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THE CENTRAL LIMIT THEOREM FOR
TRIGONOMETRIC SERIES
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§1. Introduction

We denote by Z* the semi-group of positive integers. For a subset E
of Z*, we denote by |E| (£ +o0) its cardinal number and by E(n) the
intersection of E and an interval [1, n) (n = 1). We shall identify a subset
E of Z* with a sequence, arranging elements of E according to their
order. An infinite subset E of Z* is of Gauss type (G-type), if X,(t; E, 0) =
V2I|[E()| 3 weru cos mt converges to the normal Gaussian distribution
when n tends to infinity, that is, for every two real numbers &, 7 (& < p),

(1) limm({te[0,27); & < X,(t; E, 0) < 7)) = vz L exp(— x/2)dx,

N0

where » denotes the 1-dimensional Lebesgue measure. A subset E of Z*
is Hadamard lacunary, if there exists a number ¢ > 1 such that, for every
n,mekE (n>m), nflm = q. It is well-known that Hadamard lacunary sets
are of G-type ([5] p. 264). This result was improved by P. Erdss as follows
([2]): Let E = (n,);., be a sequence in Z* such that n.,,/n, > 1+ c./VE
(¢, > +o0,k>1). Then E is of G-type. On the other hand, for every
¢ > 0, there exists a non-G-type sequence E = (n,);_; such that n,,,/n, >
1+c/VEk (B> 1)

From this fact, a class &, was introduced, where Z, (0 < « < 1) is the
totality of all sequences E = (n,);-; in Z* such that

(2) Nes/ne > 1+ c/k® (B > 1, for some ¢ > 0).

A study of G-type sets in &, (1/2 < a < 1) was made by I. Berkes in [1].
The purpose of this paper is to improve his results, according to the
direction of S. Takahashi (Theorem 1 in [4]). Let q be an arbitrarily fixed
number such that ¢ > 1. For a subset E of Z*, we write E” = ENT{1, ¢")

Received February 29, 1980.

79

https://doi.org/10.1017/50027763000019954 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000019954

80 TAKAFUMI MURAI

and 9E" = EN [g"', q") (n > 1). We denote by %, (0 < & < 1) the totality
of all infinite subsets E of Z* such that

(3) [PE" || E"|* = O(Q1).

We easily see that the definition of Z, is independent of ¢. It is very
important to note that %, is a class determined by a condition on the
growth, different from the lacunary condition (2). Evidently £, C Z,
and %, equals the totality of all infinite subsets of Z*. We shall study
G-type sets in # = | Uycoc1 Z.. Different from &, all subset in Z, 0 < «
< 1/2) is not of G-type. A study of G-type sets in Z, (0 < a < 1/2) was
made by S. Takahashi in [4] and our results on Z, (0 < « < 1/2) will be
essentially the same as his results on G-type sets (Theorem 1 in [4]). Our
theorem will give new results on Z, (1/2 < a < 1).

To study G-type sets, we need a positive set-function ¢(-), which is
defined by: For every finite subset E of Z*,

4
(4) o(B) = Car({(m, moy my m); 35 m, = 0, my my (200, my e EU(=B)} ),
Jj=1

where Car(A) denotes the cardinal (number) of A. We shall show the
following

TaEorREM. Let E be a set in % such that

(5) lim g (E(n))/| E(n)]" = 0.

n—oo

Let U be a Borel set in [0, 2r) having positive measure and I' = (y,)p-1 @
sequence of numbers in [0,2x). Then, for every real numbers &, 7 (&8 < ),

(6)  limn(te U; & < X,(t; E) < 7)) = m(U)/+/27 j 6 exp(—a/2)dx,

N—oo

where X, (t; E) = X,(t; E, ") = V2[[E(M)| 2w xwm cos(mt + 7..).

By this theorem, we know that a subset E in % is of G-type if (5)
holds. In fact, choose U = [0,27) and ' = 0 (,1i.e., y, = 0 for all m). It
is very important to note the following fact:

(7)) oc(EM)|EM)E = o) if and only if 1/2x ‘[:” X, (t; E, 0)'dt = 3 4+ o(1) .

According to [2], E is of G-type if
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L e m av _ [CURPED) + o) if £ is even
(8) 5 Io Xt E, 0)' dt { o(1) if £ is odd.

