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Abstract. The first non-abelian cohomology of groups introduced by Guin is
extended to any dimensions and for a substantially wider class of coefficients called
G-partially crossed P-modules. The first and the second non-abelian cohomologies
of groups are described in terms of torsors and extensions of groups respectively.
Higher non-abelian cohomology pointed sets are described in terms of cotriple
right derived functors of the group of derivations with respect to the first contra-
variant variable. For any short exact coefficient sequence a long exact cohomology
sequence is obtained extending the well-known exact cohomology sequences and
higher cohomology of groups with coefficients in any G-group is introduced.

2000 Mathematics Subject Classification. 18G50, 18G55.

0. Introduction. Our approach to non-abelian cohomology of groups follows
Guin’s first non-abelian cohomology [5,6] which differs from the classical first non-
abelian cohomology pointed set [10] and from the setting of various papers on non-
abelian cohomology [4,2,3] extending the classical exact non-abelian cohomology
sequence from lower dimensions [10] to higher dimensions.

Guin defined his first non-abelian cohomology group when the coefficient group
is a crossed G-module and obtained a six term exact cohomology sequence for any
short exact sequence of crossed G-modules.

A non-abelian cohomology of groups will be defined in any dimension greater
than 0, extending Guin’s first non-abelian cohomology group and his exact
cohomology sequence to a nine term exact cohomology sequence. A substantially
wider class of coefficients will be used, consisting of partially crossed modules over
a group P on which a group G acts on the left: these will be called G-partially cros-
sed modules over P. We describe the first non-abelian cohomology in terms of tor-
sors and the second non-abelian cohomology in terms of extensions of groups.
Moreover a close relation between non-abelian cohomology of groups and non-
abelian right derived functors of the group of derivations will be established and for
some particular cases of coefficients a long exact cohomology sequence will be
obtained.

All considered groups will be arbitrary (not necessarily commutative). An action
of a group G on a group A means an action on the left of G on 4 by automorphisms
and will be denoted by fa,g € G, a € A. We assume that G acts on itself by con-
jugation. The center of a group G will be denoted by Z(G). If the groups G and R act
on a group A then the notation ¢"a means ¥("a), g € G,r € R,a € A.
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1. G-partially crossed P-modules and the group Der(G, (4, w)) of derivations. A
precrossed P-module (A4, u) consists of a group P acting on a group A4 and a
homomorphism p : 4— P such that

u(*a) = xu(a)x~', xeP, ae A.

If in addition we have

MOy — qd'a™!

for a,a’ € A, then (A4, ) is a crossed P-module.

DerINITION 1.1. A partially crossed module . A— P over P is a precrossed
module over P satisfying the equality

ada”' ="9¢ (1.1)
for all @ € A and for all a € A such that u(a) is a commutator of P.

Note that the relation (1.1) is equivalent to the following relation:
a”d ="da, (1.2)
for all @ € A and for all a € A4 such that u(a) = xyx~'y~!. To see that (1.1) implies
(1.2) take @ ="*b and that (1.2) implies (1.1) take ' = "' b. Clearly any crossed

module over P is a partially P-crossed P-module.
Let 4 be a metabelian (not abelian) group. Consider the precrossed module

A—>A/[4, A] = P,

where 7 is the canonical surjection and P acts trivially on 4. Then ASPisa par-
tially crossed module over P which is not a crossed P-module.

Any precrossed module B P induces in a natural way a partially crossed
module over P as follows. Consider the Peiffer commutators b&’h~' #®p=1 for all
b" € B subject to the relation: p(b) is a commutator of P. Let N be the normal sub-
group of B generated by these Peiffer commutators and take the quotient group
B/N. One gets a precrossed module B/Nﬁ>P, wu' being induced by u. It is easy to
check that in fact it is a partially crossed P-module. Moreover any morphism from
BLP to a partially crossed module X->C induces in a natural way a unique

morphism
’u/
B/N — P
\ oo
X — C

It is obvious that if A5 P is a partially P-crossed module, then Ker u is con-
tained in the center of A4 .

https://doi.org/10.1017/5S0017089502030148 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089502030148

HIGHER NON-ABELIAN COHOMOLOGY OF GROUPS 499

DEerINITION 1.2. Let G, P and A4 be groups. It will be said that AL P s a
G-precrossed module over P if

(1) (4, ) is a precrossed P-module,

(2) Gactson Pand 4,

(3) w:A—> P is a homomorphism of G-groups,

(4) Vg=¢¢"gforge G, xeP,ae A (compatibility condition).

If in addition (A4, n) is a crossed P-module, then (A4, n) is called a G-crossed
P-module. 1f conditions (1)—(4) hold it will be said that the group G acts on the pre-
crossed P-module (4, w).

DErFINITION 1.3. A G-precrossed P-module (4, ) will be called a G-partially
crossed P-module if in addition the following condition holds:

ada™' ="9¢"  or equivalently &d ="da,

for all @ € A and a € A such that u(a) = xyx~'y~! for some x,y € P.

It is clear that any precrossed (crossed) G-module is in a natural way a G-pre-
crossed (G-crossed) G-module, G acting on itself by conjugation. A G-precrossed P-
module was called in [8] a precrossed G — P-bimodule, causing confusion with the
notion of crossed bimodule defined in [9, E.1.5.1] generalising the well-known
notion of bimodule. If f: G'—> G is a homomorphism of groups then any G-pre-
crossed P-module is a G’-precrossed P-module induced by f, G" acting on 4 and P
via f.

Note that if (4, n) is a G-precrossed P-module the equality

rxa — xra

holds for any x € G, a € 4, r € H'(G, P). In effect, one has

. —1 ]
rx xx~'rx x(X
— a= -

a Xr

a="a.

DEerINITION 1.4. Let (4, ) be a G-partially crossed P-module. Denote by
Der(G, (A, 1)) the set of pairs («, r), where « is a crossed homomorphism from G to
A, that is

a(xy) = a(x) ‘a(y), x,y€G,

and r is an element of P such that
pa(x) =r !, xedG.

This set will be called the set of derivations from G to (4, ).
For any («, r) € Der(G, (4, 1)) one has

a(x) "a = "aa(x),

forae A, x e G.
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We introduce in Der(G, (4, 1)) a product by

(., r)(B, 8) = (a * B, 15),
where (o * B)(x) = "B(x)a(x), x € G.

PROPOSITION 1.5. Under the aforementioned product, Der(G, (A, 1)) is a group
which coincides with the group Derg(G, A) of Guin if (A, u) is a crossed G-module
viewed as a G-crossed G-module.

Proof. Clearly this product is associative. First it will be shown that (« * B, rs)
belongs to Der(G, (4, n)). Put y = a % 8. We have

y(xy) =" B(xy)edxy) = "(B(x)"B(»))e(x) a(y)
=" B(x)" BO)a(x) a(y).
On the other hand

V() () ="Bx)a(x)*("Be(y)) =" Bx)a(x)" By) a(y).

