
THE ANALYTIC CONTINUATION OF THE RIEMANN-
LIOUVILLE INTEGRAL IN THE HYPERBOLIC CASE 

MARCEL RIESZ 

Introduction. In 1949 I published in the Acta Mathematica (vol. 81) a 
rather long paper: "L'intégrale de Riemann-Liouville et le problème de 
Cauchy." This work will be quoted in the sequel as Acta paper. Only minor 
local references to this paper will be made here, and knowledge of it is not 
required for the reading of the present article. The notations used here are 
slightly different from those used in my former paper. 

In the Acta paper I introduce multiple integrals Ia and 1% of the Riemann-
Liouville type depending on a parameter a and converging for sufficiently 
large values of a. I give the solution of the Cauchy problem for the wave 
equation in a unique formula, the same for space-time of odd or even dimensions, 
implying an analytic continuation with respect to the parameter a. When 
this analytic continuation is carried out, it leads to final formulae of quite 
different types for odd or even dimensions, the one relative to even dimensions 
obeying the Huygens principle. 

The main difficulty concerning the analytic continuation was to prove that 
P is the identity operator. My way of doing this was neither simple nor 
elegant. The principal aim of the present paper is to give a more satisfactory 
proof. 

I hope that the present approach will be useful in other connections as well. 
Indeed, this method of analytic continuation has found unexpected applica­
tions in other fields. Here I only make reference to results of Gelfand and 
Grajew.1 

1. Preliminaries. If the co-ordinates of a point x in ra-dimensional space-
time or Lorentz-space are denoted by x°, xl, . . . , xm~1

y the metric form will be 

(1.1) (X, X) = (X0)2 - (X1)2 - . . . - (X™-1)2 = likXV, 

where the ordinary summation convention is used. The square of the distance 
of two points x and y is given by 

(1.2) Rxy = r2
xy = (x - y, x - y) = lik{xl - yi)(xk - yk). 

The scalar product (a, b) of two vectors a and b, with the respective com­
ponents ak and bk, is defined by 
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^ e e Appendix III of the book by I. M. Gelfand and M. A. Neumark, Unitàre Darstellungen 

der klassischen Gruppen (Berlin: Akademie-Verlag, 1957), also A.M.S. translations, Series 2, 
vol. 9, pp. 123-154. 
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38 MARCEL RIESZ 

(1.3) (a, b) = likaV. 

Two vectors whose scalar product vanishes are said to be orthogonal to each 
other. In what follows, orthogonality and normality are always meant in this 
sense. 

According as the scalar square (a, a) of a vector a is (1) positive, (2) zero, 
(3) negative, the vector is said to be (1) time-like, (2) light-like or a null vector, 
(3) space-like. A time-like or a light-like vector a is called positive or negative 
according as its time component a0 is positive or negative. 

Time-like unit vectors u and space-like unit vectors v are defined by the 
relations (u, u) = 1 and (v,v) = — 1 respectively. 

The light cone or characteristic cone with vertex a is given by the equation 
(x — a, x — a) = 0. The positive and negative half-cones correspond to 
x° — a0 > 0 or < 0 respectively. These half-cones will be called positive and 
negative light cones in the sequel. 

Consider now a ^-dimensional (curved) variety S whose points y are referred 
to p parameters X1, X2, . . . , Xp. The ^-dimensional volume element dS of 5, 
or alternately surface element if 1 < p < m, can be defined in the following 
way (cf. Acta paper pp. 44-45). Let ds2 = (dy,dy) = S*,* T^dX^X* be the 
square of the arc element in 5. Form the determinant y = \yik\. Then 

(1.4) dS = VFl d^dX2 . . . d\v. 
An (m — 1)-dimensional surface is said to be space-like if its normal is time­

like. Let 5 be a space-like surface. Suppose that the negative light cone Cx 

with vertex x and the surface 5 enclose a bounded domain Ds
x. We shall 

consider functions defined in domains including Ds
x and make the blanket 

hypothesis that the functions and all their derivatives with respect to the 
Cartesian co-ordinates which explicitly or implicitly enter into our computa­
tions exist and are continuous. We express this by saying that the functions 
are well behaved. The same phrase will be used in an appropriate sense in 
connection with the surface 5 and functions defined on S. 

