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Abstract

Traditional regression models typically estimate parameters for a factor F by designating one
level as a reference (intercept) and calculating slopes for other levels of F. While this
approach often aligns with our research question(s), it limits direct comparisons between
all pairs of levels within F and requires additional procedures for generating these compar-
isons. Moreover, Frequentist methods often rely on corrections (e.g., Bonferroni or Tukey),
which can reduce statistical power and inflate uncertainty by mechanically widening
confidence intervals. This paper demonstrates how Bayesian hierarchical models provide
a robust framework for parameter estimation in the context of multiple comparisons. By
leveraging entire posterior distributions, these models produce estimates for all pairwise
comparisons without requiring post hoc adjustments. The hierarchical structure, combined
with the use of priors, naturally incorporates shrinkage, pulling extreme estimates toward the
overall mean. This regularization improves the stability and reliability of estimates, partic-
ularly in the presence of sparse or noisy data, and leads to more conservative comparisons.
Bayesian models also offer a flexible framework for addressing heteroscedasticity by directly
modeling variance structures and incorporating them into the posterior distribution. The
result is a coherent approach to exploring differences between levels of F, where parameter
estimates reflect the full uncertainty of the data.

Keywords: Bayesian data analysis; multiple comparisons; heteroscedasticity; shrinkage; second language
research

Introduction

In recent years, studies in second language acquisition have slowly reduced their use of
traditional analyses of variance (ANOVA) accompanied by post hoc tests, and have
instead adopted a wider range of methods, including mixed-effects regression models
(e.g., Cunnings, 2012; Plonsky & Oswald, 2017). This is certainly good news, as the field
has long relied on a narrow range of statistical methods (e.g., Plonsky, 2014). This
change is especially welcome when we consider the misuse of certain techniques. For
example, when run on percentages derived from categorical responses, ANOVAs can
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lead to spurious results (Jaeger, 2008). While ANOV As are technically a special type of a
(linear) regression, their outputs and goals tend to be interpreted slightly differently:
ANOVAs are mostly focused on differences between means of levels of a given factor
(say, a language group), whereas a typical linear regression is focused on estimating
effect sizes for predictor variables, hence the different outputs from both methods. This
difference might explain why analyses that employ ANOVAs sometimes carry out
multiple comparisons to verify where specific differences may originate in their data.
This practice tends to be accompanied by some type of p-value adjustment to reduce the
rate of Type I error.

In this paper, I explore a scenario where an analysis is based on a hierarchical model
(also known as a mixed-effects model), but where multiple comparisons are needed or
desired. More specifically, I show how to generate multiple comparisons using Bayesian
estimation from a hierarchical model. Our primary objective in this paper is to estimate
effect sizes from multiple comparisons, not to reject a null hypothesis per se. That being
said, because these two perspectives of statistical analysis often go together in practice, I
will refer to hypothesis testing at times. Finally, since one of the best ways to understand
and examine estimates from a Bayesian model is to visualize them, this paper will have a
strong emphasis on data visualization.

Besides the various advantages of Bayesian data analysis in general, the context of
multiple comparisons is especially instructive and beneficial as no correction is needed
once we assume nonflat priors (e.g., centered around zero) and a hierarchical structure
that leads to shrinkage, naturally yielding more reliable estimates. This paper is accom-
panied by an Open Science Framework (OSF) repository (https://osf.io/37u56/) that
contains all the necessary files to reproduce the analysis below. I assume some level of
familiarity with the R language (R Core Team, 2025) and with the tidyverse package
(Wickham et al., 2019).

A typical scenario

The data used in this paper are hypothetical: their structure is adapted from the danish
dataset presented in Balling & Baayen (2008), which can be found in the 1anguageR
package (Baayen, 2009). In their study, the authors designed an auditory lexical
decision task with seventy-two simple words and 232 nonwords. Seven inflectional
and nine derivational suffixes were included in the task, each of which was found in 10
words. The response variable, resp, therefore, consists of log-transformed reaction
times. Gaussian noise has been added to a subset of the data in question such that the
observations examined in the present paper do not reflect the original dataset. Our
dataset d, shown in Table 1, simulates a common scenario in language acquisition
studies, where we are interested in a condition with multiple levels of interest (n =5)—
this is the variable cond in the data. Our data file has twenty-two participants and

Table 1. Sample of our dataset

#> # A tibble: 5 x 4

#> part item cond resp
#>  <fct> <fct>  <fct> <dbl>
#> 1 part_1 item 1 c5 6.91
#> 2 part_6 item_34 c4 6.74
#> 3 part_19 item_11 c1 6.75
#> 4 part_10 item_ 36 cl 6.74
#> 5 part_11 item 40 c3 6.76
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Table 2. Number of observations per condition (cond), means, variances, and standard deviations of
responses (resp)

#> # A tibble: 5 x 5

#> cond n Mean Var SD
#> <fct> <int> <dbl> <dbl> <dbl>
#> 1 cl 209 6.81 0.0402 0.200
#> 2 c2 215 6.76 0.0460 0.214
#> 3 c3 189 6.86 0.0339 0.184
#> 4 c4 50 6.85 0.0357 0.189
#> 5 ¢5 213 6.75 0.0253 0.159

forty-nine items. Furthermore, the number of observations for one of the conditions
(c4) has been reduced to create an imbalance in the data, as can be seen in Table 2.
This situation emulates a small sample size when we consider the number of items per
participant; this is certainly not uncommon in second or third language studies
(Cabrelli-Amaro, Flynn, & Rothman, 2012; Garcia, 2023).

Our dataset has four (self-explanatory) variables: part, item, cond,and resp.
Ultimately, we want to verify if participants’ (part ) responses (resp) are affected by
our five conditions (cond), taking into account the expected variation found across
participants (part) and items (1 tem). The five hypothetical conditions in the dataset
are cl to c¢5. We will start our analysis by visually exploring the patterns in the data
(Figure 1).

Our response variable is continuous and approximately Gaussian (otherwise we
should avoid box plots), so we can rely on our familiar parameters (e.g., our means for
each condition) for statistical inference. Typically, we would now run a hierarchical
linear regression where cond is our predictor variable using the Imexr () function
from the 1me4 package (Bates, Michler, Bolker, & Walker, 2015). In Code 1, such a
model is run with by-participant and by-item random intercepts, £itl, the
maximally-converging model given the data.

As is typical in regression models with a categorical predictor variable, we can see

that condc1 is automatically used as our reference level (intercept, f), to which all
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Figure 1. Overall patterns in the data: box plots and associated means (dots in boxes) and standard errors

(not visible).
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Code 1. Hierarchical linear regression

# Packages used to run code below:

library(lme4)

library(lmerTest) # To display p-values in output
library(emmeans) # For multiple comparisons

# Hierarchical model using 1lme4 package:
fitl = Ilmer(resp ~ cond + (1 | part) + (1 | item),
data = d)

# Printing only our fixed effects:
summary (fitl)$coefficients |> round(2)

#> Estimate Std. Error df t value Pr(>|t|)
#> (Intercept) 6.81 0.03 54.56 223.61 0.00
#> condc2 -0.06 0.04 37.10 -1.57 0.12
#> condc3 0.05 0.04 37.27 o35 0.18
#> condc4 0.02 0.04 65.24 0.45 0.65
#> condc5 -0.07 0.04 37.16 -1.87 0.07

other levels of cond are compared. As shown, we observe no significant effect of
cond, as none of the condition levels differ significantly from the reference level
condcl. This, however, does not preclude the presence of significant differences
between other pairs of conditions, as we examine below.