Our theorem signifies that the convergence of the fourth moment in (8) is
sufficient in the case where Ec #. We remark that the condition (5) is
sharp in the following sense: Let E be a set in # such that Jh X, (t; E, 0)°dt
= 0(1). Then it is of G-type if and only if (5) holds. Henoce the charac-
terization of G-type sets in &, is given by (5), since every set in Z,
satisfies f X,(¢; -, 0 dt = O(1).

Differoent from Berkes’s proof, our proof will be elementary. In fact,
we shall use the second mean-value theorem, instead of martingale tools.

§2. Applications

In [2], P. Erd6és conjectured that ([e*’]);., (0 < B < 1/2) is of G-type,
where [x] denotes the integral part of x. In [1], I. Berkes showed that,
for every 0 < B < 1/2, there exists a G-type sequence (n,);., such that
|n, — e**| = O(F®) and he also wrote that there is some connection between
this conjecture and the theory of numbers. We shall show that our theorem
is applicable to this conjecture. We shall show, in the last section, the
following

CoroLLARY. Let @ > 1. Then (n)y.. is of G-type if |n, — Q%] is of
polynomial order. More in detail, this is valid with v k replaced by k* as
long as B is sufficiently near to 1/2.

By our theorem, the conjecture seems to be completely solved, but
the author cannot determine whether ([e*’]);., satisfies (5) or not when §
is small. The author emphasizes that the conjecture holds with “¢” re-
placed by any @ > 1 in the case where § is sufficiently near to 1/2.

§3. The totality of G-type sets is fat in a sense

Throughout this paper, we denote by “‘const.” absolute constants.
For every occasion, it does not generally same. For a property P on sets
in [0, 2z), we write simply (¢ satisfies P) = {t € [0, 2r); ¢ satisfies P}.

Now we show that the totality of all set in # which satisfies (5) is
sufficiently fat in a sense. Let 0 <& <1 and let (m,)=., be a sequence
of positive integers > 5 such that, with M, = >2_, m,, m,/M2 == O(1) and
D Mi2-" < 4-o0. Let 2, denote the totality of m,-tuples (r,, - - -, r,,)
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of integers such that 2" <r, <...<r,, < 2" Since the cardinal of 2,
is N, = 22" — 1)---(2*' — m, 4+ 1), we can define a probability &,
such that, for every w, € 2,, Z.(0,) = N;'. Let (2, %) denote the product
space of (2,,2,) (n>1). Then every element o = (@, - -+, ®,, ---) of 2
is a sequence of integers in #Z. We show that

(9) P(o satisfies (5)) = 1.

For every pair (K, n) of integers such that 0 < K < n, we put ax, =
Pl = (o, ---)e2; olwg, - -, w,) = 0) and prove

(10) Qxn, > g, (1 — const. M32°") (n > K + 1).

Since the number of 4-tuples (ry, ---,r) such that 2" ' < r, <.--<r,
<2and +r, +..--+r, =0 (for some -+) is at most 22*~!'(2"* — 1)(2"*

— 2), the cardinal of a set (w, € 2,; ¢(®,) # 0) is less than
{2427&-—1(27;-1 _ 1)( n-1 ___ 2)}{(2n—1 — 4). . .(Zn—l — mn + 1)}
and hence its probability is less than

@ - DE - IHE T — 9@ — m, + DYN,
= 2/(2"! — 3) < const. 27",

Let r be a given integer. Since the number of 3-tuples (r, r,, r;) such
that 2" ' <r<rn<r,<2and +r+r, +r,+r, =0 (for some +) is at
most 2¢27-1(2"-! — 1), the cardinal of a set (0, € 2,; +r+nr+r+r,=20
for some ry, r, r; € {w,} and some +) is less than

{222 — DHE — )@ — m, + D)

and hence its probability is less than const.2 ". Thus, for every &

- (wK7 Sty wn—l),
P(w,e€,;£r+rtr,+r,=0 for some re{&}, some r, r,r; c{o,}

n-1
and some +) < const.( > mk)2"“ < const. M, 2°".
k=K

Analogously, for every & = (wg, -+, 0,_),

2w, eQ,;; £ r+1 +r £+ r,=0 for some r,r e{¢},
some r, 1, € {w,} and some =) < const. M:2""

Plw,e,; +rxr 1" +r =0 for some r,r,r’" e{é},
some r, € {w,} and some =) < const. M:2".
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From these four estimations, we have

Qg = Qg p-{1 — const. 27" + M, 2" + M22-" + M3:2-")}
> ag,,-4(1 — const. M32-"),

which signifies (10). By (10), we have

Arp = Qg ﬁ (1 — const. M32°%) > azp exp(— const. f_} Miz"‘).
=K k=K+1

k +1

Since azx>1— const.2°¥ and > o, M:2* < + «, we have lim,_.
liminf, ... a;, = 1, from which (9) follows.

