Genet. Res., Camb. (1969), 13, pp. 127-141 : 127
Printed in Great Britain

Natural selection and gene substitution*

By MOTOO KIMURA anxp JAMES F. CROW

National Institute of Genetics, Mishima, Japan, and
University of Wisconsin, Madison, Wisconsin, U.S.4.

(Received 21 May 1968)

1. INTRODUCTION

A fundamental property of natural selection is that under its operation a more
advantageous gene can gradually supplant less advantageous genes in a population
without appreciably affecting the total population number.

Because of this property, an advantageous gene combination which was initially
very rare or non-existent can finally emerge as the prevailing type in a population
whose total number is always restricted by the carrying capacity of the environ-
ment. On the other hand, without natural selection, in order to produce even a
single individual having advantageous but originally rare genes simultaneously at
many loci, the total population number would have to be larger than the entire
earth can support.

It is important to note that in each generation in most species a much larger
number of young and vastly larger numbers of gametes than adult individuals are
produced. Of those young individuals, only a limited number can survive, reaching
maturity and serving as parents for the next generation. This strong tendency to
increase and the restricted carrying capacity of the environment together with
the genetic variation supply the basis for natural selection. In fact, Darwin (1859)
in his Origin of Species states:

Owing to this struggle for life, any variation, however slight and from whatever cause
proceeding, if it be in any degree profitable to an individual of any species, in its infinitely
complex relations to other organic beings and to external nature, will tend to the preservation
of that individual, and will generally be inherited by its offspring. The offspring, also, will
thus have a better chance of surviving, for, of the many individuals of any species which
are periodically born, but a small number can survive. I have called this principle, by which

each slight variation, if useful, is preserved, by the term of Natural Selection, in order to mark
1ts relation to man’s power of selection.

A realistic treatment of the process of gene frequency change must take into
account that the total population number may change very little or not at all
during the time that gene frequencies are changing enormously. Feller (1966, 1967)
has called attention to a number of interesting paradoxes that arise when the
genotypic fitnesses are treated as measures of increase or decrease in actual num-
bers. In particular he has pointed out that the ‘cost of natural selection’ may be
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much less than Haldane (1957) calculated because of Haldane’s neglect of the
resulting change in population number. We believe, however, that Feller has mis-
interpreted Haldane’s interest. Haldane, we believe, was interested in gene pro-
portions, not numbers, and the cost should be measured in these terms.

In the conventional treatment of the change in (relative) gene frequencies
which was extensively applied first by Haldane (1924) and which has been widely
used by geneticists, no particular assumption is made regarding the total popula-
tion number so that it has the advantage of being applicable to expanding,
contracting and stationary populations.

The purposes of this paper are twofold. The first is to show that under a variety
of models of change in the total population number, equations of the general

dpldt = sp(1—p),

(where p is the proportion of a gene or genotype and s is constant, or nearly so)
provide a reasonable description of the increase in the proportion of the favoured
type. The second purpose is to show that Haldane’s (1957) ‘cost of natural
selection’ gives meaningful results, free of the difficulties brought out by Feller,
when the formulae deal with the proportions (not numbers) of genes in the process
of substitution. We shall also extend Haldane’s results to include epistasis and the
effect of random drift in small populations.

Throughout this paper we shall consider only haploids, since the basic principles
can be discussed without the complexities of diploidy which add only to the
mathematical difficulty without revealing any important additional principles.

form

2. CHANGE OF THE NUMBER OF GENES BY NATURAL SELECTION

Let us consider a pair of alleles A, and A, and assume that a population consists
of two types of haploid individuals A; and A, whose numbers are %, and =, re-
spectively. The treatment applies also if A; and A, represent individuals of two
clones making up a population. Thus the total population number denoted by
N is the sum of the two numbers, i.e.

N = n,+n,.
We will denote by p, and p, the relative frequencies of the two types so that
P1=m[N and p; = n/N = 1—p,.

In this section we will assume that the numbers change continuously with time
and no stochastic elements are involved.

