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Abstract

A time-domain duplexing radio frequency (RF) front-end with integrated antenna switch,
power amplifier (PA), and low noise amplifier (LNA) was developed aiming for fifth-gener-
ation communication (5G) applications covering 24–28 GHz frequency range. Antenna switch
utilizes pre-existing LNA input matching network together embedded with grounded shunt
transistor switch to provide sufficient isolation of receive side from PA. Respectively, high
impedance of off-state PA is assumed to achieve acceptable receive performance. Resulting
output power is 13.6 dBm with 15 dB of peak small-signal gain at 28 GHz. Maximum average
channel power was 4.8 dBm with 100MHz 64-QAM OFDM signal within 5G adjacent chan-
nel power ratio and error vector magnitude specifications. Receive (RX) front-end achieves 5
dB noise figure at 24 GHz and 7 dB of peak gain. Performances of amplifiers degraded only by
2 dB from switch integration. The front-end dissipates 183 and 4.6 mW of power in transmit
and receive mode, respectively. The simplistic design method minimizes cost both in circuit
area (only 0.19 mm2) and design time making this front-end an attractive alternative in mas-
sive phased array applications using 22 nm complementary metal oxide semiconductor
(CMOS) fully depleted silicon on insulator process.

Introduction

Fifth-generation communications (5G) has started rolling out in 2019, but research has contin-
ued tirelessly to develop it further [1, 2]. Before 5G, virtually all cellular telecommunications
worked sub 6 GHz and with the emergence of 5G, the frequencies have gone up to millimeter-
wave (mmWave) frequencies within Ka-band using 24.25–29.5 GHz bands for example.
However, mmWave frequencies pose difficulties in system design due to signal propagation
issues because any obstacle attenuates signal substantially compared to sub-6 GHz frequencies
[3]. Moreover, losses in integrated circuits are larger in mmWave frequencies making the prob-
lem more complex. Phased arrays are used extensively to overcome these issues with beamform-
ing to direct radio energy between receiver and transmitter. Phased arrays, however, have to
utilize multiple antennas and front-ends to reach the required effective radiated power from
the transmitter which means that the performance of a single front-end is crucial for the system
because the size and power dissipation are proportional to array size. Time-domain multiplex-
ing (TDD) reduces the number of antennas in half because the same antenna is used to receive
and transmit signals. This comes at a cost because a switch between the antenna, power amp-
lifier (PA), and low noise amplifier (LNA) impacts both receive and transmit performance.
Low-losses and good amplifier performance can be achieved using III–V semiconductors, how-
ever, the system cost is drastically increased in phased arrays compared to silicon-based solu-
tions. Thanks to the scaling of CMOS technologies, the performances have been reaching
III–V semiconductors and 22 nm fully depleted silicon-on-insulator (FDSOI) technology is a
strong candidate for mmWave systems especially for its digital circuit capabilities together
with good RF circuitry [4]. Decent output power with CMOS-SOI technologies is achieved
with transistor stacking with higher supply voltages but a large signal swing can cause reliability
issues in deeply scaled CMOS due to low breakdown voltages [5, 6].

Numerous TDD switches have been reported with various switch topologies. Most com-
mon switch topologies are presented in Fig. 1. Transistor-based single-pole-double-throw
switches (SPDT) shown in Fig. 1(a) are compact but challenging to design with low losses
higher frequencies due to parasitics. In millimeter frequencies, the parasitics are commonly
resonated out with inductors but it takes area and they tend to be narrowband solutions.
Another solution is to replace the series switches with quarter-wave transmission lines to iso-
late the amplifiers from each other (1b), but this results in larger area especially at mmWave
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frequencies where the length of the transmission line in silicon is
roughly one millimeter [7]. Many types of solutions have been
developed, where the matching networks for PA, LNA and
antenna are shared (Fig. 1(c). In some, but not all solutions,
closed-form equations have been formulated to synthesize min-
imum loss co-matched networks [5, 8–11]. In theory, the design
is easy since only passive components need to be synthesized with
a known value, but the number of matching components varies
and the components might require extensive co-design in higher
frequencies where losses of matching components become signifi-
cant. The alternative solution proposed here is to utilize the exist-
ing LNA matching network and rely on the high impedance of
off-state PA for decent performance with the minimal workload
on co-designing and minimal semiconductor area resulting in
low-cost solution both in silicon area and design time. Idea is
shown in Fig. 1(d). Typically, LNAs have a large inductor in
the input matching network to provide noise match, and this
inductor is utilized together with a shunt switch much like in
quarter-wavelength transmission line solutions to provide high
impedance. Similar solutions have already been used by
Qualcomm [12] and Liu et al. [13] but they use differential PAs
and Liu utilizes an additional switch-inductor tank arrangement
in PA output to isolate PA impedance in receive mode. We pre-
sent a solution that minimizes the switch area to an absolute min-
imum with no additional bulky matching components.