§4. Approximation E* of E associated with ¢

We give the proof of our theorem in sections 4 and 5. As well-known,
it is sufficient to show that, for every real number x,

A1) O, (x;E) = j exp{— ixX,(t; E)}dt = m(U)exp(— %/2) + o(1) .

For any positive number d, there exists a finite union of open intervals U’
such that »(U ~ U’) < 4. Hence, from the beginning, we may assume
that U is an open interval and put U = (a, b). To prove (11), we shall
define, for every 0 < e <1, an approximation E° and shall prove (11),
replacing E by E°.

For a finite subset F of Z*, we denote by u(¥) and v(F) the smallest
integer and the largest one in F, respectively. For the definition of E:,
we need the following

LEMMA 1. There exists a partition (OE, oE:, 0E,, oE,, ---) of E such
that, with E, = \J%.,0E,,

(12) IE, + 0, |0E,| = o( E.|)
(13) [jL<JkaE§~| < /(1 — o)+ |Ey
(14) v(OE,-))/p@E,) = o(exp(— &%),

where B = (1 — @)/2 and « is a number salisfying (3).

Proof. Let us consider a partition (0E', 6E?, - - -) of E. If this partition
contains empty sets, we remove these empty sets. Then the resulting
partition does not contain empty sets. Arranging this partition according
to the order of u(.), we write (0K, 0K, ---). Put 4, =0, ¢, =2 and 4, =
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4,_, + (the integral part of ¢;_,) (k> 2), where 7 = (3 — a)/4. Set oE, =
aE*,,c_m U---UGE, (k> 1). Now we choose arbitrarily an integer M = M(e)
such that Me > 1. There exists a sequence of integers (n,);., such that
|0E,,| = min {|0E,|; kM < n, < (k + 1)M}. Then we put dE, = E,, (k> 1),
0E, = 0E,U - .- UdE,,_, and 9E, = JE,,_,,,U---UJE, (k> 2). Then BE,
oE!, .-.) is a required partition. In fact, (12) easily follows from (3) and
a+y<1l We have

IU aE;l = Z [3E;] < SZ (IaEMjl + -0+ IaE(51+1)j|) < EIEkl + e Z IaE“ s
i<k i<k J<k i<k
which signifies (13). By g <y, we have

v(OE;_)/t(OE,) < exp{— (log q) (¢;_,/2)} < o(exp(— k%),
which signifies (14).

Let (0E,, 0E7, - - -) be the partition in the above lemma. Then we de-
fine an approximation of E (associated with ¢) by

(15) F=E =\JoE,.
k=1
From now, we write simply

(16) peo=pE), v, =v0E) (k=1).
Now we compare @. (x; F) with @. (x; E) in the following

LemMmaA 2. We have

anm 10,(x; E) — @,(x; F)| < {4n(b — a)e}*|x|.

Proof. Since

lexp{— ixX,,(t; E)} — exp{— ixX,(t; F)}| < |]|X,(¢; E) — X.(¢; F)I,

we have

0.5 B) = 0, D) < 2l [ |1, B) - X6 F)ldt
< VE= [ Xt B) — X6 Fyyar)”

From (13), we have

[7 .t B~ Xts FYydi=tn0~VIFGIEGI) <4n(1— VI=o) dre .
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Thus we obtain (17).
Using (12), we have also

Lemma 3. For every x,

(18) max |@,(x; E) — 9,(x; E)] = 0(1) (k— +o0).

Yi—-1SNSvg

According to these two lemmas, it is sufficient to show that, for every
0 <e <1 and every real number x,

(19) D, (x; F) = @,(x; E) = (b — a) exp(— x*/2) + 0(1).

