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THE CENTRAL LIMIT THEOREM FOR

TRIGONOMETRIC SERIES

TAKAFUMI MURAI

§ 1. Introduction

We denote by Z+ the semi-group of positive integers. For a subset E
of Z+, we denote by \E\ (rg +oo) its cardinal number and by E(ή) the
intersection of E and an interval [1, ή) (n >̂ 1). We shall identify a subset
E oΐ Z+ with a sequence, arranging elements of E according to their
order. An infinite subset E of Z+ is of Gauss type (G-type), if Xn(t; E, 0) =
\/2/\E(ri)\ ΣmeE(n) cos mt converges to the normal Gaussian distribution
when n tends to infinity, that is, for every two real numbers ξ, η (ξ < η),

(1) lim m{{t e [0, 2π);ξ< Xn(t; E, 0) < rj\) = */2π P exp(- x2j2)dx,

where m denotes the 1-dimensional Lebesgue measure. A subset E of Z+

is Hadamard lacunary, if there exists a number q > 1 such that, for every
n, meE (n> m), njm 2> q. It is well-known that Hadamard lacunary sets
are of G-type ([5] p. 264). This result was improved by P. Erdδs as follows
([2]): Let E = (τzfc)Γ=i be a sequence in Z+ such that nk+1lnk > 1 + cj^/ k
(cfc -> +oo, k > 1). Then E is of G-type. On the other hand, for every
c > 0, there exists a non-G-type sequence E = (nk)ΐ=1 such that nk+ίlnk >
l + c/VAΓ(β> 1).

From this fact, a class ^ α was introduced, where &„ (0 < a <C 1) is the
totality of all sequences E = (nk)k^ in Z+ such that

(2) nkjnk > 1 + φa (k > 1, for some c > 0).

A study of G-type sets in 0>a (1/2 < α < 1) was made by I. Berkes in [1].
The purpose of this paper is to improve his results, according to the
direction of S. Takahashi (Theorem 1 in [4]). Let q be an arbitrarily fixed
number such that q > 1. For a subset E of Z+, we write En = Ef] [1, qn)
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and 3En = Ef] [qn~\ qn) (n > 1). We denote by 02 a (0 < a < 1) the totality

of all infinite subsets E of Z+ such that

( 3 ) \dEn\/\En\a = 0(1).

We easily see that the definition of 0ίa is independent of q. It is very

important to note that &a is a class determined by a condition on the

growth, different from the lacunary condition (2). Evidently £Pa C &a

and 01\ equals the totality of all infinite subsets of Z + . We shall study

G-type sets in ^ = Uo<«<i ̂ « Different from ^ α , all subset in 0ίa (0 < a

< 1/2) is not of G-type. A study of G-type sets in 0ίa (0 < a < 1/2) was

made by S. Takahashi in [4] and our results on 0ta (0 < a < 1/2) will be

essentially the same as his results on G-type sets (Theorem 1 in [4]). Our

theorem will give new results on 0ίa (1/2 < a < 1).

To study G-type sets, we need a positive set-function σ(-), which is

defined by: For every finite subset E of Z + ,

( 4 ) σ(E) =

where CSLY(A) denotes the cardinal (number) of A, We shall show the

following

THEOREM. Let E be a set in 0t such that

( 5 ) \imσ(E(n))l\E(ή)\2 = 0 .

Let U be a Borel set in [0, 2π) having positive measure and Γ = {γ^Z^x &

sequence of numbers in [0, 2π). Then, for every real numbers ξ, η (ξ < rj),

( 6 ) lim m({t eU;ξ< Xn(t; E) < η}) - rn(U)l<Jϊκ Γ

where Xn(t; E) - Xn(t; E9 Γ) = V2/\E(n)\ Σ U s u ) cos(m* + rJ.

By this theorem, we know that a subset E in ^ is of G-type if (5)

holds. In fact, choose U = [0, 2π) and Γ = 0 (, i.e., γm = 0 for all m). It

is very important to note the following fact:

( 7 ) σ(E(n))l\E(ή)\2 = o(ΐ) if and only if l/2ττ Γ Xn(t; E, oydt = 3 + o(l).
Jo

According to [2], E is of G-type if
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( 8 ) 1 Γ Xn(t; E, oy dt = W W O + o(l) if * is even
2ττ Jo I o(l) if A is odd.