The paper structure is as follows. In the section “System
blocks”, system aspects of the front-end module and the signifi-
cance of switch loss are discussed. Section “3-Stack power ampli-
fier” covers the design and measurement results of a 3-stack
reference PA. Section “3-Stack power amplifier” in turn presents
the same procedure for LNA. PA and LNA are then combined
and integrated into a front-end in the section “Low noise ampli-
fier” and measurement results are presented and compared to
other works. The final section gives conclusions of the front-end.
This paper is an extension of a paper presented at the 2020
European microwave week conference [14]. This paper gives
more design details in both PA and especially on LNA.
Additionally, more measurement results are presented studying
the back-gate tuning of LNA and impedance levels in the
front-end are studied more in-depth.

System blocks

In a phased array system, the RF front-end is the first active part
that is connected to the antenna. Therefore, as modeled with

Friis’s system noise formula, the front-end gain and noise charac-
teristics dominate the overall system noise. In a TDD system,
antenna switch loss affects noise figure and output power directly.
For example, in a 28 GHz phased array front-end developed by
Rebeiz’s group, antenna losses, printed circuit board (PCB) traces
and front-end switch total 0.5 + 1 + 1.5 dB = 3 dB of loss which
simply increases system noise figure by 3 dB and reduces output
power by 3 dB, effectively limiting the link range [15]. For ampli-
fiers, besides gain, LNA primarily has to have minimal noise. A
high input compression point increases the dynamic range of
the receiver and it is generally limited by amplifier stages follow-
ing the LNA. Wide bandwidth enables the use of multiple fre-
quency bands, however, widening bandwidth induces penalty in
noise due to limited Q of matching components used in band-
width extension techniques. In order to make system implemen-
tation easier, area and power dissipation should be kept low, even
though power dissipation is not the major concern.

PAs, on the other hand, are major power dissipators in any
communication system. PAs have to deliver high power signal
with maximal efficiency. The gain of the PA dictates how much
gain is needed in preceding stages and it is limited by the technol-
ogy fmax and the quality of passives. As in phased arrays, total
effective isotropic radiated power depends both on the individual
PA output power and the number of antenna elements in the
phased array. Precise specification for output power cannot be
determined. But with higher output power we can either reduce
the size of an array or achieve link range whichever is more desir-
able. Especially in integrated phased array front-ends, the output
power is anyways highly limited due to the technology constraints
of CMOS, CMOS SOI, and silicon germanium, and due to the
large backoff required by the OFDM signal. It is preferable to
minimize any losses associated with front-end. The conceptual
figure of RF phased array with our front-end is shown in Fig. 2
and with the achieved system-level performances.

3-Stack power amplifier

A schematic diagram of the PA along with its micrograph is pre-
sented in Fig. 5. The PA is a 3-stack amplifier that comprises of
four current combined 75mm wide cells, totaling a 300mm
wide PA core. 3-stack allows raising the supply voltage up to
2.8 V when losses are considered and maximum Vds,DC of 900
mV is used. The transistor widths are the same across the stack
and stepping up subsequent gate biases by 900 mV ensures that
DC operating point stays identical through the stack, e.g. Vg1 =
450 mV, Vg2 = 1.35 V and Vg3 = 2.25 V. Each gate bias is

Fig. 1. Most common mmWave front-end switch topologies (a) SPDT, (b) quarter-wave
transmission line SPDT, (c) common matching network, and (d) RX shunt switch.