The purpose of the rest of this section and of the following section is to
prove (19). For the sake of simplicity, we write

-Ak = IEIcl = [F(”k)[ s A = IaEkl
(20) 4.2) —-:meZaIEkcos (mt + 7,)

X =Xt F), O)=0,x;F) (k=1).
Then

Ay=2+ - + 2, A4 =o0Q)
1) ANE@) = [FOINE@)] =1 — ¢

X() = V21, Ji 4,0 .

In Lemma 5, we shall discuss moments of 4.(f)’s. Preparatory to
Lemma 5, we need the following one. Since this is easily seen, we omit

the proof.
LemMa 4. Let (m;)., be a finite sequence of integers and (6,):., < [0, 2r).
Then
2 £ z £
(22) j [T cos(m;t +0,)dt < | [] cosm;tdt.
0 j=1 0 =1

LEmMA 5. Put

Ht) = 2/4, 3 4e¢ — 1
23)

ha(®) = @140 314,001

Then we have j: |H(0)|dt = o(1) and L h(t) dt = o(1).
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Proof. First we prove the latter. Taking account of
- x 20 1/2 ( (2= 1/2
f h(D) dt < (24" {j Aj(z)Zdt} {f Aj(t)‘dt}
0 =1 Wo 0
k S 2T 1/2
= @4y 3y, Van {[ | aaydt)
= 0
. k. [2r 172
< va{eidy 3 [ aray = vamer,
7=1Jo

we prove p, = o(1). From Lemma 4, we may assume that I" = 0. We have,
for every j < k&,
4ty = > cos'mt+ 4 3 cos’mt >, cosm't
MEGE ; MmEIEy m OB j,m’ Fm

+6 >, cosmt >, cos‘m't

meIEj m’€IE j,m'#m

4+ 6 > cos'mt >, cosm'tcosm’’t
mEGE; m,m’EIE j,m’E=m,m”’E=m,m’'E=m’”’

+ Z cos m,l cos m,t cos mst cos m,t .

m1, M2, M3, MyEIE j,mgFmgr(a#a’)

The mean of the first term (in the right side) is dominated by const. 2,.
That of the second term is dominated by const.2;, That of the third
term is dominated by const. 2. That of the last term is dominated by
const. 6(dE;). That of the fourth term is dominated by a constant multiple of

j { 22 cos2mt PN cos m't cos m"t}dt
meIE, m,m’ € IE jym'Em,m Em,m Em
(2~ 1/2
< j 3, cos 2mi,(0fdt < ¥z, { j O Aj(t)‘dt}

From these five estimations,
p. < const. 1//1;{2'“] 2+ ﬁ z o+ ﬁ «/7,{ ” Aj(t)“dt}w +33 o(an)}
< const.{1/1, + max 2,//1 + «/pk//l + a(EQ,)) A2} J
= const.v/p,/ ;. + 0(1) ,

which signifies p, = 0(1). Next we prove the former. It is sufficient to
show that f H.(ty’dt = o(1). From Lemma 4, we may assume I' = 0. We
have

mym'€E j,m#Em’ mEF (v)

J‘:“ H(trdt = 4.2 J. {i}l N cosmtcosm't + 1/2 3 cos 2mt}2dt
<si {3

2
cos mt cos m’t} dt
m,m’e aFj,m#:m
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+ 2/43 rz { 2% cos2mtfdt
0

mEF (vg)

< const.{p, + a(EQ@))/4; + 1/4,} = o(1).

§5. Proof of (19)

For a set V in [0, 27), we denote by x(¢; V) its indicator function,
that is, x(t; V) =1 (e V) and %(; V) =0 (te V°). Set V., =@+ ---
+ 4, < 4)(kR>1). Then m(V,) =2z + o(1), according to Lemma 5.
Hence @,(x) = Jb x(t; Viyexp{— ixX,(£)}dt + o(1). Since exp(— iy) = (1 — iy)
exp{— »*/2 + 06/3)} (y > 0) ([5] p. 265), we have, writing simply ¢.(¢, x) =
1& VOTTi{l — ixv/2[4,- 4,0)},

f 1t Vi)exp{— ixX ()t

= f 9:(t, %) exp {— 2/2-(2//1k Z Aj(t)Z) + O(|x13(2//1k)3/2 illdj(t)la)}dt.