Our theorem signifies that the convergence of the fourth moment in (8) is

sufficient in the case where Ee&. We remark that the condition (5) is

sharp in the following sense: Let £ b e a set in St such that Xn(t; E, Ofdt
Jo

= 0(1). Then it is of G-type if and only if (5) holds. Hence the charac-

terization of G-type sets in &1/2 is given by (5), since every set in &*1/z

satisfies ΓXn(t; -,O)6dt = 0(1).

Different from Berkes's proof, our proof will be elementary. In fact,

we shall use the second mean-value theorem, instead of martingale tools.

§ 2. Applications

In [2], P. Erdδs conjectured that ([ekβ])k=1 (0 < β < 1/2) is of G-type,

where [x] denotes the integral part of x. In [1], I. Berkes showed that,

for every 0 < β < 1/2, there exists a G-type sequence (nk)k=1 such that

\ftk — ekβ\ — O(k?) and he also wrote that there is some connection between

this conjecture and the theory of numbers. We shall show that our theorem

is applicable to this conjecture. We shall show, in the last section, the

following

COROLLARY. Let Q > 1. Then (nk)k=1 is of G-type if \nk — Q^\ is of

polynomial order. More in detail, this is valid with V k replaced by kβ as

long as β is sufficiently near to 1/2.

By our theorem, the conjecture seems to be completely solved, but

the author cannot determine whether ([ekβ])l*=1 satisfies (5) or not when β

is small. The author emphasizes that the conjecture holds with n V re-

placed by any Q > 1 in the case where β is sufficiently near to 1/2.

§ 3. The totality of G-type sets is fat in a sense

Throughout this paper, we denote by "const." absolute constants.

For every occasion, it does not generally same. For a property P on sets

in [0, 2τr), we write simply (t satisfies P) = {t e [0, 2π) t satisfies P}.

Now we show that the totality of all set in & which satisfies (5) is

sufficiently fat in a sense. Let 0 < a < 1 and let (mn)^=1 be a sequence

of positive integers > 5 such that, with Mn = J]n

k=1 mk, mJMa

n = 0(1) and

Σζ=ιMl2~n < +oo. Let Ωn denote the totality of mn-tuples (rl9 •• ,rTOn)
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of integers such that 2*"1 < rx < < rmn < 2n. Since the cardinal of Ωn

is Nn = 2n~1(2n-ί - 1) •(2W~1 - mn + 1), we can define a probability &n

such that, for every ωn e Ωn, &n(ωn) = iV"1. Let (£?, ̂ ) denote the product

space of (Ωn, έFn) in > 1). Then every element ω — (ωίy - , ωn, - •) of Ω

is a sequence of integers in ^ . We show that

( 9 ) 0>{ω satisfies (5)) = 1.

For every pair (K, n) of integers such that 0 < K < n, we put aKn =

tp(ω = (ωu •) e Ω; σ(ωκ, - -, ωn) = 0) and prove

(10) aKn > aκ,n-x{l - const. M*n2'n) (n > K + 1).

Since the number of 4-tuples (ru , r4) such t h a t 2 w l < rx < < r4

< 2n and ± rx ± ± r4 = 0 (for some ± ) is at most 242π-1(271"1 - 1X271-1

— 2), the cardinal of a set (ω,, e J2n; σ(ωn) Φ 0) is less t h a n

W"1 - 4). •(2W"1 - mn + 1)}

and hence its probability is less than

{242n-1(2n~1 - ΐ)(2n'1 - 2)}{(2n"1 - 4) -(2n~l - mn + 1)}/Nn

= 24/(2n'1 - 3) < const. 2~w .