Using equality (1.1) one gets y(xy) = y(x)*y(y) showing that y is a crossed
homomorphism. Further, we have

uy(x) = p("Bx)a(x) = "up(x)palx) =" (s Hrvt =" (s7r

xrfl — ’.SVXS71XV71 — I‘Sx(VS)il.

Therefore (a * B, rs) € Der(G, (4, n)). It is obvious that («g, 1) is the unit of
Der(G, (A, p)) with ap(x) = 1 for all x € G.

For (a, r) € Der(G, (4, u)) take the pair (a, r~') with a(x) = rflo;(x)*l, xeG. It
will be shown that (a, r~!) € Der(G, (4, n)). For this the equality

=1

g () = ax) Y e, xe G, aed (1.3)

will be proved. In effect, since u(™ a(x)"") = r ' ua(x)"'r = r~'%r, one gets

-1 —1 —x, gl R IS —1
w(" ax) )(xr a)zr r(xr a):’ XTI 1T

The required relation (1.3) follows now from the equality

r 1

u( ’1a<x>*‘>(xr-

a) = r o) d a(x).

Therefore one has

@) =" a) ™ =" Ca) ) ) =" Fa() T a(x) !
=" ()" () = @(x) (),

that is @ is a crossed homomorphism. Moreover,
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ua(x) = ,u('ﬁlot(x)fl) = pa(x)lr = e e = Y
It follows that (@, r~!) € Der(G, (4, w)). It is easily checked that

(a, @ r =@ r Y, r) = (x,1).

We conclude that Der(G, (4, 1)) is a group which coincides with the group
Derg(G, A) of derivations defined by Guin [6] when (A4, 1) is a crossed G-module. []

A homomorphism f: (4, u)—> (B, A) of G-partially crossed P-modules induces
a homomorphism

£*: Der(G, (4, w))—s Der(G, (B, 1))

given by (a, r)i—(af, r).
There is an action of G on Der(G, (4, 1)) defined by

S, r)=(a,®r), geG,reP,
with @(x) = goc(gflx), x € G (see [6, 8]). Moreover if P acts on G such that

I o] o o]
(Dg=req, Oy ="y for r,iy €R, g€ G, ac A,

then there is also an action of P on Der(G, (4, 1)) given by "(a,s) = (@,”s),
a(x)="a("'x),re P, xeG[8]

It is well-known [1] that the groups G and P acting on each other and on
themselves by conjugation are said to be acting compatibly if

Cng —srg'g! (O — 1y for o o/ € G, r,r € R. %)

DerINITION 1.6. It will be said that the groups G and P act on a group A com-
patibly if

(Ng=s2'y (Dg—r"q for g G, reR, ac A

ProprosITION 1.7. ([8]). Let (A, ) be a G-partially crossed P-module, the groups
G and P acting on each other and on A compatibly.

Under the aforementioned actions of G and P on Der(G, (4, n)) and the homo-
morphism y : Der(G, (A4, n)) — P given by («, r)—r, the pair (Der(G, (4, 1)), y) is a
G-precrossed P-module.

2. The first non-abelian cohomology. Let (A4, ) be a G-partially crossed
P-module. Define on the group Der(G, (4, 1)) an equivalence relation as follows:

N there exists a € 4 : B(x) = a 'a(x) “a,
(o, r) ~ (B, S)<:>{ s = u(a)~'r mod H(G, P).

THEOREM 2.1. Let (A, ) be a G-partially crossed P-module satisfying the follow-
ing conditions:
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(1) HYG, P) is a normal subgroup of P,
(2) for any ¢ € HY(G, P) and (a, r) € Der(G, (A4, ) there exists a € A such that
w(a) =1 and ‘a(x) = a 'a(x) “a, x € G.
Then the group Der(G, (A4, 1)) induces on the quotient set Der(G, (4, n))/ ~ a
group structure and this quotient group will be called the first cohomology group
HY(G, (A, 1)) of the group G with coefficients in the G-partially crossed P-module

(A4, ).

Proof. We have to show that the relation ~ is a congruence, that is if
(o, 7) ~ (o, F) and (B,s) ~ (B,5), then (a, r)(B,s) ~ (&, r)(B,s). For this we will
use Guin’s proof [6], which remains valid in our generalized case.

We first prove that

(o, 1)(B, 5) ~ (e, re)(B, )

for any ¢ € H%(G, P). For (B,s) and ¢ € H*(G, P) there is a € A such that u(a) =1
and a~'B(x)*a, x € G. One gets

"B(x)eux) = (@ B(x) “)eu(x) = "a™" " B(x) Fao(x)
a7 B(xX)e(x) Y a.

Since u("a)~! = (ru(a)r=")"" = 1, one has res = u("a)"'rs¢’ with ¢ € H(G, P).
Therefore, («, r)(B, s) = («, re)(B, s).
We have equalities

o (x)=b"a(x) b, ¥ = ub) rz

and

B(x)=d'B(x) “d. s = pud) st
with z, 1 € H'(G, P). Set
(o, r2)(B, 5) = (v, rzs) and (o', F)(B', 5) = (V. ')
with ¥(x) = “B(x)a(x) and y/(x) =" B(x)e!(x), x € G. It will be shown that

(o, r2)(B,5) ~ (&, F)(B. 5).

Indeed,
Y (x) ="(d" B(x) “d)b~ elx) b
_ bz d! w(b)™! uﬁ(x)u (b)~ ]rzxdbfla(x) xp
=071 B N Cd) )
= b7 "d P B(X)a(x) " d b,
and

/J,(hdb l) _ M(b)_ VZ[L(d) 1 —1 _ ,/S/[—l —1 —1 1’
¥s = u(7db) rzst
with t € HY(G, P).
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It follows that («, rz)(B,s) ~ (&, ¥)(B,s). Therefore (c, r)(B,s) ~ (¢, )NB, )
and the equivalence ~ is a congruence. ]

Clearly any partially crossed G-module viewed as a G-partially crossed G-mod-
ule satisfies conditions of Theorem 2.1. In this case H%(G,G)= Z(G) and for
(o, g) € Der(G, (4, 1)) = Derg(G, 4), ¢ € Z(G) the equality a(cx) = a(xc), x € G,
implies a(c) “a((x) = a(x) *a(c) and pu(a(c)) = geg~'c™! = 1. We recover Guin’s first
cohomology group of a group G with coefficients in a crossed G-module [6].

If f:(A4, ) — (B,)) is a homomorphism of G-partially crossed P-modules
satisfying the conditions of Theorem 2.1, then f* induces a homomorphism
[ H'Y(G, (A4, n)) - H'(G, (B, 1)). The above defined action of G on Der(G, (4, 1))
induces an action of G on H'(G, (4, ) given by

. N] =[], ge€C.

