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Abstract. Sullivan's geometric measure on a geometrically finite hyperbolic manifold
is shown to satisfy a mean ergodic theorem on horospheres and through this that
the geodesic flow is Bernoulli.

Sullivan [3] has shown that on the limit set A(r) of a discrete subgroup of hyperbolic
space ffl1 there is a unique 'geometric measure' /A. Sullivan has investigated much
of the geometric nature of this measure. Of most importance to us here, /A gives
rise to a natural Borel probability measure m^ on T(M), the unit tangent bundle
of M = 3fn/T. This measure is not only invariant for the geodesic flow {g,},eu on
T(M), but Sullivan shows that if T is geometrically finite i.e. has a finite-sided
fundamental domain, g, is ergodic for m^. What we will demonstrate here is that
a mean ergodic theorem holds for mM on horospheres (theorem 17) and that the
geodesic flow is in fact a Bernoulli flow in this geometrically finite case.

Just as in the case of M compact, where m^ is the Lebesgue measure, these two
facts are intimately related (see [1]). The expanding and contracting horospheres
form stable and unstable foliations for g,, and so the behaviour of the measure on
these foliations governs the dynamics of g,. Thus our argument follows the basic
format of the proof that a weakly mixing Anosov flow is Bernoulli. As the measure
on foliations is not smooth and because, even though Sullivan gives us much
information, we have only weak information about the measure, we shall work
carefully to carry out the standard arguments.

We begin by describing fi, and hence m^. For any y e T, /x transforms by the
rule y*(n) = |y'|d/x where d is the Hausdorf dimension of A(F). Up to normalization
Sullivan shows this makes n unique.

For f e 3(2ff") and x e ST let H = H{£, x) be the horosphere passing through x
and f Let PH be the projection of dffi1) onto H.

Let /xH = IPHI^JPHO*), where H is geometrically R""1. This projects n onto each
horosphere with R.N. derivative \P'H\d. T(Wn) is foliated in three ways, first by the
geodesic flow lines g{x), x e J'($?"), second by expanding (unstable) horospheres

https://doi.org/10.1017/S0143385700001735 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700001735


492 D. J. Rudolph

FIGURE 1

Hu(x), and third by contracting horospheres, Hs(x). It is important to note that g
and Hu commute, (as do g and Hs) in the sense that all the //u-leaves intersecting
a given g-leaf are the same as all g leaves intersecting a given Hu-leai. On the
other hand Hu and Hs do not commute and in fact any set made of both full Hu

and Hs leaves is either 0 or all of T(M).
For x e T(9tT) there are two points gco(jc) and g-m(x) in S"'1 = d(2T), the forward

and backward limits of the geodesic through x. Hu(x) is the sphere through x based
at g_ooOc) and Hs(u), the sphere based at g<x>(x). Sullivan defines m^ from /x
differentially, for x e y = {x\g<x>(x), g-X)(x)€ A(O}.

. ._ dftHu(x) dnH.w dg
" |g-coU)-goo(x)|2<i'

It will be of value for us to look closely at this expression. First, identify M with
a choice of fundamental domain D, and select an origin x e T(D). Any point
y € T(D) can be reached from x by a unique series of movements, first on g(x) to
a point xi(y), then on Hs(xi{y)) to a point x2(y), and lastly y eHu(x2(y)).

For any continuous / and choice of origin x e 5",

= f f f
Jg(x) JHs(x!) JHU(

As written this depends on our choice of origin x and on the order of integration.
As

j f(y)dmix(x) = j f(y)dm»{

for all f. Further, for any y e F, and yi, y2 6 dffln), as

|y (y i)-r(y2) |2 = lr'(y i)l |y'(y2)l |yi - y2|
2,
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for any x' with y(g{x)) = g(x') and continuous / that

493

i.e. m^ is F as well as g, invariant. This certainly says m,,(i) is well defined on
T(M). We get more though. For any x' e y, we can select a sequence -y, € T with

y,(g_co(Jc))'-*g-co(x') and y,-(goo(x))'-» gco(x').

Hence there is a sequence of points

Xt = 7; (g(| (*)),-»*, for all x, £ y.

Certainly

I /rfm/i(x,) = j fdm^x),

but further,/XHU(X,,, MH.U,) anddg(x,) all converge weakly to/AHU(X),MHS(X) anddg(x').
Thus (im^ is independent of choice of origin.

Now to see that it is also independent of the order of integration. Let Bu(x, r)
be the Euclidean ball of radius r about x in Hu(x), and for any set A, BU(A, r) =
UxeA.Bu(x, r). Similarly define Bs(x, r) and set

A 'cell'

and similarly

Gr(x)= U g,(x), and Gr(A)= \J Gr(x).
(e(—r, r) x e A

U
ysBu(x,r2)

i, r2, r3) = U
yeBs(x,r2)

FIGURE 2
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Now certainly for ru ri, r3 small enough that CUiX(ri, r2, r3) has a homeomorphic lift
to T(XH),

m,ACUiX(ri,r2,r3)) = 2r3 fiHAy)(PHAy)PH]M(Bs(x,
•>Bu(x,r2)

sU)(Bs(x,ri)) KPH.M ' PH](X))'\ dfiHu(x).
JBu(.x,r2)

For fixed rlf \(PHs(y) ' P~HAX))'\ becomes uniformly close to 1 as r2->0. Thus
m^(Cu,Aru r2, r3)) = 2r3nHs(x)(Bs(x, rl))nHuM(Bu(.x, r2)) + 0(mM(Cu,x('-i, r2,

We now will define mM in terms of open covers by cells and show that, in these
terms, order of integration does not matter. Let

Vu(x,r) = fiHuM(Bu(x,r)) and Vs(x,r) = fiH,(x)(Bs(x,r)).