Let r be a given integer. Since the number of 3-tuples (ru r2, r3) such

that 271-1 <rί<r2<r3<2n and ± r ± rx ± r2 ± r3 = 0 (for some ± ) is at

most 242W"1(2TO-1 - 1), the cardinal of a set (ωn e Ωn; ± r ± r, ± r2 ± r3 = 0

for some rl9 r2, r3 e {ωn} and some ± ) is less than

- 1 - 3). -(2*-1 - mn + 1)}

and hence its probability is less than const. 2~Λ Thus, for every ξ

&n(ωn e Ωn; ± T ± rx ± r2 ± r3 = 0 for some r e {?}, some τu r2, r3 6 {α>w}

( n-l \

Σ ^fc)2"n < const. Mn2~n .
k = K }

Analogously, for every ξ = (ωκ, . , ωn_λ),

( 0>n(ωn e Ωn; ± r ± rf ± rx ± r2 = 0 for some r, r' e {?},

some Γj, r2 e {ωπ} and some ± ) < const. Ml2~n

0>n(ωn eΩn;±r±r'±r"±r1 = 0 for some r, r;, r7/ e {f},

some rt e {ωn} and some ± ) < const. Ml2~n .
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From these four estimations, we have

aKn > aKtn.x{l - const. (2~n + Mn2~n + M\2^ + M3

n2~n)}

^a^M- const. M*n2-n),

which signifies (10). By (10), we have

aKn>aκκ ft ( 1 - const. Ms

k2~k) > aκκexp(- const, f ] Ml2~k) .

Since aκκ > 1 — const. 2~κ and Σn=iM3

n2~n < + oo, we have limA_co

liminfn_^ aKn = 1, from which (9) follows.

§ 4. Approximation Zs* of E associated with e

We give the proof of our theorem in sections 4 and 5. As well-known;

it is sufficient to show that, for every real number x,

(11) Φn(x; E) = J exp{- ixXn{t\ E)}dt = w(C7)exp(- x2/2) + o(l) .

For any positive number δ, there exists a finite union of open intervals Uf

such that m(J7 — ί/7) < ^. Hence, from the beginning, we may assume

that U is an open interval and put U = (a, 6). To prove (11), we shall

define, for every 0 < ε < 1, an approximation Es and shall prove (11),

replacing E by E\

For a finite subset F of Z + , we denote by μ(F) and y(F) the smallest

integer and the largest one in F, respectively. For the definition of E%

we need the following

LEMMA 1. There exists a partition (dEu dE'l9 dE2, dE'2, •) of E such

that, with Ek = \Jk

JSBldEj9

(12) dEkΦ0, \dEk\ = o(\Ek\)

(13) | U ^ |<ε/(l-ε).|£fc|
j<k

(14) vidE^JIμidE,) = o(exp(- ¥)),

where β — (1 — <Ύ)/2 αλirf a is a number satisfying (3).

Proof. Let us consider a partition (di?1, dE2, - •) of E. If this partition

contains empty sets, we remove these empty sets. Then the resulting

partition does not contain empty sets. Arranging this partition according

to the order of v( ), we write (3EU dE2, •)• Put 4 = 0, S, = 2 and £k -
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4_i + (the integral part of ίk_Ύ) (k > 2), where γ = (3 - α)/4. Set ΘEk =

dE£k_1+ί U UdE£k (k > 1). Now we choose arbitrarily an integer M = M(ε)

such that Mε > 1. There exists a sequence of integers (nk)k=1 such that

\dEnk\ = minflSJSJ; &M < nfc < (A + Ϊ)M]. Then we put 3££ = dEnk(k > 1),

3 ^ = dE, U U 3JSni-i and 3Efc - 3En&_1+1 U U 3En& (Λ > 2). Then (3^,

3jBί, ) is a required partition. In fact, (12) easily follows from (3) and

a + γ < 1. We have

IU 3JS;| = Σ l ^ l < ε Σ ( i ^ i + + |3S(Jf+1),|) < ε\Ek\ + ε Σ \dE',\,

which signifies (13). By β < γ, we have

< exp{- (logg)^,:/^} < o(exp(-

which signifies (14).

Let (31?!, dE'u - - •) be the partition in the above lemma. Then we de-

fine an approximation of E (associated with ε) by

(15) F - Es = U dEk.
fc = l

From now, we write simply

(16) μk = f4βEk), vk = v{dEk) (k>ΐ).

Now we compare Φ. (x; F) with Φ. (x; E) in the following

LEMMA 2. Ψe have

(17) |ΦJx; JB) - ΦVk(x; F)\ < {4π(b - a)ε}^\x\.

Proof. Since

|exp{- ixXJjt; E)} - exp{- ώZVJ(ί; F)}\ < \x\\X,£t; E) - XJt; F)\,

we have

\ΦJ.x; E) - Φn(x; F)\ < \x\ f \X^{t; E) - X,t(t; F)\dt
J a

From (13), we have

Γ(Xn(t; E)-X£t;
Jo
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Thus we obtain (17).