Fig. 2. Block diagram of front end as a part in a phased array system together with
key system-level specifications.
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controlled via an off-chip PCB. External back-gate biasing (Vbg1,
Vbg2, Vbg3) was enabled for all levels of the stack and were con-
trolled in a similar manner. Signal swing is kept in phase by
appropriate dimensioning of the gate capacitors C2 and C3.
Voltage swings across the stack at 1 dB compression points are
presented in Fig. 3 indicating a large swing over the topmost tran-
sistor. However, as reported in [16, 17], 22FDX mmW transistors
can sustain quite hard overdrive. In our own 3-stack simulations
(in nominal conditions), breakdown occurs when Vds,DC per tran-
sistor is > 1.4 V and Vds,28 GHz > 3.9 V, which would mean 4.2 V of
maximum VDD taking into accord supply feed DC-resistance.
The gate capacitors were distributed to both sides of each power
cell in order to reduce their physical size and wiring.

The PA is matched with transformers. In the input, the sec-
ondary winding of XF1 loaded with DC blocking capacitor C1
compensates the PA input capacitance and effectively changes
the transformer ratio, so that conjugate matching is achieved.
The simulated loss of the input matching is 4 dB. Optimum
power matching impedance was determined with load-pull simu-
lations using class AB bias (Vg1 = 450 mV) and resulted in 7+j9Ω
for maximum output power and 6+j18Ω for back-off. The load-
pull simulations indicated that also the best PAE is achieved with
these same impedances. The output matching was implemented
by loading the transformer XF2 PA side winding with capacitor
C4, so that the load seen by the PA is downconverted from 50
Ω. The 2.8 V supply voltage was isolated from the RF simply
using a 1 nH on-chip choke. Load impedance realized by the out-
put matching circuit is 7+j12Ω, which is in the middle of the best
high power and back-off matching. The simulated implementa-
tion loss of the output matching is 2.4 dB.

The standalone PA was verified with on-wafer measurements
using Keysight N5247A (PNA-X) and Cascade Microtech 40
GHz GSG probes. The S-parameter measurement reference
plane was at the tip of the probes.

Measured S-parameters with Vg1 = 450 mV are compared with
simulations in Fig. 4. As it can be seen, measured S11 match well
with the simulations but S21 and S22 show deviation. Separately
measured output matching circuit indicates that the simulated
and measured output matching are in good agreement, so the dif-
ference between measured and simulated S22 and S21 may be from

the fact that PA core is not modeled accurately enough or due to
the impact of the metal fill (metal fill grid that is visible in Fig. 5).
Nevertheless, similar behavior can be seen later with LNA as well.

The key results obtained from single tone power sweep mea-
surements are listed in Table 1. The PA has been reported in
[18], but with bias setting that maximizes PAE and with pad
losses removed from the results (see results “PAE bias” in
Table 1). Here the main focus was to maximize gain and output
power and thus completely different bias settings were used (See
results “Gain bias” in Table 1).

Low noise amplifier

LNA design starts from topology choice, for mmWave frequen-
cies, mainly two categories are used: common source and cascode
topology. Common source topology has good noise and gain per-
formance at a cost of lower isolation and stability. In turn, cascode

Fig. 3. Simulated 3-stack PA Vds− Vgs voltage swings at 28 GHz at 1 dB compression
point.

Fig. 4. Measured and simulated S-parameters of the stacked PA. Solid lines are meas-
urement results and dashed lines are simulation results.

Fig. 5. Reference PA schematic diagram and micrograph.
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topology has slightly worse gain and noise properties but it was
chosen for its better stability. [24–27].