LEMMA 1. Both Vu(x, r) and Vs(x, r), for fixed x, are continuous functions of r.

Proof. Suppose not. Then on A(F) there must exist countably infinitely many spheres
of dimension less than n - 1 each of positive fi-measure. Take those of minimal
dimension. Two such intersect in, at most, a sphere of lower dimension, hence of
measure zero. Thus these form a countable collection of spheres which are within
/it-measure zero of disjoint. F permutes these spheres. As n is non-atomic, their
dimension is not zero. If F acting on these spheres has an infinite cycle, it has a
dissipative part on A(F), which conflicts with minimality of F acting on A(F).

If F has only finite cycles, it is not ergodic, again a conflict. •

Let Au(r, K) be that set of x e Sf with

Vu(x,5r)<KVu(x,r).

Similarly define As{r,K). Clearly as K increases Au(r,K) increases to all of &'.
Further, Au(r, K) is open and

Let A'u(r, e, S) be the set of all x with

Vu(x,r(l+8)-Vu(x,r(l-8))<eVu(x,r(l+8)).

Similarly define A's(r, e, S). Here also, for any e, as S -»0, A'u(r, e, S) increases to
all of y, A'u is open and

g-,(Au(r, e,S))=Au(e~'r, e, S).

LEMMA 2. For some Ko>0, for any e >0 there is a S(e) so that for all x e & there
are sequences r, (x) -> 0, r, (x) -* 0 with

xeAuin, Ko)nAs(f>, K0)nA'u(ri, e, S)nA's(ri, e, S).

Proof. Pick Ko so large Au(l, Ko) is non-empty. Now choose S so small

O = Au(\,Ko)nA'J\,e,8)¥>0.

As F acts minimally on A(F), for all x^Sf, there are infinitely many f,(x),

The other half is symmetric to this. •
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Fix this Ko. Now for any e and S <8{e), call a cell Cu%x{f\, r2, r3) with

x € Au(n, K0)nA'u(r\, e, S)nAs{r2, K0)r<A's(r2, e, S)

an 'e, 5-good cell'. Now for any continuous function / with compact support define

fdm* =lim

/sup
disjoint

lim
dia(C,)->0

collections (L/(*/)«iH(C,)J
of e, 5-good cells

\

LEMMA 3. m* ~m^.

Proof. Clearly m* ^m^ . For any e > 0 , we have e,S(e) good cells of arbitrarily
small diameter about every point. By the Vitali covering lemma [6], there is a
disjoint covering pf supp (/) to within m^-measure zero by such cells. Hence

For a fixed S >0, once dia (CUiX{ri, r2, r-$)) is sufficiently small,

Q x ( r 2 ( l - 5 ) , n ( l - 5 ) , r3(l -fi)) <= C ^ ^ , r2, r3).

If we now define

) dg

i.e. change the order of integration, we can follow all the above reasoning for
up to constructing

ml =lim
e-0

lim
diaC;-»0

sup
disjoint
e, 5-good cells V~

and conclude

But now once dia (Q) are small enough, set

where Ct = Cs,X/(rAi, ri<2, rjy3). The C; form a disjoint set of e, 5/2-good cells for m*.
As

x, ry-2)) + (Km,,(Q))

•
Thus m*<m*. The other inequality follows symmetrically. Hence

LEMMA 4. dm^ can be computed by integration in any order.
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Our first, and most basic step, is to prove that g, is weakly mixing. Such arguments
normally require absolute continuity of the foliation measures as we move along
the foliations. We do not have this. Instead we rely on the definition of the foliation
measures \JLH as geodesic projections of /x with a smooth R.N. derivative |T?H|''- We
will not use the ergodicity of g, and hence will obtain an alternative proof of
Sullivan's result. Because of the importance of this step, we will be quite careful
in the proof.

THEOREM 5. {g,},eR acting on (T(M), B, m^) is weakly mixing.

Proof. We will show that for all a # 0, and all uniformly continuous fe.Lx{T{M)),
1 «-i

/(*) = lim sup - I giaifix))
n-»°° n ,=o

is m^-almost everywhere constant, hence ga is ergodic for all a and g, is weakly
mixing. •

We know feL\mJ,

f(x) = lim - V gfa(/(*)) = lim - "f1 g-,,,(/(*))
n-co n ;=o "-"•0O n ,-=o

almost everywhere by the Birkhoff ergodic theorem. A number of facts are now
evident from the uniform continuity of/:

(i) f is constant on all stable horospheres;
(ii) / is constant ^iHu-almost everywhere on m^-almost every unstable horo-

sphere; and
(iii) <px(t) = f(gt(x)) is uniformly continuous in t, uniformly for all x, and a-

periodic.
These imply:

(iv) / is constant on all stable horospheres, and on mM-almost every unstable
horosphere Hu, f is ^Hu-almost everywhere constant, and now using (iii);

(v) for /u,-almost everywhere £ 6 f\(T), f is /nWu-almost everywhere on all
unstable horospheres based at £ and the set of all points x where f{x) differs
from its /u,Huuralrnost everywhere constant value is g,-invariant.