Using (12), we have also

LEMMA 3. For every x,

(18) max \Φn(x; E) - Φvk(x; E)\ = o(l) (fe->+oo).
vk-i<n<iι>k

According to these two lemmas, it is sufficient to show that, for every

0 < ε < 1 and every real number x,

(19) ΦVk(x; F) = ΦJx; Eε) = (b - a) e x p ( - x2/2) + o(l).

The purpose of the rest of this section and of the following section is to

prove (19). For the sake of simplicity, we write

(20) \ 4t(# =

m S , k

Xk(t) = Xn(t, F), Φk(x) = Φn(x; F)

Then

A = h + ••• + h, hIA = o(i)

Λkl\E{Vk)\ = \F(vk)\l\E{^)\ > 1 - e

xk(t) = V2/Λ Σ 4/ί).

(21)

In Lemma 5, we shall discuss moments of Jfe(£)'s Preparatory to

Lemma 5, we need the following one. Since this is easily seen, we omit

the proof.

LEMMA 4. Let (mj)y=1 be a finite sequence of integers and {Θ$J=1 c [0, 2π).

Then

(22) Γ* Π cos (nijt + θj) dt < Γ f[ cos m5t dt.
Jθ j=l JO 3=1

LEMMA 5. Put

l±j
(23)

Then we have Γ \Hk(t)\dt = o(ί) and Γ hk(t)dt = o(l).
Jo Jo
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Proof, First we prove the latter. Taking account of

1/2 ( Γ2π Λ 1/2

[| Jiydή

we prove /?fc = o(l). From Lemma 4, we may assume that Γ = 0. We have,
for every j < A,

^XO4 = Σ cos4mί + 4 2 cos3mί 2 cos m!t
viQdEj mζ-dEj m'QdE j,m'ψm

+ 6 Σ cos2m£ Σi cosWt

Jβ Λ,(ί)dί<(2/Λr

= (2/4)3/2 Σ VίΓ, f Γ

/ΛkY Σ Γ J

+ 6 Σ cos2mt Σ cos mft cos mf/t
m.G 3Ej m',ra"G 3Ej,m'φm,vι"φm,nι'φm"

+ Σ c o s ^i^ c o s ^2^ c o s #M COS 7724ί .

The mean of the first term (in the right side) is dominated by const, λj.
That of the second term is dominated by const, λj. That of the third
term is dominated by const, λ). That of the last term is dominated by
const. σ(dEj). That of the fourth term is dominated by a constant multiple of

{ Σ cos2mt Σ cos m't cos m"t}dt
JO mξ-dEj m',m"GdEj,irι'φτn.,m"Φm,m'Φm"

< ί ( Σ cos2mf)Jj(tydt < V^λjlΓ Δβfc
Jθ mSdEj IJ 0

From these five estimations,

Pk < const. l/Alίt λj + Σ*) + Σ ^j{ΓΛjitydtY +

< const.{l//l, + max^/Λ + Vft/Λ + σ(ίJ(y,))//ί2,}

= const. VpjAk + o(l),

which signifies pk = o(l). Next we prove the former. It is sufficient to
Γ2π

show that Hk(t)2dt = o(l). From Lemma 4, we may assume .Γ = 0. We
Jo

have
Γ i/fc(ί)

2dί - 4/4 f ( Σ Σ cos mt cos m't + 1/2 Σ cos 2mtYdt
Jθ Jo \.j = l m,m'QdEj,mφvϊ m6F(vk) J

Λl Γ ( Σ Σ COS mt cos m
J 1

< 81 Λl Γ (Σ Σ
Jθ 1 1 'dE
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+ 2\Λ\ Γ { Σ cos 2mt}2dt
Jθ meF(vk)

< const.{(O, + σ(E(vk))IΛl + 1/Λ,} = o(l).

§ 5. Proof of (19)

For a set V in [0, 2π), we denote by χ(t; V) its indicator function,

that is, χ(t; V) = 1 (te V) and χ(ί; V) = 0 (te V). Set Vt = (Δtff + •••

+ Δk{ίf < A) (k > 1). Then m(Vk) = 2π + o(l), according to Lemma 5.