Thanks to packages such as 1me4 and emmeans, a few lines of code are sufficient
to run hierarchical regression models and generate multiple comparisons deriving from
them—this is shown in Code 2 and Code 3. If we were merely interested in null
hypothesis significance testing, using the Tukey-adjusted comparisons in Code 2, we
would identify two comparisons (c2—c3 and c3-c5) as statistically significant
(p <.05). If we were to choose Bonferroni-adjusted comparisons, then only c3-c5
would yield a statistically significant result.

The scenario above is common insofar as many studies in second language research
involve a continuous response variable and a factor for which multiple comparisons can

Code 2. Tukey-adjusted pairwise comparisons of group means using the emmeans package

# Multiple comparisons with emmeans package:

emmeans(fitl, pairwise ~ cond, adjust = "tukey")$contrasts
#> contrast estimate SE df t.ratio p.value
#> cl - c2 0.0555 0.0353 38.1 1.571 0.5243
#> ¢l - c3 -0.0492 0.0363 38.3 -1.354 0.6598
#> cl - c4 -0.0186 0.0413 66.9 -0.449 0.9914
#> ¢l - c5 0.0660 0.0353 38.2 1.869 0.3508
#> c2 - c3 -0.1047 0.0363 38.0 -2.886 0.0473
#> €2 - c4 -0.0740 0.0413 66.6 -1.793 0.3861
#> c2 - c5 0.0105 0.0353 37.9 0.299 0.9982
#> 3 - c4 0.0306 0.0421 65.2 0.726 0.9496
#> 3 - 5 0.1152 0.0363 38.1 3.176 0.0233
#> c4 - c5 0.0846 0.0413 66.7 2.048 0.2550
#>

#> Degrees-of-freedom method: kenward-roger
#> P value adjustment: tukey method for comparing a family of 5 estimates
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Code 3. Bonferroni-adjusted pairwise comparisons of group means using the emmeans package

emmeans(fitl, pairwise ~ cond, adjust = "bonferroni")$contrasts
#> contrast estimate SE df t.ratio p.value
#> ¢l - c2 0.0555 0.0353 38.1 1.571 1.0000
#> ¢l - c3 -0.0492 0.0363 38.3 -1.354 1.0000
#> cl - c4 -0.0186 0.0413 66.9 -0.449 1.0000
#> cl1 - c5 0.0660 0.0353 38.2 1.869 0.6927
#> c2 - c3 -0.1047 0.0363 38.0 -2.886 0.0639
#> c2 - c4 -0.0740 0.0413 66.6 -1.793 0.7747
#> c2 - c5 0.0105 0.0353 37.9 0.299 1.0000
#> 3 - c4 0.0306 0.0421 65.2 0.726 1.0000
#> 3 - c5 0.1152 0.0363 38.1 3.176 ©0.0296
#> c4 - c5 0.0846 0.0413 66.7 2.048 0.4450
#>

#> Degrees-of-freedom method: kenward-roger
#> P value adjustment: bonferroni method for 10 tests

be useful. Nevertheless, the statistical methods employed in such situations often vary
in the literature, and sometimes ignore the intrinsic hierarchical structure of the data
altogether (e.g., linear regression models without random effects). Before proceeding, it
is worth discussing why a hierarchical model is not only necessary given our data, but
also why it is advantageous in the context of multiple comparisons, the topic of the
present paper.

Why hierarchical models?

Hierarchical models are preferred when dealing with data that have inherent grouping
structures, such as repeated measures across subjects or items. Unlike simpler models
that ignore or simplify within-group variability, hierarchical models incorporate both
fixed effects (e.g., the variable cond in our data) and random effects (e.g., part and
item in our data). In the context of data with repeated observations per subject and
item, in which the independence assumption is violated, hierarchical models can
account for these sources of variability, allowing for more accurate estimates that
reflect the true complexity of the data. By including random intercepts or slopes,
hierarchical models can capture subject- or item-specific influences, which results in
a more nuanced understanding of the effects being studied.

One important aspect of hierarchical models involves a process called shrinkage
(also known as partial pooling). Shrinkage adjusts the estimates for random effects by
pulling extreme estimates closer to the group mean. This regularization reduces the
impact of outliers or overly variable estimates, leading to more stable and conservative
results. As will be seen below, shrinkage can also affect fixed effects estimates, a key
point in the analysis that follows.

Before hierarchical models became mainstream in second language studies, a
popular method of analysis involved running separate ANOVAs on data aggregated
by subject and by item. There are, of course, negative consequences of such a method.
First, two analyses are needed a priori, one for subject-aggregated data, one for item-
aggregated data. As a result, participant- and item-level predictors cannot be included
in the same analysis. Second, missing items in one or more condition levels must be
removed. Third, ANOVAs do not typically focus on effect sizes, which in turn requires
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Figure 2. Estimate comparison across three models (x-axis). Standard errors (horizontal lines) and 95%
confidence intervals (vertical lines) are also shown for each estimate. The dashed line represents the
average across all conditions (panels on top).
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a separate method to quantify the magnitude of effects (e.g., #°). We will not discuss
ANOVAs in this paper, but one of the linear models we will discuss next (LM) is
equivalent to an ANOVA run on participant-aggregated data.

Examine Figure 2, which compares three different models for our data. Along the x-
axis, LM represents a simple linear regression run over the aggregated mean response
by participant for each condition. LM+B represents the same model, but with a
Bonferroni correction applied to the post hoc comparisons, which affects the confi-
dence intervals of those estimates (but notice that the standard errors are not affected).
Finally, HLM shows the estimates from the hierarchical model from Code 2. Notice how
the estimate for c4 (highlighted in the figure) is substantially closer to the grand mean,
i.e., it has shrunk. In addition, the confidence intervals shown under HLM are wider
than the intervals under LM.! Given these two characteristics of the HLM in question,
multiple comparisons stemming from such a model are more reliable and generally
more conservative than those performed from LM or LM+B—this will also be clear
when we examine our model figure later. It is also worth reiterating that HLM includes
both by-participant and by-item random intercepts in the same analysis, and is
therefore objectively more complex and more comprehensive than the other two
models. The reader can find a similar scenario and a more detailed discussion in
Gelman, Hill, and Yajima (2012).

Shrinkage is not always visible in the estimates of our fixed effects, since its effect is
more directly observable in our random effects. The reason why we see shrinkage in our
estimate for c4 here is because our data is imbalanced: condition c4 has only
50 observations (cf. n= 189-215 for the other conditions). This represents a situation
that we often encounter, where a particular group of interest is imbalanced and may
have too much influence on the estimates of our models. Our hierarchical model here
mitigates the problem by pulling the estimate of c4 towards the grand mean, since it
does not have enough empirical evidence (i.e., observations) to grant the estimate
provided by LM and LM+B.

In general, then, hierarchical models allow for more reliable confidence intervals
even without corrections such as Bonferroni, a desirable characteristic, given that such

""This is not a strict rule, as confidence intervals in hierarchical models may also be narrower than those in
non-hierarchical models, depending on the structure of the data. Similarly, while the standard errors in our
hierarchical model are greater than those in the two non-hierarchical models—a common characteristic of
hierarchical models—this is not universally the case.
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corrections typically reduce statistical power and tend to modify only confidence
intervals (or p-values), keeping estimates stationary. Hierarchical models also reduce
the issue of multiple comparisons, since point estimates can be shifted (shrinkage), as
demonstrated above—see Gelman & Tuerlinckx (2000), Gelman et al. (2012), and
Kruschke (2015, pp. 567-568). And because multiple comparisons are derived from the
estimates of each level being compared, more reliable estimates in our models lead to
more reliable comparisons from said models.