We form the volume potential 

(1.5) Iaf(x) = j ~ ~ f j(y)r„™dV, 

where d V = dy°dyl . . . dym~l is the volume element of m-space and 

(1.6) Hm{a) = 7r^-2 )2 a- ]r(èa)r(K<* + 2 - m)). 

The integral in (1.5) converges for a > m — 2 (cf. Acta paper, p. 31), or more 
generally for Re a > m-2, if we admit complex values of a. Similarly, our 
subsequent assertions about convergence of integrals or analytic continuation 
of Ia or I*a (see below) remain valid for complex a, if we replace all inequal­
ities of the type a > a0 by Re a > Re a0. 

Besides the volume potentials we also consider potentials of a simple layer 
and of a double layer. 
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THE RIEMANN-LIOUVILLE INTEGRAL 39 

Let Sx be that part of the surface 5 which is interior to the cone Cx. Denote 
further by n the positive unit normal to S and let g and h be two functions 
defined on S. We write 

(1.7) $nj{x) = = 4 T f f(y)rxr
mdV 

where dS is the surface element of S (cf. formula (1.4)). 
The simple layer converges for a > tn — 2, while the double layer, whose 

kernel has a stronger singularity, converges only for a > m (cf. Acta paper, 
pp. 48-49, and §4 of the present paper). 

We will show that by virtue of our hypotheses about the behaviour of the 
surface 5 and the functions/, g, h the integral 2*a can be continued analytically 
down to an arbitrary value a0 ^ 0. Moreover, if a0 < 0, then 

I*f,g,h(x) = I°f(x) = /(*)• 

For a specification of the derivatives needed for different purposes cf. Acta 
paper, pp. 59-60, 64, 223. 

Some simple facts concerning the analytic continuation of the ordinary 
Riemann-Liouville integral in one dimension will be needed in the sequel 
(cf. Acta paper, pp. 14-16). 

Set 

(1.9) J7(0) - ^ j)(t)f-ldt. 

If f(t) is continuous in the closed interval [0, b], this integral is convergent 
for a > 0. If for k S n the derivatives f{li) (t) exist and are continuous in 
[0, i ] , then Jaf(0) has a holomorphic continuation to all a > — n. Moreover, if 
p is an integer 0 ^ p < n, then 

(1.10) J-*/(0) = (-1)? ( P ) (0) . 

(As a matter of fact, only the case p = 0 will be used explicitly in the sequel.) 
To prove this, set 

Then we have for a > 0, to begin with, and subsequently by analytic con­
tinuation, for all a > — n 

(LID rm - j£y J>) - p(»r-'*+ ̂  g -/^V*+°-
Indeed, the last integral is convergent and the whole expression (1.11) is 
holomorphic for a > - n. Jaf(0) reduces to ( - 1 ) ^ ( 0 ) at a = - p} 

since T(a) has a simple pole with residue (— l)p/p\ at this point. 

https://doi.org/10.4153/CJM-1961-003-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1961-003-x


40 MARCEL RIESZ 

The following extension will also be needed, and the corresponding result 
will be quoted as the extended one-dimensional case. Its verification is left to 
the reader. 

Let / ( / ) also depend on a. If f(t) and its derivatives with respect to / up to 
the order n are continuous in the closed interval [0, b] and moreover are 
holomorphic in a for a > — n, then our above statement and its proof remain 
valid, except for some slight changes in the notations. 