Lift / to F pn r(2T). Let A ={£e A(H| for every unstable horosphere based
at €, f is /Lt//u-almost everywhere constant}. We know fi (A) = 1.

Let £i, $2&A, and pick a horosphere HUi\ based at £i, with F{HUiX) = A-almost
everywhere.

For any £e f\{Y) there is a unique stable horosphere Hs,3(€) based at £ tangent
to Hu,t.

There is in turn a unique Hu,2(£) based at £2 tangent to Hsfi($). Let these points
of tangency be *i(£) and x2(£).

Fix a £, € A (O and let Hu,2 = Hu,2(£3), with F(HU,2) = A'-almost everywhere. We
now demonstrate A = A'. Let TV c d(Wn) be a small neighbourhood of £,. We know
n(N)>0. Project TV along geodesies to TVu>i<=//ul, a neighbourhood of JCI(&) in
//u,i. Hence /U.HU1(TVU,I)>0, and so for a subset of jci(£)eTVu,i of full measure,
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FIGURE 3

F(xi{£j) = K. By (i) F(HS,3{£)) = A for ^-almost everywhere £eN. Let Hs,3(f) be
the stable horosphere based at £ tangent to HUi2- By the same reasoning

F(HS,3(£)) = A' for /Lt-almost everywhere

Now /ffi3(£) = gm(Hs,3({)) where f(£) -» 0 as f -» f „•
Thus allowing the dia (iV)-»0 we conclude, by (iii) that A = A' proving our claim.

Similarly

A,=F(gI(//u,1))=F(g,(//u,2))

/LtHu-almost everywhere.
The set of points S<=-N with HUi2(€)=HUi2 is the intersection of N with an

(n -2)-sphere, so ix(S) = 0. Hence in N there are points f,->|o, £ e A ( D with
HuMi) = g«,(^-.2), r, * 0, r, -» 0. We conclude

A, =F(g, (//„,!))

Hence A,, which we know is uniformly continuous in t, is invariant under the shifts
r, 5* 0, U -> 0. Hence A, = A for all f and we are done. •

COROLLARY 6. For any two sets A and B c T(M), and any e > 0, there is a set of
t c U of full density with

mll(g,(A)nB) = mli(A)m»(B)(l±e).

Proof. This is equivalent to weakly mixing (see [5]). •

The rest of our work proceeds along the following lines. We use the above corollary
to prove a weak ergodic theorem for horospheres. This in turn will imply a mean
ergodic theorem on horospheres which then will prove not only that g, is weakly
mixing, but that it is in fact a Bernoulli flow.
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To continue we must look a bit more carefully at the geometry and measure size
of cells. Some of what follows repeats some of our earlier work but is included to
make the arguments here self-contained.

LEMMA 7. For any e > 0 there is a C(e) so that for any x e T(M), y eg,Bs{x, ri) if
/•i • r2<C(e) then Hu(y) nCu,x(oo, r2, °o) has a connected component containing y
which as a set is geometrically uniformly within e'r2e of Bu(x, e'r2).

Proof. For rx = 1, such a C(e) exists by smoothness and homogeneity of the foliations
and projections. As

gACuAri, r2, r3)) = Cu,g,(x)(e~Vi, e'r2, r3),

picking t so that e~' = ru the result extends by conjugation by g,. D

COROLLARY 8. For any e > 0 there is a C(e) so that if

y €g,Bs(x, n(\ -e))cG,!(i-«)B,(i, n(l -e)) ,

then for any r2 with eHr\r2 < C(e) then

Hu(.y)nCu,x(rur2,r3)

is geometrically within e e'r2 of Bu(y, r2 e').

Proof. If r2e'3<e and ru r3 s 1, by lemma 3,

Hu(y) o {Cu,x(ru r2, r3)) = Hu{y) n (Cu,x(oo, r2, oo))

near y. Conjugation by g, extends the result to small rit r3. D

For r\r2e
H<C(e), then, a cell looks to within e like a geometric cube with

cross-sections which are balls in the three foliations. We want such cells also to be
measurably almost cubes i.e. that on both stable and unstable leaves a cell is not
only geometrically close to a ball but usually measurably close as well.

Continuity (lemma 1) of Vu(x, •) and Vs(x, •) is critical in this and, as we shall
see knowing more, the uniform continuity of Vu (x, •) in two variables would give
us stronger results. It is easily seen that uniform continuity holds for d >n -2, but
ought to be generally true.

LEMMA 9. For any r\, r3 > 0, e > 0, for almost every x there are r2 = r2(x, rx, r3, e),
S =S(x,rur3, e) so that for

C = Cu,x(ri, r2, r3)

MHsW(Bsk r2)\Bs(x, r2(l -«)))<|/*H.<,)(*

and for any y e Gr3ii~S)Bs(x, rz{\-8)), y e g,Bs(x, r2(l-8)),

y,r2e'))<~nHu

Proof. We know for some 8 > 0, there is a set A (r2) of positive measure in T(M) with

* Vu(x,r(l+8))-Vu(x,r(l-8))<2Vu(x,r(l-8))
6
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for some r < T2- AS we have seen before

g_,(A(r))=A(r)

hence

mM(A(r)) = l and mJn A(r)) = 1.
\r-»0 /

Thus for almost everywhere A; there are infinitely many r -* 0 satisfying *. The same
is true of Vs.