In the sections that follow, we will reproduce the analysis in Code 1 using a Bayesian
approach. In doing so, we will also discuss fundamental differences between Frequen-
tist and Bayesian statistics, and how favoring the latter can offer intuitive insight on the
estimation of parameters, especially when it comes to multiple comparisons.

Methods

In this section, I provide a brief introduction to Bayesian data analysis and review the
packages that will be used in this paper.

A brief review of Bayesian data analysis

This section will focus on the minimum amount of information needed on Bayesian
data analysis for the remainder of this paper. With such an immense topic, anything
more than the basics would be unrealistic given the scope of the present paper. A user-
friendly introduction to the topic is provided in Kruschke & Liddell (2018), Garcia
(2021, ch. 10), and Garcia (2023). Comprehensive introductions to Bayesian data
analysis are provided in McElreath (2020) and Kruschke (2015).

A typical statistical test or model generates the probability of observing data that is at

least as extreme as the data we have given a particular statistic (e.g., ) under the null
hypothesis. This is the definition of p-values, a concept inherently tied to the notion of
Type I error and the corrections often applied when conducting multiple comparisons.
In contrast, Bayesian approaches do not use p-values, and therefore do not have a
family-wise error rate in the traditional Frequentist sense. However, this does not
eliminate the possibility of spurious results or false positives, which can occur regardless
of the statistical framework employed. In Frequentist data analysis, then, we are after
P(data|r), where 7 is any given statistic of interest. In this framework, we think of
“probability” as the frequency of an event in a large sample—hence the name Fre-
quentist and the importance of larger samples.

In a Bayesian framework, we generate the probability of a parameter given the data,
i.e., the opposite of what we get in a Frequentist framework. In other words, we are given
P(m|data), which allows us to estimate the probability of a hypothesis. The essence of
Bayesian data analysis comes from Bayes’ theorem (Bayes, 1763; also see McGrayne,
2011), shown in Equation 1. The theorem states that the posterior, P(x|data), is equal
to the likelihood of the data, P(data|r), times the prior P(x), divided by the marginal
likelihood of the data, P(data).

P(data|m) x P(x)

P(data) M)

P(z|data) =

One crucial component in Bayes’ theorem is the prior, which allows us to incorpo-
rate our expectations into the model. These expectations are informed by the literature:
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if we know about a particular phenomenon, it is just natural that this knowledge should
be included in a model. Not only is this aligned with the accumulation of knowledge
assumed in science (e.g., Brand, Ounsley, Post, & Morgan 2019), but it also bridges a
common gap between our theoretical assumptions and our data analysis, which
typically ignores any prior knowledge that we may have on the object being analyzed.
A third advantage of priors is the fact that they can cause shrinkage even in nonhier-
archical models. As discussed above, shrinkage is an advantage insofar as it improves
the reliability of our estimates by decreasing the influence of noise in the data, pulling
extreme values towards the mean.

Even though the notion of priors is intuitive, some may argue that priors can bias our
model. This can be true: if we force our priors to be where we want them to be with a
high degree of certainty, the posterior distribution will be strongly biased towards our
priors. This, however, is not how priors are supposed to work—see Gelman (2008) on
common objections to Bayesian data analysis and Gelman & Hennig (2017) on the
notions of objectivity and subjectivity in statistics. Priors must be informed by the
literature and by previous experiments. Furthermore, our certainty surrounding prior
distributions must reflect the state of knowledge surrounding the object being exam-
ined. If we have over one hundred studies showing that an effect size is between 1.2 and
1.4, we could certainly assume a prior distribution centered around 1.3. Considering a
Gaussian prior distribution, we could even set its standard deviation to a low number to
incorporate the high degree of precision in the literature in this scenario.

Bayesian models typically estimate effects by sampling from the posterior distribu-
tion by using a wide range of algorithms, not by solving the theorem above analytically
(which is computationally impossible even for relatively simple models). Think of this
sampling as a “random walk” in the parameter space’. This is indeed the typical
metaphor employed for Markov-Chain Monte Carlo methods, which are commonly
associated with posterior sampling. Suppose we are interested in the difference in
means between two groups. Our model will consider a multitude of possible values for
this difference. Each value will yield a probability: “Take value .7 and evaluate how likely
the observed data are, given this parameter value, in combination with the prior.” After
enough values are considered (i.e., iterations), the sampling algorithm will have visited
more likely values (given the data and the prior) more frequently. This clustering gives
us our posterior distribution for the parameter in question, i.e., the difference between
the two groups. In reality, we will use a language called Stan (Carpenter et al., 2017),
which employs an algorithm called Hamiltonian Monte Carlo (HMC). A “random
walk” is not the best way to describe HMC, but the idea is still valid for our purposes
here. Figure 3, from Garcia (2021, p. 220), illustrates the end of a random walk for two
parameters in a regression model, f, and S, which results in a joint posterior
distribution where the most visited values for both parameters in question are at the
peak of the distribution.

You may be wondering how we can know that the model has correctly converged
onto the right parameter space, i.e., the right parameter values given the data. Our
algorithms use multiple chains to explore said space. If all chains (typically four)
converge by the end of the sampling, we know the model has converged. We can check
this convergence in different ways. For example, we could visually inspect the chains to
see if they have clustered in a particular region.

*The set of possible values for a given variable, e.g., a coefficient in a regression model.
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Figure 3. lllustrative example of the joint posterior distribution of two parameters in a regression model.

In this paper, we will use an intuitive R package to run our models, so you do not
have to worry about learning the specifics of Stan to be able to run and interpret
Bayesian models. Interestingly, on the surface, our models will look quite similar to
their Frequentist counterparts. Deep down, however, they work in very different ways,
and their interpretation is much more intuitive than what we are used to in Frequentist
models. First, p-values no longer exist. Second, effects are not given as point estimates.
Rather, they are entire probability distributions of credible effects given the data, which
substantially affects how we interpret and visualize our models’ results, as we will see later.

Hypothesis testing and parameter estimation

As previously mentioned, our main goal here is to estimate effect sizes in multiple
comparisons. To do that, we will focus on credible intervals, which are illustrated and
discussed in the Bayesian model examined below. One specific type of credible interval
we can use is the highest density interval (HDI), which gives us a particular percentage of
the most probable parameter values given the data (and the prior). Simply put, values
inside such an interval are more plausible than values outside of it; this is a much more
intuitive interpretation than Frequentist confidence intervals. When we focus our
analysis on parameter estimation, we are merely asking the question: What are the
most plausible values for our parameters given the data (and our priors)?

Credible intervals allow us to answer the question above, but they should not be
used as our main metric to confirm or reject the existence of an effect, since the null
model (one that does not include the variable(s) of interest) is not under evaluation
(see, e.g., Verissimo (2024)). This brings us to the secondary dimension of our analysis
here, namely, the notion of hypothesis testing. A Bayesian model that includes cond
as a predictor describes an alternative hypothesis according to which we believe that
the variable cond has an effect. As we run such a model and inspect its credible
intervals, nothing is directly revealed about the null model, i.e., the model without
cond as a predictor, since that model is not being evaluated. Note that this is different
from what we can conclude from confidence intervals in Frequentist models, where, if
zero is not contained inside an interval, we can, under standard practice, reject the null
hypothesis.

The topic of hypothesis testing in Bayesian statistics often involves the use of Bayes
Factors. A Bayes Factor is a ratio used to quantify the evidence for a particular
hypothesis relative to another hypothesis (or multiple hypotheses). In our scenario,
we could run a null model (bFitNull;intercept-only) and calculate the Bayes Factor
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of a model containing cond (bFit1) relative to said null model. This is shown in
Equation 2.

