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Abstract. The first non-abelian cohomology of groups introduced by Guin is
extended to any dimensions and for a substantially wider class of coefficients called
G-partially crossed P-modules. The first and the second non-abelian cohomologies
of groups are described in terms of torsors and extensions of groups respectively.
Higher non-abelian cohomology pointed sets are described in terms of cotriple
right derived functors of the group of derivations with respect to the first contra-
variant variable. For any short exact coefficient sequence a long exact cohomology
sequence is obtained extending the well-known exact cohomology sequences and
higher cohomology of groups with coefficients in any G-group is introduced.
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0. Introduction. Our approach to non-abelian cohomology of groups follows
Guin’s first non-abelian cohomology [5,6] which differs from the classical first non-
abelian cohomology pointed set [10] and from the setting of various papers on non-
abelian cohomology [4,2,3] extending the classical exact non-abelian cohomology
sequence from lower dimensions [10] to higher dimensions.

Guin defined his first non-abelian cohomology group when the coefficient group
is a crossed G-module and obtained a six term exact cohomology sequence for any
short exact sequence of crossed G-modules.

A non-abelian cohomology of groups will be defined in any dimension greater
than 0, extending Guin’s first non-abelian cohomology group and his exact
cohomology sequence to a nine term exact cohomology sequence. A substantially
wider class of coefficients will be used, consisting of partially crossed modules over
a group P on which a group G acts on the left: these will be called G-partially cros-
sed modules over P. We describe the first non-abelian cohomology in terms of tor-
sors and the second non-abelian cohomology in terms of extensions of groups.
Moreover a close relation between non-abelian cohomology of groups and non-
abelian right derived functors of the group of derivations will be established and for
some particular cases of coefficients a long exact cohomology sequence will be
obtained.

All considered groups will be arbitrary (not necessarily commutative). An action
of a group G on a group A means an action on the left of G on A by automorphisms
and will be denoted by ga; g 2 G, a 2 A: We assume that G acts on itself by con-
jugation. The center of a group G will be denoted by ZðGÞ: If the groups G and R act
on a group A then the notation gra means gð raÞ, g 2 G; r 2 R, a 2 A:
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1. G-partially crossed P-modules and the group Der(G, (A, �)) of derivations. A
precrossed P-module ðA; �Þ consists of a group P acting on a group A and a
homomorphism � : A�!P such that

�ð xaÞ ¼ x�ðaÞx�1; x 2 P; a 2 A:

If in addition we have

�ðaÞa0 ¼ aa0a�1

for a; a0 2 A, then ðA; �Þ is a crossed P-module.

Definition 1.1. A partially crossed module � : A�!P over P is a precrossed
module over P satisfying the equality

aa0a�1 ¼ �ðaÞa0; ð1:1Þ

for all a0 2 A and for all a 2 A such that �ðaÞ is a commutator of P.

Note that the relation (1.1) is equivalent to the following relation:

ayxa0 ¼ xya0a; ð1:2Þ

for all a0 2 A and for all a 2 A such that �ðaÞ ¼ xyx�1y�1. To see that (1.1) implies
(1.2) take a0 ¼ yx b and that (1.2) implies (1.1) take a0 ¼ x�1y�1 b. Clearly any crossed
module over P is a partially P-crossed P-module.

Let A be a metabelian (not abelian) group. Consider the precrossed module

A�!
�
A=½A;A	 ¼ P;

where � is the canonical surjection and P acts trivially on A. Then A!
�
P is a par-

tially crossed module over P which is not a crossed P-module.
Any precrossed module B!

�
P induces in a natural way a partially crossed

module over P as follows. Consider the Peiffer commutators bb0b�1 �ðbÞb0�1 for all
b0 2 B subject to the relation: �ðbÞ is a commutator of P. Let N be the normal sub-
group of B generated by these Peiffer commutators and take the quotient group

B=N. One gets a precrossed module B=N!
�0

P, �0 being induced by �. It is easy to
check that in fact it is a partially crossed P-module. Moreover any morphism from
B!

�
P to a partially crossed module X!

�
C induces in a natural way a unique

morphism

B=N �!
�0

P
# #

X �!
�

C:

It is obvious that if A!
�
P is a partially P-crossed module, then Ker� is con-

tained in the center of A .
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Definition 1.2. Let G;P and A be groups. It will be said that A!
�
P is a

G-precrossed module over P if
(1) ðA; �Þ is a precrossed P-module,
(2) G acts on P and A,
(3) � : A�!P is a homomorphism of G-groups,
(4) ð gxÞa ¼ gxg�1a for g 2 G, x 2 P, a 2 A (compatibility condition).
If in addition ðA; �Þ is a crossed P-module, then ðA; �Þ is called a G-crossed

P-module. If conditions (1)–(4) hold it will be said that the group G acts on the pre-
crossed P-module ðA; �Þ.

Definition 1.3. A G-precrossed P-module ðA; �Þ will be called a G-partially
crossed P-module if in addition the following condition holds:

aa0a�1 ¼ �ðaÞa0 or equivalently ayxa0 ¼ xya0a;

for all a0 2 A and a 2 A such that �ðaÞ ¼ xyx�1y�1 for some x; y 2 P.

It is clear that any precrossed (crossed) G-module is in a natural way a G-pre-
crossed (G-crossed) G-module, G acting on itself by conjugation. A G-precrossed P-
module was called in [8] a precrossed G� P-bimodule, causing confusion with the
notion of crossed bimodule defined in [9, E.1.5.1] generalising the well-known
notion of bimodule. If f : G0�!G is a homomorphism of groups then any G-pre-
crossed P-module is a G0-precrossed P-module induced by f, G0 acting on A and P
via f.

Note that if ðA; �Þ is a G-precrossed P-module the equality

rxa ¼ xra

holds for any x 2 G, a 2 A, r 2 H 0ðG;PÞ. In effect, one has

rxa ¼ xx�1rxa ¼ xð x
�1
rÞa ¼ xra:

Definition 1.4. Let ðA; �Þ be a G-partially crossed P-module. Denote by
DerðG; ðA; �ÞÞ the set of pairs ð�; rÞ, where � is a crossed homomorphism from G to
A, that is

�ðxyÞ ¼ �ðxÞ x�ðyÞ; x; y 2 G;

and r is an element of P such that

��ðxÞ ¼ r xr�1; x 2 G:

This set will be called the set of derivations from G to ðA; �Þ.
For any ð�; rÞ 2 DerðG; ðA; �ÞÞ one has

�ðxÞ xra ¼ rx��ðxÞ;

for a 2 A, x 2 G.
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We introduce in DerðG; ðA; �ÞÞ a product by

ð�; rÞð�; sÞ ¼ ð� � �; rsÞ;

where ð� � �ÞðxÞ ¼ r�ðxÞ�ðxÞ, x 2 G.

Proposition 1.5. Under the aforementioned product, DerðG; ðA; �ÞÞ is a group
which coincides with the group DerGðG;AÞ of Guin if ðA; �Þ is a crossed G-module
viewed as a G-crossed G-module.

Proof. Clearly this product is associative. First it will be shown that ð� � �; rsÞ
belongs to DerðG; ðA; �ÞÞ. Put 	 ¼ � � �. We have

	ðxyÞ ¼ r �ðxyÞ�ðxyÞ ¼ r ð�ðxÞx�ðyÞÞ�ðxÞx�ðyÞ

¼ r�ðxÞrx�ðyÞ�ðxÞx�ðyÞ:

On the other hand

	ðxÞx	ðyÞ‘ ¼ r�ðxÞ�ðxÞxð r�ðyÞ�ðyÞÞ ¼ r�ðxÞ�ðxÞxr�ðyÞx�ðyÞ:

Using equality (1.1) one gets 	ðxyÞ ¼ 	ðxÞx	ðyÞ showing that 	 is a crossed
homomorphism. Further, we have

�	ðxÞ ¼ �ð r�ðxÞ�ðxÞÞ ¼ r��ðxÞ��ðxÞ ¼ r ðsxs�1Þrxr�1 ¼ r srðs�1Þr

xr�1 ¼ rsrxs�1 xr�1 ¼ rsxðrsÞ�1:

Therefore ð� � �; rsÞ 2 DerðG; ðA; �ÞÞ. It is obvious that ð�0; 1Þ is the unit of
DerðG; ðA; �ÞÞ with �0ðxÞ ¼ 1 for all x 2 G.