Pick 8 < 8/2 so small that

Vs(x, r2(l +«) ) - V,(*, r2(l - f i ) ) < | V,(jr, r2(l -5)).

Let r\ be such that xeA(r{), e'3r1r2<C(8), and furthermore for any ye
Bs{x,r2), |(PHu(y -(PHJ,))'! is uniformly within e/6 of 1 on //„,,,(*). The result
now follows. •

An e-cell will be a cell CUtX{r\, r2, r3) made by, first, picking any r\, then r3 so that
e'3< 1 + e/3, and then r2 using the above lemma.

It follows that any //s-leaf intersects an e-cell in e-near disks all of which are
projections of the same set, Bs(x, ri))s A(F). Any Hu-\e&i intersecting an e-cell
more than S(x, r2, r3,e)<e from the boundary intersects it in an e-near disk both
geometrically and measurably. Hence if C = CUiX(ri, r2, r3) is an e-cell,

(Bya = b(l±e) we mean a e{6(l-e), b(l + e)}.)
We are now ready to prove a mean ergodic theorem for horospheres. First a

weak ergodic theorem.

THEOREM 10. For any Borel set A, for any e > 0, there is a set of full density I c R
so that forr = e',teT. For all but e of the y e T(M),

f j . H u i » ( B u ( y , r ) n A ) f A , n , ,
— ~—=miL(A)(l±e).

MHu(y)(Bu(y, /•))

Proof. We show this first for A acellCs,x(ri, r2, r3) where rit r 2 s lande r 3 <( l+e /20) .
Subdivide Bs(x, r2) into open subsets A\,..., Ak with mM-measure zero boundary
on each of which f(y) = nHuiy)(Hu(y)nC) is within a fraction e/20 of constant. We
prove the result first for

A'^GJ U /W,>PHi(x)(tf,.(*.'i))) = a s ( U (Hu(y)nC)Y
\yeA, / ^ycAi /

Pick <5i so small that there is a set At cA,-, a 5i-neighbourhood of A, is contained
in A,, and

/M<7,,(i-«,> U PHuty)PHuw(Bu(x,ria-81))))>(l-e/2O)mll(A'i),
yeA,

(as 5i \ 0 , A, Z1 Aj), call this shrinking of AS, AJ. Let 82 be so small that for any yeA,',
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From the smallness of r3 we conclude

-61))2(r3(l -50(1 ±e/20)).

Let e = (e/40)mM(A,-) and we can find through almost every y an e-cell

C(y) = Cu,y(r4,l,82r3)

where r4 = r4(y) depends on y.
Select <54 and r4 so small that for all yeB, mli(B)>\-e/20, r4(y)>r4,

84<8(y,l,82r3).
Pick a compact set K^T{M) so large that for yeB<=B, mIJ.(B)>l-e/10,

C{y)<^K. Cover K with {b\,... ,bk), a finite collection of e r3-balls, and let
P = V?=i {bt, bCi) be the finite partition they generate. Thus by lemma 9 for y eB,
there are sets Ct (y), C~i>(y)eP approximating C(y) outside and in, geometrically
and measurably, to within er3.

As g, is weakly mixing, there is a set T of full density in R+ with <54e'>r2»
r4e~' <82 and so that for all S c P ,

w . t f t W n D ) = m^(5)mM(D)(l ±e/20)
f o r D = A | or A,'.

It follows that

for such D and all y e B, as C(y) can be so well approximated by C+
P (y) and C~P (y)

inF.
We now want to examine the nature of

What is significant here, of course, is that gt(C(y)) consists of a huge u-leaf and
tiny 5-leaf and geodesic leaf in comparison to A\.

Let y' = g,(y) e g,{B) and suppose

z e Cu,y{e-'r4(y), e'{\-84), 82t)nAl

It follows that for some

C(z') = GsJ LJ

Now C(z') is, in shape, within e/20 of

Cu,Ae~'r4(y), ru82t)

and measure within e/20 of

MHu<y')(£u(y', r1))pH.w(B,(x, e~'r4{y)))282t.

Now for z too close to the u-boundary of g,(C(y)) or the S Xg-boundary of A\,
there is still a little cell C(z') with the same bounds geometrically and in measure
as the others, but it is only partially in /. Such a cell must lie in g,(C(y))n(A'i\A'i)
and hence is at most e/20 of /.
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Let N be the number of full cells C(z') in /, and we conclude

mIJb{I) = N^Hix)(Bu(x,ri))^HAy)(Bs(y',e^r4(y))2S2

Now through the centre of each C{z') is an e/20-near disk

£(Z) = PHU«)PH[M

and of course by lemma 9

MHu(y',(C(z))=MHu(y')(5u(y

and such disks constitute all but 3e/20 of Bu(y', e ' )nAj, and

and the result holds on A\.
The result extends to finite unions, hence to LJ.A;- This is within measure zero

of our original cell A. The result obviously holds on sets of m^-measure zero from
the form of dm^.