2)

A Bayes Factor greater than 1 indicates evidence in favor of bFit1 (our alternative
model). A Bayes Factor less than 1 indicates evidence in favor of bFitNull (our null
model). A Bayes Factor of exactly 1 provides no evidence for either hypothesis. While
Bayes Factors can also be used to quantify evidence in Bayesian analyses, I favor ROPE-
based interpretations (see below) due to their direct focus on practical equivalence
rather than relative model probabilities. Readers interested in this distinction will
benefit from the appendix provided in Kruschke (2013), where the author discusses
the shortcomings of Bayes Factors (p. 602), noting that they can sometimes obscure
crucial information about parameter uncertainty. A detailed and user-friendly discus-
sion on estimation and hypothesis testing is also provided in Verissimo (2024, pp. 12—
15). While this paper does not use Bayes Factors, it is an important topic to those who
wish to compare nested models or to test hypotheses in a Bayesian framework.

Another method of exploring hypothesis testing in Bayesian models involves the
definition of a region of practical equivalence (ROPE). In a nutshell, we calculate an
area around zero, and if most or all of our HDI of interest falls within that area, we
conclude that we have sufficient evidence for a null effect (i.e., we reject the alternative
and accept the null). Conversely, if the entire HDI falls outside the ROPE, we reject the
null. In the remainder of this paper, we will make use of ROPEs as we interpret the
results of our estimates and the multiple comparisons derived from them. ROPEs can
be easily generated and incorporated into our figure as we estimate parameters and the
uncertainty around them, our primary goal here as we approach multiple comparisons.
By including ROPEs in our analysis, we will also have a small component of hypothesis
testing, i.e., we will potentially be able to accept/reject a null effect if that scenario arises.

Next, we will see the notions discussed above in action, as we run and analyze our
model. In summary, we will use highest density intervals (HDI) to estimate the most
credible values of our parameters (our primary goal), and we will also use a region of
practical equivalence (ROPE) to quantify the evidence for the effect of cond (our
secondary goal).

Data and packages

In Code 4, you will find the data file as well as the necessary packages to reproduce the
analysis in the paper. You will need all the packages below before proceeding. The
package brms (Biirkner, 2016) allows us to run Bayesian models by using the familiar
syntax from functions such as 1m () and glm() . Finally, tidybayes (Kay, 2020)
and bayestestR (Makowski, Ben-Shachar, & Liidecke, 2019) will help us work with
posterior samples.

Analysis
Statistical model

In this subsection, we will run our hierarchical Bayesian model, which will have a single
fixed predictor (cond). I will assume that you have never run a Bayesian model or used
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Code 4. Packages used in the paper

# In addition to the packages already loaded:
library(tidyverse)

library(brms)

library(tidybayes)

library(bayestestR)

the brms package. While specific details of our models are outside the scope of this
paper, I will attempt to provide all the necessary information to reproduce and apply
these methods to your data. In the next subsection, we will work on our multiple
comparisons based on the model bFitl that we run and discuss below.

In Code 5, we define our model as resp ~ cond using the same familiar syntax
from the 1m () function. Notice that this is the most complex model thus far, as it
includes random slopes for cond by participant—this model specification yields a
singular fit using a Frequentist approach with 1mer () . Because we are running a
linear regression, we assume that the response variable is normally distributed, hence
family = gaussian () in the code. We could also use another family value if we
wanted to better accommodate outliers. For example, we could specify family =
student () , which would assume a student ¢ distribution for our response variable
resp. This can be useful in situations where we have smaller sample sizes (higher
uncertainty) and/or potential outliers.

By default, our model will use four chains to sample from the posterior. To speed up
the process, we can use four processing cores. The argument save pars is necessary
if the reader wishes to calculate the Bayes Factor later on using the bayes factor ()
function in brms. If that is the case, a null model is also needed: that is why bFitNull
is also present in the code. The reader can run both models and subsequently run
bayes factor (bFitl, bFitNull) to confirm that the Bayes Factor will favor

Code 5. A simple hierarchical linear regression using brms
# Our model assumes that cond has an effect:
bFitl = brm(resp ~ cond + (1 + cond | part) + (1 | item),
data = d,
family = gaussian(),
cores = 4,
prior = priorsi,
save_pars = save_pars(all = TRUE),
save_model = "bFitl.stan")

# What a null model looks like:
bFitNull = brm(resp ~ 1 + (1 | part) + (1 | item),
data = d,
family = gaussian(),
cores = 4,
iter = 4000,
prior = priorsNull,
save_pars = save_pars(all = TRUE),
save_model = "bFitNull.stan")

# To generate our Bayes Factor:
# bayes_factor(bFitl, bFitNull)
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Code 6. How to access and set our priors in brms

get_prior(resp ~ cond,
data = d, cores = 4, family = gaussian())

priorsl = c(set_prior(class = "Intercept",
prior = "normal(7, 1)"),
set_prior(class = "b", # all slopes

prior = "normal(e, 1)"))

# Priors for the null model bFitNull:
priorsNull = c(set_prior(class = "Intercept”,
prior = "normal(7, 1)"))

the null model (this is in line with Code 1), i.e., that cond has no effect on resp”—the
line is commented out in Code 5 because we will not explore those results, as mentioned
above. Finally, we set our priors (see below) and save the model (optionally) to have
access to the compiled Stan code later. While this last step is not necessary, if you want
to better understand the specifics of our model, it is useful to examine the raw Stan code
later on.

The model in question, bFit1, will not run until we create the variable priorsl
referred to in the code. First, it should be clarified that we do not need to specify priors
ourselves: brm () will use its own set of default priors if we do not provide ours. Here,
however, we will assume some mildly informative priors. The default priors used by
brm () will often be flat, which means the model starts by assuming that values are
equally plausible. This, however, is neither realistic nor ideal: given the data at hand, we
know that no responses are lower than 4 or higher than 8, given Figure 1.* We also know
that extreme reaction times are unlikely in the literature of lexical decision tasks.
Importantly, we know that not all values for our condition levels are equally likely.
Imagine that we were estimating the height of a given person. A height of seven meters
is clearly impossible, and our model should not start by assuming that such an
extraordinary height is just as likely as, say, 1.75 meters. Likewise, a reaction time of
6 (approximately 400 ms) of much more likely than a reaction time of 10 (approxi-
mately 22,000 ms) in such tasks, and reaction times under 2 (approximately 100ms) are
considered to be unreliable (Luce, 1991; Whelan, 2008).

In Code 6, we first use the function get prior () to inspect the priors assumed
by the model (default priors). The reader can inspect the output of get prior () in
Code 7. Note that we are feeding get prior () with the nonhierarchical version of
the model to simplify our analysis here, but you could certainly extract and modify priors
on the mixed effects as well. We then set our priors with the function set prior ().
Here, we are assuming that all of the slopes (c2 to c¢5) follow a Gaussian (normal)
distribution centered around zero with a standard deviation of 1: N (u = 0,5 = 1). Thus,
the priors in question contain no directional bias, and they also introduce a relatively

*This result reflects the overall small magnitude of cond effects when evaluated across the full parameter
space and in light of the model’s complexity. However, as already shown, exploratory post hoc pairwise
comparisons between condition levels, conducted within the full model, reveal some key credible differences
between specific pairs of conditions. This suggests that while the global evidence for cond is weak, certain
localized contrasts may still warrant further investigation.