For ð�; rÞ 2 DerðG; ðA; �ÞÞ take the pair ð�; r�1Þ with �ðxÞ ¼ r�1�ðxÞ�1, x 2 G. It
will be shown that ð�; r�1Þ 2 DerðG; ðA; �ÞÞ. For this the equality

r�1xa � r
�1

�ðxÞ�1 ¼ r�1�ðxÞ�1 � xr
�1

a; x 2 G; a 2 A ð1:3Þ

will be proved. In effect, since �ð r
�1

�ðxÞ�1Þ ¼ r�1��ðxÞ�1r ¼ r�1xr, one gets

�ð r
�1
�ðxÞ�1Þð xr

�1

aÞ ¼ r�1xrð xr
�1

aÞ ¼ r�1xrx�1xr�1a ¼ r�1xa:

The required relation (1.3) follows now from the equality

�ð r
�1
�ðxÞ�1Þð xr

�1

aÞ ¼ r�1�ðxÞxr
�1

ar
�1

�ðxÞ:

Therefore one has

�ðxyÞ ¼ r�1�ðxyÞ�1 ¼ r�1ð x�ðyÞ�1�ðxÞ�1Þ ¼ r�1x�ðyÞ�1 r
�1

�ðxÞ�1

¼ r�1�ðxÞ�1 xr
�1

�ðyÞ�1 ¼ �ðxÞ x�ðyÞ;

that is � is a crossed homomorphism. Moreover,
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��ðxÞ ¼ �ð r
�1

�ðxÞ�1Þ ¼ r�1��ðxÞ�1r ¼ r�1 xrr�1r ¼ r�1 xr:

It follows that ð�; r�1Þ 2 DerðG; ðA; �ÞÞ. It is easily checked that

ð�; rÞð�; r�1Þ ¼ ð�; r�1Þð�; rÞ ¼ ð�0; 1Þ:

We conclude that DerðG; ðA; �ÞÞ is a group which coincides with the group
DerGðG;AÞ of derivations defined by Guin [6] when ðA; �Þ is a crossed G-module. &

A homomorphism f : ðA; �Þ�!ðB; 
Þ of G-partially crossed P-modules induces
a homomorphism

f � : DerðG; ðA; �ÞÞ�!DerðG; ðB; 
ÞÞ

given by ð�; rÞ7!ð�f; rÞ.
There is an action of G on DerðG; ðA; �ÞÞ defined by

gð�; rÞ ¼ ð�; grÞ; g 2 G; r 2 P;

with �ðxÞ ¼ g�ðg
�1

xÞ, x 2 G (see [6, 8]). Moreover if P acts on G such that

ðrgÞa ¼ rgr�1a; ð rgÞr0 ¼ rgr�1r0 for r; r0 2 R; g 2 G; a 2 A;

then there is also an action of P on DerðG; ðA; �ÞÞ given by rð�; sÞ ¼ ð�; rsÞ,
�ðxÞ ¼ r �ð r

�1

xÞ, r 2 P, x 2 G [8].
It is well-known [1] that the groups G and P acting on each other and on

themselves by conjugation are said to be acting compatibly if

ðgrÞg0 ¼ grg�1g0; ðrgÞr0 ¼ rgr�1r0 for g; g0 2 G; r; r0 2 R: ð5Þ

Definition 1.6. It will be said that the groups G and P act on a group A com-
patibly if

ð grÞa ¼ grg�1a; ð rgÞ a ¼ rgr�1a for g 2 G; r 2 R; a 2 A:

Proposition 1.7. ([8]). Let ðA; �Þ be a G-partially crossed P-module, the groups
G and P acting on each other and on A compatibly.

Under the aforementioned actions of G and P on DerðG; ðA; �ÞÞ and the homo-
morphism 	 : DerðG; ðA; �ÞÞ ! P given by ð�; rÞ7!r, the pair ðDerðG; ðA; �ÞÞ; 	Þ is a
G-precrossed P-module.

2. The first non-abelian cohomology. Let ðA; �Þ be a G-partially crossed
P-module. Define on the group DerðG; ðA; �ÞÞ an equivalence relation as follows:

ð�; rÞ � ð�; sÞ()
there exists a 2 A : �ðxÞ ¼ a�1�ðxÞ xa;
s ¼ �ðaÞ�1r mod H 0ðG;PÞ:

�

Theorem 2.1. Let ðA; �Þ be a G-partially crossed P-module satisfying the follow-
ing conditions:
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(1) H0ðG;PÞ is a normal subgroup of P,
(2) for any c 2 H0ðG;PÞ and ð�; rÞ 2 DerðG; ðA; �ÞÞ there exists a 2 A such that

�ðaÞ ¼ 1 and c�ðxÞ ¼ a�1�ðxÞ xa, x 2 G.
Then the group DerðG; ðA; �ÞÞ induces on the quotient set DerðG; ðA; �ÞÞ= � a

group structure and this quotient group will be called the first cohomology group
H1ðG; ðA; �ÞÞ of the group G with coefficients in the G-partially crossed P-module
ðA; �Þ.

Proof. We have to show that the relation � is a congruence, that is if
ð�; rÞ � ð�0; r0Þ and ð�; sÞ � ð�0; s0Þ, then ð�; rÞð�; sÞ � ð�0; r0Þð�0; s0Þ. For this we will
use Guin’s proof [6], which remains valid in our generalized case.

We first prove that

ð�; rÞð�; sÞ � ð�; rcÞð�; sÞ

for any c 2 H 0ðG;PÞ. For ð�; sÞ and c 2 H0ðG;PÞ there is a 2 A such that �ðaÞ ¼ 1
and a�1�ðxÞxa, x 2 G. One gets

rc�ðxÞ�ðxÞ ¼ rða�1�ðxÞ xaÞ�ðxÞ ¼ ra�1 r�ðxÞ rxa�ðxÞ

¼ ra�1 r�ðxÞ�ðxÞ xra:

Since �ð raÞ�1 ¼ ðr�ðaÞr�1Þ�1 ¼ 1, one has rcs ¼ �ð raÞ�1rsc0 with c0 2 H 0ðG;PÞ.
Therefore, ð�; rÞð�; sÞ ¼ ð�; rcÞð�; sÞ.

We have equalities

�0ðxÞ ¼ b�1�ðxÞ xb; r0 ¼ �ðbÞ�1rz

and

�0ðxÞ ¼ d�1�ðxÞ xd; s0 ¼ �ðdÞ�1st

with z; t 2 H 0ðG;PÞ. Set

ð�; rzÞð�; sÞ ¼ ð	; rzsÞ and ð�0; r0Þð�0; s0Þ ¼ ð	 0; r0s0Þ

with 	ðxÞ ¼ rz�ðxÞ�ðxÞ and 	 0ðxÞ ¼ r0�0ðxÞ�0ðxÞ, x 2 G. It will be shown that

ð�; rzÞð�; sÞ � ð�0; r0Þð�0; s0Þ:

Indeed,

	 0ðxÞ ¼ r0ðd�1�ðxÞ xdÞb�1�ðxÞ xb

¼ �ðbÞ�1rz d�1 �ðbÞ
�1rz�ðxÞ �ðbÞ

�1rzxdb�1�ðxÞ xb

¼ b�1 rzd�1 rz�ðxÞ rxð zdÞ�ðxÞ xb

¼ b�1 rzd�1 rz�ðxÞ�ðxÞxrzd xb;

and

�ð rzdb�1Þ ¼ �ðbÞ�1rz�ðdÞ�1z�1r�1 ¼ r0s0t�1s�1z�1r�1;

r0s0 ¼ �ð rzd bÞ�1rzst

with t 2 H0ðG;PÞ.
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It follows that ð�; rzÞð�; sÞ � ð�0; r0Þð�0; s0Þ. Therefore ð�; rÞð�; sÞ � ð�0; r0Þð�0; s0Þ
and the equivalence � is a congruence. &

Clearly any partially crossed G-module viewed as a G-partially crossed G-mod-
ule satisfies conditions of Theorem 2.1. In this case H 0ðG;GÞ ¼ ZðGÞ and for
ð�; gÞ 2 DerðG; ðA; �ÞÞ ¼ DerGðG;AÞ, c 2 ZðGÞ the equality �ðcxÞ ¼ �ðxcÞ, x 2 G,
implies �ðcÞ c�ððxÞ ¼ �ðxÞ x�ðcÞ and �ð�ðcÞÞ ¼ gcg�1c�1 ¼ 1. We recover Guin’s first
cohomology group of a group G with coefficients in a crossed G-module [6].

If f : ðA; �Þ ! ðB; 
Þ is a homomorphism of G-partially crossed P-modules
satisfying the conditions of Theorem 2.1, then f � induces a homomorphism
f 1 : H1ðG; ðA; �ÞÞ ! H1ðG; ðB; 
ÞÞ. The above defined action of G on DerðG; ðA; �ÞÞ
induces an action of G on H1ðG; ðA; �ÞÞ given by

g½ð�; rÞ	 ¼ ½gð�; rÞ	; g 2 G:

In our next statement it will be shown that Guin’s first non-abelian cohomology
group is closely related with torsors. A similar relationship between the first non-
abelian pointed set cohomology and principal homogeneous spaces is well-known
[1]. To this end, the notion of a G-torsor over a partially crossed G-module will be
introduced.

Definition 2.2. A G-torsor over a partially crossed G-module ðA; �Þ is a pair
ðE; f Þ consisting of a non-empty G-set E with an action on the right of A on E
denoted by xa (for x 2 E, a 2 A) which is compatible with the action of G and such
that for any x; y 2 E there is a unique element b 2 A with y ¼ xb, and f is a map
from E to G such that

(1) for any x 2 E, s 2 G the following equality holds

�ðaÞ ¼ fðxÞsfðxÞ�1s�1

with sx ¼ xa, a 2 A;
(2) if y ¼ xb then

fðyÞ ¼ �ðb�1ÞfðxÞ; x; y 2 E; b 2 A:

Definition 2.3. It will be said that G-torsors ðE; f Þ and ðE0; f 0Þ over a partially
crossed G-module ðA; �Þ are isomorphic if there is a bijection # : E! E0 compatible
with the actions of G and A such that

fðxÞ ¼ f 0#ðxÞ mod ZðGÞ

for any x 2 E.