In our next statement it will be shown that Guin’s first non-abelian cohomology
group is closely related with torsors. A similar relationship between the first non-
abelian pointed set cohomology and principal homogeneous spaces is well-known
[1]. To this end, the notion of a G-torsor over a partially crossed G-module will be
introduced.

DEFINITION 2.2. A G-torsor over a partially crossed G-module (4, u) is a pair
(E,f) consisting of a non-empty G-set E with an action on the right of 4 on E
denoted by xa (for x € E, a € A) which is compatible with the action of G and such
that for any x, y € F there is a unique element b € 4 with y = xb, and fis a map
from E to G such that

(1) for any x € E, s € G the following equality holds

(@) = flx)sfl) s

with *x = xa, a € A;
(2) if y = xb then

fO) = u Hfix), x,yeEbeA.

DeriniTION 2.3. It will be said that G-torsors (£, f) and (£, f) over a partially
crossed G-module (A, w) are isomorphic if there is a bijection ¢ : E — E’ compatible
with the actions of G and 4 such that

f(x) = f9(x) mod Z(G)
for any x € E.

Denote by E(G, A) the set of classes of isomorphic G-torsors over the partially
crossed G-module (4, w).

A product on the set E(G,A) is introduced as follows. Let [(E},f1)],
[(E», f2)] € E(G, A) and let x € E}, y € E;. Take A with a new action of G given by
(*a) =/"W¢b sa for any s € G, a € A with *x = xb, *y = yc. Denote this G-group by
E and define the action of 4 on E by translation on the right. Define a map
g: E— G given by
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g(a) = wa Nfi(fHX).

Then the pair (E, g) is a G-torsor over the partially crossed G-module (4, ). Define
the product by

[(Er, /Do [(E2, f2)] = [(E, 8)].

THEOREM 2.4. If (A4, ) is a partially crossed G-module, there is a natural iso-
morphism between E(G, A) and H'(G, A).

Proof. Let [(E, f)] € E(G, A) and take x € E. For any s € G one has *x = xa and
an induced map « : G—> A4 defined by w«.(s) = a that is a cocycle. Using 1) of
Definition 2.2 we see that the pair (o, f(x)) is an element of
Der(G, (G, A)) = Derg(G, A).

Define a map o : E(G, A)— H'(G, A) by «((E, /)] = [(ax, f(x))]. We have to
show that « is well-defined.

If ye Eand y = xb, b € A, then *y =*x*b = xa *b = xbb~'a*b = yb~'a *b. By
2) f(y) = u(b~")f(x). It follows that (o, f(x)) ~ (@, f(). Let (E, f) be isomorphic to
(E, 1), that is there is a bijection ¢ : E— F’ with properties given in Definition 2.2.
Take X' € F' and ¥(x) = X/, x € E. Then ¢(*x) =*%(x) = *x’ and ¥(xa) = Hx)a =
x'a with *x =xa. Thus, o, =ay. Since f(x)=f"(x') mod Z(G), one deduces
(ay, fx)) ~ (ay, f/((X")). Therefore, the map « is well-defined.

Let [(a, g)] € H'(G, A). Take 4 with a new action of G given by (*x) = a(s) *x,
x € A, s € G, and with the action of A4 on itself by translation on the right. Denote
this G-set by P,. Define a map f; : P, — G by fo(x) = u(x~)g, x € P,, which veri-
fies conditions 1) and 2) of Definition 2.2. In effect, if (*x)’ = xa then a(s)*x = xa.
On the other hand pa(s) = gsg~'s~!. Thus, pa(s)u(°x) = u(xa), gsg~ s 'su(x)s~! =
u(x)u(a). Whence

(@) = u() " gsg w@)s ™ = £ s
and f, verifies condition 1). If y = xb then one has
fe) = n( g = nd™'x g = b Hu(xg = nb~Mx).

Thus f, satisfies condition 2) too. One gets a G-torsor (P, f;) over the partially
crossed G-module (4,u) and define B: H'(G, A) — E(G, A) by B((a, g)]) =
[(Pus fo)]

If (a0, g) ~ (¢, &) then o/(s) = b 'a(s)’h and g’ = u(b~)gmod Z(G). We will
show that (P, fg) is isomorphic (Py, fy).

Define 9: P,—> P, by d(x)=b""'x, x € P,. Then ((°x))=b""a(s)*x and
COx)) = CO'x) =a/(s) *(b"'x) = b a(s) b7 $x = b~ a(s) *x. Thus, A((*x)) =
(*(3(x)))'. It is obvious that 9 preserves the action of A4.

For x € P, one gets

(f000) = f(b™' %) = w(x""'b)g" = u(x~Hub)u(b~")g mod Z(G)
— u(x)gmod Z(G)
= f,(x)mod Z(G).
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This implies that (Pg,fg) is isomorphic to (Py,fy). Therefore the map g is well-
defined.
It is easily checked that « is a homomorphism and o8 =1, o = 1. ]

3. The second non-abelian cohomology. Now the second cohomology H>(G, (4, 1))
of a group G with coefficients in a G-partially crossed P-module (4, u) will be
defined. Consider the diagram

l
M= F5G (3.1)
l

with F a free group, t is a surjective homomorphism, M the group consisting of pairs
(x, ), x,y € F, such that 7(x) = 7(y) and [y, /; are canonical projections, /y(x, y) = x,
li(x,y) = y. This means (M, [y, /;) is the simplicial kernel of 7. Put A = {(x, x),
xeF}CM.

Then (4, 1) can be viewed as a F-partially crossed P-module induced by 7 and
as a M-partially crossed P-module induced by 7/, (or by t/;). Let Z1(M, (A4, n)) be
the subset of Der(M, (4, n)) consisting of elements of the f(lr/m (o, 1) satisfying the
condition a(A) = 1, implying a(M) C Z(A). It follows that Z1(M, (4, p)) is an abe-
lian subgroup of Der(M, (4, w)).

Define on Z'(M, (A, ) a relation by

(o, 1) ~ (o, 1)<=(B, h) € Der(F, (4, n))
such that the following equality holds
(@, 1) = (Blo, (e, )(Bl, h)~'

in the group Der(M, (4, p)).
We see that if (¢, 1) ~ (o, 1) one has

o' (x) = BL(0) " e )Blo(x),  x € M.

PROPOSITION 3.1. The relation ~ defined on g(M (A4, w)) is an equivalence.

Proof. Clearly this relation is reflexive. If («/,1)~ (a, 1), that is
(o, 1) = (Blo, h)(er, 1)(Bl, 1)~" with (B, h) € Der(F, (4, w)), then (o, 1) = (Bly, h)~"-
(@, 1)(Bh, ) and (Blo, )" = (Blo, ™), (Bh, by = (Bl h™")™" with (B, h") =
(B, h)~! € Der(F, (4, w)). Thus the relation ~ is symmetric. It remains to show
transitivity.