“Recall that resp has been log-transformed, as is typical for reaction time data.
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Code 7. The structure of priors in brms

# A simplified output of get_prior():
get_prior(resp ~ cond,
data = d, cores = 4,
family = gaussian()) |>
select(prior, class, coef, source)

#> prior class coef source
#> (flat) b default
#> (flat) b condc2 default
#> (flat) b condc3 default
#> (flat) b condc4 default
#> (flat) b condc5 default
#> student_t(3, 6.8, 2.5) Intercept default
#> student_t(3, 0, 2.5) sigma default

high degree of uncertainty, given the standard deviation we assume for each distribu-
tion. For comparison, in our actual data, the standard deviation of our response
variable, resp, ranges from .16 to .21 for all five conditions, cond, as can be verified
in Table 2.5 These priors tell the model that absurd values are simply not plausible.

Finally, our intercept () is assumed to have a mean of 7 (which approximates the
observed mean of c1 already visualized).

In summary, we are telling our model that there should be no differences between
the conditions, and we are constraining the range of potential differences by saying that
values near zero are more plausible than values far away from zero. This starting point is
very distinct from assuming flat priors. We are merely telling the model that certain
values are much more plausible than others, and we are being conservative by assuming
priors centered at zero with relatively wide distributions.

Since we have now defined our priors, we can finally run our model. Running a
Bayesian model takes much longer than running an equivalent Frequentist model.
For that reason, it is a good idea to save the model for later use: save (bFitl,
file = “bFitl.RData”) will save the model in RData format. You can later
read it by using load ("bFitl.RData" ). Importantly, we can save however
many objects in a single RData file. The population-level effects of our model,
bFitl, are shown in Code 8—the reader should run bFit1l to explore the entire
output of the model.

Inthe Estimate column, we can see the mean estimate for each condition (recall
that each estimate represents an entire posterior distribution). We also see the uncer-
tainty for each estimate, quantified as the standard deviation of the posterior
distribution,® and the two-sided 95% credible intervals (1-95% Crl and u—95%
CrI) based on posterior quantiles Biirkner (2017, p. 11). For symmetrical posterior
distributions (e.g., Gaussian distributions), this interval coincides with the highest
density interval (HDI). To calculate the exact 95% HDI of a posterior distribution,
we can use the hdi () function from the bayestestR package. Following Kruschke

*While this is good news given the notion of homoscedasticity, Bayesian models make it much easier for us
to assume different variances across groups, as we will see later.

°In Bayesian inference, parameter uncertainty is directly measured by the posterior distribution’s standard
deviation, distinct from the Frequentist concept of “standard error,” which measures variability across
hypothetical repeated samples.
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Code 8. Model results (only population-level)

summary (bFit1)$fixed |> round(2)

#> Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk_ESS Tail ESS
#> Intercept 6.81 0.03 6.75 6.88 1 891.03 1753.07
#> condc2 -0.06 0.04 (2)5ulE] 0.02 1 1436.42 2309.61
#> condc3 0.05 0.04 -0.03 0.12 1 1431.52 2217.36
#> condc4 0.03 0.05 -0.07 0.12 1 1710.44 2504.72
#> condc5 -0.07 0.04 -0.14 0.00 1 1360.37 2387.45

(2015, p. 342), I favor HDIs over Crls, as HDIs represent the narrowest interval
containing the most probable values, offering a more intuitive interpretation, especially
when dealing with skewed distributions—although such skewness is not a concern in
the present paper. R

Next, we see Rhat (R should be <1.01),” which tells us that the model has
converged. Finally, we see two columns showing us the effective sample size (ESS) of
our posterior samples: The bulk ESS corresponds to the main body of the posterior
distribution, while the tail ESS corresponds to the tails (i.e., more extreme values) in the
posterior distribution. By default, each of the four chains draws 2,000 samples from the
posterior. However, we use a warmup of 1,000 samples. As a result, only 1,000 samples
from each chain are actually used here, totaling 4,000 samples. Of these 4,000, however,
some “steps” in our random walk will be correlated with one another, which reduces the
amount of information they provide about the parameter space. Therefore, we should
prioritize uncorrelated steps, which results in a proper subset of the 4,000 steps in
question. That is why all the numbers in both ESS columns are less than 4,000. There is
no universal rule of thumb as to how large the ESS should be (higher is always better, of
course), but 100 samples per chain is a common recommendation. If the ESS is lower
than 400, we could increase the number of steps by adding iter=4000, for example,
which would give us 3,000 post-warmup steps for each chain.® We can also change the
number of warmup steps in the model, allowing it to “settle” in more informative
regions of parameter values before extracting the samples we will actually use.

The reader will notice that the estimates in our Bayesian model are not very different
from the estimates in our Frequentist model, run in Code 1. This makes sense, since our
priors are only mildly informative. Ultimately, the posterior distribution in our model is
(mostly) driven by the patterns in the data. In a more realistic application, we would
attempt to set more precise priors given what we know from the literature on the topic
of interest.

While tables can be useful to inspect the results from our model, figures are often a
better option as they show the actual posterior distribution for each parameter in our
model. In this paper, I will employ a specific type of figure, shown in Figure 4. The figure
contains different pieces of information, some of which are standard in Bayesian
models. First, note that a dashed line marks zero. Around that line, we find the ROPE.
Now, we can assess the posterior distribution and the HDI of each parameter (our
primary goal) as well as their location relative to the ROPE (our secondary goal). As
usual, all conditions in the figure must be interpreted relative to c1 (our intercept; not
shown). The central portion of each distribution represents the most plausible values

7 Also known as the Gelman-Rubin convergence diagnostic; see Brooks, Gelman, Jones, and Meng (2011).
8This is indeed what is done for our null model bFitNull in Code 5 above, since ESS values are too low
with the default number of iterations.
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0.2 0.1 0.0 0.1 0.2
Posterior distribution for each slope

Figure 4. Posterior distributions from hierarchical model with associated 95% HDIs. Region of practical
equivalence is represented by shaded area around zero.

given the data (and our priors). It is important to reiterate that the HDIs in the figure are
a summary statistic from actual probability distributions, unlike Frequentist confidence
intervals. As such, values at the tails of the HDIs are less plausible than values at the
center of the HDIs. The figure therefore gives us a comprehensive view of effect sizes
and parameter estimation.

Next, we can move to our secondary goal. The reader will notice that all of our
posterior distributions include zero in their 95% HDI. Logically, this means that every
posterior in Figure 4 is at least in part within the ROPE. Simply put, zero is a credible
parameter value representing the difference between each of c2—c5 and c1, hence the
result of the Bayes Factor alluded to earlier, which favored the null model. That being
said, we should also observe how much of each distribution is within the ROPE. For
example, as we compare the distributions of ¢5 and c4, we can see that a null effect is
more plausible for c4 than for c5, even though we cannot accept any null effect for the
slopes in question, given that no HDI is entirely within the ROPE.

Multiple comparisons

In this section, we will use our hierarchical model bFit1 to extract all the multiple
comparisons we wish. There are at least two ways of accomplishing this task. The easy
(automatic) way involves a function called hypothesis () from brms. While this
function does provide us with estimates on any contrast of interest, its main application
is in hypothesis testing, i.e., our secondary goal here—see example in Verissimo (2024)
(p. 14). Still, because at times this is what is needed, and because it is an easy approach to
implement, we will start by exploring the function in question. Then, we will work our
way through a more manual approach that will focus on our primary goal here, namely,
parameter estimation.