Denote by EðG;AÞ the set of classes of isomorphic G-torsors over the partially
crossed G-module ðA; �Þ.

A product on the set EðG;AÞ is introduced as follows. Let ½ðE1; f1Þ	,
½ðE2; f2Þ	 2 EðG;AÞ and let x 2 E1, y 2 E2. Take A with a new action of G given by
ð saÞ0 ¼ f1ðxÞcb sa for any s 2 G, a 2 A with sx ¼ xb, sy ¼ yc. Denote this G-group by
E and define the action of A on E by translation on the right. Define a map
g : E! G given by
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gðaÞ ¼ �ða�1Þf1ðxÞf2ðxÞ:

Then the pair ðE; gÞ is a G-torsor over the partially crossed G-module ðA; �Þ. Define
the product by

½ðE1; f1Þ	 � ½ðE2; f2Þ	 ¼ ½ðE; gÞ	:

Theorem 2.4. If ðA; �Þ is a partially crossed G-module, there is a natural iso-
morphism between EðG;AÞ and H1ðG;AÞ.

Proof. Let ½ðE; f Þ	 2 EðG;AÞ and take x 2 E. For any s 2 G one has sx ¼ xa and
an induced map �x : G�!A defined by �xðsÞ ¼ a that is a cocycle. Using 1) of
Definition 2.2 we see that the pair ð�x; fðxÞÞ is an element of
DerðG; ðG;AÞÞ ¼ DerGðG;AÞ.

Define a map � : EðG;AÞ�!H1ðG;AÞ by �ð½ðE; f Þ	Þ ¼ ½ð�x; fðxÞÞ	. We have to
show that � is well-defined.

If y 2 E and y ¼ xb, b 2 A, then sy ¼ sx sb ¼ xa sb ¼ xbb�1a sb ¼ yb�1a sb. By
2) fðyÞ ¼ �ðb�1ÞfðxÞ. It follows that ð�x; fðxÞÞ � ð�y; fðyÞÞ. Let ðE; f Þ be isomorphic to
ðE0; f 0Þ, that is there is a bijection # : E�!E0 with properties given in Definition 2.2.
Take x0 2 E0 and #ðxÞ ¼ x0, x 2 E. Then #ð sxÞ ¼ s#ðxÞ ¼ sx0 and #ðxaÞ ¼ #ðxÞa ¼
x0a with sx ¼ xa. Thus, �x ¼ �x0 . Since fðxÞ ¼ f 0ðx0Þ mod ZðGÞ, one deduces
ð�x; fðxÞÞ � ð�x0 ; f

0ððx0ÞÞ. Therefore, the map � is well-defined.
Let ½ð�; gÞ	 2 H1ðG;AÞ. Take A with a new action of G given by ðsxÞ0 ¼ �ðsÞ sx,

x 2 A, s 2 G, and with the action of A on itself by translation on the right. Denote
this G-set by P�. Define a map fg : P� ! G by fgðxÞ ¼ �ðx

�1Þg, x 2 P�, which veri-
fies conditions 1) and 2) of Definition 2.2. In effect, if ð sxÞ0 ¼ xa then �ðsÞsx ¼ xa.
On the other hand ��ðsÞ ¼ gsg�1s�1. Thus, ��ðsÞ�ðsxÞ ¼ �ðxaÞ, gsg�1s�1s�ðxÞs�1 ¼
�ðxÞ�ðaÞ. Whence

�ðaÞ ¼ �ðxÞ�1gsg�1�ðxÞs�1 ¼ fgðxÞsfgðxÞ
�1s�1

and fg verifies condition 1). If y ¼ xb then one has

fgðyÞ ¼ �ðy
�1Þg ¼ �ðb�1x�1Þg ¼ �ðb�1Þ�ðx�1Þg ¼ �ðb�1ÞfðxÞ:

Thus fg satisfies condition 2) too. One gets a G-torsor ðP�; fgÞ over the partially
crossed G-module ðA; �Þ and define � : H1ðG;AÞ ! EðG;AÞ by �ð½ð�; gÞ	Þ ¼
½ðP�; fgÞ	.

If ð�; gÞ � ð�0; g0Þ then �0ðsÞ ¼ b�1�ðsÞsb and g0 ¼ �ðb�1ÞgmodZðGÞ. We will
show that ðP�; fgÞ is isomorphic ðP�0 ; fg0 Þ.

Define @ : P��!P�0 by @ðxÞ ¼ b�1x, x 2 P�. Then @ððsxÞ0Þ ¼ b�1�ðsÞ sx and
ðsð@ðxÞÞÞ0 ¼ ðsðb�1xÞÞ0 ¼�0ðsÞ sðb�1xÞ ¼ b�1�ðsÞ sbsb�1 sx ¼ b�1�ðsÞ sx. Thus, @ððsxÞ0Þ ¼
ðsð@ðxÞÞÞ0. It is obvious that @ preserves the action of A.

For x 2 P� one gets

ð f 0gð@ðxÞÞ ¼ f
0
gðb
�1xÞ ¼ �ðx�1bÞg0 ¼ �ðx�1Þ�ðbÞ�ðb�1ÞgmodZðGÞ

¼ �ðx�1ÞgmodZðGÞ

¼ fgðxÞmodZðGÞ:

504 HVEDRI INASSARIDZE

https://doi.org/10.1017/S0017089502030148 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089502030148


This implies that ðP�; fgÞ is isomorphic to ðP�0 ; fg0 Þ. Therefore the map � is well-
defined.

It is easily checked that � is a homomorphism and �� ¼ 1, �� ¼ 1. &

3.Thesecondnon-abeliancohomology. NowthesecondcohomologyH2ðG; ðA; �ÞÞ
of a group G with coefficients in a G-partially crossed P-module ðA; �Þ will be
defined. Consider the diagram

M!!

l0

l1

F!
�
G ð3:1Þ

with F a free group, � is a surjective homomorphism,M the group consisting of pairs
ðx; yÞ, x; y 2 F, such that �ðxÞ ¼ �ðyÞ and l0, l1 are canonical projections, l0ðx; yÞ ¼ x,
l1ðx; yÞ ¼ y. This means ðM; l0; l1Þ is the simplicial kernel of �. Put � ¼ fðx; xÞ,
x 2 F g �M.

Then ðA; �Þ can be viewed as a F-partially crossed P-module induced by � and

as a M-partially crossed P-module induced by �l0 (or by �l1). Let fZ1Z1ðM; ðA; �ÞÞ be
the subset of DerðM; ðA; �ÞÞ consisting of elements of the form ð�; 1Þ satisfying the

condition �ð�Þ ¼ 1, implying �ðMÞ � ZðAÞ. It follows that fZ1Z1ðM; ðA; �ÞÞ is an abe-
lian subgroup of DerðM; ðA; �ÞÞ.

Define on fZ1Z1ðM; ðA; �ÞÞ a relation by

ð�0; 1Þ � ð�; 1Þ()ð�; hÞ 2 DerðF; ðA; �ÞÞ

such that the following equality holds

ð�0; 1Þ ¼ ð�l0; hÞð�; 1Þð�l1; hÞ
�1

in the group DerðM; ðA; �ÞÞ.
We see that if ð�0; 1Þ � ð�; 1Þ one has

�0ðxÞ ¼ �l1ðxÞ
�1 h�ðxÞ�l0ðxÞ; x 2M:

Proposition 3.1. The relation � defined on fZ1Z1ðM; ðA; �ÞÞ is an equivalence.

Proof. Clearly this relation is reflexive. If ð�0; 1Þ � ð�; 1Þ, that is
ð�0; 1Þ ¼ ð�l0; hÞð�; 1Þð�l1; 1Þ

�1 with ð�; hÞ 2 DerðF; ðA; �ÞÞ, then ð�; 1Þ ¼ ð�l0; hÞ
�1
�

�ð�0; 1Þð�l1; hÞ and ð�l0; hÞ
�1
¼ ðe��l0; h�1Þ, ð�l1; hÞ ¼ ðe��l1; h�1Þ�1 with ðe��; h�1Þ ¼

ð�; hÞ�1 2 DerðF; ðA; �ÞÞ. Thus the relation � is symmetric. It remains to show
transitivity.

Let ð�0; 1Þ � ð�; 1Þ and ð�00; 1Þ � ð�0; 1Þ. Then one has

ð�0; 1Þ ¼ ð�l0; hÞð�; 1Þð�l1; hÞ
�1;

ð�00; 1Þ ¼ ð�0l0; h
0Þð�0; 1Þð�0l1; h

0Þ
�1

with ð�; hÞ, ð�0; h0Þ 2 DerðF; ðA; �ÞÞ.
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It follows that

ð�00; 1Þ ¼ ð�0l0; h
0Þð�l0; hÞð�; 1Þð�l1; hÞ

�1ð�0l1; h
0Þ
�1

¼ ðð�0*�Þl0; h
0hÞð�; 1Þðð�0*�Þl1; h

0hÞ�1

with ð�0 � �; h0hÞ ¼ ð�0; h0Þð�; hÞ 2 DerðF; ðA; �ÞÞ. Therefore ð�00; 1Þ � ð�; 1Þ and the
relation � is an equivalence. &

Proposition 3.2. The quotient set fZ1Z1ðM; ðA; �ÞÞ= � is independent of the dia-
gram (3.1) and is unique up to bijection.