For A a bounded open set, slice A by //u-leaves into thin sections approximable
very well (in terms of e) inside and out in measure by finite unions of cells of the
above form and the result follows for A.

Let A, / T(M) be bounded open sets. The result holds, then, for Ac
t, which are

ever more distant ends of cusps, and as m^AI) -»' 0, for any open A the result is
true of

(AnA,-)A-A and (AnA.-)uA- \ ' A ,

and hence is true of A. As we now have open and closed sets, we get all sets by
approximation. •

Now weak mixing does not imply mixing, as each are statements about individual
numbers of a sequence, but our weak ergodicity will translate to a mean ergodic
theorem as both are statements about averages. This mean ergodic theorem for
horospheres then will give us back stronger dynamics on g,.

COROLLARY 11. For any set A and e >0, if R is sufficiently large, there is a set of
measure greater than 1 — e, so that for x in this set, for a subset R(x)<^(0,R) with
In (R(x)) of density greater than 1-e,

MHU(X)(BU(*, 0 )

Proof. Choose R so large that, with e2 in the last lemma, the good subset of R +

on (0, R) has density greater than (1-e2) and apply Fubini to T(M) x (0, R). •

Some preliminaries before the ergodic theorem. We will say Vu(-,x) or Vs(-,x)
are 'e, 5-even' at r if

V{r(l+S),x)-V{r,x)rSeV(r,x).

If Vu (•, x) is e, 5-even at r then Vu (•, g, (x)) is e, <5-even at e 'r, and similarly for Vs.
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LEMMA 12. For any e >0, there is a S so that for almost all of T(M), Vu(x, •) is e,
S-even at a set R of r with In (R) of density (1 - e ) .

Proof. As Vu (x, •) is continuous, choose S so small that all but e of T(M) is e,
5-even at 1. Conjugation by g, now gives the result by ergodicity. D

To prove the mean ergodic theorem for horospheres we need a couple more tools,
a finite Vitali covering lemma and a trivial version of the ergodic theorem for small
sets.

LEMMA 13. Let mbea Borel probability measure on U n. Suppose for each x e supp (m)
we have a ballB(x,R(x)) so that

m(B(x, 3R(x)) <Km(B(x, R(x)).

There is, then a disjoint collection b\,bt... ofthe B(x,R(x)) so that

Proof. Select ba inductively, a a countable ordinal, requiring

radius (ba)>\( supp (R(x))).
\B(1!(I),J)C(U,'<.I' . ') >

Continue to select, transfinitely if necessary, to a maximal such sequence.
Let ba =B(R(xa), xa). We claim

supp(m)c{jB(3R(xa),xa).
a

Suppose not, i.e. y£B(3R(xa), aa) for any a. By maximality, for some xa,

B{R(y),y)nB{R(xa),xa)*0.
Let xa be the least such. It follows that R(y) >2R(xa). But as

\J B(R(xa-),xa-)

we have a conflict. Thus

m(Uba)=lm(ba)>l/KI,m(B(3R(xa),xa)>l/K. •

COROLLARY 14. (Finite Vitali lemma). Let m be a Borel probability measure on W.
Suppose for all x e supp (m) we have N balls B (Ri (x), x), i = 1 , . . . , N with

m(B(3Ri(x),x))<Km(B(Ri(x),x)).

Further, if Rt = supJti?,(x), then

We can find, then a countable disjoint sequence b\, b2 • • • of the B(R((x), x) with

m[

Proof. Apply lemma 13 sequentially, first with Ri(x) to get

bi.u bi,2..., b1J=B(R1(x1,i), xUi).
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Set

and re-apply the lemma to supp (m)|u(£u using R2(x). Set

and continue. After N steps we conclude

/ / N

i((UUb\
W ; i = l

and we are done. D

LEMMA 15. For any e > 0 there is a S so that for any set A, mM(A) < S, for all r, for
allbuteofthexeT(M),

Proof. First choose 5 so small that for all but e/10 of the x e T(M), Vu(x, •) is e/10,
5-even at r = 1. Choose T and r2 so small that for all but a further e/10 of T(M),
for any y e GTBs(x, rt), Vu(y, •) is still e/5, 5-even.

Around each such x we have an open cell

C(x)=Hu,sGTBs(x,r1).

Let C(xi),..., C(xn) be a finite collection of these covering all but e/10 of the
remaining x, hence all but 3e/10 of T(M).

Let P = VT_i {C(xi), C(JCJ)C} be the partition they generate. Set

m = min (m^(p), /xHu(y)(Su(y, 1)), GuH,U|) xdg)(GrBs(x,-, ri))).
yeOTB,(xh c,)

Set 8 = (me/10)2. Fix f, let f = In (f) and now let p £ g,CP), F <=• g,(C(x,-)). We know

JBsUi.r^rlg.fx,))) J-T JBu(y,f)

= mJAnB.lG^B.U,-, r1/r(g,(xj)), f)) < m^CA)<m3^J .

Thus for all but (m2/f)e/10 in measure of the y e GrBs(xi, r-y/f),

u(y)

I
This is all but a fraction e/10 of such a p.