LNA schematic diagram is shown in Fig. 6. To match LNA
simultaneously to source impedance of 50Ω and optimum
noise impedance seen by LNA input, a source degeneration
inductor (L1) is used together with input matching inductor
(L2) and capacitor (C3). Cascode core composes of M1 which
acts as a common source gain stage followed by a common gate
stage M2, which gate is ac-grounded with C2. The output is
loaded with a parallel LC-resonant tank (C1 and L3) for desired
center frequency and output is matched to 50Ω with L4 and
C5. C4 is a DC-block capacitor allowing easy integration of pos-
sible future second stage. The DC-block capacitor is omitted from
the input to minimize input losses that have a large impact on
noise figure since mmWave antennas are typically patch antennas
with no DC-path to ground.

The design of the LNA starts from choosing values for L1, L3,
and transistor widths. 70 pH was chosen for degeneration
inductor together with 120 pH for load inductor to have provided
stable gain. A higher ratio of L3 to L1 results in higher gain at a
cost of stability. Next, core is biased to conduct 150mA/mm for
optimum noise performance. Then load resonator is tuned to cor-
rect frequency with C1 after which noise and gain circles can be
simulated to determine values for input matching network com-
ponents. Lastly, the output matching network is dimensioned and
LNA is characterized. This design procedure was repeated for
multiple transistor widths to find an optimum width using a sche-
matic model of the LNA using design kit capacitor models, pre-
layout estimates of transistor parasitics and using a finite Q of
18 for all inductors. Table 2 shows a sweep of transistor size
and simulated performance. As transistor width is increased,

linearity improves and input matching inductor size reduces.
30mm was chosen for optimal noise and gain performance.
Simulations of designed LNA predict stable behavior from
stability factors K, μ, and Δ which are all within stable values
(K > 1, μ > 1, and Δ > 0).

A micrograph of manufactured LNA is shown in Fig. 7.
Matching inductor values were adjusted to compensate for
added parasitic inductances from pads input feed, core input
and ground return path. To support front-end integration, C3
(8fF) was replaced with a shunt switch (M3) of equal capacitance
with negligible impact on performance. To check robustness for
the front-end environment, a simulation was done feeding
power to LNA input and a parallel 50Ω load modeling an
antenna. At 28 GHz the switch can withstand 18 dBm of PA
power holding voltage swings below 0.8 V. Lastly, connections
were routed out from LNA core from the back-gates of the tran-
sistors in order to study possible performance enhancements pos-
sibilities. In this process, transistors have the back-gate option,
which allows threshold voltage tuning with roughly 80 mV/V
sensitivity.

On-wafer measurements for S-parameters and 1-tone com-
pression were conducted using Keysight N5247A (PNA-X) with
Cascade Microtech 40 GHz GSG probes. Noise figure was mea-
sured with noise source 346CK01, preamplifier U7228F and
UXA signal analyzer N9040B with noise figure option (all
Keysight equipment). Back-gate effects were studied by sweeping
back-gates of amplifier transistors one by one while keeping bias
current constant with the front gate of M1. Cascode transistor
back-gate sweep is shown in Fig. 8(a). We observe improvement
in gain (0.15 dB), linearity (1 dB) and noise figure (0.11 dB)
when back-gate voltage is increased from 0 to 2 V. This is because

Table 1. Reference PA compared to state-of-the-art Ka-band PAs

This work

Gain bias PAE bias [18] High lin. [19] High gain [20] [21] [22] [23]

Tech. 22 nm SOI 28 nm SOI 22 nm SOI

Freq. [GHz] 28 28 31 31 28 27 33 28.5

Psat [dBm] 16.4 16.3 17.3 17.9 21.7 17.4 12.7 18.8

Gain [dB] 13.7 11.1 21.9 32.6 27 34 16.5 9.9

P1dB [dBm] 12.2 13.9 15.3 11.6 19.1 16.5 11.9 14.9

PAE [%] 16.7 23 24.7 25.5 27.1 19.5 40 23.4

Vdd [V] 2.8 2.8 0.7/ 1.98 0.7/ 1.98 2.4 1.2 0.9 2.8

Area [mm2] 0.07 0.508 0.21 0.129 0.215 0.11

Fig. 6. Source degenerated cascode LNA schematic diagram.