2. A co-ordinate system. We place the origin 0 at the point x and will 
eventually refer the domain Ds° to co-ordinates which are to be introduced 
here. We denote a fixed negative time-like unit vector by a and a variable 
space-like unit vector orthogonal to a by z/. In a suitable Lorentz frame a and 
v can be written a = ( — 1,0, . . . ,0) and v = (O,^1 , . . . ,vm~l) with J^(vk)2 = 1. 
If the vector v issues from the origin, its endpoint describes the unit sphere 
Sm-2 lying in the (m— l)-plane orthogonal to a. We write out explicitly that 

(2.1) (a, a) = 1, (v,v) = - 1 , (a,v) = 0. 

An arbitrary position vector y can be written 

(2.2) y = ta + pv, p ^ 0. 

We always suppose that also t è 0. This inequality is obviously satisfied in 
the domain Ds°. 

The relation (2.2) can also be written 

y = W + p)(a + v) + \{t - p)(a - v). 

Furthermore, if we set 

(2.3) b = i(a + » ) , c = |(fl - i;), 

then 

y=(t + p)b+(t- P)c = (/ + P)(b + lfjrpc) • 

Setting now 

(2.4) r = ~ ^ , <r = t + p, 
t H- p 

we obtain 
(2.5) y = a(b + TO). 

The inverted formulae (2.4) are 

(2.6) p = M l ~ r),t = M l + r). 

It follows from (2.1) and (2.3) that 

(2.7) (b, b) - 0, (c, c) = 0, (6, c) - i 

Hence b and c are (negative) null vectors. 
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The variables r and a and the angular variable v which varies on the sphere 
5m_2 and determines the vectors b and c will be our new co-ordinates. Here 
are the principal merits of r and a. The square of the Lorentz distance of a 
point from the vertex can be expressed and ''separated" in r and o\ The vertex 
of the cone C° is given by the single equation a = 0, while the cone apart 
from the vertex is given by the equation r = 0. The derivatives dpf/drp 

of an arbitrary function f(y) vanish at the vertex since they contain the factor 
ap. 

We prove these assertions and complete them in certain respects. The 
square r2 of the Lorentz distance is according to (2.2) and (2.1) 

(y, y) = (ta + pv, ta + pv) = t2 - p2 = (t + p)2 ~ ~ . 
t + p 

Hence 

(2.8) r2 = (y, y) = a2r. 

The same relation also follows from (2.5) and (2.7), since (2.7) gives 
(b + TCy b + re) = r. The equation of the cone C° is (y, y) = 0. At the 
vertex a- — 0, while r is indeterminate. On the cone, except at the vertex, 
r = 0, <J > 0. It follows from (2.4) that 0 < r ^ 1 inside the cone and that, 
in particular, r = 1 on the axis y = aa (or p = 0) and only there. 

We always have ^ 0 , according to (2.4) and the inequalities t è 0, 
p ^ 0. The equation a = const. = y > 0, which, in view of (2.4), is equivalent 
to / + p = 7 is the equation of a positive light cone C7a, with the vertex ya. 
It is clear that the inequalities 0 ^ r ^ 1 and 0 ^ a ^ y characterize the 
interior and the boundary of a double cone Dya° limited by the negative 
light cone C° and the positive light cone Cya. 

From now on we make ample use of our hypothesis that the function f(y) 
is well behaved (cf. p. 38). We have 

(2.9) ft = ~ : [<r(b + re)] = <xc, 0 = 0, p - 2, 3, . . . . 

From this it follows for any function f(y) 

-fo = <r[ X ckdkp, where dk = —* , 

and, more generally, for any positive integer p, 

(2.10) S = <7*(£ c*d))f. 

This proves our assertion about the behaviour of the derivatives with respect 
to r at the vertex. 