Let (o/, 1) ~ (a, 1) and («”, 1) ~ (&, 1). Then one has

(@', 1) = (Blo, h)(, D(BL, W),
@, 1) = (Blo, W), 1)(B1, 1)~

with (8, ), (8, ') € Der(F, (4, ).
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It follows that

(@', 1) = (B'lo, ) (Blo, h)(er, DY(Bl, by~ 1(B'y, )™
= ((B™*Blo, 'h) (e, Y(B*B), W)™

with (8 x B, 'h) = (B, W')(B, h) € Der(F, (4, n)). Therefore (¢”, 1) ~ (¢, 1) and the
relation ~ is an equivalence. O

ProPOSITION 3.2. The quotient set g(M, (A4, n))/ ~ is independent of the dia-
gram (3.1) and is unique up to bijection.

We need the following.

LeMMA 3.3. Let A be a G-group and let o : M — A be a crossed homomorphism
such that a(A) = 1. Then there exists a map q : F — A such that for y e M

a(y) = gh(») ™ glo(»).

Proof. Note that if (x,x”), (X, x")e M, then a(x,x”) = a(x,x") - a(x, X).
Indeed, the equalities (x,x”) = (1, x"x")(x,x) and (¥, x")=(1,x"x")x, x)
imply a(x, X") = a1, X"x' Da(x, X) and a(x, x") = a(l, X'x Na(x', x') =
a(1, X"x'71), giving the required equality.

In particular, applying this equality for (x, x), (x/, x) € M one gets a(x, x) =
a(x’, X)a(x, X'). Therefore (X', x) = a(x, x')~" for any (x, x') € M.

Take a section n : G—>F, ) = 1 and define a map ¢ : F—> A by

q(x) = a(x, nt(x)), x € F.
For (x, x") € M one has
gh(x, X) " qlo(x, X') = q(x) ' q(x)

= (a(¥', ne(x)) ey, me(x)
= a(nt(x'), X)a(x, nT(x)).

On the other hand, since a(x,x’)=a(l,x'x~!) for all (x,x)e M, one gets
a(nt(x'), ') = a1, ¥nr(x)") and a(x, nr(x)) = (1, nr(x)x~"). But (1, x'nr(x)~")
(1, nr(x)x~ Y = (1, ¥’x~"). Therefore, we obtain the equality

a(x, x) = a1, X'ne(x) a1, nr(x)x~") = gh(x, )~ glo(x, ).

Proof of Proposition 3.2. Consider the commutative diagram

A /
M =z F - G
h

nlnrn n [l
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(M, by, ) and (M, [;,[}) being the simplicial kernels of t and 7’ respectively,
im=vl,liyy=nl,i=0,1,yy=1tn="1.
The pair (y;, ;) induces a homomorphism

Der(M, (A, u))—> Der(M’, (4, 1))

given by (a, r)—(ay;, 1), i =1, 2.
If (o,1)~(a, 1), that is (o, 1) = (Bl h)(a, )(BL, h)™" with (B, h) €
Der(F, (A, 1)), then

Vi) = Brili ()" () Brily(»), v e M.

Thus (¢'7;, 1) ~ (a3, 1), i = 1, 2, and one gets a natural map
& ZN M, (A, )/ ~ —ZN M, (4, )/ ~

induced by the pair (y;, ;) and given by [(a, D)]—[(ay;, )], i =1, 2.
We will show that &; = ¢;. By Lemma 3.3 there is a map ¢ : F — A such that

a(y) = gh(») 'qlo(y). ye M.
Take the homomorphism s : F/ — M given by

s(x) = (n(x), (), ¥ eF.
It is clear that (s, 1) € Der(F’, (4, u)). Further one has

(@) aFaasiy) (v, %)) = as((x) o (), ¥pas(xh)
= a(y1(x)), 12 (x)) ™ e (xg, XD (xp), v2(x)))
= qgn(x) " gn(x)
= qr2(x)) ™ qya(x)qya(x)) " g (xp)
= gn ()~ gn(xp)
= ay1(xg, X7)

for any (x;,x}) € M. Therefore (ayi, 1)~ (ay>, 1) with (as, 1) € Der(F', (4, p)),
implying the required equality &; = &5.
The proof of the uniqueness is standard. O

It is easy to check that the quotient set ZI(M , (4, )/ ~ is naturally bijective to
H*(G, A) when 4 is a G-module viewed as a crossed G-module. That fact motivates
the following

__ DEeFINITION 3.4. Let (A4, 1) be a G-partially crossed P-module. The quotient set
ZY (M, (A4, n))/ ~ will be called the second cohomology of G with coefficients in (A, p)
and denoted by H*(G, (4, u)).

A homomorphism of G-partially crossed P-modules f: (4, u) — (B, 1) induces
a map of pointed sets
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I? 1 H(G, (4, p))— H(G, (B, 1))

given by f%([(a, 1)]) = [(fa, 1)]. It is easy to see that there is a canonical surjective
map ¢ : H>(G, Ker n) — H*(G, (4, ) given by [a]—[(x, 1)].

PROPOSITION 3.5. Let (A, u) be a G-partially crossed P-module. There is an action
of G on H*(G, (A, n)) such that Z(G) acts trivially. If P acts on G and satisfies the
compatibility condition (1.4), then there is also an action of P on H*(G, (A, 11)).

Proof. Consider the diagram

G
MG:))FG—>G
/)

with Fg the free group generated by G, t; is the canonical homomorphism and
(Mg, Iy, I) is the simplicial kernel of t5. There is an action of G on Fg defined as
follows:

g1l lgnl) = 1Bg1l® - - Pgal®, g.81,-...80 € G,

with ¢ = 1. This action induces an action of G on Mg by

gx, X)) = (x,2X), ge€G, (x,x)e M.

Finally one gets an action of G on Der(Mg, (4, 1)) given by
o) = @)

with a(m) = gcx(gflm), g€ G, me Mg, inducing an action of G on ﬁ\e/r(Mg, (4, n)
and on ZY(Mg, (A, p)) too. If (a, 1) ~ («, 1) it is easy to see that ¢(a, 1) ~ £(c/, 1),
g € G, defining an action of G on H*(G, (4, u)). Since the above defined surjective
map 9 : H*(G,Kern) - H*(G, (A, ) is a G-map and Z(G) acts trivially on
H*(G, Ker p), it follows that Z(G) acts trivially on H*(G, (4, i)) too. O

Let (4, p) be a G-partially crossed P-module. It can be shown easily that there is
an action of H%G, P) on H*(G,Keru) given by '[a] =[], r € H(G, P) with
a: Mg — Keru a crossed homomorphism under the action of G on A4 such that
a(A) = 1.