To investigate the change of gene numbers by natural selection, we will take as
our starting-point the following set of equations:

dny[dt = ny[o —f; (ny, nz)J»}
dnofdt = ny[ots —f3(ny, 1,)).

In these expressions, «, and «, (@;, @y > 0) stand for the intrinsic growth rates

@.1)
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of =, and n, respectively. They are the rates at which numbers of A; and A, would
grow if the population had unlimited food supply and room for expansion.
Parameter ¢ stands for time and changes continuously, but for practical purposes
it may conveniently be measured with the length of one generation as the unit.
The functions f,(n,, n,) and fy(n,, n,) represent the control mechanism and they
depend on various factors such as the food supply, the space available, accumula-
tion of toxic products, territorial behaviour and so on. Following Fisher (1930),
we will call nyldn,/dt and nyldn,/dt the Malthusian parameters of A, and A,
and denote them by m, and m, such that

1dn
m = 'rITit—l = a,—fy(ny, ny),
g (2.2)
n
my = 'rTzd_tz = ay—fo(ny, y).

To proceed further, we have to assume more concrete forms of f; and f,. So,
we will consider several cases that may be useful in treating the process of gene
substitution. Similar models have been studied by Egbert Leigh (personal
communication).

(2.1) Model 1. The total population number kept constant, gene
replacement according to intrinsic growth rates

In this model, we will assume that
Silng, ng) = fa(ny, ny) = @g(N), (2.3)
where x = (a1 +asn,)[N = pio, +Pacty

is the average intrinsic growth rate and g(XN) is a positive increasing function of V.
With this assumption, equations (2.1) become

dn _ dn. —
—+ =mla,~ag(N)]), —F = nyla,—ag(N)]. (2.4)
dt dt
dN _dn, dn, . _ . _
Then —d-t——ﬂ'i'm‘— Nz — Nag(N),
1dN _
so that Nar - a[1 —g(N)]. (2.5)

In the special case of g(N) = N/K in which K is a positive constant, equation (2.5)
represents logistic population regulation, i.e.
dN _ N

The total population number is kept at the level of N = K at equilibrium and any
departure from this state will be reduced roughly at the rate of @ per unit time.
At equilibrium in which N = K, the rates of change of gene numbers are

(2.6)

% _ oy —a) mymy ‘z_@ _ (yy—ag) mn,

dt K Toodt K
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Going back to equations (2.2) and (2.4), we note that

dl —ilon dl =
di og p = di g My dtogn2—m1 My = Oy — Xy,

1.1 \dp
that — Pr_ o,
S0 2} (p1+1 191) dt = 0y — Qg,
or % = spy(1-p), (2.7)

where s = o; —a,. Since m, and m, stand for the Malthusian parameters of A,
and A, as defined in (2.2), s in the above expression represents the selective advan-
tage of A, over A, measured in Malthusian parameters. This equation is correct
whether N is changing or not.

In the somewhat weaker population control given by g(N) = (log, N)/c, the
total population number is kept at the level of N = ¢° at equilibrium, but the
equation giving the rate of change of gene frequency is exactly the same as
(2.7). More generally, if the conditions (2.3) hold, the change of gene frequency is
given by (2.7). Note that this model includes the possibility of no population
control as a special case of g(N) = 0.

(2.2) Model 11. Weaker population control

In this model we assume that

fi(ny, ng) = folny, ny) = g(N), (2.8)
where g(N) is a positive increasing function of N. This yields
dn dn.
T = mle—g )], T = nyfay—g(N)). (2.9)

Some simple examples of this model may be produced by putting g(N) = cN,
g(N) = klog, N and so on. The equation for the rate of change of the relative
proportion of gene A, is exactly the same as in the first case, because

dl (pl)_ldnl 1 dn,

dt B\p,) “mdt mpar AT RES
or s — sp1-py). (2.10)

On the other hand, the total population number () increases as one gene replaces
the other.
For example, if we take g(N) = cN, @2.11)

then, when gene A, hasreplaced gene A, (assuminga; > a,), N = a,/c. Thus, in this
case the replacement of one gene by another results in a population increase
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proportional to the difference in the intrinsic rates of increase in the two genes.
Such a situation is probably not very common in nature. The size of the popula-
tion is usually determined by factors other than the «’s. A replacement of the
original gene with a superior one will probably cause only a slight increase in
population number or even none at all, so that model I is probably more realistic.