3. The volume potential. If the surface element of the sphere 5m_2 is 
denoted by ^5m_2, the volume element dV of the w-space can be written 
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dV = pm~2dpdtdSm-2. From (2.6) we have that p = Jer(l ~ ?) and that the 
Jacobian 

d(p, t) 1 
d((r,T) 20"' 

Making use of (2.5) and (2.8) we obtain after some simplifications 

(3.1) -J—f(yy-~dV 
iim\a) 

2l-m 
f[a(b + rc)]<r"-1ri(a-ffi)(l - r^drdadS^. 

Hm(aY 
In order to get laf(0), we have to integrate this expression over the domain 
Ds°. However, it will be convenient to divide this domain into two parts and 
treat these parts separately. First we choose y small enough, so that the 
double-cone Dya° should be contained in Ds°. Then we divide the latter 
domain into Dya° and Ds° — Dya° and show by rather different methods 
that the corresponding parts of the integral Ia, denoted incidentally by 
If- and In

a, are holomorphic for a > — 1 and that J7° = / ( 0 ) , ITJ° = 0, 
which gives that the original Pf(0) — f(0). By this our main objective will 
be attained. The more difficult part of the proof, the one concerning IIt will 
be carried out in the present section. The easy part Z /7 can be treated by a 
method similar to that used in §4 for a simple layer. Therefore it is postponed 
to §5. In the same section we apply our results concerning the analytic con­
tinuation of a simple and a double layer to carry out the "unlimited" analytic 
continuation of the volume potentials. 

The integral of the right-hand side of (3.1) extended over the double-cone 
Dya° gives us the functional laf(0) relative to this special domain. A very 
great simplification arises here from the fact that the limits of integration 
with respect to r and a are fixed, r varying between 0 and 1 and a between 
0 and y. Thus we have in the present case 

Ff(0) = ( dSm-2 fdtr ( ...dr, 

where the dots stand for the integrand given in the right-hand side of (3.1) 
Besides the formula (1.6) for Hm{a) we shall need the relations 

(3,) jV.0_0M«-m. 
(3.3) T(r) = iThT-lT{\r)T{\r + | ) 

and the explicit expression for the total surface |Sm_2| of the sphere Sm-2, 

(3.4) 

We develop f[a{b + re)] in a finite power series in r with a remainder term. 
We have 

https://doi.org/10.4153/CJM-1961-003-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1961-003-x


THE RIEMANN-LIOUVILLE INTEGRAL 43 

(3.5) f(y) = fW(b + re)] = E ^ * , ( * , v) + RN{r), 

where %{a, v) = \-T~ifW(b + TC)U > and 

(3.6) .Mr) = y~ïy. J]T^/k(* + ?C)KT - V'te-
N is here a sufficiently large integer, to be specified later. Obviouslv RN(T) 
= 0(O. 

We first compute the expression 
cy 1—m /» 1 

A(a) = ^-j- f[a{b + rc)]r^-m\l - r)^*dr. 
ti-m\PL) Jo 

This integral and all the integrals which follow are convergent for a > m — 2. 
On account of (3.5) we have 

N—l cyl—m /»1 

(3.7) .4(a) = E A9{a) * , ( * , «0 + j f r - r * W ( T ) T * ( M 0 ( 1 - r ^ r , 
j,-o ttmya) Jo 

where by means of (3.2) with r = ^ ( a + 2 — m) -\- p, s = m — 1 

, , s l j r Ï - 2 ^ r ( w - i)r(j(« + 2 - ««) + /.) 
^.»; ^ « J - ^!ffm(a)r(i(a + m)+^) • 
The most impor tan t term in (3.7) is Ao(a)$o(<r,v) = Ao(a)f(<rb). In view of 
the expression (1.6) of Hm(a) we find 

, , aï w ^ 2 1 -"T(m - 1) 

Expressing 2 a~ 1 r (Ja: ) by means of (3.3), with r = a, we find after some 
simplifications 

(3.10) AQ(a) = X o W • 77-T , where X 0 ( a ) = R m - n W w , w u . 