Hence Φk(x) = Γ χ(t; F J e x p { - ixXk(t)}dt + o(l). Since exp(- iy) = (1 - £y)

exp{- //2 + O(/)} (y > 0) ([5] p. 265), we have, writing simply φk(t, x) =

x(t; V

f χ(t; K)exp{- ixXk(t)}dt

) a

Since

1

we have

ήt;
J a

, x) exp < — x2/2

« « , x>\ < lit; V,

y fe)exp{— ixXk(t

(21A

k

t)ex]

)}dt

k

{1 + Λ

= exp

Σ

< exp x2 ( =

f ^«, ac)Λ + o(l),

according to Lemma 5. Thus Φk(x) = exp(— x2β) φk(t, x)dt + o(l), and
J a

hence it is sufficient to show

(24) Ψk(x) = Γ χ(t; Vk) Π {1 - iχy/2fτk.Δβ)}dt = (b - α) + oft),
Jα j = l

whose proof is essential in this paper. Elementary calculus gives the

following

LEMMA 6. Let Q(t) be a real (trigonometric) polynomial of degree < N.

Then the cardinal of a set (Q'(t) = 0) is at most const. JV. For every y > 0,

a set (\Q(t)\ < y) is a union of at most const. JV intervals.

For every pair (j, k) of positive integers satisfying j < k9 we consider

a set Vjk = (4(ί)2 + + Δβf < Λk). Since Vlk 3 3 Vfcfc(=: Vt), we have
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(25) χ(t; Vjt) =

We need also WJt = V,.,,, Π V% (1 < ; < k, Vΰlc = [0, &)). We have W,*

Π W0-* = 0 UΦJr), V%k = U J - Λ and

(26) χ«; V,,) = χ(ί; V,_M){1 - χ(ί; Wjk)}.

To simplify the notation, we write

(ΦdO = ^*(ί, *) = χ(ί; VJt){l - ixVWA dM
(27) f δ ,

l ^ * = ι\Φa(t)dt a<j<k).
J a 6 = 1

By (25), Ψklc = Wk(x). Taking account of lim*.^ Ψp-ltk = b — a (p: a given

integer > 2) and

(28) \¥kk - Wp.l9k\ < t l^-i.* - ^ * l ,
J = P

we shall estimate \Ψj-ί>k - Ψjk\ (2<j< k). Using (26), we have

Ψn = Γ Π A»(*)Λ = Γ fiV«(i){i - χ(ί; wifc)}{i - i
J a e=ι J a e=i

= ^-i.* - Γ πV«(%(ί; wo*)Λ + ̂ V2/Λ f fi

= ^ - 1 . * - Ψl

Since |Πί=ί^fc(OI < expx2 = r,, we have |ΨΊ| < τxm(WJk). We have

|ψ2| < τj2ϊA\[χ(t; wjk)\Δ3(t)\dt <

At last we estimate ψ8. Putting Q(ί) = Re Yl}~iφik(t), we have Reψ3 =

\/2/A ί& Q(ί)^lj(t)Λ. Since R e f i l l - W2/Λ J,(ί)} is a real polynomial of

degree < Σΐllv£, the cardinal of the set of all point where its derivative

vanishes is less than const. 2]ί=ί ̂ > according to Lemma 6. Since Δ^t)2 +

• •+ 4/-i(£)2 is a real polynomial of degree 2^.^ F/_i,fc is a finite union

of at most const. v^x intervals, according to Lemma 6. Thus there exist

mutually disjoint intervals (aθ9 bθ) (1 < θ < σ) such that Xl?=i(6(? — aθ) =

b — a, σ < const. (Σί=iVt + ^-1) < const. Σl/-ί^ a n ( i Q(0 is monotone in

every (aθ9 bθ). For every θ, we have, from the second mean value theorem,
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Hence

Γ Q{t)Δ5(t)dt = Q(aθ) Γ Δβ)dt + Q(bθ) Γ Δβ)dt
Jaβ Jag Jζθ

(for some ξ9 (aθ < ξθ < bθ)).

|Re ψ,| < V2/Λ Σ Q(aθ) P Δό{t) dt + Q(bθ) Γ Δβ) dt
0 = 1 Jaβ Jξe

< τxV2[A Σ (I £ Δβ) dt I + I £ Δβ) ΛI) .
To estimate V2/Λ f1* ^( ί )d ί (1 < θ < σ), we use a set Ajk = {\V}H(t)\ >