Comparisons via hypothesis testing

Given the levels of our factor cond, we will begin by defining a null hypothesis,
represented in Code 9 by the contrasts variable. Here, we simulate three null
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Code 9. Multiple comparisons with the hypothesis () function from brms

contrasts = c("condc3 = condc2",
"condc5 = condc4”,
"condc4 = condc3")

h = hypothesis(bFitl, hypothesis = contrasts, alpha = 0.05)

h
# plot(h)

Table 3. Simplified output of the hypothesis () function from brms

#> Hypothesis Estimate Est.Error CI.Lower CI.Upper Star
#> 1 (condc3)-(condc2) = @ 0.10 0.04 0.02 0.18
#> 2 (condc5)-(condc4) = © -0.09 0.05 -0.18 0.00 ©
#> 3 (condc4)-(condc3) = © -0.02 0.05 -0.12 0.07

hypotheses by stating that the posterior distributions of ¢3 and c2 are equal, as are the
posteriorsof ¢5 and c4,and of c4 and c3.Wecan thenuse hypothesis () totest
our model against said hypotheses using a given posterior probability threshold, the
alpha? argument in the function hypothesis () .!° We could also include direc-
tional hypotheses such as condc4 > condc2.

To understand what the function hypothesis () is doing, let us pick the
hypothesis condc3 = condc2 as an example. The function takes the posterior
distribution of each parameter (c3 and c2) and generates the posterior distribution
for their difference. Then it calculates the credible interval for this new posterior
distribution (here, the interval is 95% given our threshold defined by alpha). If zero
is not found within that interval, we will have strong evidence that condition c¢3 is not
equal to condition c2 (the column Star in our output will have an asterisk). If zero is
found within that interval, we would not have enough evidence to conclude that a
difference exists between the two conditions.

The output generated by hypothesis () is shown in Table 3 with resulting
estimates and credible intervals. Because we have assigned the result to a variable (h),
we can also plot the resulting posterior distributions simply by running plot (h) .

In our comparisons table, we can see that two of the three hypotheses can be rejected
(assuming a posterior threshold of .05), namely, c3-c2 (f=.10) and c5-c4
(f=—.09): in both cases, the credible interval does not include zero. To be clear,
the estimates in our table represent the means of the posterior distributions that result
from each comparison of distributions. These are therefore single-point estimates that
summarize entire posterior distributions (as is always the case in Bayesian models). For
example, we saw in Code 8 that the mean estimate for c2 is f= — .06, and the mean

estimate for c3 is E= .05—both of which represent the difference between each

Not to be confused with the Frequentist o level, which represents the long-run probability of making a
Type I error, a meaning that is tied to the concept of repeated sampling.

10By default, the function uses 90% credible intervals for one-sided and 95% credible intervals for two-
sided hypotheses—note that these are not highest density intervals. The reader should consult the docu-
mentation for the hypothesis () function to read more about its assumptions and its output.
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condition and c1, our intercept. Thus, it is not surprising that the posterior distribu-

tion of c2—c3 has a mean estimate of f# = — .10 (estimates have been rounded to two
decimal places).

You may be wondering how c1 could be included in the multiple comparisons. It is
true that all of the comparisons involving c1 are by definition in the result of bFit1,
since c1 is our intercept. However, if we want to list all comparisons, we will have to
include those comparisons as well. There are two important details in this scenario:
first, c1 does not exist in the model as it is called Intercept.!! Thus, we cannot simply
add condcl to our contrasts variable as the function hypothesis () will not be
able to find such a parameter in the model. Rather, you’d simply type Intercept.
Second, in a standard model, slopes encompass only their differences relative to the
intercept. As a result, if we want to test the hypothesis that c1 and c3 are identical, for
example, we cannot simply write Intercept = c3. Instead, you’d type c3 = 0, which is
essentially the sameas Intercept =c3 + Intercept.Indeed, c3 + Intercept
gives you the actual posterior draws for the absolute values of c3. Note that this has
nothing to do with the Bayesian framework that we are employing. This is just how a
typical regression model works.

How could we report our results thus far, assuming only the comparisons in Code 9?
We can be more or less comprehensive on the amount of detail we provide (see
Kruschke, 2021). Here is a comprehensive example that emphasizes the hypothesis
testing approach just described and adds some information on the parameter estima-
tion from Figure 4:

We have run a Bayesian hierarchical linear regression to estimate the effect of
cond (our condition) on participants’ responses. Our model included random
intercepts and slopes (cond) by participant, by-item random intercepts, as well
as mildly informative Gaussian priors on each of the conditions: priors were
centered at zero for our slopes and centered at 7 for our intercept, c1; the standard
deviation of all priors was set to 1. The model specification included 2,000

iterations and 1,000 warmup steps. Both R and the effective sample sizes were
inspected. By default, our model’s estimates assume c1 as our reference condition
(intercept). Our posterior distributions and their associated 95% HDIs'? (Figure 4)
suggest that conditions c2 and c5, whose posterior means are negative relative
to c1, are the most likely to have a statistically credible effect. Given that a
portion of their HDIs is within the ROPE, we cannot categorically reject the
possibility of a null effect. Once we examine our multiple comparisons, however,
we notice at least two comparisons'® whose HDIs provide evidence for an effect,
given the ROPE: c3-c2 (£#=.10,[.02,.18]) and c5-c4 (= —.09,[—.18,0]).
These effects would not be visible were we to consider only the slopes in Figure 4.

Comparisons via parameter estimation

An alternative to the method explored above involves the actual estimation of effect
sizes from multiple comparisons. For example, if we wish to compare c¢3 and c4, we

UThis, of course, depends on the contrasts used in the model, which can be changed.
“Just like in any interval, 95% is an arbitrary threshold.
We will see more effects if we consider all possible comparisons, as shown in Figure 5.
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Code 10. Extracting all pairwise comparisons using emmeans () from emmeans

emmeans (bFitl, pairwise ~ cond)$contrasts # |> plot()
#> contrast estimate lower.HPD upper.HPD
#> cl - c2 0.0573 -0.016146 0.1329
#> cl - c3 -0.0470 -0.123947 0.0248

#> cl - c4 -0.0274 -0.122443 0.0666
#> cl - c5 0.0673 -0.002735 0.1416
#> c2 - c3 -0.1046 -0.178983 -0.0241
#> c2 - c4 -0.0832 -0.178415 0.0153
#> c2 - c5 0.0116 -0.064286 0.0879
#> 3 - c4 0.0210 -0.072558 0.1196
#> c3 - c5 0.1157 0.038126 0.1938
#> c4 - c5 0.0950 -0.000387 0.1825
#>

#> Point estimate displayed: median
#> HPD interval probability: .95

could simply subtract their posterior distributions and generate a figure with the resulting
distribution. While this is also accomplished when we run hypothesis (), we can
directly extract all pairwise comparisons using emmeans () as seen earlier in Code 2.
This is shown in Code 10.'* Note that here emmeans () outputs the median and the
HPD (highest posterior density), which is the smallest interval in the posterior that
contains a given proportion of the total probability (e.g., 95% HPD). Although not
identical in their meanings, HPDs and HDIs are often used interchangeably in distribu-
tions that are approximately Gaussian, our case here.

While functions such as emmeans () are extremely useful, there are two advan-
tages of doing things manually at least once: first, it forces us to understand exactly what
is being done, which is especially useful to those new to Bayesian models; second, it
allows us to customize our comparisons.