Hence for any such y, if y'eBu{y, Sf),

I XAd(jLHu(y') <rme/10<3e/10/iHu(y.)(Su(y', f ( l -

by e/5, 5 -̂evenness, and the result holds at y' for r = r(l-S).
Such y' constitute all but a subset of measure at most me/10 of g,(

hence for all but at most an e/10'th fraction of p. As this is true for all but 3e/10
in measure of the peP we are done. •
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We now describe Sullivan's estimates for Vu(x, •). Let £ e A(O, and Va(g, •) be the
H volume on A(F) of a ball about £ Let 0 be a fixed origin for #fn, and v(t) be
that point a distance t along the geodesic from 0 to £, then the hyperplane
perpendicular to this geodesic at v(t) intersects d($f") in a ball of radius, say, r(t) = r.

r(t)

FIGURE 4

Now v (0 is either in the thick part of M or on some cusp of order k = 1,... ,n~l.
Sullivan shows that for any compact K 2 (thick part) there is a constant C(K),

so that if u(f)isin K

c (A;

and if v(t) is in a cusp of order k,

(The 'thick part' is what remains after cutting off the cusps at standard positions.)
As t is of the order of In r, on a cusp of order k

2d-k
, 2d-k

c
Note that in order for m to have cusps of order k, d>k/2 so Va(g, r)-»0 as r->0
always. As r -» 0, we pass through various regions where V3(£, r) is controlled by
different exponential rates.

To see that this same picture holds when /J. is projected onto horospheres, make
sure we choose 0 so that it is on a geodesic between two points of A(F). Choose r
so small that \p'Hu(0)\ is uniformly within e of constant on Bd(£, r). Thus on Bu(x, r')
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FIGURE 5

we get the same behaviour as at £, once r' is small enough. This behaviour remains
nearly true in a neighbourhood of 0. But now in T(M) the fact that, for r sufficiently
small, Vu(x, r) decays to 0 through intervals like rd or r

2d~k is a g, invariant property
as

V (p'r a (x\\ = ptV (r ri

As Sullivan has shown g, is ergodic we have such bounds almost everywhere, and
as e'r/'oo as f-»oo, we have it for all r. It is important to remember that v(t), by
the ergodic theorem, lies in the various parts of T(M) with proportions like m^.

LEMMA 16. There is a constant K so that for almost every x,

Vu(3r,x)<KVu(r,x).

Proof. We show this for Va and hence the result for Vu follows. We use Sullivan's
estimates on Va. In M, v(t(3r)) and v(t(r)) are a bounded distance apart. If both
are in a cusp we have the result, and if one is in the thick part, then the other is
in a fixed compact region containing the thick part, and again we are done. •

THEOREM 17. (Mean ergodic theorem). For any Borel set A and any s, there is an
R so that for all r>R, for all but e of the x e T(M)

fXHu(x)(Bu(x,r)nA)

Proof. Pick N so large that for K from lemma 16
1 -I T r A I/4-1

With e/10mM(A)2 in lemma 12 we get a 5j so that for all but e/10 of T(M), if
, then the density of S in Bu(x, r) is less than e/10mM(A).
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Choose <52 so small that all but Si/2N of T{M) is e/lOm^A)2, S2-even, using
lemma 12 and the weak ergodic theorem holds to within e/10m^(A)2 on Bu(x, r).
Our control on densities of such r allows this. By deleting a further em^.(A)/10 of
T(M) leaving G, the 'good JC'. Select inductively Ri{x), R2(x) • • • RN(X), such good
radii,

Choose

sup Ri+i(x)<S2mIJL(A)Ri(x).
a

R>
S2mJA)

Now if x is em^{A)/10, sup G #i(*) /#-even at r>R, and all but a fraction
em/i(A)2/10 of Bu(x, r) is in G, we can apply the finite Vitali lemma with

to get a disjoint set of balls bu b2,..., covering all but a fraction

3em^(A)
10 10 10

of Bu(x, r), on each of which the fraction in A is within e/10 of m^A). A fraction
at most e/10m^(A) of these balls extends outside Bu(x, r) and we are done. •

It is interesting to note that the behaviour of Vu (x, •) is intimately related to the
existence of a pointwise ergodic theorem.

FIGURE 6
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THEOREM 18. If for all e, there is a S so that for almost every x, Vu(x, •) is e, S-even
for all r, then for any set A

^m
finu(x)(Bu(x,r))

Proof. This is a variation of an unpublished proof by P. Shields of the Birkhoff
ergodic theorem. Suppose we do not have pointwise convergence on A. There is,
then, an e >0 and a set of positive measure B so that for x eB, there are r,(x)/'°o
and

(Replace A by Ac if always less than (1 — e)mMC<4).) In this case we say x is e-bad
at r,(x). By uniform evenness, for x e B,

x' is e/2-bad at r,(x). Now

8(§/2m

and by the mean ergodic theorem, almost every x has

Hence almost every x is e/2-bad for arbitrarily large r. Following the same format
as lemma 17, only now constructing coverings with e/2-bad balls, we can, once r
is large enough, cover all but e/20 of Bu(y, r), for all but e/20 of the y 6 T(M)
with disjoint e/2-bad balls. It follows that for all such y, Bu(y, r) is itself e/4-bad.
This conflicts with the weak ergodic theorem. •

Whether Vu is uniformly continuous on supp (ra,J now becomes an interesting
question. Even if the answer is, in general, no, is there still a pointwise theorem?