(2.3) Model I111. Selective advantage due to higher
reststance to overcrowding

In this model we assume that
a =y =a, fi(ng, ny) = agy(N), fyny, ny) = agy(N), (2.12)
where ¢,(N) and ¢,(IN) are both increasing functions of N such that

0 < g,(NV) < go(NN).
This leads to the equations

B amy =gy ()], D02 = a1 — gy () (2.13)

As an example, let us take
(V) = N|K,, g4(N) = N/K,
in which K, > K,.

Equations (2.13) are reduced to

dny _ AT ﬂ)
i oy (1 Kl), 7= (I—K2 . (2.14)

The two genes have the same intrinsic rates of growth, but A, has a selective ad-
vantage over A,, because it is more tolerant of overcrowding. The rate of change
of logarithmic gene ratio is

d P\ _ldn; 1ldn, Kl—Kz) _
%log (172) “w @ mdt ocN( XK, )= s. (2.15)

The total population number changes from roughly K, to K, as A, increases from
very low frequency to very high frequency and finally to fixation. If ¢ is small as
compared with «, K, K, is roughly equal to N? and the right-hand side of (2.15)
shows that (K, — K,)/N = s/a, namely, replacement of one gene by another results
in a population increase proportional to the selective advantage expressed as a
fraction of the intrinsic growth rate. In this example s is not constant. However,
it changes very slowly, especially if N does not change much with the gene sub-
stitution. The situation we have in mind is that the favoured allele replaces the
other by introducing a greater resistance to overcrowding. For K, = 1-01K,,
s changes by only 19, as the frequency changes from 0 to 1; in other words s is
nearly constant.
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The point that we are stressing is that the equation familiar to geneticists,

d
{—[‘ = sp1(1-p1),

represents the change of gene frequency by natural selection for a wide variety
of realistic situations.

3. THE COST OF A GENE SUBSTITUTION (SUBSTITUTIONAL LOAD)

We will now consider the selection intensity that accompanies the process of
substituting A, for A, by natural selection, assuming that A, has selective advan-
tage s over A, (s > 0). As pointed out in the introduction, in natural populations
many more young than adult individuals are usually produced in each generation,
but only a fraction survive to maturity and serve as parents for the next genera-
tion. The majority of the premature deaths may be non-genetic, that is to say,
they strike A; and A, with equal probability. The remaining deaths are genetic;
that is to say, they are caused by A; having a selective advantage s over A,.
What we are concerned with here is the latter component of death, for this is the
factor which enables A, to increase its frequency and leads to its eventual fixation
in the population.

Consider a change from time ¢ to f+df. During this short time interval, the
amount of genetic death expressed as a fraction of the total population number is

Po(t)sdt = [1—p,(t)]sdt, (3.1)

where p,(f) = 1—p,(t) is the relative frequency of the less advantageous gene A,
in the population at time ¢. In the discrete generation time model employed by
Haldane, the corresponding quantity is p,(t)s, or d, = kg, in his terminology
(Haldane, 1957), where k is the selection coefficient against less advantageous gene
and g, is the frequency of that gene at the nth generation. Haldane called kq,, ‘the
fraction of selective deaths in the nth generation’. The expression (3.1) may also be
called the load (measured in Malthusian parameters) due to gene substitution
during the time interval ¢ to ¢ + df, since, as seen from model I, the average popula-

tion fitness _
1on m(t) = py(t) my + py(l) Mo

ab time Fisless BY ) _75(0) = (my—ma)palt) = spa(t)
than the fitness of the favoured genotype A,. (For the definition of genetic load, see
Crow (1958) and Crow & Kimura (1965).)