Table 2. LNA cascode core transistor sweep and simulated pre-layout
performance

M1,M2 width
(mm) NF Gain P1dB IIP3

Lin
[pH]

10 2.666 12 − 20.18 − 9.57 1477

20 2.122 13.3 − 18.02 − 7.57 943

30 2.043 13.4 − 17.23 − 6.35 763

40 2.054 13.4 − 17.06 − 5.94 600

50 2.254 13.3 − 16.76 − 5.6 572
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the voltage drop is being equalized between the two transistors
meaning there is more gain and more headroom in the output
signal swing. Above 2 V, the voltage drops over M1 and M2 go
off-balance resulting in a greatly degrading gain. Sweeping the
input transistor (Fig. 8(b), back-gate does not show much
changes, the optimum gain point is with negative back-gate volt-
age with a small cost of linearity. Gain-wise optimum bias setup
was found to be of Vbg1 =−0.4 V, Vbg2 = 0.9 V, and Vbias = 0.5 V
which consumes 5.7 mA with 0.8 V supply or 190 μA/ μm of
bias current. Gain optimum bias setup is compared to bias
setup with no back-gates (backgates at 0V) in Fig. 8(c). At peak
gain frequency, gain is improved by 0.2 dB, compression point
by 0.36 dB and noise (from simulations) 0.07 dB. S-parameter
results of this optimum gain bias setup is presented in Fig. 9
showing 8.7 dB of gain and 3 dB of noise figure. The circuit was
modeled with parasitics extractor tool up to highest digital routing
metal layer and thick metals were EM-modeled using Keysight
Momentum. Measurements and simulations have good agreement
with only a small discrepancy in output matching capacitor and
load resonator capacitor capacitances. Lower gain and noise per-
formance (3 dB) from initial simulations (Table 2) arise from para-
sitics of transistor core and lower Q-figures (about 15) for inductors.

LNA is compared to other state-of-the-art Ka-band LNAs in
Table 3. State-of-the-art LNAs have better gain and noise behav-
ior but at cost of power dissipation. Reported references mostly
utilize higher than nominal supply voltages to improve gain,
noise and linearity, whereas we used nominal 0.8 V supply for
easier integration for possible future systems (no need for an add-
itional supply voltage for the chip).

Front-end

Combining LNA and FE into a front-end requires a few changes
from reference amplifiers and results in the minimal additional
area as we can see from Fig. 10 front-end micrograph. First, the
output of PA and input of LNA have to be shifted by 90° to com-
bine the nets into one. Second, LNA bias needs to be prevented
from leaking to PA output matching ground by adding a
DC-block, which in this case was put in PA output transformer
(C6 in Fig. 10) as it did not take any additional area and its impact
on TX and RX performance is insignificant as its value is high.
Due to the changed impedance environment for both LNA and
PA, their matching networks had to be slightly adjusted. LNA
input inductor (L2) had to be increased from 660 to 710 pH to

Fig. 7. Reference LNA schematic diagram and micrograph.

Fig. 8. Reference LNA back-gate experiments with constant bias current of 0.19 mA/
μm adjusted with front-gate bias. (a) Cascode back-gate sweep, (b) Input transistor
back-gate sweep and c) Optimum back-gate bias setup of Vbg1 =−0.4 V, ~ Vbg2 =
0.9 V, Vbias = 0.5 Vcompared to 0 V back-gates and Vbias = 0.475 V. Solid plots are meas-
urement results and dashed are acquired from simulations.

Fig. 9. Reference LNA measured and simulated S-parameters and noise figure.
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optimize noise match and in turn, PA output was compensated
with C4 increase from 430 to 760 fF. Capacitance increase com-
pensates the PA gain loss from LNA addition at a small cost of
efficiency and saturated output power level. The robustness of
the switch was again tested in the simulator by driving the PA
at saturated power and checking voltage swings over the switch
while sweeping antenna impedance in the Smith chart. Voltage
swings stayed well within 0.8 V up to 1:8 of VSWR.