J aβ

?), where Vjk(t) = V2/Λ Σ-6«,W»») s i n ( ^ + r-) S i n c e Γ M ί ) 1 * =
Jo

2τr/ylfc ΣimeBEjiμjIm)2 < 2πλjlΛk < 2π, we have m(Ajk) < const, j " 4 . If (aθ, ξθ)
gt Ajk, we put af

β = min{3/; α, < y, y e A}*} and ξ'β = max{3 ;̂ y < ξθ,ye A%}.

Then \PJk(aϊ)\, \PJt(ξί)\ are less than p and (σ#, σί) U (fί, f,) c AJ&. Hence

J α^
V2/Λ f Γ + Γ ) J

2/V/ι,.

This estimation is valid in the case where (aθ, ξθ) C AJfc. The same esti-

mation exists with replaced by . Thus
J aβ Jξθ

(29) Re

ΰ) + const, (g
ί

< const. rJ ;- 2 +
I

=i / J

Analogously, (29) is valid with Reψ3 replaced by Im^ 3 and hence this is
valid with Reψ3 replaced by ψ3 if we neglect midle two parts. From
these estimations, we have

W* - Ψj.ltk\ < const. τx\m{Wjk) + V ί K v ί W + j~2 + (|j^)//^}

By (28), we have

Wuu - Ψ^A < const. τx Σ \m(wjk) + VW^^/MW'iJ + r2 +

< const. τJm(Vti + V^(V^) + Σ i " ! + Σ
j j
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= const. TJΣΓ2 + Σ (Sώflμ,} + o(l) = δ(p, x) + o(l) .

Hence limsup f c_| Ψkk - (6 - a)\ < δ(p, x). By (14), we have Σ

< +oo. Since p is arbitrarily given, we have (19). This completes the

proof of our theorem.

Remark 7. More in detail, our theorem holds with the condition

"E e Θt" replaced by

(30) \dEn\\\En\ = o(l/log | £ w | ) .

In fact, by (30), Lemma 1 holds with (14) replaced by v{dE1c_l)lμ{dEli) =

O(A~4) In the proof of (19), the convergence of Σ7=2(Σi=ί^)jf2//'./ * s essential

and this is valid in this case.

§ 6. Proof of Corollary

For the sake of simplicity, we give the proof in the case of nk = [QV F],

where [x] denotes the integral part of x. Throughout the proof, 0(1) and

o(l) will depend only on Q.

Set E = (nk)tml and WM = E Π [ ζ T ^ , QM) (M > 1). We note that

I WM\ = 2M(1 + o(l)) and sup{|m/ΛP - 1|; nm e WM} = o(l). For every integer

A and every positive integer M, we put Z±(A, M) = {(n, n')\n ± nf = A,

n> n\ ne WM, n' e E} and Z(A, M) = Z_(A, Λf) (J Z+(A, M). We need two

lemmas in which the first is essential.

LEMMA 8. There exists Mi depending only on Q such that, for any A

and any M > Mu Car. Z(A, M) < const. M9/10.

Proof. Put γ = 1/10 and ε = 1/20. We shall show that Car. Z_(A, M)

< const. M w (M> Mi). Since the same estimate is valid for Car. Z+(A, M),

we obtain the required inequality. Assuming Z_(A, M) ψ 0, we denote by

(nmo, nmo) the pair in Z_(A, M) such that nmo is minimum in WM. Now

let us consider ZL(Ay M) = {(nm, nm,) e Z_{A, M);m — mo> Ml~r). Since

Car(Z_(A, M)-ZL(A, M))<Mx'r, the estimate of Car. ZL{A, M) is necessary.

To do this, we define two partitions of WM and Z'_(A, M) as follows:

WMJ = WM Π

ZXA, M) = {(ιι, nO e Z:(A, Λf) n e ψ ^ } (J = 0,1,

It is sufficient to show that
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(31) There exists Mx depending only on Q such that, for any A,

M>MX and any J = 0,1, , JM, Car. Zj(A, M) < 2.