On the other hand, Feller (1967) takes Haldane’s selective death to mean the
actual decrement of the number of disadvantageous genes from generation n to
generation n+1 (i.e. N, —N, , in Feller’s notation) and regards Haldane’s
expression d, = kg, as an approximation. We would like to stress that Feller’s
expression (N,—N,.,) is something quite different from Haldane’s. Feller
treated u, the fertility of the favoured genotype, as a constant (the expression,
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N, —N,,,, is that obtained when z = 1). With constant x the population does not
attain a stable size, unless # = 1in which case the final number is the same as the
initial number of A genes. Haldane assumed that the population number is rela-
tively stable and counted the number of deaths each generation as a fraction of the
population in that generation.

For a realistic treatment of the problem of gene substitution in evolution we
must consider a process in which the advantageous genes (A,) increases from very
low frequency to very high frequency and finally to fixation, while the total
population number is kept constant or nearly constant throughout the process by
population regulating mechanisms such as those discussed in the previous section.
The total load or cost due to the gene substitution may then be obtained by
summing the quantity (3.1) during the process through which the frequency of A,
changes from p,(0) to unity. Namely,

Lipy©), 1] = [ 7 11-p00s . (3.2)
To simplify the expression, we will write L(p,(0)) for L [p,(0), 1].
If we use the relation dpo(6)
22— spt) [1-py0), (3.3)
or dt = dp,(t)[{sp1 (&) [1 - 2:1(O)]},

the integral reduces to

e I [1—py()]s
JO [t=p,(®)]sdi = fp.(O) sp,(8) [1 —p,(8)] Palf)

_ 1 dp,(¥)
a L.w) P’ (34
so that L(p,(0)) = — log, p,(0). (3.5)

This is the result first obtained by Haldane (1957).

Thus the total load is independent of the selection coefficient s but depends
only on the initial frequency p,(0). The total load becomes larger the lower the
initial frequency of A,. For example, the total load is roughly 6-9 if p,(0) = 103,
but itis 13-8if p,(0) = 10—¢. Haldane called this load  the cost of natural selection’.
More generally, the total cost due to the frequency of A, increasing from p,(0) to

pil)is L[py(0), py(8)] = log, py(t) — log, py(0). (3.6)

It should be noted that the selection coefficient s need not be constant throughout
the process. Aslong as sremains positive, formula (3.5) is valid even if s changes from
generation to generation. Actually, in the middle integral of (3.4), s in the numera-
tor and in the denominator cancel each other in each infinitesimal time interval
and s does not appear in the right side of (3.4).

The Haldane formula gives a measure of the proportion of selective deaths that
must occur if gene substitutions are to take place at the specified rate. For example,

9 GRH 13
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if the initial frequency p,(0) is 0-001, the total cost is 6-9; that is, if one gene
substitution is to occur on the average every 69 generations there must be 109,
selective deaths each generation. The average fertility must be such that 10 9%, of
all zygotes can die before maturity and still maintain the population number
approximately constant. Of course, this does not include deaths from causes other
than gene substitutions, which may be genetic or environmental.

If the population does not have the required average fertility, it does not
necessarily mean that it becomes smaller. It may only mean that it cannot make
gene substitutions at the calculated rate. Ultimately, however, this may mean
that the species loses to a competing species that can evolve faster. Selection is
not necessarily acting through death or complete sterility; it may equally, or
perhaps more likely, depend on differences in fecundity. The principle is similar,
but less simple to state or measure. For selection by death (or complete sterility)
the maximum rate of gene substitution, given the original gene frequency, can be
calculated directly from the observed rate of premature deaths (or sterility). For
selection by fecundity differences the corresponding limit is set by the percentage
reduction in the average productivity of the population compared with that of the
selectively favoured gene (or genotype). This may be much more difficult to
assess.

4. EFFECT OF EPISTASIS ON THE SUBSTITUTIONAL LOAD

If gene substitution is carried out at two or more independent loci, the total
load for all of them is the sum of the substitutional load for each locus, provided
that there is no epistatic gene interaction in fitness.

In this section we will investigate the effect of epistasis on the substitutional
load assuming a haploid population in which gene substitution is carried out
simultaneously at two loci. We will denote by A, and A, a pair of alleles in the first
locus with their respective frequencies p(¢) and 1 — p(?) in the population. Similarly,
we will denote by B, and B, a pair of alleles in the second locus with respective
frequencies ¢(t) and 1 —q(t). Let us assume that the selective advantage of A; over
A, is s in combination with B, but is s ; +¢ in combination with B, (See Table 1).