In what follows, we will visualize all the comparisons for our variable cond. We
will, however, extract posterior samples manually to generate a custom figure that is
informative and comprehensive. The goal here is not to suggest that the same type of
figure should necessarily be used in similar analyses. Instead, our goal will be to better
understand multiple comparisons in the process of generating a complete figure of what
we can extract from our models. Using functions such as hypothesis (), which
automatically accomplish a task for us, can be extremely practical, but such functions
can also conceal what is actually happening in the background, which can be a problem
if we want to better understand the specifics. We will start with our final product, i.e., a
figure with all ten multiple comparisons for cond. As previously mentioned, we will
also add a ROPE to our figure: even though the figure focuses on parameter estimation,
having the ROPE in it allows the reader to reject or accept null effects as well. In simple
terms, this makes our figure more flexible and comprehensive. Here are the elements
shown in Figure 5:

1. Posterior distributions for all multiple comparisons based on bFit1. The figure
also displays the same comparisons from a nonhierarchical model (analogous to

“Notice that you can easily plot the comparisons using |> plot (), commented out in the code. This
will generate a standard ggplot2 figure.
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Figure 5. A complete figure containing posterior distributions of multiple comparisons using our hierar-
chical model. Posterior distributions from a nonhierarchical model (analogous to LM in Figure 2) are shown
with dark gray borders.

model LM in Figure 2; not run here), bFit0, also included in the bFits.RData
file. These posteriors are shown with a dark gray border.

2. Means and HDIs of our hierarchical model bFit1 (right).

3. Percentage of each HDI from our hierarchical model contained within the ROPE
(left).

4. Random effects by participant, represented with grey circles around the means of
the posterior distributions.

At this point, the reader should immediately see the shrinkage caused by bFit1 in

Figure 5 relative to the nonhierarchical model bFit0. The priors on fixed effects used
in both models are identical, which means any shrinkage due to priors can be ignored in
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this comparison. Thus, the only difference between the two Bayesian models is that one
is hierarchical, and the other is not. Every posterior distribution involving c4, the
condition with the smallest number of observations, shows considerable shrinkage: our
hierarchical model is more conservative and estimates such comparisons closer to zero,
which is exactly what we would expect given the shrinkage observed in the estimates of
our fixed effects for c4.

By design, Figure 5 is comprehensive in what it shows. As such, it requires
multiple steps to be generated. In general, if the reader is looking for a quick method,
I would recommend using the much simpler approach in Code 9, which creates a
similar result in very few steps, although that approach will be more focused on
hypothesis testing. Nevertheless, as mentioned earlier, reproducing Figure 5 can be
useful to fully understand what we are doing exactly, which in turn can help us
better understand the models we are using. Ultimately, it also focuses on the
magnitude of effects.

Below, I list the necessary steps involved in creating Figure 5, some of which are
required for both models. The reader can find a complete script to reproduce all
the steps and the figure on the OSF repository mentioned at the beginning of the

paper.

5. Extract draws using the as_draws df () function

6. Select and rename variables (e.g., from b_Intercept to simply c1)

7. Create comparisons

8. Long-transform the data

9. Create statistical summaries for means and HDIs using the mean hdi () function
10. Generate ROPE using the rope () function

11. Extract random effects from bFitl

12. Create a summary for mean (random) effects by participant

13. Generate a figure

Heteroscedasticity

In our analysis above, we assume that the variance (62), and therefore the standard
deviation (o), is the same across all of our conditions, i.e., they are homoscedastic. This
is indeed supported by the data insofar as our conditions have very similar variances,
as shown in Table 2, and thus the variance in our residuals will be constant across all
levels of cond. Sometimes, however, our conditions will not necessarily meet the
assumption of equal variances. Indeed, as pointed out by Birdsong (2018, p. 1), “non-
uniformity is an inherent characteristic of both early and late bilingualism.” For
example, heteroscedastic data are frequently found in age effects, as older learners
show higher variance than younger learners when it comes to ultimate attainment
(Vanhove, 2013, p. 11).

The situation just described brings us to one additional advantage of a Bayesian
approach, namely, that we can directly deal with heteroscedastic data by estimating the
variance itself. This provides the researcher with a higher degree of flexibility than
typical Frequentist methods (e.g., robust regression models) and results in more reliable
posterior distributions of effect sizes, as will be shown below. Here, again, it is clear that
more reliable posterior distributions will directly impact the reliability of multiple
comparisons derived from said distributions. In this section, we will briefly see (a) how
to estimate the standard deviation (o) across the conditions in cond and (b) how this
can affect our estimates.
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Code 11. Modified data d het: number of observations per condition (cond), means, variances,
and standard deviations of responses (resp)

d_het |>
summarize(n = n(),
Mean = mean(resp),
Var = var(resp),
SD = sd(resp),
.by = cond) |>

arrange(cond)

#> # A tibble: 5 x 5

#> cond n Mean Var SD
#> <fct> <int> <dbl> <dbl> <dbl>
#> 1 cl 209 6.81 0.0402 0.200
#> 2 c2 215 6.76 0.0460 0.214
#> 3 c3 189 6.86 0.0339 0.184
#> 4 c4 50 6.85 0.00893 0.0945
#> 5 ¢c5 213 6.75 0.0253 0.159

The dataset d_het contains a modified version of d in which the condition c4 has
a considerably lower variance than all the other conditions. This can be verified in Code 11
(cf. Table 2).

The reader can also see how the new variance of c4 affects the spread of the data,
and thus the height of the box plot for c4, in Figure 6. The figure in question can be
directly compared to Figure 1 presented at the beginning of this paper.

We will run two models. First, bFit 2, which represents the same model as bFit1
run earlier. This will be a typical linear regression where we do not estimate varying
standard deviations, i.e., a model that assumes homoscedasticity. We will then run
bFit3,amodel that estimates standard deviations (sigma) as well as the fixed and
random effects estimated by bFit2. While our new model requires a new function in
its specification (bf () within brm() ), its interpretation is straightforward. These
models will be directly comparable as they will share the same priors as well (with the
exception of the prior set for sigma in bFit3). Both models, as well as the priors for
bFit3, are shown in Code 12.
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.
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~
o

— o B e ey

o
o

T T T T

cl c2 c:3 c4 c5
Condition

Figure 6. Overall patterns in the data: box plots and associated means (orange dots) and standard errors
(not visible). Notice the variance of the c4 condition.
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Code 12. Estimating sigma in a linear regression

# bFit2: our "baseline" model
bFit2 = brm(resp ~ cond + (1 + cond | part) + (1 | item),
data = d_het,
family = gaussian(),
cores = 4,
prior = priorsl, # same priors used for bFitl earlier
save_model = "bFit2.stan")

# Setting priors for bFit3:

priors2 = c(
set_prior("normal(7, 1)", class = "Intercept"),
set_prior("normal(e, 1)", class = "b"),

# Prior for the intercept of log(sigma)

set_prior("normal(e, 1)", class = "Intercept", dpar = "sigma"),
# Prior for the fixed effects of log(sigma)
set_prior("normal(e, 1)", class = "b", dpar = "sigma"))

# bFit3: our model that also estimates sigma
bFit3 = brm(
bf(resp ~ cond + # fixed effects
(1 + cond | part) + (1 | item), # random effects
sigma ~ cond), # sigma
data = d_het,
family = gaussian(),

cores = 4,
prior = priors2,
save_model = "bFit3.stan")

The reader can see the simplified output of bFit3 in Code 13. In addition to the
estimates for cond, we also obtain estimates for o for each level of cond. Recall that
we assume a Gaussian distribution for the response variable. This distribution has two
parameters: i (the mean) and o (the standard deviation). In our model, the fixed effects
(p) represent u, while ¢ is now estimated explicitly for each level of cond. The key
distinction here is that both parameters of the Gaussian distribution (# and ¢) are being
estimated by our model. In brms, sigma is modeled on the log scale, as reflected in
Code 13.