We now return to the dynamics of g,, to show that it is a Bernoulli flow. Simply
retracing the mean ergodic theorem backward would lead to a proof of g, mixing.
We must work a little differently for the stronger result.

What we will do is construct sequences of partitions Pt, P{ so that for e, = 2~':

(i) for/sy, V P , <=''/»,;
i = \

(H) Pi <=''Pt;

(iii) V Pt =B; and
i

—oo

(iv) for almost every/e V g<(P.)-
i=0

(P cE Q if for each set A in P there is a set A in Q with m(1(AAB)<£.)

V g,(Pi)//, Vg,(Pi)) = o.
\i=0 i=0 I
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Since this is not one of the standard conditions given that are equivalent to a flow
being Bernoulli, we must verify the following lemma (see [4] for a treatment of
the Bernoulli property).

LEMMA 19. If Pi, Pt are as above, then for all i, (g,, V)=.i Pj) is e-block independent,
hence g, is Bernoulli (see [2]).

Proof. As Pi <=e'Pi, we can approximate P, by unions of sets in P, and by the ergodic
theorem, for almost every fe V;=!o g<Cft)>

d(\f g,(Pj)/f, \f g,

Let ®fli(Vr=o gt(Pj)) be the iV-fold independent product of Vr^og.CP,)- We
conclude, for T - T(j) large enough,

- / N I T \ NT \

d(<g> V g,(Pj)), V g,(Pt))<2e,,

i.e. Pj satisfies 2e,-block independence.
As V'fc=i Pk c E ' Pj, once T is large enough, we can code all but 2e, of the names

in VT=o (gr(VSc = i Pk)) from names in V ^ o gt(Pj) with at most a 2e, J-error. Hence
for T>T(j)

, N 1 T / i \ \ NT , i \ \

d ® Vg, V /»*)). V g,( V Pk))<6ey

and (g,,Vfc=i Pk) is e-block independent for all e, and hence Bernoulli. As
oo

V Pk=B,

g, is Bernoulli by Ornstein's monotone theorem. •

All that remains is to construct /*, and Pi. The Pi will be made mostly of disjoint
e,/10-cells cu,( - , - , • ) and Ph Cs,( • , - , • ) •

Use the standard Vitali covering lemma to cover most of A\ and A2 by disjoint
disks BS(JC,, r,) and Bu(xjt r,-) with

•^(n)<K.

The cells of P, in q will be

G>3( g J J PHAy)PHA^(Bs(Xi, /-,))).

This is not exactly a cell, but-as KP^y^/ /^ , ) ) ' ! is uniformly within e,/20 of 1 on
q, these almost cells are, both in geometry and measure, within e,/20 of

Furthermore, on i/s-cross sections these almost cells have at most 2Ke of their
mass within e of their boundary, if e is small enough, as this property projects
with small distortion.
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Build Pi similarly, but with almost cells

GrJ U PHul

so small, and covering so much of T(M) that F, <=*' pt.
All that remains is to verify the near J-independence of

~ and \f
i=0

We first identify the fibres fe VT̂ o gtiPi)- As g, is weakly mixing, / intersects a
g,- orbit in at most one point, as for t < 0, g, shrinks //u-leaves, / intersects an //u-leaf
in at most one point. We wish to see that / is a bounded simply connected region
on an //s-leaf. Take a ball Bs(x, 1) and let

frAx)e V g,(P,)
i = —r

be that atom containing JC. Consider

B,(x,l)nfo,s(x) ass-* 00.

This set decreases in discrete jumps as gs(x) moves from set to set in Ph and only
then if gs(x) is sufficiently close to a boundary in the //s-leaf of an atom of />, to cut

gs(Bs(x,l)) = Bs(gs(x),e-s).

Now once 5 is large enough, the probability that the set is so cut is less than
2kKe~\ where Pt has k cells.

A grorbit passes through the sets of Pt in intervals. These intervals have a
minimum length, say 3a. Thus each time Bs(x, l)n/0,s(x) decreases, g[s/a]a(x) is
still within e~

[s/a]a of the Hs-boundary of Pt. But the set of x within e~na of the
//s-boundary of Pt is summable in n. Thus, for almost every x, Bs{x, l)n/0>s(x)
decreases only finitely many times, and for r small enough, Bs(x, r)c/0co(x), and
almost every / is an open set. Similarly, almost every fe \/T=o gt(Pi) is an open
simply connected region on an Hu-leaf.

It is now clear that verifying g, weakly Bernoulli would be very difficult, as these
partitions, Ph are the most natural to the system, but as Hu(x)xHs(x) does not
span the tangent space at x, the past and future do not become independent as we
separate them in time.

As we are only after J-independence, we can 'fatten' the future fibres and
apply the mean ergodic theorem on horospheres in the following form to get
J-independence.

LEMMA 20. Let A\,A2 be bounded open regions on Hu-leaves. If r3 is sufficiently
small, let

Al = Gr,(Al), A2 = Gr,(A2).

If A1 and A2 are not on a bad set of Hu-leaves of measure zero, once r is large
enough, for all but e of the y € T(M)

card(Bs(y,
card (Bs(y, r) nA2) tiHu{A2)
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Proof. Pick r\, r\ small enough that

AicCM l(ri ,f2 ,r3) and A2c Cu,X2(ri, r2, r3)

are e/10-cells. This can be done for almost every JC, hence for any AUA2 which
has a good x on its Hu-leai. Let

A I I I — 1

and

•<*2— ^ o \ \^J * Ws(yH HS(X2> v^*s \X2, ' 2^/ I

be the corresponding thickenings of A\, A2. Now

ix2)(Bs(x2, r\))2r3(l ±e/10).