Let

l— (4, )5 (B, )5 (C, 1) —1 (3.2)

be a short exact sequence of G-partially crossed P-modules. If the action of H%(G, P)
on H*(G, A) is trivial then there is an action of H'(G, (C, 1)) on H*(G, A) given by

@yl =yl
We have to show that "y is a crossed homomorphism and this action is well-defined.

Consider the diagram
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lo
MG :; FG g

h (3.3)

4 % B X

There is a crossed homomorphism B: F; — B such that 8 = atg. Take the
product

(Blo, )¢y, D(Blo, 1)~ = (7, 1)

in the group Der(Mg, (B, 1)). Then (x) = B(x) "op(x)B(x) = "¢y(x), x € M.
Therefore "y : Mg — A is a crossed homomorphism such that "y(A) = 1. If (¢/, ¥) €
[(er, ] € H(G, (C, 1)), thatis («, r) ~ («/, '), then &/ (x) = ¢ 'a(x)*c and ¥ = A(c) "7t
with ¢ € C, t € H%(G, P). It follows that

P("p(x) = "py(x) = H0 " gp(x)

=107 gy(x) = b7 "py(x)b = " gy(x)

= o(""y(x)),

for x € Mg, with ¥(b) = c. Hence ["y] = ["y] = ['y] proving the well-definedness of
the action.

Using diagram (3.3) for the short exact sequence (3.2) one defines as follows a
connecting map

8t HY(G, (C, 1))— H*(G, A)

which is a crossed homomorphism when (G, (C, 1)) verifies conditions of Theorem
2.1. For [(a, r)] € H'(G, (C, 1)) take a crossed homomorphism g : F; — B such that
¥B =atg. Thus there is a crossed homomorphism y: Mg — A such that
@y = (Bl) "' Bly. Tt is clear that y(A) = 1. Define

8! ([, ND) = [¥].

We must show the correctness of §'. For another g : F; — B with ¥ = atg, one
has ¥ = ¥B and there is a crossed homomorphism o : F; — A such that 8/ = Byo.
Then one gets

oy = (B1h) ' Bly = (Beo)l; (Bpo)ly
= gol; Bl Blopoly = Bl Blogol; ' woly
= g(yol; ' oly).

Hence [y] =[]
If (a0, ) ~ (&, ) then

od(y)=cla(yYe, ceC, ye Mg,
¥ =xce)'rt, 1 € HYG, P).
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Take B : F; — B such that g/(x) = b~'B(x) b with ¥(b) = ¢ and VB = atg.
Then (817 B1)(y) = B/(x2)” B(x1), » = (x1. x2) € M. Hence oy (v) = (B B 1) ()=
(b= B(x2) 2b) b7 B(x1) b ="2b"" B(x2) ' B(x1) “1b=PB(x2) "' B(x1) = e¥(y). Whence
¥’ = y. Therefore the connecting map 8! is correctly defined.

For the short exact sequence 3.2 a connecting map &8 : H*(G, (C, 1)) —
H3(G, A) will be also defined. To this end consider the canonical free simplicial
resolution of the group G in the category of groups acting on the abelian group A:

/ lé 70

(A

- 73 . (%) =2 T _0) 70
‘-Z_)F3—>M2: Fz—)M1:>)F1—>M()_)F0—>G
12

] 3 1

=

where Fy=Fg, Fi=Fy,_,, i>1, 1 is the canonical homomorphism and
(M, Iy, -+, IL,}) is the simplicial kernel of (/j 'z, -+, 17717, i > 0 (see [7]). We will
use the equivalence of functors H"t'(—, A) ~ L,Der(—, A), n > 1, when A4 is a Z[G]-
module. There is an action of Der(F, (C, 1)) on H>(G, A) defined as follows:

“OLf1=T711,

where f: F, — A4 is a crossed homomorphism with H?zo(fl%‘f3)8i =1, &= (-1),
and (o, r) € Der(Fy, (C, A)). The well-definedness of this action is proved similarly to
the case of a short exact sequence of crossed G-modules (see [8]).

For any G-partially crossed P-module (A4, ) denote by IDer(G, (4, 1)) a sub-
group of Der(G, (4, 1)) consisting of elements of the form («, ), r € H(G, P).

If either the aforementioned action of Der(Fy, (C, 1)) on H3(G, A) is trivial or
Der(Fy, (C, 1)) = IDer(Fy, (C, 1)) and H°(G, P) acts trivially on H*(G, Ker 1), then
there is a connecting map §° : H*(G, (C, 1)) — H*(G, A) given by

P n) = (1) € ZI(Mg. (C.2).

where gy = Br, with B = [T*(811)*, &; = (=1)', and ¥ = at,. The correctness of 6 is
proved similarly to the case of a short exact sequence of crossed G-modules (see [8]).

THEOREM 3.6. Let (3.2) be a short exact sequence of G-partially crossed P-mod-
ules satisfying conditions of Theorem 2.1. Then there is an exact cohomology sequence

0 0 0 1
| — HG, )% HYG, B) S HYG, 0) 5 H'(G, 4) % H'(G, (B, 1))
1 1 2 2
Yy H\(G.(C, ) HAG, )% HAG, (B, ) > HAG. (C. 1),
where ¢, Y0, 8°, @' and " are homomorphisms. If in addition H*(G, P) acts trivially
on HX(G, A), then 8" is a crossed homomorphism under the action of H'(G, (C, 1)) on
H*(G, A) induced by the action of P on A. Moreover, if either the action of
Der(Fy, (C, 1)) on H*(G, A) is trivial (in particular if P acts trivially on A) or

Der(Fy, (C, 1)) = IDer(Fy, (C, 1)) and H°(G, P) acts trivially on H*(G,Ker ), then
the sequence

HXG. (B, ) 5 HAG.(C.2) S H(G., 4)

is also exact.
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Proof. The exactness of the sequence

1 — HYG, A)S HO(G B)—>H0(G C)—>H1(G A)

is well known [10].

If c € H(G, C) then 8°(c) = [a] with a(x) = ¢~ !(b~! ¥b), x € G and ¥(b) = c. It
follows that (ag, 1) ~ (¢a, 1) where a is a trivial map, since ga(x) = b~y *b, x € G,
and u(b) € H(G, P) because u(b) = A(b) and “A(c) = A( *¢) = A(c), x € G. There-
fore Imé® C Ker¢'.

Let [o] € H'(G, A) such that («, 1) ~ (¢, 1). Then ga(x) = b~' *b, x € G and
w(b) € H(G, P). One has (b~ *b) = Ypa(x) = 1. Thus (b) = ¥(*b) = “yY(bh),
whence ¥(b) € H(G, C). Clearly 8°(y/(b)) = [«]. Therefore Ker ¢! c Imé°. Obviously
the composite ¥'¢! is the trivial map.