Since
9t D) < s V) [] {1 + w214, 4,07
< s Voexp{s* 3 4,0} < exp (=<,
we have

j" 165 V)expl— ixXu(D}dt — exp(— /2 j" 65, ©)dt + o(1),

- b
according to Lemma 5. Thus @,(x) = exp(— x2/2)f &(t, x)dt + 0(1), and
hence it is sufficient to show

b k —
@) i) = [ V) [ 11— inv2IL,- 4,0)dt = (b — a) + o(D),

a i=
whose proof is essential in this paper. Elementary calculus gives the
following

LEMmA 6. Let Q(f) be a real (irigonometric) polynomial of degree < N.
Then the cardinal of a set (Q'(t) = 0) is at most const. N. For every y > 0,
a set Q@) < y) is a union of at most const. N intervals.

For every pair (j, k) of positive integers satisfying j < k, we consider
aset Vi, = (4,Q@F +---+ 4, < 4,). Since V,, D---DV,(= V,), we have
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(25) 26 Vi) = [126 Vo) A<S<B).

We need also W, =V, , NV, A<j<k V,,=1[0,2r)). We have W,
N Wj’k = g (J #J), Vip = U’;=1ij and

(26) x5 Vi) = x(¢; Vj—l,k){l — x(t; ij)} .

To simplify the notation, we write

{sﬁn(t) = u(t, x) = x(t; Vi ){1 — ixv/2]4,- 4,t)}

@7 g
= [1ou0d a<i<h.

By (25), ¥, = ¥(x). Taking account of lim,_ .. ¥, ,,=b — a (p:a given
integer > 2) and

k
(28) lwkk - p-— k! _<_ }; ij-—l,k - wjk‘ )
we shall estimate |7, , , — ¥, (2 <j < k). Using (26), we have
b b j-1 . .
Vo= [ 11 gu®dt = [ 1T gu®{L — s W1 — ixv 2[4 4 )t
b j~1 . [ j-1
= ¥yn = | T bulOn(® Wit + i3I, | T gultyts Widd ot
b1
— V2L [ T $u®4,0dt = ¥, o — v + i, — i,
Since |[[i=] pu(®)| < exp x* = 7, we have |¥,| < 7,n(W,,). We have

el < w27 [ 2t Wl A0t < 2L {[ aeya] Wy
= V2x e V[ A V(W) .

At last we estimate ;. Puttlng Q) = Re [Tzl ¢.(2), we have Rey, =
v Wr Q) 4,(t)dt. Since Re ﬂ {1 — ixv/2/4,-4/2)} is a real polynomial of
degree < > i-1y,, the cardinal of the set of all point where its derivative
vanishes is less than const. > /Z}v, according to Lemma 6. Since 4,(z)* +
-+ 4;_,(¢)* is a real polynomial of degree 2, ,, V,_, . is a finite union
of at most const.y;_, intervals, according to Lemma 6. Thus there exist
mutually disjoint intervals (a,, b,) (1 < 6 < ¢) such that >5_,(b, — @,) =
b —a, ¢ < const. (35/z1v, + v;,) < const. > i-lv, and Q(f) is monotone in
every (a,, b,). For every 6, we have, from the second mean value theorem,
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[ avawa = Qe [ awydt + Qe [ 40 a
(for some &, (a, < & < by)).

Hence

[Be | < V243 | Q@) [ 4 dt + Qe [ 40 at)
[r0a] | st0a)

< e VA, Z(

To estimate «/ZEJH 4,t)dt (1 <6< a), we use a set A, = (|, (t)] >

7), where Vu(t) = V3[4, Tincos, (ufm) sin (mt + 1), Since |7 (trdt =
2[4 D mesn, (s/m) < 272;/4, < 27, we have m(A;) < const.j'?. If (a,, &)
¢ Ay, we put a; = min{y; a, <y, y € A%} and & = max{y;y < &,y € A%}
Then |V,(a))|, [V;(&))] are less than j* and (a,, a;) U (¢;,&,) C A;,. Hence

V2[4,

[ a0 de] = [vain [+ [ |40 de 4 (76D = Ptalis
< Vol [t A\ A01dt + 2%,

This estimation is valid in the case where (a,, &,) C A;;,. The same esti-
i3 b

mation exists with JW replaced by J.p. Thus
ag §6

@9) [Re | < w.{ VI [ 465 401401t + 407
< const. z-ﬂ{j’2 + (;iu,,,)ﬁ/y,} .