Table 1. Frequency and fitness of the four haploid genotypes

Genotype Frequency Relative fitness
A B, Pq s4+8g+e
A, B, (I-p)q sp
A B, p(1-q) 84
A, B, (1-p) (1-q9) 0

Similarly, assume that the selective advantage of B, over B, is s in combination
with A, but is sz+¢ in combination with A,. Throughout this section, we will
restrict our consideration to the case where

0<sy<s,+sg+€e and 0 < sz < s,+85+¢,

namely substituting A, for A, and B, for B, increases the fitness.
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Assuming random combination of genes between the two loci, the rates of
change of gene frequencies are

d
W o p1-p)satea), = ql—q)(sp+ep). (1)

These are approximations that are valid when |e| is much smaller than the re-
combination fraction between the two loci, for which case a ‘quasi linkage equili-
brium’ is established in a few generations (cf. Kimura, 1965).

In a population containing A, and B, with respective frequencies p and ¢, if we
assume that A, B, has the highest fitness, the load is

Up, 9) = s4(1-p)+sp(1—g)+e(1—pg).
Thus the total load for substituting A, for A, and B, for B, simultaneously is
given by ®
Lip©), a0) = [ Up, @) a1, (4.2)
where p = p(t) and ¢ = q(¢).
In the special case of equal selective advantages s, = sz = s and equal initial
frequencies p(0) = ¢(0) = p,, we have p(f) = g(t) throughout the process so that

@ _ p1-p)(s+ep), (4.3)
and Up, @) = 2s(1—p)+e(1—p?), (4.4)

where s > 0 and s+¢ > 0. Using (4.3) and (4.4), (4.2) becomes
125461 +p)d

= 4.
L(pO’ pO) fpo _p(8+€p) ( 5)
For s > 0, the equation reduces to
1 1+A
L = (2+A)1 —)-(1+A)l —, .
(Po> Do) = (2+4) Oge(po) (1+ )oge<1+/\po) (4.6)

where A = ¢/s. Here the coefficient A represents the relative magnitude of gene
interaction and lies in the range —1 < A < co. Table 2 lists values of L(p,, p,)
corresponding to several values of A, taking p, = 0-001. The value corresponding
to A = o0 was obtained from (4.5) by putting s = 0, for which case, we have

1 1
L(p,, =——1+loe(—). 4.7
(Po> Do) o g o (4.7)

The table reveals the interesting fact that as s/(2s+¢) gets small the cost becomes
progressively large. This can be understood intuitively as a consequence of the
fact that most of the load happens while the favoured gene is rare. When s = 0,
e > 0, selection is very slow while the double mutant is rare, a situation com-
parable to a recessive mutant in a diploid. In fact the formula for a recessive gene

in diploids is 1 1
Lign) = 5~ 1+1og, (), 48
(Po) 7 &\ 7, (4.8)
exactly the same as (4.7.) The situation is mitigated by the fact that the newly
9-2
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favoured mutant probably already exists in mutational equilibrium in the old
environment. If so, the initial frequency of the individual mutant gene would be
considerably greater, of the order of the square root of the frequency without

Table 2. Some values of substitutional load in a haploid population when
there is an epistatic interaction in fitness between two loci.

(In this table, s, = 85 = 3, A = ¢/s and the substitutional load was computed
from equation (4.6) and (4.7) assuming p,(= ¢,) = 0-001.)

Interaction Substitutional

—_——— load

() 8/(2s+¢) L{py, po)
-1 1 69
—0'5 2/3 10-7
0 1/2 13-8
1 1/3 19-3
10 1/12 56-6
100 1/102 248-1
1000 1/1002 699-7
0 0 1005-9

epistasis, as with a recessive gene, and the cost is thereby reduced. In the termino-
logy of Kimura & Maruyama (1966), the epistatic interaction with respect to the
selective advantages of A, and B, is of ‘reinforcing’ type if A > 0 and of ‘diminish-
ing’ type if —1 < A < 0. Thus, as far as simultaneous substitution of freely
recombining genes is concerned, strong epistasis of the reinforcing type is a hin-
drance to rapid gene substitutions in evolution. Furthermore, in view of ‘diminish-
ing returns’ and thresholds that are frequently postulated, it might be expected
that diminishing type epistasis is more common among advantageous mutant
genes than reinforcing type epistasis.