Let [(a,r)] € H'(G, (B, 1)) such that («, 1) ~ (Yo, 1). Then ya(x) =c~' “c,
ceC, and r=x)""t, t€ HYG,P). Let y(b)=xr(c) and r= u(b)"'s. Take
a(x) = ba(x) *b~!, x € G. Since Ya(x)=1, xe G, one has ¢ '&@:G— A4 and
(a, ¥) ~ (@, 1). Therefore ¢'([¢~'@]) = (a ).

Let [(a, )] € H'(G, (B, ). Then ¥'([(«, r)]) = [(¥, r)]. Consider the diagram
(3.3) and take the crossed homomorphism azg : Fg — B. Then ¢y = (atgh) 'atal
and 8"y ([(«, r)]) = [y]. But y = ayg is the trivial map, since atgly = atgli. Therefore
Imy! c Kers'.

Let [(«r, )] € H'(G, (C, 1)) such that 8'([(a,)]) = 1. If B: F; — B is a crossed
homomorphism such that ¥ = atg, then §'([(«, r)]) = [y] with ¢y = (8 Bl.
Thus there is a crossed homomorphism 7 : F; — A such that y = (y/,)"'nly. Hence
one gets

(B Blo = (onh) " wnlo, (o0~ B)lo = (o0~ B,

implying a crossed homomorphism @ : G — B such that (¢n)~'B = @r;. One has
uB(x) = ApB(x) = ratg = r oW1 whence (B,r) € Der(Fs, (B, ) and (@,r) e
Der(G, (B, w)). Evidently, ' ([(@, r)]) = [(«, 1)].

The rest of the proof repeats with minor modifications the proof of the exact-
ness of the cohomology sequence for a coefficient short exact sequence of crossed G-
modules [8]. ]

Clearly for a short exact sequence of crossed G-modules we recover the known
exact cohomology sequence [6, 8]. Note also that Theorem 3.6 remains true for
arbitrary G-partially crossed P-modules but in this case ¢!, ' and 8! are maps of
pointed sets.

Now for any partially crossed G-module (A4, u) the second cohomology
H?*(G, A) will be described in terms of extensions of groups.

DEFINITION 3.7. An extension of G by a partially crossed G-module (A4, 1) is a
pair E=(1 — A—U>le> G—>1, y), where 1— 43 X5 G—>1 is a short exact
sequence of groups, y is a section of ¥, that is ¥y = 1, one has the equality

fa =o' (Y(ga(@y(g)™")

for a € A, g € G, and the following additional condition holds:
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Kery C Z(A),
¥ being the restriction of v on the subgroup of X generated by (G).

ExAMPLE 3.8. Let 4 x G be the semidirect product of 4 and G. Then one has an
exact sequence of groups

1A 40 G2 G—>1,

where oy(a) = (a, 1), Yo(a, g) = g. Take the canotl,lical sectiwon yo of ¥y given by
(g) = (1, g). It is easy to see that the pair (1— 4 B Ax G G, ) is an extension
of G by (4, ), called trivial.

DerFINITION 3.9. It Will be said that £ = (1 — 4 2 Xi@ G — 1, y) is equivalent
to £ =(1— A1>X’i> G — 1,y') if there exist a homomorphism ¢ : X — X’ and
an element g € G such that the diagram

1 — 4 5% x X ¢ = 1
¢ 70 Il

1_>AL>X71>G—>1

is commutative, g : A — A is the automorphism induced by the action of g on A4,
and for any element x € G one has the equality

n@yx)y(x)"") = gxg 'x7"

Clearly this relation ~ is reflexive and symmetric. So for the relation ~ to be an
equivalence it remains to show the transitivity. Let £~ E and E' ~ E”. Then the

diagram
E=1 — 4 5 Xéc; — 1
L Lol
Fe1l — 4 % ¥ L6 — 1
L el
Pl — 4 5 v 26 o

is commutative and one has the equalities

@y (x)y ()" = gxg'x7,
w(ky' (x)y"(x)™") = hxh~'x7!

We shall show that w(kdy(x)y”(x)"") = hgxg'h~'x~!. Indeed, since
KOV (0) ey ()" ()T = (O ()7 = k(@) - Y ()7,

one gets
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()Y ()™ = @)y ()~ ey ()" () )
= h(gxg ™' x DA hxh ™ X!
= hgxg 'h~'x71.

Therefore the relation ~ is an equivalence. Denote by E'(G, A) the set of equivalence
classes of extensions of G by the partially crossed G-module (4, ).

THEOREM 3.10. There is a natural bijection

n: HXG, A) > E\(G, A).

Proof. The map n is defined as follows. For [(a, 1)] € H*(G, A) consider the
diagram

lo .
Mg :; Fe — G,

1
Vo
A

take the semidirect product A4 x Fg, Fg acting on A via G and introduce an
equivalence relation:

(a,x) ~ (d,x) PEAN (x)=1(x)and a = d’ - a(x, X)).

In fact the equivalence p is a congruence, since if (a, x) ~ (&', x) and (b, y) ~ (V', '),
one has

a’b=dalx,x") D *a(y,y) =d *balxy, xX'y).
Denote C = A4 x Fg/p. One gets an exact sequence of groups

143 ch 61,

where o(a) = [(a, 1)], ¥([(a, x)]) = ©(x) and the following diagram
l() T
MG :; FG e G
A
1 . Il

4 > ¢ % ¢

is commutative, 8(x) = [(1, x)], o = 81,81, ".

Take a section y: G — C given by y(g) =[(1, |g])], g € G. It is easy to see that
y(G) = Imé. Therefore Ker (v |m) =68(Kert). The equality oa(l,x)=4§8(x),
x € Ker t, implies Ker (¢ Im) C Z(A) and it follows that the pair

E=(1—45ct6—1, y)

is an extension of G by (4, w).
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Define n([(a, 1)]) = [E]. We have to show the well-definedness of 5. Let
(o, 1) ~ (¢, 1), meaning

o (x) = Bli(x)a(x)Bly(x), x € Mg,

for some (B, h) € Der(Fg, (4, 1)) (see diagram 3.3) and let £ = (1— 4 Z C’K>
G—1, y') be the extension of G by (A4, u) corresponding to (¢, 1).

Define a map v: 4 x F—>A x G given by v(a, x) = ("ap(x), x). Thus v pro-
vides a homomorphism, since v((a, x)(b, y)) = v(a *b, xy) = ("(a *b)B(xy), xy) and
v(a, (b, y)=("ap(x), x)("bB(),y) = "aB(x) *("bA()), xp)=("a " bE(x) *B(), xy) =
("(a *b)B(xy), xy).

