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Abstract

A Schunck class H is determined by the class X of primitives contained in H. We give necessary and
sufficient conditions on X for H to be a saturated formation.
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1. Introduction

In [8], Gaschütz introduced, for finite soluble groups, the concepts of saturated
formations and projectors. He showed that if F is a saturated formation, then
F-projectors exist in every finite soluble group. Saturated formations can be
constructed via local definition, local in that for each prime p, there is a condition
on the chief factors of p-power order for the group to be in the formation.

A class H with the property that an H-projector exists in every finite soluble group
is called a Schunck class. Schunck showed that such a class H is determined by the
class X of all primitive groups in H. The class X necessarily has the property that
every primitive quotient of a group in X is also in X. Conversely, given such a class X,
the class

H = PDef(X) = {G | every primitive quotient of G is in X}

is a Schunck class, said to be primitively defined by X. This theory is set out in detail
in Doerk and Hawkes [7].

Analogous theories have been developed for Lie algebras [6], restricted Lie
algebras [2] and Leibniz algebras [4]. In general outline, the theories are very similar,
but while every saturated formation of soluble groups has many local definitions, a
saturated formation of Lie algebras has at most one local definition (see [3]). That
not every saturated formation has a local definition means that we cannot use local
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definition to investigate all saturated formations of Lie algebras. Every saturated
formation, being a Schunck class, has a primitive definition. To use this, we need
to know when the Schunck class defined by the class X of primitives is a formation.
The conditions on X are essentially the same for groups, Lie algebras, restricted Lie
algebras and Leibniz algebras. So, in the following, we treat all these together. We use
‘algebra’ to mean any of group, Lie algebra, restricted Lie algebra or Leibniz algebra,
all assumed to be finite or finite dimensional and soluble. Except for matters specific
to groups, we write in the language of algebras. A primitive is an algebra P with a
minimal ideal K such that its centraliser CP(K) = K. In all cases, P splits over K and
all the complements are conjugate.

In Section 2, we establish for groups analogues of [5, Lemmas 1.2, 1.7 and 1.9 and
Theorems 2.1 and 2.6] on blocks of representations. There is no need to do this for
Leibniz algebras or for restricted Lie algebras. The blocks for a restricted Lie algebra
(L, [p]) are the same as for its underlying Lie algebra L.

If P is a primitive Leibniz algebra with Soc(P) = A, then P/A is a Lie algebra
and, as L/A-module, A is either symmetric, that is, ax = −xa for x ∈ P/A and a ∈ A,
or asymmetric, that is, ax = 0. From the given left action on A we can form the
symmetric and asymmetric modules symA and asymA and their split extensions by P/A,
the primitive algebras symP and asymP, the given primitive algebra P being one of these.
Thus, primitive Leibniz algebras come in pairs {symP, asymP} with symP a Lie algebra
while asymP has Leibniz kernel Leib(asymP) = Soc(asymP). A saturated formation F
of Leibniz algebras containing one member of a pair also contains the other and is
determined by the Lie algebras in F (see [4, Theorem 3.16 and Corollary 3.17]).
Consequently, our main result for Leibniz algebras follows immediately from the result
for Lie algebras.

In Section 3, we establish, for all cases, the conditions on the class X of primitives
for PDef(X) to be a saturated formation.

2. Finite groups

If A/B is a p-chief factor of the group G, it can be regarded as an FpG-module. To
avoid confusion between the multiplicative notation used for the group and additive
notation for the module, we denote the module by [A/B] and the module element
corresponding to the element a ∈ A/B by [a]. Thus, [a1a2] = [a1] + [a2]. The action
of g ∈ G on [a] is given by g[a] = [gag−1].

The results of this section do not need the full power of the assumption, required
for their applications in the next section, that the group be soluble, so solubility is not
assumed here.

Lemma 2.1. Suppose that A of p-power order is the only minimal normal subgroup of
the p-soluble group G. Suppose that G does not split over A. Let B/A be a minimal
normal subgroup of G/A. Then B/A is a p-group and:

(1) if B is not abelian, then [A] is a quotient of [B/A] ⊗ [B/A];
(2) if B is abelian but not of exponent p, then [A] ' [B/A].
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Proof. If B/A is not a p-group, then |B/A| is prime to p. By the Schur–Zassenhaus
theorem, there exists a complement U to A in B and, if V is another complement, then
V = aUa−1 for some a ∈ A. By the Frattini argument, G is generated by A and the
normaliser NG(U) of U. But A ⊆ Φ(G), so NG(U) = G, contrary to A being the only
minimal normal subgroup of G. Hence, B is a p-group.