Since T(^) = x*, we have 

/ o i n 2 1 - r ( m - l ) 

(3.11) Xo(0) - T * ( « - 2 ) r ( i w ) • 

According to (3.3), with r = m — 1, and to (3.4) 
(3.12) Xo(O) = —TjSïârqFT- = jç r . 

* 7T I ^ m - 2 J 

Our next s tep is to carry out the analytic continuation of the expression 

(3.13) A0(a). f 3>o(<7, v^-'da = K0(a) . - f r ffiab^da. 
Jo 1 (a) Jo 

T h e integral converges for a > 0 and, according to wha t we know about the 
one-dimensional case (cf. p . 39), the analyt ic continuation of (3.13) is holo-
morphic for a > — 1. (For a = — 1 the function r ( | ( a + 1)) has a pole.) For 

https://doi.org/10.4153/CJM-1961-003-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1961-003-x


44 MARCEL RIESZ 

a = 0 the expression (3.13) becomes K0(0) f(0) = f(0)/\Sm-2\- T h e integral 
of this cons tant value with respect to the angular variable is clearly / ( 0 ) . 
Hence, and this contains vir tual ly our main result, the te rm corresponding to 
p = 0 in the Ia relative to the double-cone Dya° yields exactly f(0) for a = 0. 

T h e te rms in (3.7) with p > 0 are easy to handle. In analogy with (3.13) 
we have to consider the expression 

(3.14) Ap(a) . r*p(tr,v)aa-lda, p ^ 1, 
Jo 

where Av(a) is given in (3.8). We first note t h a t 

T(\{a + 2 - m) + p) = r ( J ( a + 2 - m))Pp(a), 

where Pp(a) is a polynomial of degree p in a. Hence, after the same simpli­
fications as those performed for A0(a) we obta in 

A , s TS , . 1 , v , v 2 1 _ m r ( w - l ) r ( i ( « + 1 ) ) Tw x 
^ , ( a ) = X p (« ) . j ^ y , w h e r e X , ( . ) = ^ ( I ^ r ( K a + myTf) . P , ( « ) . 

According to (2.10) dv/drv contains the factor ap, p ^ 1. Hence all the 
integrals of the type given in (3.14) converge if a > — 1. Moreover, KP(Q) 
is finite, 1/T(0) = 0, consequently all expressions (3.14) vanish for a = 0. 

Since RN = 0(TN<JN), the remainder te rm can be t rea ted in an analogous 
way. I t is clear t h a t for the present purposes N may be any integer such t h a t 
- | ( 1 + m) + N ^ - 1 or 2N ^ m - 1. 

Summing up, it is now shown t h a t the integral Iaf(0) extended to the double 
cone can be analytically continued to all values a > — 1 and t h a t for these 
values it is a holomorphic function of a. Moreover l°f(0) = / ( O ) , t h a t is 1° 
is the identity operator in the case of the double cone. 

We could have gone a bi t farther and established the possibility of the 
analyt ic cont inuat ion down to a rb i t ra ry negative values of a. However, one 
difficulty would have remained, the possible occurrence of (simple) poles a t 
the negative odd integers = the poles of r ( | ( a + 1)). As a ma t t e r of fact, 
none of these poles actual ly occurs. Thei r disappearance mus t be the effect 
of the integrat ion with respect to the angular variable, considered here in a 
very summary way. On p. 64 of my Acta paper I indicate how the holomorphic 
character of the unlimited analyt ic cont inuat ion can be established by an 
indirect method. Th is will be carried ou t here in §5. 

4. S i m p l e layer a n d d o u b l e layer . W e now pass to the simple layer 

(4.1) -~-, fng(y)ra-mdS 
£Lm\a) JsO 

considered in formula (1.7), where now the vertex coincides with the origin 
and r is wri t ten instead of rxy. T h e integral converges for a > m — 2 and has 
to be continued analytically for a ^ m — 2. T h e port ion S° of the surface 5 
can be parametr ized by the variables r and v in the following way. Through 
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every point of 5 passes a unique ray issuing from the origin. On such a ray r 
and v are constant, hence also the vectors b and c corresponding to v are 
constant, while a varies. If we write the point of intersection of the ray with 
the surface 5 in the form y = as(b + TC), the equations a = as(r, v) or 
y = <rs(T,v)(b + TC) and the additional condition 0 ^ r ^ 1 yield the 
required parametrization of S°, because b and c depend only on v. 