5. EFFECT OF SMALL POPULATION NUMBER ON
THE SUBSTITUTIONAL LOAD

In a small population, change of gene frequencies by natural selection is subject
to random genetic drift and this will affect the substitutional load. Furthermore,
even in a very large population, if the initial frequency of the advantageous
genes is very low, random fluctuation of the number of such genes in the early
stage may produce a significant effect on the load.

Since the details of the treatment of this subject will be published elsewhere
(Kimura & Maruyama, 1969), we will summarize in this section the result for the
simplest case of a haploid population.

Let N, be the effective population number and let s be the selective advantage
of A, over A,. Assuming that the initial frequency of A, is p,, it can be shown that
the total load required to substitute A, for A, in the population is given by

T e et e
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where § = N, s and u(p,) stand for the probability of fixation of A}, i.e.

1—¢25p
Upo) = 75 (5.2)

(cf. Kimura, 1957). In the above expression (5.1), if both S(= N,s) and Sp, are
very large, only the last term in the right-hand side is significant and (5.1) agrees
with (3.5); as expected, it reduces to the value obtained by ignoring random
drift.

If, on the other hand, the effective population number is so small that 2N,s is
much smaller than unity, (5.1) becomes approximately

Lips) = 28,5 log, (). (5.3)

namely, the load may become much smaller than the standard value log, (1/p,).

Probably, the most important case is the intermediate one in which the popula-
tion is large enough so that 2N,s > 1, yet initially the advantageous gene A, is
so rare that 2N, sp, <€ 1. In this case, we have roughly

L(po) =1 +10ge (l) ’ (54)
Po

namely, the load is larger by about unity as compared with the value derived from
deterministic treatment. For example, in a population of N, = 10000, if A, has
selective advantage s = 0-01 over A, and if the initial frequency of A, is p, = 0-001,
the total load for the substitution of A, is 7-85 from equation (5.1). The corres-
ponding approximate value obtained from (5-4) is 7:91. With the same population
size and selective advantage, if the initial frequency is p, = 104, the substitutional
load obtained from (5.3) is 10-20, while the approximate value from (5.4) is 10-21.
Note that the load for one gene substitution calculated by disregarding random
fluctuation is 6-91 for p, = 0-001 and 9-21 for p, = 10-%. An increase of the load
by about unity in the present case is mainly due to the fact that the advantageous
gene A, becomes fixed (established) only with probability «(p) = 2N, sp,, and,
with the remaining probability of 1—u(p) it is lost from the population, never
contributing to the substitution of A, for A,. In the latter case, the cost (load)
is wasted and this inflates the average load per gene substitution.

6. DISCUSSION

In discussing the amount of selective elimination (i.e. ‘cost’ or ‘load’) that
accompanies the process of substituting one allele for another, it is important to
note that the total population number is not controlled to any large extent by the
relative proportion of alleles in any particular locus, including the one involved in
substitution. Rather, the total population number is determined by the complex
interplay between the intrinsic growth rate and the environmental control such as
exemplified by Model I in § 2. Because of such population regulating mechanisms,
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the fitness of a population measured in Malthusian parameters may be zero over
a very long period, and yet there is no reason to assume that the population is
bound to die out as the application of the standard theory of branching processes
may dictate. The population regulating mechanisms (food supply, space available,
competing species, density dependent factors of all sorts) are so strong as to over-
whelm the ordinary stochastic processes whenever the population gets much too
large or too small. A mathematical treatment that regards the population number
as deterministic is therefore closer to the true situation than one in which popula-
tion number is a random variable. With such a deterministic model, the Haldane
theory has a reasonable interpretation and is free of the difficulties pointed out by
Feller (1967) for unregulated populations.