Suppose that B is not abelian. Let b̄i ∈ B/A. The map [b̄1] ⊗ [b̄2] 7→ [b1b2b−1
1 b−1

2 ] is
a module homomorphism. As [A] is irreducible, [A] is a quotient of [B/A] ⊗ [B/A].

Suppose that B is abelian of exponent p2. Then the map [b̄] 7→ [bp] is an
isomorphism. �

Lemma 2.2. Suppose N /G and that V,W are irreducible Fp(G/N)-modules in the same
block. Then V,W are in the same FpG-block.

Proof. There is a chain V = V0,V1, . . . ,Vn = W of irreducible Fp(G/N)-modules and
nonsplit extensions Xi of either Vi−1 by Vi or of Vi by Vi−1 linking V and W. But the Vi
are irreducible FpG-modules and the Xi are nonsplit FpG-modules linking V to W as
FpG-modules. �

Denote the dual Hom(V,Fp) of the module V by V∗. Denote the principal FpG-block
by B0(FpG).

Lemma 2.3. Suppose V ∈ B0(FpG). Then V∗ ∈ B0(FpG).

Proof. There exist a sequence Fp = A0, A1, . . . , An = V of irreducible modules and a
sequence X1, . . . , Xn of nonsplit extensions Xi either of Ai−1 by Ai or of Ai by Ai−1.
Dualising this gives a sequence Fp = A∗0, A

∗
1, . . . , A

∗
n = V∗ of irreducible modules and a

sequence X∗1, . . . , X
∗
n of nonsplit extensions X∗i either of A∗i by A∗i−1 or of A∗i−1 by A∗i . �

Lemma 2.4. Suppose that A is a minimal normal subgroup of the p-soluble group
G. Let V,W be irreducible FpG-modules. Suppose that A acts trivially on V and
nontrivially on W. Then every extension of V by W or of W by V splits.

Proof. As A-module, V is the direct sum of dim(V) copies of Fp, while W is the direct
sum of conjugate nontrivial irreducible A-modules Wi. Thus, Hom(V,W) is a direct
sum of nontrivial irreducible A-modules, so H0(A,Hom(V,W)) = 0. If A is not a p-
group, then |A| is prime to p and H1(A,Hom(V,W)) = 0, so we may suppose that A is
a p-group. Since A is an abelian p-group acting nontrivially on the irreducible module
Wi, we have H1(A,Wi) = 0. So again we have Hn(A,Hom(V,W)) = 0 for n = 0, 1. By
the Hochschild–Serre spectral sequence, it follows that H1(G,Hom(V,W)) = 0. So,
every module extension of W by V splits. As Hom(W,V) is a direct sum of copies of
the duals of the Wi, similarly we have that every extension of V by W splits. �

Corollary 2.5. Suppose that A is a minimal normal subgroup of the p-soluble
group G and that V is an irreducible FpG-module in the principal block. Then A
acts trivially on V.

Proof. As A acts trivially on Fp, it follows by Lemma 2.4 that A acts trivially on every
irreducible module in a chain linking Fp to V . �
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Lemma 2.6. Let A/B be a complemented p-chief factor of the p-soluble group G. Then
[A/B] ∈ B0(FpG).

Proof. By [1, Theorem 1], Ext1FpG(Fp,V) = H1(G,V) , 0. �

Theorem 2.7. Let A/B be a p-chief factor of the p-soluble group G. Then [A/B] ∈
B0(FpG).

Proof. The result holds trivially if |G| = p. We use induction over |G|. By Lemma 2.2,
we may suppose B = 1 and [A] < B0(Fp(G/A)). But then Hn(G/A, A) = 0 for all n and
A is a complemented p-chief factor. The result follows by Lemma 2.6. �

Lemma 2.8. Let V,W be FpG-modules. Then the evaluation map

ε : V ⊗ Hom(V,W)→ W

given by ε(v ⊗ f ) = f (v) is a module homomorphism.

Proof. For x ∈ G, εx(v ⊗ f ) = ε(xv ⊗ x f ) = (x f )(xv) = x f (x−1xv) = xε(v ⊗ f ). �

Theorem 2.9. Suppose that V,W are irreducible FpG-modules and that there exists a
nonsplit extension of W by V. Then W is a quotient of V ⊗ A for some A ∈ B0(FpG).