Code 13. Simplified output of bFit3

summary (bFit3)$fixed |> round(2)

#> Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk_ESS Tail_ ESS
#> Intercept 6.81 0.03 6.75 6.88 1 1167.26 2067.45
#> sigma_Intercept -1.91 0.05 -2.01 -1.80 1 3147.79 2711.18
#> condc2 -0.06 0.04 -0.12 0.02 1 1856.54 2175.70
#> condc3 0.05 0.04 -0.02 0.12 1 1469.52 2120.63
#> condc4 0.04 0.04 -0.04 0.11 1 1646.49 2585.37
#> condc5 -0.07 0.03 -0.14 0.00 1 1519.37 2158.06
#> sigma_condc2 0.23 0.07 0.08 0.37 1 3564.34 3361.64
#> sigma_condc3 0.08 0.08 -0.07 0.23 1 3601.63 2917.28
#> sigma_condc4 -0.87 0.17 =1, 3% -0.53 1 993.14 2073.37
#> sigma_condc5 -0.09 0.08 -0.24 0.06 1 3725.37 3145.20
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To appreciate the heteroscedasticity in our data, notice how each sigma condc...
deviates from sigma Intercept.Forcl (ourintercept), the estimated log-standard
deviation is —1.91, which correspondsto oy = e~ '?! & .15 (cf..20 in Code 11). For c4, the
estimated log-standard deviation includes a more substantial adjustment of —.87,
making o4 = e 191787 » .06 (cf. .09 in Code 11). We can therefore see that the estimated
sigma for c4 deviates considerably from that of the intercept (c1). This reflects what
we already know, given Code 11 and Figure 6. The reader should print the outputs of both
bFit2 and bFit3 to verify that the credible intervals of c4 are indeed estimated to be
different in both models. Let us now examine how these differences affect our multiple
comparisons. This is the goal of Figure 7, where black point ranges represent comparisons
drawn from bFit3, and orange point ranges are drawn from bFit2—mixed effects
and posterior distributions are all from bFit3.

-t 0.11 [0.04, 0.19]
P 75y

(0%) .
(1.3%) E_-.-_ .~ 0.09 [0.02, 0.17]
i
(26.6%) _._@_mwlh_.-— 0.05 [0.02, 0.12]
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(25.3%) _i-.-_ o 0.04 [0.04, 0.11]
|
(26.4%) _*L_-\_ 0.01 [-0.08, 0.06]

+—-.
|
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+.
:
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Figure 7. Multiple comparisons from a model where sigma is also estimated (black). Notice the different
HDIs in comparisons involving c4 relative to a model where sigma is not estimated (orange).
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In Figure 7, we notice that comparisons involving c4 differ in their HDIs across
both models. By estimating sigma, bFit3 generates narrower posteriors for c4,
which the reader should verify by plotting the main effects of both models (without
comparisons). This, in turn, affects the width of the posterior distributions of our
comparisons in Figure 7. For instance, in the comparison between c4 and c2, the
mean effect is slightly stronger in bFit3, and its HDI now barely touches the ROPE.
Another comparison worth mentioning is ¢4 and ¢5, whose HDI has clearly shifted
away from the ROPE. This demonstrates how accounting for heteroscedasticity can
affect both parameter estimation and hypothesis testing, emphasizing the importance
of accurate variance modeling.

Discussion and conclusion

Let us briefly revisit the main points discussed in this paper. First, we reviewed why
hierarchical models are often superior to nonhierarchical models. By shrinking extreme
values or estimates from conditions with few observations toward the mean, hierar-
chical models produce more reliable and generally more conservative estimates, which
in turn make derived comparisons more robust. Second, we highlighted the additional
advantages of a Bayesian approach. Priors can introduce shrinkage even in nonhier-
archical Bayesian models, while Bayesian flexibility allows us to estimate variance
directly, addressing issues like heteroscedasticity. Finally, Bayesian models provide
posterior distributions over parameters, giving us access to probability distributions of
credible parameter values for multiple comparisons.

Two perspectives on data analysis were entertained in this paper: parameter esti-
mation and hypothesis testing. While the former was the primary goal here, the latter is
often useful and sometimes necessary, depending on our research question(s). To
center our discussion on parameter estimation, we focused on credible intervals
(specifically, HDIs), whose interpretation is much more intuitive than that of Frequen-
tist confidence intervals. In the context of hypothesis testing, we considered Bayes
Factors and the use of functions such as hypothesis () , as well as the use of ROPEs,
which provide an additional layer of information to our figure.

Not long ago, Plonsky (2013) pointed out that research in second language acqui-
sition relies on a narrow range of statistical methods. Fortunately, it seems that the field
is slowly moving towards more comprehensive methods, such as full-fledged regression
analysis with random effects (Cabrelli & Pichan, 2021; Cunnings, 2012; Garcia, 2020).
Consequently, as we reduced the use of ANOVAs and post hoc tests, multiple
comparisons seem to have lost some of their popularity. In this paper, I hope to have
shown how we can embrace better models and still make use of multiple comparisons
when they make sense, given our research questions. After all, sometimes multiple
comparisons are exactly what we want in a second language study.

One key element involved in multiple comparisons when we focus on hypothesis
testing is the notion of Type I error, which is based on the assumption that the null
hypothesis (Hy) is true. In our scenario, under Hy, the effects of our conditions would
be zero (f =0). While the notion of Type I error is less problematic in appropriately
defined hierarchical models (e.g., Figure 2), we should perhaps rethink the utility of the
TypeIerror paradigm to begin with. As pointed out in Gelman et al. (2012), our starting
point under this paradigm (that the effect is exactly zero) is already suboptimal: we
rarely believe that an effect is exactly zero, or that there is absolutely no difference
between groups. Instead, the authors argue that the direction of an effect is a more
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relevant point to consider: for example, if we assume that £ > 0 but, in reality, § < 0. This
is what Gelman & Tuerlinckx (2000) call “type S errors” (S represents the sign of an
effect). In addition to type S errors, the authors propose type M errors, which pertain to
the magnitude of an effect: suppose an effect is very strong, but we conclude it is close to
zero in an experiment. Both type S and type M errors are proposed as replacements for
the Type I error paradigm, and both are, according to the proponents, “at least
substantially ameliorated” in hierarchical Bayesian models (Gelman etal., 2012, p. 195).
Finally, this paper can be summarized in two recommendations for those wishing to
include multiple comparisons in their analyses. First, when running regression models,
we should favor hierarchical models (e.g., Barr, Levy, Scheepers, & Tily, 2013) whenever
appropriate, given the data at hand. This decision alone already addresses several issues
discussed at length in the literature of quantitative methods (Garcia, 2021; Gelman &
Hill, 2006; Sonderegger, 2023; Winter, 2019), including the typical criticisms raised in
the context of multiple comparisons and Type I errors (Gelman et al., 2012; Gelman &
Tuerlinckx, 2000). Second, researchers should explore multiple comparisons whenever
such comparisons make sense given the research question under examination. With the
appropriate model, this can be accomplished without the typical corrections employed in
the literature. Importantly, researchers should not fear that a Bayesian approach may be less
conservative than a typical Frequentist approach: as pointed out in Gelman (2021), “[...]
with normal data and a normal prior centered at 0, the Bayesian interval is always more
likely to include zero, compared to the classical interval; hence we can say that Bayesian
inference is more conservative, in being less likely to result in claims with confidence.”
As the models discussed in this paper become more popular in the field of second
language acquisition, researchers have a lot to gain in terms of flexibility in their statistical
methods—the approach presented above can be easily adapted to any Bayesian model
(e.g., logistic, ordinal, and Poisson regressions). Crucially, these models provide com-
prehensive results that are not only more reliable but can also directly inform future
studies through the use of priors, just as they can be informed by past research in the field.

Supplementary material. All data and materials associated with this study are openly available at
https://osf.io/37u56/.
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