We need the following.

Lemma 3.3. Let A be a G-group and let � :M! A be a crossed homomorphism
such that �ð�Þ ¼ 1. Then there exists a map q : F! A such that for y 2M

�ðyÞ ¼ ql1ðyÞ
�1ql0ðyÞ:

Proof. Note that if ðx; x00Þ, ðx0; x00Þ 2M, then �ðx; x00Þ ¼ �ðx0; x00Þ � �ðx; x0Þ.
Indeed, the equalities ðx; x00Þ ¼ ð1; x00x0�1Þðx; x0Þ and ðx0; x00Þ ¼ ð1; x00x0�1Þðx0; x0Þ
imply �ðx; x00Þ ¼ �ð1; x00x0�1Þ�ðx; x0Þ and �ðx0; x00Þ ¼ �ð1; x00x0�1Þ�ðx0; x0Þ ¼
�ð1; x00x0�1Þ, giving the required equality.

In particular, applying this equality for ðx; xÞ, ðx0; xÞ 2M one gets �ðx; xÞ ¼
�ðx0; xÞ�ðx; x0Þ. Therefore �ðx0; xÞ ¼ �ðx; x0Þ�1 for any ðx; x0Þ 2M.

Take a section 
 : G�!F, �
 ¼ 1G and define a map q : F�!A by

qðxÞ ¼ �ðx; 
�ðxÞÞ; x 2 F:

For ðx; x0Þ 2M one has

ql1ðx; x
0Þ
�1ql0ðx; x

0Þ ¼ qðx0Þ�1qðxÞ

¼ ð�ðx0; 
�ðx0ÞÞ�1�ðx; 
�ðxÞÞ

¼ �ð
�ðx0Þ; x0Þ�ðx; 
�ðxÞÞ:

On the other hand, since �ðx; x0Þ ¼ �ð1; x0x�1Þ for all ðx; x0Þ 2M, one gets
�ð
�ðx0Þ; x0Þ ¼ �ð1; x0
�ðx0Þ�1Þ and �ðx; 
�ðxÞÞ ¼ �ð1; 
�ðxÞx�1Þ. But ð1; x0
�ðx0Þ�1Þ
ð1; 
�ðxÞx�1Þ ¼ ð1; x0x�1Þ. Therefore, we obtain the equality

�ðx; x0Þ ¼ �ð1; x0
�ðx0Þ�1Þ�ð1; 
�ðxÞx�1Þ ¼ ql1ðx; x
0Þ
�1ql0ðx; x

0Þ:

&

Proof of Proposition 3.2. Consider the commutative diagram

M0 !
!

l0
0

l0
1

F 0 !
�0

G

	1 # 	2 	1 # 	2 jj

M !
!

l0

l1

F !
�

G;
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ðM; l0; l1Þ and ðM
0; l00; l

0
1Þ being the simplicial kernels of � and �0 respectively,

li	1 ¼ 	1l
0
i, li	2 ¼ 	2l

0
i, i ¼ 0; 1, �	1 ¼ �	2 ¼ �

0.
The pair ð	i; 	iÞ induces a homomorphism

DerðM; ðA; �ÞÞ�!DerðM0; ðA; �ÞÞ

given by ð�; rÞ7!ð�	i; rÞ, i ¼ 1; 2.
If ð�0; 1Þ � ð�; 1Þ, that is ð�0; 1Þ ¼ ð�l0; hÞð�; 1Þð�l1; hÞ

�1 with ð�; hÞ 2
DerðF; ðA; �ÞÞ, then

�0	iðyÞ ¼ �	il
0
1ðyÞ

�1 h�	iðyÞ�	il
0
0ðyÞ; y 2M0:

Thus ð�0	i; 1Þ � ð�	i; 1Þ, i ¼ 1; 2, and one gets a natural map

"i : fZ1Z1ðM; ðA; �ÞÞ= � �!fZ1Z1ðM0; ðA; �ÞÞ= �

induced by the pair ð	i;e	i	iÞ and given by ½ð�; 1Þ	7!½ð�e	i	i; 1Þ	, i ¼ 1; 2.
We will show that "1 ¼ "2. By Lemma 3.3 there is a map q : F! A such that

�ðyÞ ¼ ql1ðyÞ
�1ql0ðyÞ; y 2M:

Take the homomorphism s : F 0 !M given by

sðx0Þ ¼ ð	1ðx
0Þ; 	2ðx

0ÞÞ; x0 2 F 0:

It is clear that (�s; 1Þ 2 DerðF 0; ðA; �ÞÞ. Further one has

ðð�sl01Þ
�1�e		2�sl00Þðx00; x01Þ ¼ �sððx0Þ�1�e		2ðx00; x01Þ�sðx00Þ

¼ �ð	1ðx
0
1Þ; 	2ðx

0
1ÞÞ
�1�e		2ðx00; x01Þ�ð	1ðx00Þ; 	2ðx00ÞÞ

¼ q	1ðx
0
1Þ
�1q	2ðx

0
1Þ

¼ q	2ðx
0
1Þ
�1q	2ðx

0
0Þq	2ðx

0
0Þ
�1q	1ðx

0
0Þ

¼ q	1ðx
0
1Þ
�1q	1ðx

0
0Þ

¼ �e		1ðx00; x01Þ
for any ðx00; x

0
1Þ 2M

0. Therefore ð�e	1	1; 1Þ � ð�e	2	2; 1Þ with ð�s; 1Þ 2 DerðF 0; ðA; �ÞÞ,
implying the required equality "1 ¼ "2.

The proof of the uniqueness is standard. &

It is easy to check that the quotient set fZ1Z1ðM; ðA; �ÞÞ= � is naturally bijective to
H2ðG;AÞ when A is a G-module viewed as a crossed G-module. That fact motivates
the following

Definition 3.4. Let ðA; �Þ be a G-partially crossed P-module. The quotient setfZ1Z1ðM; ðA; �ÞÞ= � will be called the second cohomology of G with coefficients in ðA; �Þ
and denoted by H2ðG; ðA; �ÞÞ.

A homomorphism of G-partially crossed P-modules f : ðA; �Þ ! ðB; 
Þ induces
a map of pointed sets
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f 2 : H2ðG; ðA; �ÞÞ�!H2ðG; ðB; 
ÞÞ

given by f 2ð½ð�; 1Þ	Þ ¼ ½ð f�; 1Þ	. It is easy to see that there is a canonical surjective
map # : H2ðG;Ker�Þ ! H2ðG; ðA; �ÞÞ given by ½�	7!½ð�; 1Þ	.

Proposition 3.5. Let ðA; �Þ be a G-partially crossed P-module. There is an action
of G on H2ðG; ðA; �ÞÞ such that ZðGÞ acts trivially. If P acts on G and satisfies the
compatibility condition (1.4), then there is also an action of P on H2ðG; ðA; �ÞÞ.

Proof. Consider the diagram

MG
!
!

l0

l1

FG !
�G
G

with FG the free group generated by G, �G is the canonical homomorphism and
ðMG; l0; l1Þ is the simplicial kernel of �G. There is an action of G on FG defined as
follows:

gðjg1j
" � � � jgnj

"Þ ¼ jgg1j
" � � � jggnj

"; g; g1; . . . ; gn 2 G;

with " ¼ �1. This action induces an action of G on MG by

gðx; x0Þ ¼ ðgx; gx0Þ; g 2 G; ðx; x0Þ 2MG:

Finally one gets an action of G on DerðMG; ðA; �ÞÞ given by

gð�; rÞ ¼ ðe��; grÞ
with e��ðmÞ ¼ g�ðg

�1

mÞ, g 2 G, m 2MG, inducing an action of G on gDerDerðMG; ðA; �ÞÞ

and on fZ1Z1ðMG; ðA; �ÞÞ too. If ð�; 1Þ � ð�
0; 1Þ it is easy to see that gð�; 1Þ � gð�0; 1Þ,

g 2 G, defining an action of G on H2ðG; ðA; �ÞÞ. Since the above defined surjective
map # : H2ðG;Ker�Þ ! H2ðG; ðA; �ÞÞ is a G-map and ZðGÞ acts trivially on
H2ðG;Ker�Þ, it follows that ZðGÞ acts trivially on H2ðG; ðA; �ÞÞ too. &

Let ðA; �Þ be a G-partially crossed P-module. It can be shown easily that there is
an action of H0ðG;PÞ on H2ðG;Ker�Þ given by r½�	 ¼ ½r�	, r 2 H0ðG;PÞ with
� :MG ! Ker� a crossed homomorphism under the action of G on A such that
�ð�Þ ¼ 1.

Let

1�!ðA; 1Þ!
’
ðB; �Þ!

 
ðC; 
Þ�!1 ð3:2Þ

be a short exact sequence of G-partially crossed P-modules. If the action of H0ðG;PÞ
on H2ðG;AÞ is trivial then there is an action of H1ðG; ðC; 
ÞÞ on H2ðG;AÞ given by

ð�;rÞ½		 ¼ ½r		:

We have to show that r	 is a crossed homomorphism and this action is well-defined.
Consider the diagram
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MG
!
!

l0

l1

FG !
�G

G

# �

A !
’

B !
 