Since v is indeterminate on the axis y = <ra, where r = 1, we divide 5° 
into two parts SA° and SB° in the following way. With an arbitrary 8 such 
that 0 < 8 < 1 the first part will be given by 0 ^ r ^ 8 and the second by 
8 < T S 1. 

That part of the simple layer which relates to SB° is an entire function 
of a vanishing for all even integers ^ 0. Indeed the corresponding part of the 
integral in (4.1) never ceases to converge and Hm(a) has poles at these integers 
owing to the factor T(^a) (cf. formula (1.6)). 

In order to treat that part of (4.1) which is taken over SA°, we have to 
express the surface element dS in a convenient way. The angular variable v 
on the sphere Sm-2 can be expressed by m — 2 local parameters 01, </>2, . . . , 
<j)m~2. Thus, according to (1.4), we can write in summary notations 

dS = G(T, V) . dr . IT d<t>\ dSm-2 = 9(v) . II d$\ 

hence dS = H(T} v)drdSm-2. 
We set \{a + 2 — m) = /3 and can then write according to (1.6) 

(4.2) Hm{a) = Lm(a)T($) where Lm(a) = T^^T($a). 

We also set g(y) = g(r, v) and recall the relation r2 = Œ2T given in (2.8). 
Then we write that part of (4.1) which corresponds to SA° in the form 

(4 .3) U(a) = j \ - f dSm.2 - ~ - f g(r, V)H(T, v)[as(r, ^ p V ^ r . 
J-«m\OL) Jsm-2 1 VP) •/() 

Here H(T,V), as(r,v)y g(r,v) are well-behaved even in r and v by virtue 
of our hypothesis concerning the surface 5 and the function g{y). Moreover 
as is bounded away from 0. Hence we can apply our statement concerning the 
extended one-dimensional case (cf. p. 40), which gives that (l/(r(/3)) J{j. . . 
is a holomorphic function of /?, hence also of a, and this is then also true for 
U(a). Owing to the presence of the factor T(^a) in Lm(a), the function U(a) 
vanishes for a = 0 and a = a negative even integer. 

There is very little to change in the case of a double layer. It is easily seen 
that dr/dn = r~x(y, n) hence 

7 a—m 7 

—j— = {a- m)r — = (a - m)r {y, n). 

The scalar product (y, n) (cf. (1.3)) is a well behaved function in r and v. 
Owing to the lowered exponent the double layer integral in (1.7) converges 
only for a > m, thus the need of continuation begins already at m. 
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T h e par t relative to SB° is again an entire function of a and vanishes for 
all even integers ^ 0. On the other hand, with fif = \{a — m) = /3 — 1, 

a — m a-m _ 2(0 — 1) 0_i _ 2 ^_i __ 2 #> 

r(is) r r(/3) r r ( / 3 - i ) r " r t f ' ) ' ' 
Thus , when t reat ing the pa r t relative to SA°, we obta in a formula of the same 
type as (4.3), (3f = /3 — 1 playing for the double layer the same role as (3 
played for the simple layer, and the results are essentially the same. 

Our findings can be summed up as follows. Both the simple layer and the 
double layer potentials can be continued analytically to arbitrary values of a. 
They are holomorphic functions of a which vanish for all even integers ^ 0. 

5. T h e v o l u m e p o t e n t i a l ( c o n t i n u e d ) . Now we re tu rn to the volume 
potential and clarify the properties of the pa r t which relates to the domain 
Ds° — Dyi° (cf. the beginning of §3). W e w a n t to prove t h a t this pa r t of 7a, 
when continued analytically, is holomorphic for a > — 1, and vanishes for 
a = 0. 