In fact, if this is known, we have Car. Z'_(A, M) < const. Mι~r, since

JM < const. M w . Then the required inequality immediately follows. To

prove (31), we begin with showing two properties:

(32) There exists M2 such that, for M > M2,

(nm, nm,) € Z'_(A, M)φm - rrϊ < (γ + ε)/log Q Vmlog m .

(33) There exists M3 such that, for M > Ms,

(nm9 nm,\ (nm+r, nm.+r.) e Zj(A, M) (r > 0) φ rf < rm^2.

(32): We have [Q^] - [Q^] = [Q^] - [Q^o'j, and hence

Qvm7 > QVm _ QVrno - 3 > Q ^ i °
2Q V/n

Putting r — m — m\ we have

Thus

e x p ( -
2

which signifies r < γ(l + o(ϊ))llogQ Vmlogm. Hence choosing M2 suffi-

ciently large, we have the required implication.

(33): Let M>M2. We have

v m

and hence

τr < VW r/Vm
vm

o(l))rexp{( r + ε)(l + o(l))/2 logm}.
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Choosing Mz ( > M2) sufficiently large, we have the required implication.

Now we prove (31). Suppose that Zj(A, M) (M > M3) contains at least

three elements, saying (nm, nm,\ (nm+r9 nm,+r), (nm+s, nm,+s) (0 < r < s).

In the case where s/r Φ s'jrf: We have

(34)

and hence

2 vmm

ψ +
I 2 Vm

Eliminating Q^-terms, we have

Using

(35) r, s - O(M0; rr, s ; = O(M^+(^+2ε)), see (33); Vm,

we have

I 4 V rn/n'

which is a contradiction for all sufficiently large M, according to rsf Φ sf

and 3 - 3?- - 2(γ + 2e) > 2.

In the case where s/r = «7r/ ( = σ ) : Note that a Φ 1. By (34), we have:

I 2 Vm + 8 m «*m

' 8 '

, (logQ) σV
8I 2 Vm 8 m \mi/2

r l dog QY
I 2 Vm' 8 TO' \ m/
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Eliminate Q^™7-terms. Using (35), we can write simply

(36) Q^ ( l o g Φ ' σrr'
16 Vmm'

= 0(1).

Since — 7 = — —τ== = 0\ m, m ) = 0(-5M—) (see (32)), we have
\lmf Vm \ Vm'm / \ M2 I

1 1 \\

Jm> Vm) I
(a - (σ - l){r' - r)

Vml Vm
ΐ) = M~\l + o(l)).

Thus (36) is a contradiction for all sufficiently large M, according to

2 - 2γ - 2(γ + 2e) > 1. (If rr = r, (34) does not evidently hold for all

large M.)

In any case, from the first hypothese, we have a contradiction for all

large M, which signifies (31), and hence the proof completes.

Elementary calculus gives the following

LEMMA 9. For every positive integer K, we put

(37) Zκ = {(ql9 qZ9 qi9 q4); ± qx ± . . ± g4 = 0 for some ± ,

Qi > > g4, 9i < Qκ , Qj^ € E} .

Lei (g1? g2, g3, g4) € Zκ and qx e WM (M < K). Then

(38) q*>QMc,

(39) qs>QM-c'losM,

where c = cQ and cf = Cρ are constants depending only on Q.

Now we give the proof of Corollary. Since the order of \E(QK)\2 is

K\ it is sufficient to show σ(E(Qκ)) -= o(K4), according to our theorem.

Note that σ(E(Qκ)) — const. Car (Zκ). Choose arbitrarily a positive integer

Mi such that Mi — c^logMί > Ml9 where Mx is the integer in Lemma 8.

Let K> Mi. For any M(Mi <M<K), the cardinal of {(qu q2); (ql9 g2, 9s, Qύ

eZκ for some g3, q4; qxe WM) is less than const. c\M2, according to (38).

For a fixed pair (ql9 q2) (q, e WM), the cardinal of {(g3, qdl (Qi, ft, Qz, ft) € Zκ)

is less than const. c'Q (log M)Mm\ according to Lemma 8 and (39). Hence the

cardinal of {(qί9 , q4) e Zκ; qt e WM) is less than const. c|4(logM)M2 + 9 / 1 0.

Adding from Mi to K, we have Car(Z^) - O(K3+9/10\og K) = o(K% This

completes the proof.
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