C

: ð3:3Þ

There is a crossed homomorphism � : FG ! B such that  � ¼ ��G. Take the
product

ð�l0; rÞð’	; 1Þð�l0; rÞ
�1
¼ ðe		; 1Þ

in the group DerðMG; ðB; �ÞÞ. Then e		ðxÞ ¼ �ðxÞ�1r’	ðxÞ�ðxÞ ¼ r’	ðxÞ, x 2MG.
Therefore r	 :MG ! A is a crossed homomorphism such that r	ð�Þ ¼ 1. If ð�0; r0Þ 2
½ð�; rÞ	 2 H1ðG; ðC; 
ÞÞ, that is ð�; rÞ � ð�0; r0Þ, then �0ðxÞ ¼ c�1�ðxÞxc and r0 ¼ 
ðcÞ�1rt
with c 2 C, t 2 H0ðG;PÞ. It follows that

’ð r
0

	ðxÞÞ ¼ r0’	ðxÞ ¼ 
ðcÞ�1rt’	ðxÞ

¼ �ðbÞ�1rt’	ðxÞ ¼ b�1 rt’	ðxÞb ¼ rt’	ðxÞ

¼ ’ð rt	ðxÞÞ;

for x 2MG, with  ðbÞ ¼ c. Hence ½
r0		 ¼ ½ rt		 ¼ ½ r		 proving the well-definedness of

the action.
Using diagram (3.3) for the short exact sequence (3.2) one defines as follows a

connecting map

�1 : H1ðG; ðC; 
ÞÞ�!H2ðG;AÞ

which is a crossed homomorphism when ðG; ðC; 
ÞÞ verifies conditions of Theorem
2.1. For ½ð�; rÞ	 2 H1ðG; ðC; 
ÞÞ take a crossed homomorphism � : FG ! B such that
 � ¼ ��G. Thus there is a crossed homomorphism 	 :MG ! A such that
’	 ¼ ð�l1Þ

�1�l0. It is clear that 	ð�Þ ¼ 1. Define

�1ð½ð�; rÞ	Þ ¼ ½		:

We must show the correctness of �1. For another �0 : FG ! B with  �0 ¼ ��G, one
has  �0 ¼  � and there is a crossed homomorphism � : FG ! A such that �0 ¼ � �.
Then one gets

’	 0 ¼ ð�0l1Þ
�1�0l0 ¼ ð�’�Þl

�1
1 ð�’�Þl0

¼ ’�l�11 �l
�1
1 �l0’�l0 ¼ �l

�1
1 �l0’�l

�1
1 ’�l0

¼ ’ð	�l�11 �l0Þ:

Hence ½		 ¼ ½	 0	.
If ð�; rÞ � ð�0; r0Þ then

�0ðyÞ ¼ c�1�ðyÞyc; c 2 C; y 2MG;

r0 ¼ 
ðcÞ�1rt; t 2 H0ðG;PÞ:
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Take �0 : FG ! B such that �0ðxÞ ¼ b�1�ðxÞ xb with  ðbÞ ¼ c and  � ¼ ��G.
Then ð�0l�11 �

0l0ÞðyÞ ¼ �
0ðx2Þ

�1�0ðx1Þ, y ¼ ðx1; x2Þ2MG. Hence ’	
0ðyÞ ¼ ð�0l�11 �

0l0ÞðyÞ¼
ðb�1�ðx2Þ

x2bÞ�1b�1�ðx1Þ
x1b¼x2b�1�ðx2Þ

�1�ðx1Þ
x1b¼�ðx2Þ

�1�ðx1Þ ¼ ’	ðyÞ. Whence
	 0 ¼ 	. Therefore the connecting map �1 is correctly defined.

For the short exact sequence 3.2 a connecting map �2 : H2ðG; ðC; 
ÞÞ !
H3ðG;AÞ will be also defined. To this end consider the canonical free simplicial
resolution of the group G in the category of groups acting on the abelian group A:

� � �
!
..
.

!
F3!

�3
M2

!
..
.

!

l 2
0

l 2
3

F2!
�2
M1

!
!
!

l 2
0

l 2
3

F1!
�1
M0
!
!

l 0
0

l 0
1

F0!
�0
G

where F0 ¼ FG, Fi ¼ FMi�1
, i � 1, �i is the canonical homomorphism and

ðMi; l
i
0; � � � ; l

i
iþ1Þ is the simplicial kernel of ðl

i�1
0 �i; � � � ; l

i�1
i �iÞ, i � 0 (see [7]). We will

use the equivalence of functors Hnþ1ð�;AÞ � LnDerð�;AÞ, n � 1, when A is a Z½G	-
module. There is an action of DerðF0; ðC; 
ÞÞ on H

3ðG;AÞ defined as follows:

ð�;rÞ½ f 	 ¼ ½rf 	;

where f : F2! A is a crossed homomorphism with
Q3

i¼0ð f l
2
i �3Þ

"i ¼ 1, "i ¼ ð�1Þ
i,

and ð�; rÞ 2 DerðF0; ðC; 
ÞÞ. The well-definedness of this action is proved similarly to
the case of a short exact sequence of crossed G-modules (see [8]).

For any G-partially crossed P-module ðA; �Þ denote by IDerðG; ðA; �ÞÞ a sub-
group of DerðG; ðA; �ÞÞ consisting of elements of the form ð�; rÞ, r 2 H 0ðG;PÞ.

If either the aforementioned action of DerðF0; ðC; 
ÞÞ on H
3ðG;AÞ is trivial or

DerðF0; ðC; 
ÞÞ ¼ IDerðF0; ðC; 
ÞÞ and H
0ðG;PÞ acts trivially on H2ðG;Ker 
Þ, then

there is a connecting map �2 : H2ðG; ðC; 
ÞÞ ! H3ðG;AÞ given by

�2ð½ð�; rÞ	Þ ¼ ½		; ð�; 1Þ 2fZ1Z1ðMG; ðC; 
ÞÞ;

where ’	 ¼ ��2 with � ¼
Q2
ð�l1i Þ

"i , "i ¼ ð�1Þ
i, and  � ¼ ��1. The correctness of �

2 is
proved similarly to the case of a short exact sequence of crossed G-modules (see [8]).

Theorem 3.6. Let (3.2) be a short exact sequence of G-partially crossed P-mod-
ules satisfying conditions of Theorem 2.1. Then there is an exact cohomology sequence

1! H 0ðG;AÞ!
’0

H 0ðG;BÞ!
 0

H 0ðG;CÞ!
�0

H1ðG;AÞ!
’1

H1ðG; ðB; �ÞÞ

!
 1

H1ðG; ðC; 
ÞÞ!
�1

H2ðG;AÞ!
’2

H2ðG; ðB; �ÞÞ!
 2

H2ðG; ðC; 
ÞÞ;

where ’0,  0, �0, ’1 and  1 are homomorphisms. If in addition H 0ðG;PÞ acts trivially
on H2ðG;AÞ, then �1 is a crossed homomorphism under the action of H1ðG; ðC; 
ÞÞ on
H2ðG;AÞ induced by the action of P on A. Moreover, if either the action of
DerðF0; ðC; 
ÞÞ on H3ðG;AÞ is trivial (in particular if P acts trivially on A) or
DerðF0; ðC; 
ÞÞ ¼ IDerðF0; ðC; 
ÞÞ and H

0ðG;PÞ acts trivially on H2ðG;Ker 
Þ, then
the sequence

H2ðG; ðB; �ÞÞ!
 2

H2ðG; ðC; 
ÞÞ!
�2

H3ðG;AÞ

is also exact.
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Proof. The exactness of the sequence

1! H 0ðG;AÞ!
’0

H 0ðG;BÞ!
 0

H 0ðG;CÞ!
�0

H1ðG;AÞ

is well known [10].
If c 2 H 0ðG;CÞ then �0ðcÞ ¼ ½�	 with �ðxÞ ¼ ’�1ðb�1 xbÞ, x 2 G and  ðbÞ ¼ c. It

follows that ð�0; 1Þ � ð’�; 1Þ where �0 is a trivial map, since ’�ðxÞ ¼ b
�1�0

xb, x 2 G,
and �ðbÞ 2 H0ðG;PÞ because �ðbÞ ¼ 
 ðbÞ and x
ðcÞ ¼ 
ð xcÞ ¼ 
ðcÞ, x 2 G. There-
fore Im�0 � Ker ’1.

Let ½�	 2 H1ðG;AÞ such that ð�0; 1Þ � ð’�; 1Þ. Then ’�ðxÞ ¼ b
�1 xb, x 2 G and

�ðbÞ 2 H 0ðG;PÞ. One has  ðb�1 xbÞ ¼  ’�ðxÞ ¼ 1. Thus  ðbÞ ¼  ðxbÞ ¼ x ðbÞ,
whence  ðbÞ 2 H 0ðG;CÞ. Clearly �0ð ðbÞÞ ¼ ½�	. Therefore Ker ’1 � Im�0. Obviously
the composite  1’1 is the trivial map.