The homomorphism v induces a homomorphism V' : 4 x Fg/p — A x Fg/p
given by V([(a, x)] = [v(a, x)]. Indeed, let (a, x) £ (¢, x'), meaning a = d'a(x, ') and
1(x) = 7(x'). We have to show that "af(x)X'dB(x'), where o'(x,x)=
B(xX) "a(x, x')B(x). One has

"ap(x) ="d Pa(x, X)B(x) = "d B(x)ol (x, X).
Thus V' is a well-defined homomorphism and the diagram
A<Fg — A<Fg/p=C

b L
A<1FG —> AQFg/p,:C/

is commutative.
Now consider the following diagram

1 — 4 3 ¢ L ¢ = 1
by
1 — 4 2 ¢ % ¢ = 1

with sections y:G — C, y': G — C' defined as above. Clearly ¢'h =Vo and
Vy)y(0) ™ = (1, 1x)8 (x) = [B(xD). [xDI(L, [xD]" = [(Blx]), D]. But up(lx]) =
hxh~'x~1. It follows that [E] = [E'].

Conversely, define a map 1’ : E'(G, A) — H*(G, A) as follows. Let [E] € E/(G, A)

and E=(1 > 4 Sc5G6->1, y). Then one gets a commutative diagram

/
Mg :;O Fe — G
A
Lo 19 I
4 3 ¢ L g
with § induced by y and oo = §/,8/;'. Clearly « is a crossed homomorphism such
that «(A) = 1 and Ima C Z(A). Define #'((E]) = [(«, 1)].

We have to show the well-definedness again. If § is another homomorphism
such that B8’ =, then 8(y) 8'(y)"' € Z(A), y € Fg. Thus 88! induces a crossed
homomorphism g : Fg — Z(A4) and it is obvious that («/, 1) = (Blo, 1)(er, 1)(Bl1, 1)
with (8, 1) € Der(Fg, A).
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Assume now that E is equivalent to £ = (1 — 4 5c K) G — 1, y/) by the pair
(h:A4— A, v: C— C) implying the equality u(y(x)y'(x)"") =hxh'x7!, x € G.
By using the equalities 8 = ¢/8' = 7, oo = 81,8ly", o’ = §'1,8'l5", o'h = Vo, one
gets W8 = o'B8, 98ly = o' Bly'ly, ¥8l, = o’Bl18'l,, where B: Fs—>A is a crossed
homomorphism induced by 988~

Clearly (8, h) is an element of Der(Fg, A). Further, oadly = §/;, so one has
voasly = 98/; and the following equalities

190’0[0‘/,3]08/10 = O‘/ﬂ115/ll,
doad Bly = o' BL' 18I,
o'hao'Bly = o’ Blio'd.
Finally o = Bl haply.

Therefore (o, 1) is equivalent to («, 1). It is easily checked that nn’ and n'n are
identity maps. [

4. Higher non-abelian cohomology. Let (4, 1) be a G-partially crossed P-mod-
ule. Take the free cotriple resolution F,(G) of the group G:

1
an o 92

- T %
_)Fn-&-l . F”._) ._)Fz = F1—>M0_>F0—>G (41)
an+l an 3% 0%
n

n+1

with F, = F"'(4), n>0, Fy=F(A) the free group generated by 4 and
FrH(4) = F(F"(A)), 3" = FirF"~ §" = FISF"~i where § : F(A)—>F*(A) is induced
by the canonical inclusion 4 — F(A). Clearly (A4, i) can be viewed as an F,-partially
crossed P-module induced by 19093 - -+ 3. Therefore the group Der(F,, (4, 1)),
n > 0, is defined. Denote by Z'(F,, (4, )) the subset of Der(F,, (4, 1)) consisting of
all elements of the form («, 1) for n odd and of the form («, r) for n even satisfying
the condition

n+1

[Jedr™) =1, &=(-1y.
Jj=0

Since pa(x) =1 for any x € F, and for n odd, in this case we have a(F,) C Z(A),
n > 1. In the set Z!1(F,, (4, n)), n > 1, a relation ~ is introduced as follows:

(o, 1)~ (a, 1) for n odd and (¢, ') ~ (a0, r) for n even if there is an element
(B, h) € Der(F,—_1, (4, n)) such that

o () = e (B0, &= (1) xeF,
i=0

and 7 = r for n even.
The homomorphism 73 87  ---97'9} does not depend of the sequence (i, i,
) in—l, in) lmplylng

BO7(x) (B0](x) ™" = (B}(x)) ' (BI](x) € Kerp, x€F,
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for 0 <j, /<n. Tt follows that the product []L,(83"(x))", & = (—1)', does not
depend on the order of the factors. Obviously the aforedefined relation is an
equivalence.

DEFINITION 4.1. The higher non-abelian cohomology of a group G with coeffi-
cients in a G-partially crossed P-module (A, 1) is given by

H™N (G, (4, ) = ZV(Fy (4, )/ ~, n>1.

It is easily checked that for n = 1 we recover the second cohomology set of G with
coefficients in (4, w).

The map H""'(G, Ker u) — H"(G, (4, n)) given by [f]i—[(f. 1)] is surjective
and is bijective if u : A — P is the trivial homomorphism (in this case A4 is abelian).

In order to express this in terms of the derived functors of the group of deriva-
tions with respect to the contravariant variable, cohomotopy pointed sets of some
cosimplicial groups will be introduced.

Let
- - > -

G, : G :
n n+l_>

d :
G*I G():))Glj)Gz;; _) EN

be a cosimplicial group. Clearly 8797~" = 879/, i < j.

Assume that G, satisfies the following condition:

(a) Denote by L,y the subgroup of G,.; generated by U;’iola?(G,,). Then for
any element x € G,, n > 0, the product 97(x) 8]’-’(x)*l, 0<i, j<n+1, commutes
with every element of L.

In particular it follows that one has the equality 97 (x) Z)_}’(x)*1 = Bv;’(x)*l 97(x),
0<i,j<nn=>0.

Under this condition the cosimplicial group G, induces a group chain complex

do dy d d, dpsy
1—Gy— G —> G — -Gy = Gy —> -+

with d,(x) = ]_[;’;“013’?()6)8", e:=(—=1), n>0. It is easily checked that the maps d,,

n > 0, are homomorphisms and d,d,,_; =0, n > 1.

DEerFINITION 4.2. The right quotient sets Ker d,/Imd,_; will be called cohomo-
topy sets m,(G,), n > 0, of the cosimplicial group G,.

It is obvious that for abelian cosimplicial groups we recover the well known
homology groups.

PROPOSITION 4.3. Let
1—G,—G,— G —1

be a short exact sequence of cosimplicial groups satisfying condition (a). Then there is
a long exact sequence of pointed cohomotopy sets

1—710(G,)—> 710(G)— 10(G,)— 11 (G)—> - - - —>1,_1(G)

—)7'[,,(G;)—>Ttn(G*)—>7Zn(G:;)—>7Zn+1(G/*)—> to
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Proof. Straightforward. ]

This definition of cohomotopy pointed sets defined for cosimplicial groups
satisfying the aforementioned condition allows us to define cotriple right derived
functors of some group valued contravariant functors.