It has also been claimed that the substitution of a more advantageous allele for a
less advantageous one can not be considered a load since the population fitness is
thereby increased, and, that the limitation to the rate of evolution set by the
magnitude of the substitutional load does not actually exist. This type of argument
overlooks the general fact that for each species the environment, both physical
and biotic, is constantly deteriorating, while the advantageous genes are always
very rare at the start. The substitution load is a measure of the amount of reproduc-
tive excess that the population must have in order that there can be enough dif-
ferential viability and fertility to carry out the gene substitution and maintain
the population size. If the excess is not sufficient the rate of gene substitution must
be correspondingly less. Thus, as pointed out by Haldane (1957) and also by Van
Valen (1965), simultaneous selection at many independent loci can not be carried
out without sufficient reproductive excess to permit very intense selection.

If the selection is by differences in fecundity the cost is a measure of the amount
by which the favoured type must exceed the fertility of the population average.
Thus a new mutant that increases fertility by 2s requires the same ‘cost’ for its
ultimate fixation in an infinite population as one that increases it by s; however, it
also immediately doubles the capacity of the population for selection, and there-
fore the population can evolve faster. This is perhaps a good place to reiterate
the by now obvious point that the ‘load’ is not necessarily bad.

In the original calculation of the cost of natural selection, Haldane (1957)
assumed a small selection coefficient, but he Jater (Haldane, 1960) elaborated the
cases where the selection coefficient is not small. In the latter paper, Haldane
wrote that ‘the substitutional load is that part of the “load’ or mortality due to
unfavourable environment which can be compensated by gene substitutions’ and
warned the readers not to extend the theory to cover biological situations to
which they do not in fact apply. According to him, ‘the most important of these
appears to be the case where a genotype which is originally unfavourable gradually
becomes neutral and then favourable’. The effect of such slowly changing environ-
ment on the substitutional load was investigated by Kimura (1967) using a simple
model suggested by J.B.S. Haldane (1960, personal communication). For a
haploid population, the result may be summarized as follows. Suppose that gene
A, is originally disadvantageous and iskept in a population in very low frequency by
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the balance between mutation and selection. Let s be the selection coefficient
against A, and let  be the mutation rate per generation by which A, is produced
from its allele A, that exists in the population with very high frequency. Assuming
that s > u, the frequency of A, at equilibrium is

Py = U[S. (6.1)
Now, suppose that the environment changes suddenly and in one generation, A;

becomes advantageous such that, thereafter, A, has selective advantage s’ (> 0)
over A,. Then, as shown in § 3, the total load for substituting A, for A, is

—log, p, = log, s—log, u. (6.2)

On the other hand, to express the slow change of environment, let us assume that
the selective advantage of A, over A, (measured in Malthusian parameters) is
expressed by k¢, where % is a small positive constant (say less than 10-3) and ¢ is
time measured in generations. Allele A, is disadvantageous for ¢ < 0 but is neutral
at ¢ = 0 and becomes advantageous thereafter. Then it can be shown that the

frequency of A; at ¢ = 0 is -
Py = uA/-2—k (6.3)

The total load for substituting A, for A, is again expressed by —log, p, but with
P, given by (6.3). Thus

—log, p, = %log, 2k— }log, m—log, u. (6.4)

For example, assuming % = 108, the load calculated from (6.2) by taking s = 10-2
is about 13-8, while the corresponding value calculated from (6.4) by taking &£ = 10-¢
is about 11-3. In other words, as compared with the case in which the selection
coefficient changed from —0-01 to +0-01 in one generation, if such a change is
taken place gradually through 20000 generations, the total load becomes roughly
five-sixths as large. The load may be halved if & = 10—, that is if the corres-
ponding change has taken place through two hundred million generations. The
actual change of environment on earth, however, must in most cases be much more
rapid. In general, we may say that if the gradual change of the selection coefficient
as discussed above is common in evolution the value calculated from (6.2) over-
estimates the load, though the correction to be made is probably much less than
509,.