Let ½ð�; rÞ	 2 H1ðG; ðB; �ÞÞ such that ð�0; 1Þ � ð �; 1Þ. Then  �ðxÞ ¼ c�1 xc,
c 2 C, and r ¼ 
ðcÞ�1t, t 2 H 0ðG;PÞ. Let  ðbÞ ¼ 
ðcÞ and r ¼ �ðbÞ�1t. Takee��ðxÞ ¼ b�ðxÞ xb�1, x 2 G. Since  e��ðxÞ ¼ 1, x 2 G, one has ’�1e�� : G! A and
ð�; rÞ � ðe��; 1Þ. Therefore ’1ð½’�1e��	Þ ¼ ½ð�; rÞ	.

Let ½ð�; rÞ	 2 H1ðG; ðB; �ÞÞ. Then  1ð½ð�; rÞ	Þ ¼ ½ð �; rÞ	. Consider the diagram
(3.3) and take the crossed homomorphism ��G : FG ! B. Then ’	 ¼ ð��Gl1Þ

�1��Gl0
and �1 1ð½ð�; rÞ	Þ ¼ ½		. But 	 ¼ �0 is the trivial map, since ��Gl0 ¼ ��Gl1. Therefore
Im 1 � Ker �1.

Let ½ð�; rÞ	 2 H1ðG; ðC; 
ÞÞ such that �1ð½ð�; rÞ	Þ ¼ 1. If � : FG ! B is a crossed
homomorphism such that  � ¼ ��G, then �1ð½ð�; rÞ	Þ ¼ ½		 with ’	 ¼ ð�l1Þ

�1�l0.
Thus there is a crossed homomorphism 
 : FG ! A such that 	 ¼ ð
l1Þ

�1
l0. Hence
one gets

ð�l1Þ
�1�l0 ¼ ð’
l1Þ

�1’
l0; ð’

�1�Þl0 ¼ ð’


�1�Þl1;

implying a crossed homomorphism � : G! B such that ð’
Þ�1� ¼ ��G. One has
��ðxÞ ¼ 
 �ðxÞ ¼ 
��G ¼ r

�GðxÞr�1, whence ð�; rÞ 2 DerðFG; ðB; �ÞÞ and ð�; rÞ 2
DerðG; ðB; �ÞÞ. Evidently,  1ð½ð�; rÞ	Þ ¼ ½ð�; rÞ	.

The rest of the proof repeats with minor modifications the proof of the exact-
ness of the cohomology sequence for a coefficient short exact sequence of crossed G-
modules [8]. &

Clearly for a short exact sequence of crossed G-modules we recover the known
exact cohomology sequence [6, 8]. Note also that Theorem 3.6 remains true for
arbitrary G-partially crossed P-modules but in this case ’1,  1 and �1 are maps of
pointed sets.

Now for any partially crossed G-module ðA; �Þ the second cohomology
H2ðG;AÞ will be described in terms of extensions of groups.

Definition 3.7. An extension of G by a partially crossed G-module ðA; �Þ is a

pair E ¼ ð1! A!
�
X!

 
G�!1; 	Þ, where 1�!A!

�
X!

 
G�!1 is a short exact

sequence of groups, 	 is a section of  , that is  	 ¼ 1G, one has the equality

ga ¼ ��1ð	ðgÞ�ðaÞ	ðgÞ�1Þ

for a 2 A, g 2 G, and the following additional condition holds:
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Ker � ZðAÞ;

 being the restriction of  on the subgroup of X generated by 	ðGÞ.

Example 3.8. Let A� --- G be the semidirect product of A and G. Then one has an
exact sequence of groups

1�!A�!
�0
A� --- G�!

 0

G�!1;

where �0ðaÞ ¼ ða; 1Þ,  0ða; gÞ ¼ g. Take the canonical section 	0 of  0 given by
	0ðgÞ ¼ ð1; gÞ. It is easy to see that the pair ð1�!A!

�0
A� --- G!

 0

G, 	0Þ is an extension
of G by ðA; �Þ, called trivial.

Definition 3.9. It will be said that E ¼ ð1! A!
�
X!

 
G! 1; 	Þ is equivalent

to E0 ¼ ð1! A!
�0

X0 !
 0

G! 1; 	 0Þ if there exist a homomorphism # : X! X0 and
an element g 2 G such that the diagram

1 �! A �!
�

X �!
 

G �! 1
# g # # jj

1 �! A �!
�0

X0 �!
 0

G �! 1

is commutative, g : A! A is the automorphism induced by the action of g on A,
and for any element x 2 G one has the equality

�ð#	ðxÞ	 0ðxÞ�1Þ ¼ gxg�1x�1:

Clearly this relation � is reflexive and symmetric. So for the relation � to be an
equivalence it remains to show the transitivity. Let E � E0 and E0 � E00. Then the
diagram

E ¼ 1 �! A �!
�

X �! �
 

G �! 1
# g # # jj

E0 ¼ 1 �! A �!
�0

X0 �! �
 0

G �! 1
# h # � jj

E00 ¼ 1 �! A �!
�00

X00 �! �
 00

G �! 1

is commutative and one has the equalities

�ð#	ðxÞ	 0ðxÞ�1Þ ¼ gxg�1x�1;

�ð�	 0ðxÞ	 00ðxÞ�1Þ ¼ hxh�1x�1:

We shall show that �ð�#	ðxÞ	 00ðxÞ�1Þ ¼ hgxg�1h�1x�1. Indeed, since

�#	ðxÞ	 00ðxÞ�1ð�	 0ðxÞ	 00ðxÞ�1Þ�1 ¼ �#	ðxÞ�	 0ðxÞ�1 ¼ �ð#	ðxÞ � 	 0ðxÞ�1;

one gets
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�ð�#ðxÞ	 00ðxÞ�1Þ ¼ ��ð#	ðxÞ	 0ðxÞ�1��	 0ðxÞ	 00ðxÞ�1Þ

¼ hðgxg�1x�1Þh�1hxh�1x�1

¼ hgxg�1h�1x�1:

Therefore the relation � is an equivalence. Denote by E1ðG;AÞ the set of equivalence
classes of extensions of G by the partially crossed G-module ðA; �Þ.

Theorem 3.10. There is a natural bijection


 : H2ðG;AÞ!
�
E1ðG;AÞ:

Proof. The map 
 is defined as follows. For ½ð�; 1Þ	 2 H2ðG;AÞ consider the
diagram

MG
!
!

l0

1

FG !
�

G;

# �

A

take the semidirect product A� --- FG, FG acting on A via G and introduce an
equivalence relation:

ða; xÞ � ða0; x0Þ ()
�
�ðxÞ ¼ �ðx0Þ and a ¼ a0 � �ðx; x0Þ:

In fact the equivalence � is a congruence, since if ða; xÞ � ða0; x0Þ and ðb; yÞ � ðb0; y0Þ,
one has

axb ¼ a0�ðx; x0Þ xb0 x�ðy; y0Þ ¼ a0 xb0�ðxy; x0y0Þ:

Denote C ¼ A� --- FG=�. One gets an exact sequence of groups

1�!A!
�
C!

 
G�!1;

where �ðaÞ ¼ ½ða; 1Þ	,  ð½ða; xÞ	Þ ¼ �ðxÞ and the following diagram

MG
!
!

l0

l1

FG !
�

G

# � # � jj

A !
�

C !
 

G

is commutative, �ðxÞ ¼ ½ð1; xÞ	, �� ¼ �l1�l
�1
0 .

Take a section 	 : G! C given by 	ðgÞ ¼ ½ð1; jgjÞ	, g 2 G. It is easy to see that
	ðGÞ ¼ Im�. Therefore Ker ð j

	ðGÞ
Þ ¼ �ðKer �Þ. The equality ��ð1; xÞ ¼ �ðxÞ,

x 2 Ker �, implies Ker ð j
	ðGÞ
Þ � ZðAÞ and it follows that the pair

E ¼ ð1�!A!
�
C!

 
G�!1; 	Þ

is an extension of G by ðA; �Þ.
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Define 
ð½ð�; 1Þ	Þ ¼ ½E	. We have to show the well-definedness of 
. Let
ð�; 1Þ � ð�0; 1Þ, meaning

�0ðxÞ ¼ �l1ðxÞ
�1h�ðxÞ�l0ðxÞ; x 2MG;

for some ð�; hÞ 2 DerðFG; ðA; �ÞÞ (see diagram 3.3) and let E0 ¼ ð1�!A!
�0

C0 !
 0

G�!1, 	 0Þ be the extension of G by ðA; �Þ corresponding to ð�0; 1Þ.
Define a map � : A� --- FG�!A� --- G given by �ða; xÞ ¼ ðha�ðxÞ; xÞ. Thus � pro-

vides a homomorphism, since �ðða; xÞðb; yÞÞ ¼ �ða xb; xyÞ ¼ ðhða xbÞ�ðxyÞ; xyÞ and
�ða; xÞ�ðb; yÞ¼ðha�ðxÞ; xÞðhb�ðyÞ;yÞ¼ðha�ðxÞ xð hb�ðyÞÞ; xyÞ¼ð ha hxb�ðxÞ x�ðyÞ; xyÞ¼
ðhða xbÞ�ðxyÞ; xyÞ.