Analogously, (29) is valid with Re+, replaced by Im+, and hence this is
valid with Re+r, replaced by +, if we neglect midle two parts. From
these estimations, we have

— —— j—1
¥, — ¥,;_, .| < const. ‘L'z{m(ij) + V[ A (W) + 7 + (/; Vz)jz/#j} .

By (28), we have

=1

k — ji-1
Ui — ¥por ] < comst.z, 3] {m(ij) + VA A V(W) + 2 + < vg>j2/,uj}
J=p

< const. rx{m(V;fk) + Vm(VE) + Ji,"j‘z + i (JZI Vz)jz/ﬂj}

J=p \¢
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= const. r,{jz::pj‘z + é(gu,>j2/p,} + 0o(1) = d(p, x) + 0(1).

Hence limsup,_...| ¥, — (b — a)| < d(p, x). By (14), we have 3 5., izt v)i* 1,
< +oo0. Since p is arbitrarily given, we have (19). This completes the
proof of our theorem.

Remark 7. More in detail, our theorem holds with the condition
“Ee %’ replaced by

(30 10E™|/|E™| = o(1/log |E"|) .

In fact, by (30), Lemma 1 holds with (14) replaced by v(0E,_,)/n(0E,) =
O(k%). In the proof of (19), the convergence of > 7.,(> /=i v,)j*/p, is essential
and this is valid in this case.

§6. Proof of Corollary

For the sake of simplicity, we give the proof in the case of n, = [Q %],
where [x] denotes the integral part of x. Throughout the proof, O(1) and
0(1) will depend only on Q.

Set E=(ny);., and W, =EN [@¥* ", Q") (M >1). We note that
| Wyl =2M(@1 + o(1)) and sup{|m/M* — 1|; n,, € W} = o(1). For every integer
A and every positive integer M, we put Z.(A, M) ={(n,n);n+n = A,
n>n,neW,neE} and Z(A, M) = Z_(A, M)UZ (A, M). We need two
lemmas in which the first is essential.

LemMmA 8. There exists M, depending only on @ such that, for any A
and any M > M,, Car. Z(A, M) < const. M**°,

Proof. Put y = 1/10 and e = 1/20. We shall show that Car. Z_(A, M)
< const. M*-7* (M > M,). Since the same estimate is valid for Car. Z,(A, M),
we obtain the required inequality. Assuming Z_(A, M) + @, we denote by
Ny Ny) the pair in Z_(A, M) such that n,, is minimum in W,. Now
let us consider ZZ(A, M) = {(nn, nn) e Z_(A, M); m — my > M'~7}. Since
Car(Z_(A, M)—Z’(A, M))<M'-7, the estimate of Car. Z/(A, M) is necessary.
To do this, we define two partitions of W, and Z’(A, M) as follows:

WM.I — WM N [QV(M—1)2+JM7, Q«/(M~1)z+(.l+1)m) s
Z (A, M) ={(n,n)eZU (A, M);ne Wy} (J=0,1,---,dy).

It is sufficient to show that
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(81) There exists M, depending only on @ such that, for any A,
M>M, and any J=0,1, ---,dJ,, Car. Z,(A, M) < 2.

In fact, if this is known, we have Car.Z’(4, M) < const. M7, since
Jy < const, M'-7. Then the required inequality immediately follows. To
prove (31), we begin with showing two properties:

(32) There exists M, such that, for M > M,,

By ) €ZL (A, M)S>m —m' < (7 + ¢)flog @-Vmlogm.
(33) There exists M, such that, for M > M,,

My M)y (M Mo ) € ZLA, M) (r > 0) 7/ < rm0r,
(82): We have [@Y"] — [@7™] = [@Y"] — [@Y™], and hence

Q= Qi — Qi — 3= QAR (14 o(1)

> QA% R m (1 + o(1) .
Putting r = m — m’, we have
Q<L QVi-riadm = QVn exp( log@ r )
= 2 vVm
Thus

_log@ r log@ _..
exp( : M)z L+ 01,

which signifies r < 7(1 4 o(1))/log @ -vmlog m. Hence choosing M, suffi-
ciently large, we have the required implication.
(33): Let M > M, We have