Now for r sufficiently large, for all but e of the y e T(M),

^H,iy){Bs(y, r)nAi) = fiHuixl)(Ai)fiHAxi)(B,(xu ri

by the mean ergodic theorem.
The analysis of theorem 10 tells us, that for r sufficiently large, B,(y,r)nAi

consists for all but e/20 of the space of full near-cells of the form

PHAy)PH1,(X1)(
Bs(xi, n)), y e A i ,

with some partial disks near the boundary of Bs(y, r) constituting a fraction, at most
e/20, of their total number.

Each disk has at its centre a point of Bs(y, r) n Ai, and so

The same holds on A2 and we are done. •

We prove this only for open sets but the result clearly extends to any bounded
Borel sets on //u-leaves.

LEMMA 21. Let si be any measurable partition whose atoms are open bounded regions
on Hu leaves. For almost every y € T(M), the Radon-Nickodym derivative

))
(/) = card ( / n Gr3Bs(y, r)).

Proof. This is the same analysis as in the above lemma. If we fatten / slightly in
the Hs and G directions, its intersection with Gr3Bs (y, r) becomes mostly a collection
of small cells, one for each intersection point, all of nearly the same volume. As
the size of thickening goes to zero, all the approximations improve to the result. •
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COROLLARY 22. For any e > 0, r3 sufficiently small, for all but e of the y e T(M),
and for a set S of all but e of V" R gt(Pi), if ft e S,

card (Gr3(fi) nBs(R, y)) /u,Hu(/i)
caTd(Gr3(f2)nBs(R,y)) MHU(/2)

' such feS cover all but e of HSy\(y).

Proof. As the f are regions on //u-leaves, the result is true for almost any particular
pair. To get the result on all pairs from a large set we take the usual tack, getting
a uniform r2 for most past atoms in the argument of lemma 17 and then a value
ri bounded below for most past atoms. Next approximate most of these fattened
atoms very well by a finite partition made mostly of small sets. The mean ergodic
theorem to within e/20 holds on all sets in this partition for r large enough, and
hence uniformly over most fattened past atoms. The result is now completed as in
lemma 17. That atoms not in S occupy a small fraction of Bs(y, r) follows from the
mean ergodic theorem. •

COROLLARY 23. For any e >0, r3 small enough, once r is large enough, for all but
e of the y e T(M), for any set Ac\/r=o gt(Pi),

MH.(y) xdg{Gr3Bs(y, r)nA) tA\±e

i.e. the conditional measure of VT=ogt(Pt) on Gr3Bs(y, r) is weakly within e of m,.

Proof. We have identified the R.N. derivative

d(m^\Gr3Bs(y, r))) = card (fn G,3Bs(y, r)) dHsdg.
Integrating over / e A,

mM (A \Gr3Bs (y, /•)) = J card (/ n Gr3Bs(y, r)) dHs dg

= [ fJiHu(f)dHsdg±E=mIM(A)±e. •
JA

COROLLARY 24. For any r3 small enough, for any r, for almost all the y 6 T{M),

d( V g,(P,)/Gr3Bs(y,r), V g,(Pi))=0.
\ ! = O ( = 0 /

Proof. For all but e of the y € T(M), once T is large enough,

mJv g,(Pi)\Gr3Bs(y,r)) and mJVg,(P,))

are weakly within e, as they are as close as

mj\} g,(Pi)\Gr3Hs,eTr(g-Ay))) and mj V g,(P,)\

But this weak closeness implies
d( V g,{Pi)/Gr3Bs{y,r), V g,(Pi))<e,

\<=o t=o /

as the gap (0, T) is insignificant in d. Let e -* 0. •
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One last lemma completes our basic work.

LEMMA 25. For any e > 0, there is a S so that if r3 < 8, for any measurable partition
Si, for almost every fe£L,

d( V g,{Pt)/f, V g,(Pi)/Gr3(f))<e.
\< = 0 1 = 0 /1 = 0

Proof. Let fif = m^(\f\) be the conditional measure on /. Couple fxGn{f) by the
measure

Any point (x, x')e supp (i>) must satisfy

g,(x) = x' for some \t\<r3.

If 8 is small enough,

and so for almost every (x, x') E supp (v),

3{{2t-na.me of x), (5-name of x')) < e

and we are done. n

COROLLARY 26. For any r>0, and almost any x e T(M),

d(y gt(Pt)/B.(x, r), V" g,(Pt)) = 0.
\r=0 (=0 /

THEOREM 27. For almost every fe Vr="o gj^i).

d(\/ gt{Pi)lf, V g,(Pi)) = 0.
\i=o i=o /

froo/. By the standard Vitali lemma, almost every fe\J7™ogt(Pi) can be almost
completely covered by disks BS(R, y) satisfying corollary 22. •

With this we conclude g, is a Bernoulli flow.

The author expresses his appreciation to D. Sullivan for much help in clarifying
the issues in this argument. The work was supported by the Sloan Foundation.
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