The homomorphism � induces a homomorphism �0 : A� --- FG=�! A� --- FG=�
0

given by �0ð½ða; xÞ	 ¼ ½�ða; xÞ	. Indeed, let ða; xÞ �
�
ða0; x0Þ, meaning a ¼ a0�ðx; x0Þ and

�ðxÞ ¼ �ðx0Þ. We have to show that ha�ðxÞ�
�0 ha0�ðx0Þ, where �0ðx; x0Þ ¼

�ðx0Þ�1h�ðx; x0Þ�ðxÞ. One has

ha�ðxÞ ¼ ha0 h�ðx; x0Þ�ðxÞ ¼ ha0�ðx0Þ�0ðx; x0Þ:

Thus �0 is a well-defined homomorphism and the diagram

A / FG �! A / FG=� ¼ C
# � # �0

A / FG �! A / FG=�
0 ¼ C0

is commutative.
Now consider the following diagram

1 �! A !
�

C !
 

G �! 1
# h # �0 jj

1 �! A !
�0

C0 !
 0

G �! 1

with sections 	 : G! C, 	 0 : G! C0 defined as above. Clearly �0h ¼ �0� and
�0	ðxÞ	ðxÞ�1 ¼ �0ðð1; jxjÞÞ�0ðxÞ ¼ ½ð�ðjxjÞ; jxjÞ	½ð1; jxjÞ	�1 ¼ ½ð�jxjÞ; 1Þ	. But ��ðjxjÞ ¼
hxh�1x�1. It follows that ½E	 ¼ ½E0	.

Conversely, define a map 
0 : E1ðG;AÞ ! H2ðG;AÞ as follows. Let ½E	 2 E1ðG;AÞ

and E ¼ ð1! A!
�
C!

 
G! 1; 	Þ. Then one gets a commutative diagram

MG
!
!

l0

l1

FG !
�

G

# � # � jj

A !
�

C !
 

G

with � induced by 	 and �� ¼ �l1�l
�1
0 . Clearly � is a crossed homomorphism such

that �ð�Þ ¼ 1 and Im� � ZðAÞ. Define 
0ð½E	Þ ¼ ½ð�; 1Þ	.
We have to show the well-definedness again. If �0 is another homomorphism

such that ��0 ¼ �, then �ðyÞ �0ðyÞ�1 2 ZðAÞ, y 2 FG. Thus ��
0�1 induces a crossed

homomorphism � : FG ! ZðAÞ and it is obvious that ð�0; 1Þ ¼ ð�l0; 1Þð�; 1Þð�l1; 1Þ
�1

with ð�; 1Þ 2 DerðFG;AÞ.
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Assume now that E is equivalent to E0 ¼ ð1! A!
�0

C0 !
 0

G! 1, 	 0Þ by the pair
ðh : A! A, # : C! C0Þ implying the equality �ð#	ðxÞ	 0ðxÞ�1Þ ¼ hxh�1x�1, x 2 G.
By using the equalities  � ¼  0�0 ¼ �, �� ¼ �l1�l

�1
0 , �0�0 ¼ �0l1�

0l�10 , �0h ¼ #�, one
gets #� ¼ �0��0, #�l0 ¼ �

0�l0�
0l0, #�l1 ¼ �

0�l1�
0l1, where � : FG�!A is a crossed

homomorphism induced by #��0�1.
Clearly ð�; hÞ is an element of DerðFG;AÞ. Further, ���l0 ¼ �l1, so one has

#��#�l0 ¼ #�l1 and the following equalities

#���0�l0�
0l0 ¼ �

0�l1�
0l1;

#���0�l0 ¼ �
0�l1�

0l1�
0l�10 ;

�0h��0�l0 ¼ �
0�l1�

0�0:

Finally �0 ¼ �l�11 h��l0.
Therefore ð�0; 1Þ is equivalent to ð�; 1Þ. It is easily checked that 

0 and 
0
 are

identity maps. &

4. Higher non-abelian cohomology. Let ðA; �Þ be a G-partially crossed P-mod-
ule. Take the free cotriple resolution F�ðGÞ of the group G:

� � �
!
..
.

!
Fnþ1

�!
..
.

�!

@ nþ1
0

@ nþ1
nþ1

Fn
!
..
.

!

@ n
0

@ nn

� � �
!
..
.

!
F2
�!
!
�!

@ 2
0

@ 2
2

F1!
�1
M0
!
!

@ 1
0

@ 1
1

F0�!G ð4:1Þ

with Fn ¼ F
nþ1ðAÞ, n � 0, F0 ¼ FðAÞ the free group generated by A and

F nþ1ðAÞ ¼ FðF nðAÞÞ, @ ni ¼ F
i�F n�i, sni ¼ F

i�F n�i, where � : FðAÞ�!F2ðAÞ is induced
by the canonical inclusion A! FðAÞ. Clearly ðA; �Þ can be viewed as an Fn-partially
crossed P-module induced by �@10@

2
0 � � � @

n
0. Therefore the group DerðFn; ðA; �ÞÞ,

n � 0, is defined. Denote by fZ1Z1ðFn; ðA; �ÞÞ the subset of DerðFn; ðA; �ÞÞ consisting of
all elements of the form ð�; 1Þ for n odd and of the form ð�; rÞ for n even satisfying
the condition

Ynþ1
j¼0

ð�@nþ1j Þ
"j ¼ 1; "j ¼ ð�1Þ

j:

Since ��ðxÞ ¼ 1 for any x 2 Fn and for n odd, in this case we have �ðFnÞ � ZðAÞ,
n � 1. In the set fZ1Z1ðFn; ðA; �ÞÞ, n � 1, a relation � is introduced as follows:
ð�0; 1Þ � ð�; 1Þ for n odd and ð�0; r0Þ � ð�; rÞ for n even if there is an element

ð�; hÞ 2 DerðFn�1; ðA; �ÞÞ such that

�0ðxÞ ¼ h�ðxÞ
Yn
i¼0

ð�@ni ðxÞÞ
"i ; "i ¼ ð�1Þ

i; x 2 Fn;

and r0 ¼ r for n even.
The homomorphism �@1in@

2
in�1
� � � @ n�1i2

@ni1 does not depend of the sequence ði1; i2;
� � � ; in�1; inÞ implying

�@nj ðxÞ ð�@
n
l ðxÞÞ

�1
¼ ð�@ nl ðxÞÞ

�1
ð�@nj ðxÞ 2 Ker�; x 2 Fn;
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for 0 � j; l � n. It follows that the product
Qn

i¼0ð�@
n
i ðxÞÞ

"i , "i ¼ ð�1Þ
i, does not

depend on the order of the factors. Obviously the aforedefined relation is an
equivalence.

Definition 4.1. The higher non-abelian cohomology of a group G with coeffi-
cients in a G-partially crossed P-module ðA; �Þ is given by

Hnþ1ðG; ðA; �ÞÞ ¼fZ1Z1ðFn; ðA; �ÞÞ= �; n � 1:

It is easily checked that for n ¼ 1 we recover the second cohomology set of G with
coefficients in ðA; �Þ.

The map Hnþ1ðG;Ker�Þ ! Hnþ1ðG; ðA; �ÞÞ given by ½ f 	7!½ð f; 1Þ	 is surjective
and is bijective if � : A! P is the trivial homomorphism (in this case A is abelian).

In order to express this in terms of the derived functors of the group of deriva-
tions with respect to the contravariant variable, cohomotopy pointed sets of some
cosimplicial groups will be introduced.

Let

G� : G0
!
!G1

!
!
!G2;

!
..
.

!
� � �
!
..
.

!
Gn
!
..
.

!
Gnþ1

!
..
.

!
� � �

be a cosimplicial group. Clearly @ nj @
n�1
i ¼ @ni @

n�1
j�1 , i < j.

Assume that G� satisfies the following condition:
(a) Denote by Lnþ1 the subgroup of Gnþ1 generated by

Snþ1
i¼0 @

n
i ðGnÞ. Then for

any element x 2 Gn, n � 0, the product @ni ðxÞ @
n
j ðxÞ

�1, 0 � i, j � nþ 1, commutes
with every element of Lnþ1.

In particular it follows that one has the equality @ni ðxÞ @
n
j ðxÞ

�1
¼ @nj ðxÞ

�1 @ni ðxÞ,
0 � i, j � n, n � 0.

Under this condition the cosimplicial group G� induces a group chain complex

1�!G0!
d0
G1!

d1
G2!

d2
� � �Gn!

dn
Gnþ1�!

dnþ1
� � �

with dnðxÞ ¼
Qnþ1

i¼0 @
n
i ðxÞ

"i , "i ¼ ð�1Þ
i, n � 0. It is easily checked that the maps dn,

n � 0, are homomorphisms and dndn�1 ¼ 0, n � 1.

Definition 4.2. The right quotient sets Ker dn=Imdn�1 will be called cohomo-
topy sets �nðG�Þ, n � 0, of the cosimplicial group G�.

It is obvious that for abelian cosimplicial groups we recover the well known
homology groups.