Proof. Since H1(G, Hom(V, W)) , 0, Hom(V, W) must have some composition
factor in B0(FpG). Let B be the B0-component of Hom(V, W) in its block
decomposition. Then B , 0. Take a minimal submodule A ⊆ B. Then ε(V ⊗ A) , 0, so
ε(V ⊗ A) = W. �

Theorem 2.10. Let C be the set of the p-chief factor modules of the p-soluble group
G and their duals. Let V be an irreducible FpG-module in B0(FpG). Then V is a
composition factor of some tensor product C1 ⊗ · · · ⊗Ck of modules Ci ∈ C.

Proof. By induction over the length of the sequence linking V to F, we may suppose
that we have a nonsplit extension X of V by W or of W by V with W a composition
factor of some tensor product of modules in C. Since, for modules M,N, (M ⊗ N)∗ '
M∗ ⊗ N∗, by Lemma 2.3, we need only consider the case where X is a nonsplit
extension of V by W.

Let A be a minimal normal subgroup of G. By Corollary 2.5, V and W are Fp(G/A)-
modules. If X also is an Fp(G/A)-module, then V,W are in the same Fp(G/A)-block
and, by Theorem 2.9, V is a quotient of B ⊗ W for some B ∈ B0(L/A). But, by
induction over dim(L), B is a composition factor of some tensor product of p-chief
factor modules of G/A and their duals. Thus, the result holds in this case.

Now suppose that no nonsplit Fp(G/A)-module extension of V by W exists.
Then H1(G/A, Hom(W, V)) = 0. That is, H1(G/A, Hom(W, V)A) = 0, as A acts
trivially on Hom(W, V). But X is a nonsplit FpG-module extension of V by W,
so H1(G,Hom(W, V)) , 0. By the Hochschild–Serre spectral sequence, we must
have H1(A,Hom(W, V))G , 0, so A cannot have order prime to p. So, A is an
abelian p-group which acts trivially on Hom(W,V). Therefore, H1(A,Hom(W,V)) =
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Hom([A], Hom(W, V)) and it follows that we have a nonzero FpG-module
homomorphism f : A→ Hom(W,V). Then f (A) is a nonzero submodule of Hom(W,V)
and the evaluation map ε maps f (A) ⊗W onto V . The result follows. �

3. The conditions

Let X be a class of primitive algebras.

Definition 3.1. We say that X is primitive quotient closed if, for every P ∈ X, also
every primitive quotient of P is in X.

That X is primitive quotient closed is necessary and sufficient for PDef(X) to be a
Schunck class. If F = PDef(X) is a formation, then, for every chief factor A/B of P,
we must have also the split extension Q of A/B by P/CP(A/B) ∈ X.

Definition 3.2. If, for every P ∈ X and every chief factor A/B of P, the split extension
of A/B by P/CP(A/B) is in X, we say that X is chief factor closed.

If X is chief factor closed, then, clearly, it is primitive quotient closed.
If F = PDef(X) is a saturated formation, then the dual of an F-central module is

F-central. Thus, for P ∈ X with A = Soc(P), we must have that the split extension of
the dual Hom(A, F) of A by P/A is in X.

Definition 3.3. We say that X is dual closed if, for every P ∈ X, the split extension of
the dual Hom(A, F) of A = Soc(P) by P/A is in X.

Definition 3.4 (For Leibniz algebras only, the condition is meaningless and to be
regarded as always satisfied in the other cases). We say that X is paired if, for every
P ∈ X, both members of the pair {symP, asymP} are in X.

Let P,Q ∈ X with A = Soc(P) and B = Soc(Q). Let L be a subdirect sum of P/A and
Q/B. Then A, B are L-modules. Let C be a composition factor of A ⊗ B and let R be
the split extension of C by L/CL(C). We call R a subtensor product of P and Q. If F is
a saturated formation, then A ⊗ B is an F-hypercentral L-module and so we must have
R ∈ X.

Definition 3.5. If, for all P,Q ∈ X, every primitive subtensor product R of P and Q is
in X, we say that X is subtensor closed.

Definition 3.6. Let X be a class of primitive algebras. We say that the chief factor A/B
of L is X-central if the split extension of A/B by L/CL(A/B) is in X.