To study how the impedance environment changes due to
front-end integration, matches for both amplifiers were analyzed
from S-parameter measurements and simulations. For minimum
switch loss, both amplifiers would have to appear as 0 dB matches
for each other in respective transmit and receive modes. Changes
in impedance levels for reference amplifiers at antenna port are illu-
strated in Figs 11 and 12. For these figures, input feeds were
de-embedded frommeasurement results using on-chip reflect imped-
ance standards. In front-end simulations, the feeds were removed and
the connection to the loading amplifier side was cut to model the
front-end environment more accurately when looking directly at
LNA input and PA output. For LNA, we get a quite good increase
of impedance levels (−5.5 to −2 dB) due to large input inductor
and grounding shunt switch. However, hand calculation with 25Ω
switch resistance and 710 pH L2 predict nearly 1 dB higher match:

Zrx ≈ j2pfL2 + Zsw = 25+ j124.9V (1)

S11 = −20 · log10( |G|) (2)

S11 = −20 · log10 |Zrx − Z0

Zrx + Z0
|

( )
= −1.17 dB (3)

Table 3. Reference LNA compared to state-of-the-art Ka-band CMOS LNAs

Ref This Work [24] [24] [25] [26] [27]

Topology Casc. Casc. 2-st. CS CS+ Casc. Casc. Casc.

Freq. [GHz] 23.3–30.5 21.6–32.8 19.5–29 22–32 19–34 14–31

Gain [dB] 8.7 7.8 16.9 20.1 12 12.8

NF [dB] 3 2.65 2.18 1.73 1.46 1.4

Supply [V] 0.8 0.8 0.4 0.42/ 1.05 1.3 1.5

Pdiss [mW] 4.6 6 3.2 17.2 9.8 15

Tech. 22 nm SOI 22 nm SOI 22 nm SOI 22 nm SOI 22 nm SOI 45 nm SOI

Fig. 10. Front-end schematic diagram and micrograph.

Fig. 11. Input matches of reference LNA (measured) and front-end LNA (simulated)
with switch in receive mode (SW OFF), and in transmit mode (SW ON) in dB scale
(a) and in Smith chart (b).

Fig. 12. Output matches of reference PA (measured) and front-end PA (simulated) in
on and off state in dB scale (a) and in Smith chart (b). Arrows illustrate the changes
from PA to FE PA.
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Difference in matching between theory and practice potentially
comes from limited Q of the inductor and its parasitic capaci-
tances. PA output match in front-end turned out to be worse
upon integration. Switching PA off improves impedance levels
in LNA point of view only by small amount, however, turning

PA completely off eliminates any noise it generates since there
is only little isolation from PA core to LNA input.

RX measurements

Measurement results for receive side are shown in Fig. 13. Due to
leakage of signal to TX side, the LNA gain and noise figure have
degraded about 2 dB below 26 GHz and due to resonance in TX
side, gain and noise figure degrade rapidly above 28 GHz.
Fig. 13(b) shows that back-gate study from LNA measurements
apply also for front-end RX. Optimum back-gate settings improve
gain and compression point. RX is providing peak gain of 7 dB
with minimum NF of 5 dB with input compression point of
−9.1 dBm.

Fig. 13. RX S-parameter (a) and 1-tone measurement (b) results. S-parameter results
are in optimum gain bias setup and zero back-gate bias compression point and gain
are compared in right plot.

Fig. 14. Measured PA and TX 1-tone responses at 28 GHz (left) and saturated power
comparison.

Fig. 15. ACPR and EVM of TX with swept input power with 100 MHz 64-QAM signal at
28 GHz. 5G specifications for ACPR and EVM are highlighted. Input and output powers
are reported as channel average power.

Fig. 16. Measured constellations of TX with maximum in-specification power (bot-
tom) and with 1 dB lower input power. Left constellations are without DPD and
right constellations are with DPD.