Let A be an arbitrary category and F = (F, 7, §) be a cotriple in the category A.
For any object 4 € ob A take its cotriple resolution:

Fu(A) > A.

similarly to the case of groups considered above.

Let T: A — Gr be a contravariant functor to the category of groups satisfying
the following condition:

(b) the product T97+!(x) TB”“(x) ' 0<i, j<n+1, n>0, commutes with
every element of the subgroup of TFnH(A) generated by U”JrlImTa’“rl n>0.

DEFINITION 4.4. The right derived functors of the contravariant functor 7 with
respect to the cotriple F are the pointed sets

RLT(A) = my(TF,(4)), n>0, AeobA.

If f:4— A" is a morphism of the category A, then one gets a morphism
TF.(f): TF.(A") - TF.(A) inducing maps of pointed sets RET(f) = m,TF.(f):
Ry T(A") — R{T(A4), n > 0.

REMARK 4.5. One can define similarly the right derived functors R{T with
respect to a triple L in the category A for group valued covariant functors 7T satis-
fying the same condition.

As noted above the main application of these derived functors will be their close
relationship with non-abelian cohomology of groups.

Let (A4, u) be a G-partially crossed P-module and consider the free cotriple
resolution F,(G) of the group G (see (4.1)). In general the cosimplicial group
Der(F.(G), (4, n)) does not verify condition (a), in other words the contravariant
functor Der(—, (4, n)) from the category of groups acting on (A4, i) to the category
of groups Gr does not verify condition (b). Below it will be shown that for a wide
class of coefficients (A4, ) condition (b) holds for the functor Der(—, (4, w)).

One gets a sequence of groups and maps

1 —>Der(Fy, (4. 1)) 2 Der(Fy, (A, 1)) % - —>

dr1+ 1

(4.2)
_>Der(El’ (A I’L) _) Der(E1+l ) (A /’L))

with d,((a, r))(x) = (y,s), where y = ]_["“(oea”“)s’ i = (=1, (a,r) € Der(F,,
(4, ), x € F,11, s =1 for neven and s = r for n odd.

Introduce in Kerd,, n> 0, an equivalence by (¢, ) ~ («, r)<= there exists
(B, h) € Der(F,_, (A, u)) such that o(x) = "a(x) [T Bt (), & = (=D, ¥ =r
Clearly the quotient sets coincide with H"(G, (4, 1)), n > 1. It is easily checked
that one has Ker dy =~ Der(G, (4, 1)). Moreover, the composite d,d,_;, n > 1, is the
trivial map and the maps d, are homomorphisms for » odd.
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PROPOSITION 4.6. Let (A, 1) be a G-partially crossed P-module such that P acts
trivially on Ker w. Then the maps d, of the sequence (4.2) are homomorphisms for all
n > 0. Moreover, in this case Imd, belongs to the center of Der(F,;1, (A4, 1)) for n
even and Ker d, belongs to the center of Der(F,, (4, 1)) for n odd.

Proof. Use the equalities o) (x)ad™! (x)™" = ad?™'(x)'ad?™(x), 0 <i,j <
n+ 1, for (a, r) € Der(F,, (4, n)) and the fact that in this case any element of the
form («, 1) € Der(F,, (4, n)) belongs to the center. OJ

THEOREM 4.7. Let (A, 1) be a G-partially crossed P-module with P acting trivially
on Ker u and let F be the free cotriple in the category of groups acting on (A, u).
(1) One has isomorphisms

RYDer(G, (4, p)) ~ Der(G, (4, 1)),
RiDer(G, (4, ) ~ H (G, (4, pn)), n>1,
and H"™(G, (A, w)) is an abelian group for n odd.

(i) Any short exact sequence of G-partially crossed P-modules
(4 1) 5 (A ) 5 (A )1

with P acting trivially on Ker ', Ker u and Kerp”, induces a long exact
cohomology sequence

1— Der(G, (4, u'))—>Der(G, (4, u))—> Der(G, (4", ")) —
— H(G., (A, W) — H*(G, (4, p)— H*(G, (4", ")) —
—HG, A, 1)— - —H"NG, A", 1)) —
—H"(G, (4, 1))—H"(G, (4, W))—H"(G, (4", ")) —
— H"NG, (A, )— - .

Proof. Since the functor Der(—, (4, wn)) satisfies condition (b) with respect to the
free cotriple F, the right derived functors of Der(—, (4, u)) are well defined, the
sequence (4.2) becomes a complex of non-abelian groups and the statement of (i)
follows from Proposition 4.6.

The short exact coefficient sequence of (ii) induces a short exact sequence of
cosimplicial groups

1—Der(F.(G), (4', '))—> Der(F.(G), (4, u))—> Der(F,(G), (4", 1)) — 1

satisfying condition (a). It remains to apply Proposition 4.3 to get the required long
exact cohomology sequence. O

The definition of non-abelian cohomology with coefficients in G-partially cros-
sed P-modules allows as to introduce the definition of higher non-abelian cohomol-
ogy of a group G with coefficients in any G-group. This can be done as follows.

Let A be an arbitrary G-group, meaning the group G acts on the left on the
group A. Take the quotient group P = A/Z(A). Define an action of P on 4 and an
action of G on P as follows:
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Wg="4, [d]eP, a, d € A,
Slal =[%a], g€ G, aecA.

Let 4 : A—> P be the canonical homomorphism. It is easily checked that the pair
(A4, ;t4) is a G-crossed P-module under the aforedefined actions.

DErINITION 4.8. The n-th cohomology H"(G, A), n > 0, of the group G with
coefficients in a G-group A4 is given by

Hn(G’ A) = Hn(G’ (A’ MA))? nz= 0.

For n =1 this cohomology differs from the first pointed set cohomology defined
in [10].
Let

1—A% B lf) C—1
be a central@extension of G-groups. Then ¥ induces an isomorphism of G-groups
v : B/Z(B)— C/¥(Z(B)) and one gets a short exact sequence of G-crossed P-mod-
ules with P = B/Z(B)

1—> (4, 1) 5 (B, 1) > (C.710)— 1.,

where o is the composite of the canonical map C — C/y(Z(B)) and the iso-
morphism 9.

COROLLARY 4.9. Any central extension of G-groups

1—>A—W>Bl/> C—1

induces a long exact cohomology sequence

0 0 0 1
1— HY(G, 4) % HYG, B) S HYG, )5 H'(G, 4) % H'(G, B)
1 1 2 2
% H\G. (C. 7)) > H(G, )5 H(G. B S HAG. (C. i)
2 3 n—1
S HBG AL S HTNG, (C ) s HY(G, A)
Y H'(G, B) S H'(G, (C, 1ip) > H'(G, A)—> - - .
Proof. Clearly in the induced short exact sequence of G-crossed P-modules the

group P acts trivially on Ker up and Ker . So we can apply Theorem 4.7 giving
together with Theorem 3.6 the required long exact cohomology sequence. OJ
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