[Q7¥7] — [Q] = [@w+7] — [Q*]

@ — [Q7] < @182 (1 + ()7

[Q /7] — [Q7] > Qw18 Q. 1°gQ 1 +om)-T,

and hence

< VR QU (Lt o) = (L-+ o()r exp{E L (1 4 (1) )

< (@ + o(M)rexp{(y + &)1 + o(1))/2-1og m}.

https://doi.org/10.1017/50027763000019954 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000019954

92 TAKAFUMI MURAI

Choosing M, (> M,) sufficiently large, we have the required implication.
Now we prove (31). Suppose that Z,(A, M) (M > M,) contains at least
three elements, saying (i, n)y Mmirs Bnrsr)y sy Bmrrs) (0 << 7 < 8).
In the case where s/r # s’/r': We have

"~ {[Q“W] ~ [QF] = ("] — [@7]
[Q "] — [Q] = [@“F] — [@7],
and hence
ool g v o(2)) - 0[50 (D)) - o
oo o 7)) - e (B8 o D)) - oo

Eliminating QY»'-terms, we have

as{(*5* ¢%+0(,,Z))(1°§Q -+ o))

B R vy e e

Using
(85) r,s=OM); r,s = O(Mr ™), see (33); vm, vm' = M(1 + o(1)),

we have

m Qog Q) rs’ —sr O(M3r+2a+29-04 — O(1
@ { 4 vmm’ + O )} @,

which is a contradiction for all sufficiently large M, according to rs’ +# sr’
and 3 — 3y — 2(y + 2¢) > 2.
In the case where s/r = s’/r' (= ¢): Note that ¢ = 1. By (34), we have:

on{Ere L rar r o n

2 Vm 8 m  Am¥

e 10§Q ;’E N (1og Q r n: + o n:/2 )} = ow
R o (log8 Q) T+ o(2r))

~ g 1O§Q ;; n (log8 Qr o;:,” + o :z';/ )} = 0.
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Eliminate @"-terms. Using (35), we can write simply

(36) QY (log @) arr’ { (e — 1)7'/_; _(e=Dr + O(M2r+2<r+2s)~z)}

16 vmm’ vm' vm
—0Q).
Since 7%, _ _1/1_",2 - 0(%;7’1’2‘) - 0( 101%4 M ) (see (32)), we have
(ec—1Dr (e—=Dr| _|(@—=1DF" —7r) . 11
=P = e )

> M-Y(1 + o(1)) — O(M-*log M) = M-(1 + o(1)) .

Thus (36) is a contradiction for all sufficiently large M, according to
2—2r —2r+2)>1. (If ¥ =r, (34 does not evidently hold for all
large M.)

In any case, from the first hypothese, we have a contradiction for all
large M, which signifies (81), and hence the proof completes.

Elementary calculus gives the following

LemMA 9. For every positive integer K, we put

(37 Zy = {(qb Q95 q.); = g -+ q, = 0 for some =+,
Q> >q, 9 < QF, QjeE}'

Let (g, Q5 @s, @) € Zy and q, € Wy, (M < K). Then

(38) Q. > Q" °,
(39) q. 2 QM—c’logM ,

where ¢ = ¢, and ¢’ = ¢, are constants depending only on Q.

Now we give the proof of Corollary. Since the order of |E(Q¥)] is
K*, it is sufficient to show ¢(E(Q%)) = o(K*), according to our theorem.
Note that ¢(E(QF)) = const. Car (Z;). Choose arbitrarily a positive integer
M such that M| — ¢ log M; > M,, where M, is the integer in Lemma 8.
Let K> M]. For any M(M;< M < K), the cardinal of {(¢:, ¢2); (@1, @2, Qs QW)
€ Zy for some q,, q;; g, € Wy} is less than const. cjM? according to (38).
For a fixed pair (g, ¢,) (¢: € W), the cardinal of {(gs, ¢.); (1, Qs> Qs> Q) € Zx}
is less than const.c; (log M) M**, according to Lemma 8 and (39). Hence the
cardinal of {(q,, - - -, q.) € Zx; ¢, € W,,} is less than const. ¢ic,(log M)M*+*",
Adding from M; to K, we have Car(Z;) = O(K**¥"log K) = o(K*). This
completes the proof.
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