In the same way as we did in the previous section with the port ion of surface 
S°, we now divide the domain Ds° — Dya° into two par t s according as 
0 ^ T ^ ô or K r ^ 1. T h e volume potent ial relat ive to the second p a r t is 
again an entire function vanishing for all even integers ^ 0. T h u s we only 
have to investigate the first par t . This can be wri t ten in the form (cf. (3.1.)) 

~—r dSm-z r * ( - m ) ( l - r)m-2dr f[a(b + rc)]^1^, 
tlm\OL) Jsm-2 JO Jy 

where aSf defined in the previous section, depends on r and v, as = <TS(T,V). 
W e set 

j[v(b + Tc)](ja~ld<j = F(T, V, a), 
y 

where F is well behaved in r (and v) and holomorphic in a, since a is bounded 
away from 0. Wri t ing, as in the case of a simple layer, Hm(a) = Lm(a)T(l3) 
we see by v i r tue of our findings in the extended one-dimensional case t h a t 

li)H«XV(",'"')/"(1-')""*'" 
can be continued analytical ly as a holomorphic function of a to any a > ao, 
where ao is a rb i t ra ry . T h u s it is a holomorphic function for a > — 1 any way, 
and again, owing to the presence of the factor T(a/2) in Lm(a)} it vanishes 
for a = 0. 

This completes the proof of the fact s ta ted in §3, t h a t I°f(0) = / ( 0 ) , if 
1° is relative to the original domain Ds°- This can clearly be expressed by the 
more inspiring formula 

(5.1) I°j(x)=j(x), 
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or by the statement that 1° is the identity operator. This is our principal result. 
The passage from (5.1) to the relation 

(5.2) Iij^h (x) = /(*) 

follows from the properties of simple and double layers established in the 
previous section. 

We conclude this paper by two additional remarks, the first concerning the 
unlimited analytic continuation of the volume potential, the second concerning 
the case of the infinite cone. 

As indicated on p. 64 of our Acta paper, the unlimited holomorphic con­
tinuation of the volume potential can be reduced to that of simple layer and 
double layer potentials. 

We consider the wave operator 

d^ d2__ a2__ 

(âx0)2 (âx1)2 • " (ax"- 1 ) 2 ' 

Then, by virtue of Green's formula, we have in the notation (1.7) fora > m — 2 

(5.3) 77(*) = tf+2 4/, £ , / ( * ) 

(see Acta paper, pp. 46-47). The left-hand side converges for a > m — 2. 
On the right-hand side the volume potential and the simple layer converge 
for a + 2 > m — 2, that is for a > m — 4, while the double layer converges 
only for a + 2 > m, that is only for a > m — 2. Thus, seemingly nothing 
is gained as far as the analytic continuation of Iaf(x) is concerned. But if 
we take into account our results about the unlimited holomorphic continuation 
of the simple and the double layer and the fact that Ia+2A is holomorphic for 
a > m — 4, the possibility of the holomorphic continuation of Iaf(x) down to 
m — 4 is established. The iteration of this procedure, that is the application 
of formula (5.3) to Ia+2Af, Ia+4A2f, . . . , establishes the possibility of an 
unlimited holomorphic continuation of Iaf{x). 

In the case of an infinite cone we suppose that/(x) and its derivatives are not 
only well behaved, but also decrease rapidly enough at infinity. In this case 
formula (5.3) reduces to 

(5.4) I"f(x) = /a+2A/(x), 

and the iteration of this formula gives immediately the possibility of an 
unlimited holomorphic continuation. However, in order to establish the main 
relation I°f(x) = f(x), we still have to go back to §3 and use the double-cone 
Dya°. The treatment of the complementary expression I 7 /

a is in the infinite 
case still simpler than in the finite case. 
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