Fig. 17. Output spectrum of TX with and without DPD. (a) is with input power 1 dB
below maximum in-specification power and (b) is with maximum in-specification out-
put power.
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Table 4. Comparison of mmWave TDD front-ends. Reported frequency range is 3 dB bandwidth

RX shunt gate SPDT
1/4λ TL

Common matching

SW type
Ref.

This
work

ISSCC
2018 [12]

RFIC 2020
[13]

TMTT 2016
[28]

JSSC 2018
[15]

TMTT 2020
[29]

JSSC
2017 [7]

MWCL
2016 [8]

JSSC
2020 [9]

ESSCIRC
2017 [10]

TMTT
2019 [5]

RFIC
2020 [11]

Freq [GHz] 24–28 25–30.5 25.5–29.5 30–40 27.8–32.2 22.7–40 27–29 57–65 27–40 60–67 25–30 24–28

FE LNA topology Casc. – Casc. Casc. CS diff. Casc. CS Casc. diff. CG diff. CG Casc. diff. CS

RX peak gain [dB] 7 34a 15.6 17 20 19.3 30a 21.5 16.1 17 11 23.2

RX P1dB [dBm] − 9.1 – − 15.8 − 17 − 22 − 16 − 22.5 – − 15.7 − 25 − 7.1 − 9

RX NF [dB] 5–8 3.8–4.4a 2.8–3.6 7.9–8.4
(sim)

4.5–5 4 6 6.7–9.1 6.2–8.3 7.6–9.8 3.2–3.8 4.4–6.8

RX Pdiss [mW] 4.6 42a 30.7 48 130 36 103.1a 39.6 17.6 <28.8 28 40

FE PA topology 3-stack diff. CS 3-stack 4-stack diff.
2-stack

3-stack 2-stack 2-stack diff. CS diff. CS 4-stack diff. CS

TX peak gain [dB] 15 44a 30 14 20 17.6 15 24.5 28.5 24 12 28

TX P1 dB [dBm] 7.4 12a 16 20.5 10.5 18.3 13.5 5 14.1 10 22 16.1

TX Pdiss [mW] 184 90a 185b 352 200c 370 143.8a 71 96.2 <63.5 230 310b

Psat [dBm] 13.6 14 17.2 22.5 12.5 19.1 16 8.4 15.8 10 23.6 18.2

pPAE [%] 9.6 20 21.5 7 13c 18 21 8.7 20 – 28 21.1

Active area [mm2] 0.19 1.16a 0.17 7a 2.16d 1.05 4 0.22 0.35 0.35 0.275 0.94

Tech. 22 nm 28 nm 22 nm 130 nm
SiGe

180 nm
SiGe

45 nm 130 nm
SiGe

65 nm 28 nm 45 nm 65 nm

acomplete TX/RX chain.
bestimated from pPAE,P1 dB and gain.
cat P1 dB.
destimated from micrograph.
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TX measurements

TX 1-tone measurements show degradation due to switch
arrangement compared to reference PA. Measurement results at
28 GHz in Fig. 14(a) indicates that the switch lowers compression
point by about 5 dB and saturated output power by only 2 dB.
Non-linear load caused by the switch transistor M6 and LNA
also results in an impact on AM/PM behavior with respect to
the reference PA but only by a few degrees. Modification to
matching capacitor C4 and parallel RX side has also changed
the output center frequency from 28 to 26 GHz and bandwidth
extension is observed due to de-Q of PA output matching envir-
onment in Fig. 14(b). Resulting gain, 1 dB compression point and
saturated output power at 28 GHz are 15 dB, 7.4 dBm and 13.6
dBm, respectively.