Lemma 3.7. Suppose that X is a chief factor, dual and subtensor closed and paired
class of primitive algebras. Let F be the class of algebras all of whose chief factors
are X-central. Then F is the saturated formation PDef(X).
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Proof. If the result holds for Lie algebras, then, by [4, Theorem 3.16 and
Corollary 3.17], the result holds for Leibniz algebras. So, we need only prove the
result for the other three categories. Since F is defined in terms of chief factors, F is a
formation. We have to prove that it is saturated. Suppose that A is a minimal ideal of
the algebra L, that L/A ∈ F and that L does not split over A. Then A ⊆ Φ(L). We have
to prove that A is X-central. We use induction over dim(L). The result holds trivially
if A = L. Suppose that B is another minimal ideal of L. Then A + B/B is a minimal
ideal of L/B and A/B ⊆ Φ(L/B). By induction, A + B/B is X-central. Thus, we may
suppose that A is the only minimal ideal of L.

Let B/A be a minimal ideal of L/A. Since A ⊆ Φ(L), it follows that B is
nilpotent. Suppose that B is not abelian. Then B′ = A and we have an epimorphism
ε : B/A ⊗ B/A→ A defined by b̄1 ⊗ b̄2 7→ b1b2 (for groups, [b̄1] ⊗ [b̄2] 7→ [b1b2b−1

1 b−1
2 ]

by Lemma 2.1). Since X is subtensor closed, the split extension of A by L/CL(A) is in
X, that is, A is X-central.

Now suppose that B is abelian. Then B is an L/B-module which does not split over
the submodule A. By [5, Theorem 1.5] (Lemma 2.1 and Theorem 2.9 for groups), A is
a quotient of V ⊗ (B/A) for some V in the principal block of L/B. But, by [5, Theorem
2.6] (Theorem 2.10 for groups), V is a composition factor of a tensor product of chief
factors of L/B and their duals. From the closure properties of X, it follows that A is
X-central.

Now let H = PDef(X). Then H is the class of algebras all of whose complemented
chief factors are X-central. Therefore, F ⊆ H. Suppose F , H. Then we can take L ∈ H,
L < F of least possible dimension. Let A be a minimal ideal of L. Then L/A ∈ F and
every chief factor of L/A is X-central. But F is saturated, so L splits over A, A is a
complemented chief factor of L ∈ H, so A is X-central. Therefore, L ∈ F, contrary to
the choice of L. �

Denote the nilpotent length of L by Nlen(L). For groups, we use the p-nilpotent
length denoted by p-Nlen(L).

Theorem 3.8. Suppose that X is a primitive quotient, dual and subtensor closed and
paired class of primitive algebras. Let F be the class of algebras all of whose chief
factors are X-central. Then F is the saturated formation PDef(X).

Proof. If X is chief factor closed, then the result holds by Lemma 3.7, so let P ∈ X be
a primitive algebra with a chief factor A/B which is not X-central. We take P with
n = Nlen(P) least possible. (For groups, we choose P and p to make n = p-Nlen(P) as
small as possible.) Let X0 be the class of algebras L ∈ Xwith Nlen(L) < n. (For groups,
with p-Nlen(L) < n for all p.) Then X0 is chief factor, dual and subtensor closed and
paired. By Lemma 3.7, PDef(X0) is a saturated formation. But P/Soc(P) ∈ PDef(X0),
so every chief factor of P/Soc(P) is X0-central, contrary to hypothesis. �

Corollary 3.9. Let H be a Schunck class and let X be the class of primitive algebras
in H. Suppose that X is dual and subtensor closed and paired. Then H is a saturated
formation.
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Proof. Let F be the class of algebras whose chief factors are all X-central. As H is the
class of algebras whose complemented chief factors are X-central, F ⊆ H. We prove
that if L ∈ H, then L ∈ F. Let L be a minimal counterexample and let A be a minimal
ideal of L. Then L/A ∈ F. But F is saturated. Since L < F, L splits over A. But every
complemented chief factor of L is X-central, so A is X-central and L ∈ F, contrary to
assumption. �

Example 3.10. If X is the class of primitive algebras P with dim(Soc(P)) = 1, then X
is easily seen to satisfy the conditions. The class PDef(X) is the class of supersoluble
algebras. (For restricted Lie algebras, the chief factors are either one dimensional or
central with the p-operation acting invertibly.)

Example 3.11. Let Λ be a normal F-subspace of the algebraic closure F̄ of F. For
groups, Λp is either ∅ or a subgroup of the multiplicative group of F̄p. Let X be
the class of primitives P for which, for all x ∈ P and all chief factors A/B of P, all
eigenvalues of the action of x on A/B are in Λ. Then X satisfies the conditions and it
follows that the class EDef(Λ) of all algebras L such that, for all x ∈ L and all chief
factors A/B of L, all eigenvalues of the action of x on A/B are in Λ, is a saturated
formation.
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