Proposition 4.3. Let

1�!G0��!G��!G
00
��!1

be a short exact sequence of cosimplicial groups satisfying condition (a). Then there is
a long exact sequence of pointed cohomotopy sets

1�!�0ðG
0

�Þ�!�0ðG�Þ�!�0ðG
00

�Þ�!�1ðG
0

�Þ�! � � � �!�n�1ðG
00

�Þ

�!�nðG
0

�Þ�!�nðG�Þ�!�nðG
00

�Þ�!�nþ1ðG
0

�Þ�! � � �
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Proof. Straightforward. &

This definition of cohomotopy pointed sets defined for cosimplicial groups
satisfying the aforementioned condition allows us to define cotriple right derived
functors of some group valued contravariant functors.

Let A be an arbitrary category and F ¼ ðF; �; �Þ be a cotriple in the category A.
For any object A 2 obA take its cotriple resolution:

F�ðAÞ!
�
A:

similarly to the case of groups considered above.
Let T : A! Gr be a contravariant functor to the category of groups satisfying

the following condition:
(b) the product T@nþ1i ðxÞ T@

nþ1
j ðxÞ

�1, 0 � i, j � nþ 1, n � 0, commutes with
every element of the subgroup of TFnþ1ðAÞ generated by

Snþ1
i¼0 ImT@

nþ1
i , n � 0.

Definition 4.4. The right derived functors of the contravariant functor T with
respect to the cotriple F are the pointed sets

RnFTðAÞ ¼ �nðTF�ðAÞÞ; n � 0; A 2 obA:

If f : A! A0 is a morphism of the category A, then one gets a morphism
TF�ð f Þ : TF�ðA

0Þ ! TF�ðAÞ inducing maps of pointed sets RnFTð f Þ ¼ �nTF�ð f Þ :
RnFTðA

0Þ ! RnFTðAÞ, n � 0.

Remark 4.5. One can define similarly the right derived functors RnLT with
respect to a triple L in the category A for group valued covariant functors T satis-
fying the same condition.

As noted above the main application of these derived functors will be their close
relationship with non-abelian cohomology of groups.

Let ðA; �Þ be a G-partially crossed P-module and consider the free cotriple
resolution F�ðGÞ of the group G (see (4.1)). In general the cosimplicial group
DerðF�ðGÞ; ðA; �ÞÞ does not verify condition (a), in other words the contravariant
functor Derð�; ðA; �ÞÞ from the category of groups acting on ðA; �Þ to the category
of groups Gr does not verify condition (b). Below it will be shown that for a wide
class of coefficients ðA; �Þ condition (b) holds for the functor Derð�; ðA; �ÞÞ.

One gets a sequence of groups and maps

1�!DerðF0; ðA; �ÞÞ!
d0

DerðF1; ðA; �ÞÞ!
d1
� � � �!

�!DerðFn; ðA; �Þ!
dn

DerðFnþ1; ðA; �ÞÞ !
dnþ1
� � �

ð4:2Þ

with dnðð�; rÞÞðxÞ ¼ ð	; sÞ, where 	 ¼
Qnþ1

i¼0 ð�@
nþ1
i Þ

"i , "i ¼ ð�1Þ
i, ð�; rÞ 2 DerðFn;

ðA; �ÞÞ, x 2 Fnþ1, s ¼ 1 for n even and s ¼ r for n odd.
Introduce in Ker dn, n � 0, an equivalence by ð�0; r0Þ � ð�; rÞ() there exists

ð�; hÞ 2 DerðFn�1; ðA; �ÞÞ such that �0ðxÞ ¼ h�ðxÞ
Qn

i¼0�@
n
i ðxÞ

"i , "i ¼ ð�1Þ
i, r0 ¼ r.

Clearly the quotient sets coincide with Hnþ1ðG; ðA; �ÞÞ, n � 1. It is easily checked
that one has Ker d0 � DerðG; ðA; �ÞÞ. Moreover, the composite dndn�1, n � 1, is the
trivial map and the maps dn are homomorphisms for n odd.
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Proposition 4.6. Let ðA; �Þ be a G-partially crossed P-module such that P acts
trivially on Ker�. Then the maps dn of the sequence (4.2) are homomorphisms for all
n � 0. Moreover, in this case Im dn belongs to the center of DerðFnþ1; ðA; �ÞÞ for n
even and Ker dn belongs to the center of DerðFn; ðA; �ÞÞ for n odd.

Proof. Use the equalities �@ nþ1i ðxÞ�@
nþ1
j ðxÞ

�1
¼ �@ nþ1j ðxÞ

�1�@nþ1i ðxÞ, 0 � i; j �
nþ 1, for ð�; rÞ 2 DerðFn; ðA; �ÞÞ and the fact that in this case any element of the
form ð�; 1Þ 2 DerðFn; ðA; �ÞÞ belongs to the center. &

Theorem 4.7. Let ðA; �Þ be a G-partially crossed P-module with P acting trivially
on Ker� and let F be the free cotriple in the category of groups acting on ðA; �Þ.

(i) One has isomorphisms

R0
FDerðG; ðA; �ÞÞ � DerðG; ðA; �ÞÞ;

RnFDerðG; ðA; �ÞÞ � Hnþ1ðG; ðA; �ÞÞ; n � 1;

and Hnþ1ðG; ðA; �ÞÞ is an abelian group for n odd.

(ii) Any short exact sequence of G-partially crossed P-modules

1�!ðA0; �0Þ!
’
ðA; �Þ!

 
ðA00; �00Þ�!1

with P acting trivially on Ker�0, Ker� and Ker�00, induces a long exact
cohomology sequence

1�!DerðG; ðA0; �0ÞÞ�!DerðG; ðA; �ÞÞ�!DerðG; ðA00; �00ÞÞ�!

�!H2ðG; ðA0; �0ÞÞ�!H2ðG; ðA; �ÞÞ�!H2ðG; ðA00; �00ÞÞ�!

�!H3ðG; ðA0; �0ÞÞ�! � � � �!Hn�1ðG; ðA00; �00ÞÞ�!

�!HnðG; ðA0; �0ÞÞ�!HnðG; ðA; �ÞÞ�!HnðG; ðA00; �00ÞÞ�!

�!Hnþ1ðG; ðA0; �0ÞÞ�! � � � :

Proof. Since the functor Derð�; ðA; �ÞÞ satisfies condition (b) with respect to the
free cotriple F, the right derived functors of Derð�; ðA; �ÞÞ are well defined, the
sequence (4.2) becomes a complex of non-abelian groups and the statement of (i)
follows from Proposition 4.6.

The short exact coefficient sequence of (ii) induces a short exact sequence of
cosimplicial groups

1�!DerðF�ðGÞ; ðA
0; �0ÞÞ�!DerðF�ðGÞ; ðA; �ÞÞ�!DerðF�ðGÞ; ðA

00; �00ÞÞ ! 1

satisfying condition (a). It remains to apply Proposition 4.3 to get the required long
exact cohomology sequence. &

The definition of non-abelian cohomology with coefficients in G-partially cros-
sed P-modules allows as to introduce the definition of higher non-abelian cohomol-
ogy of a group G with coefficients in any G-group. This can be done as follows.

Let A be an arbitrary G-group, meaning the group G acts on the left on the
group A. Take the quotient group P ¼ A=ZðAÞ. Define an action of P on A and an
action of G on P as follows:
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½a0 	a ¼ a0a; ½a0	 2 P; a; a0 2 A;
g½a	 ¼ ½ga	; g 2 G; a 2 A:

Let �A : A�!P be the canonical homomorphism. It is easily checked that the pair
ðA; �AÞ is a G-crossed P-module under the aforedefined actions.

Definition 4.8. The n-th cohomology HnðG;AÞ, n � 0, of the group G with
coefficients in a G-group A is given by

HnðG;AÞ ¼ HnðG; ðA; �AÞÞ; n � 0:

For n ¼ 1 this cohomology differs from the first pointed set cohomology defined
in [10].

Let

1�!A!
’
B!

 
C�!1

be a central extension of G-groups. Then  induces an isomorphism of G-groups
# : B=ZðBÞ!

�
C= ðZðBÞÞ and one gets a short exact sequence of G-crossed P-mod-

ules with P ¼ B=ZðBÞ

1�!ðA; 1Þ!
’
ðB; �BÞ!

 
ðC; �CÞ�!1;

where �C is the composite of the canonical map C! C= ðZðBÞÞ and the iso-
morphism #�1.

Corollary 4.9. Any central extension of G-groups

1�!A!
’
B!

 
C�!1

induces a long exact cohomology sequence

1�!H0ðG;AÞ!
’0

H0ðG;BÞ!
 0

H0ðG;CÞ!
�0

H1ðG;AÞ!
’1

H1ðG;BÞ

!
 1

H1ðG; ðC; �CÞÞ!
�1

H2ðG;AÞ!
’2

H2ðG;BÞ!
 2

H2ðG; ðC; �CÞÞ

!
�2

H3ðG;AÞ!
’3

� � � �!Hn�1ðG; ðC; �CÞÞ�!
�n�1

HnðG;AÞ

!
’n

HnðG;BÞ!
 n

HnðG; ðC; �CÞÞ!
�n

HnðG;AÞ�! � � � :

Proof. Clearly in the induced short exact sequence of G-crossed P-modules the
group P acts trivially on Ker�B and Ker�C. So we can apply Theorem 4.7 giving
together with Theorem 3.6 the required long exact cohomology sequence. &
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