On the other hand, we have seen in § 4 that a strong epistasis of the reinforcing
type may increase the load many fold, though it is unlikely that such a strong
epistatic interaction between simultaneously evolving loci is very common.

We have also seen in § 5 that random fluctuation in gene frequency inflates the
load roughly by about unity in the realistic case in which the population is large
enough so that 2/N,s is much larger than unity yet the advantageous allele A, is so
rare that 2N,sp, is much smaller than unity.

The cost is strongly dependent on the initial frequency of the favoured gene.
A gene starting with a frequency of 10! instead of 10—* would involve a sub-
stitutional load of 2-3 rather than 9-2. If evolution consists more of shifting the
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frequencies of already common genes than of initially rare genes, as Wright (1931
and later) has suggested, the cost is correspondingly less. For neutral, or nearly
neutral, isoalleles the cost becomes very small and the problem becomes not one
of the cost, but rather the rate at which gene replacements occur when the major
influences are mutation and random drift (Kimura, 1968). Finally, we have dis-
cussed the cost for freely recombining genes. If gene substitutions occur in blocks
of genes, the cost per gene is less. One possibility is evolution by small duplications.

All those factors modify the load to some extent, but it appears as if the original
formula by Haldane (1957), i.e. —log, p, is still useful in estimating the approxi-
mate amount of selective elimination that accompanies the process of substituting
one allele for another by natural selection.

In the foregoing treatments we have considered the sum total of the load that
spreads over many generations. In each species, then, the substitutional load in

one generation is given by
L, = 2 e; Ly,
T

where L, is the total load for one gene substitution in the ith locus and ¢, is the
rate per generation at which such gene substitution is carried out in that locus.

At the moment, opinion is divided as to how meaningful and useful the concept
of the cost or substitutional load is for the study of evolution by natural selection.
What it does is to give some insight as to what rate of gene substitution is consistent
with a given pattern of genetically determined variability in survival and fertility.
However, we have no way of knowing in most organisms how realistic is Haldane’s
estimate of 109, as the amount of ‘substitutional load space’ available.

In principle it is easier to measure the variance in fitness or the ‘index of
opportunity for selection’ (Crow, 1958) than it is to measure the difference
between the average fitness of the population and that of the type that is being
increased by selection. We could then develop a theory analogous to Haldane’s,
but related to the variance; a beginning attempt has been made by Crow (1968).
One difficulty is that the variance approach does not have one of the nicest
properties of the Haldane formulation—its independence of s. On the other
hand, it is not sensitive to the initial gene frequency. Actually, we believe the two
approaches are complementary.

Despite its obvious limitations, the Haldane principle is, we believe, a remark-
able, pioneering beginning for a quantitative study of evolutionary rates. We
share with Haldane (1957) the belief that ‘ quantitative arguments of the kind here
put forward should play a part in all future discussions of evolution’.

SUMMARY

Using models which describe the change, by natural selection, of the actual
numbers of genes rather than their relative frequencies, it is demonstrated that
the equation familiar to geneticists, i.e. dp/d¢t = sp(1 —p), is appropriate under a
wide range of circumstances. It was pointed out that, for realistic treatment of the
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evolutionary process through which gene substitutions are repeated, the models
must have the property such that the total population number remains constant
or nearly constant throughout the process, and is not appreciably influenced
by the genes being substituted.

The load or cost for a gene substitution was studied assuming a haploid popula-
tion and the effects on the load of such factors as epistatic gene interaction in fit-
ness, finite population number and slow change of environment were investigated.
The load may become very large under a strong ‘reinforcing’ type epistasis between
advantageous genes. In a finite population, the load for one gene substitution
may be inflated by about unity if the product of the effective population number
(N,) and the selection coefficient (s) is large but N ,sp, is much smaller than unity,
where p, is the initial gene frequency. On the other hand, slow change of environ-
ment may decrease the load somewhat. It was concluded that despite these and
other complicating factors, Haldane’s original formula, —log, p,, for a haploid
population (—2log, p, for the case of a diploid without dominance) is still useful
for assessing the approximate amount of selective elimination that accompanies
the process of gene substitution in evolution.
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