To study the linearity of the front-end in realistic 5G applica-
tion, modulated signal measurements were carried out using 100
MHz wide cyclic prefix – orthogonal frequency division multi-
plexing (CP-OFDM) 64-QAM modulated signal following the
3GPP/NR standard for FR2 frequency band. 5G specifications
for FR2 band limit adjacent channel power ratio (ACPR) to
−28 dBc and error vector magnitude (EVM) to 8% [30]. To maxi-
mize channel power, digital predistortion (DPD) was used for the
modulated signal. The signal was generated with Keysight
M8190A Arbitrary waveform generator and then up-converted
to 28 GHz by Keysight E8267E signal generator. The output of
the front-end was then measured with Keysight N9040B UXA
which analysed the ACPR and EVM. ACPR and EVM measure-
ments are shown in Fig. 15. Resulting specification limited max-
imum channel power was measured to be 4.8 dBm which is close
to 9 dB maximum practical back-off from saturated output power
for the 64-QAM OFDM signal so all available output power is
possible to utilize with the DPD. EVM of 7.6% leaves about
2.5% (−32 dBV) for rest of the transmitter chain, such as local
oscillator phase noise, I/Q imbalance, thermal noise and data con-
verter non-idealities, which is challenging but doable task to
implement at mmWave frequencies.

Constellation diagrams and spectrums for maximum achiev-
able channel power and 1 dB below maximum power are shown
in Figs 16 and 17. Despite degraded linearity from front-end inte-
gration, the front-end meets the EVM specification without DPD
with only 1 dB lower signal power (Fig. 16(a) however ACPR
remains as a bottleneck.

Comparison and discussion

The front-end key performance metrics are shown and compared
to other Ka-band front-ends in Table 4. Simple switch technique
results among the most compact front-end designs with compar-
able output power, efficiency and noise performance with excep-
tionally low RX power dissipation. Cascode is clearly the most
popular LNA topology. Even though some front-ends have com-
mon source LNA, it is difficult to distinguish the topology from
performance due to various switch techniques, number of stages
and technology. That can not be said on PA topologies where
the common trend is a couple dB power increase per increased
stack number. Our design, unfortunately, suffers from lower out-
put power due to switch non-linearity and gain preferred PA
matching. Simulations show that reverting back to reference PA
value for C4 and boosting PA VDD up to 3.5 V would regain ref-
erence PA compression point but with large power dissipation of
456 mW and reliability risks related to high VDD. Theoretical

3dB increase in signal power due to differential structures is evi-
dent from comparable output power of differential CS stages
(1-stack) but at the cost of power and area.

On basis of measurement results, it is evident that perform-
ance is good below 26 GHz (see flat NF behavior in Fig. 13(a).
So the designing of higher center frequencies of individual ampli-
fiers might be beneficial so the lower frequency band can be uti-
lized more readily. Additionally, instead of preferring gain,
front-end PA matching should be done in more favor of power,
and then compensating the lost gain with pre-driver PAs. In
this way, the PA output impedance is potentially higher resulting
in better isolation to the RX side. To combat the low TX compres-
sion point, M6 switch width could be increased but the increase of
off-state capacitance would degrade LNA noise matching in
RX-mode. Also reducing the widths of LNA transistors would
result in a larger gate inductor (see Table 2) resulting in better iso-
lation of RX side from TX, again with some noise penalty, while
optimizing inductor Q.

Conclusion

We have presented a minimum area solution for a Ka-band TDD
PA, LNA and switch front-end utilizing LNA matching network
with shunt switch. Front-end switch performance was evaluated
by comparing front-end performance to standalone reference
amplifiers presented in this paper. TX provides 13.6 dBm of satu-
rated output power at 28 GHz proving only 2 dB loss in output
power and 4.8 dBm of channel power with 5G NR FR2 100
MHz wide OFDM signal with 9 dB backoff. At 24 GHz, the
receive noise figure is 5 dB and gain 7 dB which are only 2 dB
lower than of reference LNA relying on high impedance of an off-
state PA. The paper also presents measurement and simulation
results of back-gate option in used 22 nm FDSOI technology for
LNA to improve gain and linearity. Possible improvements are
discussed to decrease switch arrangement losses on overall per-
formance. Active area (0.19 mm2) and first stage LNA power dis-
sipation (4.6 mW) of the front-end is among the smallest reported
to the author’s best knowledge.
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