii) If D over M is given by y3 = x4 + x2 + bx + c with b, c ∈ m, then the stable

reduction D of D has an irreducible component birational to the hyperelliptic curve

C′ ∶ Y 2 = X6 − 4.

Proof Let X (respectively, C) be the plane projective R-scheme (respectively,
k-scheme) given by the deûning polynomial f of D. Let

U = Spec(R[x , y, y−1]/( f )).

By Lemma A.1, it now suõces to check that C is birational to C′, which we did in the
proof of Lemma 3.1. ∎
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