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Abstract

In the present paper we prove that every finite dimensional non-atomic measure v is open
and monotone (viz. v~' preserves connected sets) relative to the usual Fréchet-Nikodym
topology on its domain and the relative topology on its range. An arbitrary finite dimensional
measure is found on the other hand to be biquotient.

Given a vector measure v, we further investigate the properties of its integral map
T.: ¢ — [ ¢dv defined on the set of functions ¢ in L,(|v|) for which ¢(s) € [0, 1] | v|-almost
everywhere. When v is finite dimensional, T. is found to be always open. In general, when T, is
open, the set of extreme points of the closed convex hull of the range of v is proved to be closed,
and when v and T, are both open, the range of v in itself is closed.

1. Introduction

We assume throughout the paper v to be a measure defined on a
o-algebra & of subsets of some set $ with values in a real Fréchet space X.
As X is metrizable, according to Hoffman-Jorgensen (1971) there exists a
finite positive measure A on & such that ¥ = A ; such a measure A is said to be
a control measure of v. Unless otherwise stated, we denote by A a control
measure of v.

The quotient o-algebra of o modulo the o-ideal of A-null sets is
denoted by o in itself. On this new o the Fréchet-Nikodym metric induced
by A_is defined by p(A,B)=A(AAB), A, B € o, where AAB denotes the
symmetric difference of A and B. The topology 7 induced by p on « is
independent of the choice of A, and v: o — X is continuous relative to this
topology.

The spaces L,(A) and L.(A) are denoted briefly by L, and L. respec-
tively. As X is a Fréchet space, each ¢ € L. has an integral [ ¢dv € X in the
sense of Bartle, Dunford and Schwartz (1955). Following Lindenstrauss (1966)
we denote by T the integral map ¢ — [ ¢dv from L into X. It follows from
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the Radon-Nikodym theorem that T is continuous relative to the weak*-
topology o(L., L,) on L. and the weak topology o(X, X') on X, where X'
denotes the continuous dual of X. The set of ¢ € L. for which 0 = ¢(s)=1
for A-almost every s € S is denoted by P. Since A is a finite measure, we have
L.CL,, and unless otherwise stated, P is assumed to have the topology of L,.
The subset of P consisting of characteristic functions y. of sets A in o is
denoted by P,. The set P is convex and it is compact relative to the
weak *-topology (see Kingman and Robertson (1968)). The restriction of T to
P will be denoted by T, and the closed convex hull of the range v (%) of v by
K. Then K is weakly compact and T,(P)= K (see e.g. Anantharaman (1973)
or Kluvanek and Knowles (1974), Theorem IV.6.1).

For every a € v(«f) it is easy to see that every characteristic function in
T.'(a)is an extreme point of this set. A measure v is said to have property (*)
(Anantharaman and Garg) if for every a € v(¥) each extreme point of
T.'(a) is a characteristic function. The measure is further called semi-convex
(Halmos (1948)) if for every A € o there exists B € &, B C A, such that
v(B)=1v(A).

As we see in (Anantharaman and Garg), every semi-convex measure has
property (*), whereas the converse is false; there further exist non-atomic
l;-valued measures that do not have property (*).

If E and F are two topological spaces, a continuous onto map f: E = F
is said to be open if f(U) is open for every open subset U of E, and f is called
biquotient (Michael (1968)) if for every y € F and for each open cover U of
£ !(y) there exists a neighborhood of y that is covered by finitely many f(U),
U € %. In case f is not onto, it is said to be open or biquotient if it is so with
respect to the relative topology of f(X). The map f is further called monotone
(Kuratowski (1968)) if f~' preserves connected sets, and weakly monotone
(Whyburn (1970); Garg (1977)) if f~'(y) is connected for each y € F. These
properties of v and T, are defined in terms of the 7- and L,(A)-topologies on
& and P respectively.

We first study in Section 2 the openness of the map T.. It is proved in
Theorem 2.2 to be open whenever the range of v is finite dimensional. If on
the other hand T, is open, where the range of v may be infinite dimensional,
the extreme points of the closed convex hull of the range of v are proved in
Proposition 2.3 to form a closed set. In Proposition 2.6 we compare the
openness of T, with its openness relative to the weak*-topology on P and the
weak topology of its range K.

Section 3 deals with the properties of ». Every semi-convex measure is
proved in Theorem 3.1 to be weakly monotone, and then in Theorem 3.5 a
finite dimensional non-atomic measure is proved to be open and monotone.
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These results have already appeared in Anantharaman (1974) and Kluvanek
and Knowles (1974), and the openness part has been obtained independently
by Karafiat (1974) using different methods. An infinite dimensional non-
atomic measure is not generally open even if it is semi-convex (see Remark
3.6). In general, if v and T, are both open, it is proved in Proposition 3.8 that
the range of v is closed. Finally, in Theorem 3.11, every finite dimensional
measure is proved to be biquotient.

The principal tools employed here are two characterizations of open
maps by Sikorski (1955) and Héjek (1967), two results of Michael (1959, 1968)
on lower semi-continuous set-valued functions and on biquotient maps, and a
theorem of Jerison (1954) on the extreme points of a limit of compact convex
sets.

2. Properties of T,

We first state the two characterizations of open maps due to Sikorski
(1955) and H4jek (1967) that are used repeatedly in the paper.

Let E be any topological space. The space of nonempty closed subsets of
E is denoted by 2. The superior and inferior limits of a net (A,) in 2%
denoted by Ls A. and Li A,, are defined to be the set of elements x of E of
which every neighborhood intersects the net frequently or eventually respec-
tively (Kuratowski (1966)).

Sikorskrs THEOREM. If E and F are metric spaces, then a continuous onto
map f: E — F is open if and only if for every sequence {y,} of elements of F
converging to some y € F we have

') =Lif "(y.)=Lsf '(yn).

HAek's THEOREM. If E is a topological space and F is a Hausdorff space,
then a continuous onto map f: E — F is open if and only if for every net (y.) of
elements of F converging to y € F we have

[ (y)=Lsf(ya).

Let v, A, P and K be as defined in Section 1. For any net (A,) in 27 the
limits Ls A, and Li A, are defined relative to the L,-norm topology of P. Let
o denote the metric on P induced by the norm of L, and d be the Hausdorff
metric (see Kuratowski (1966)) induced by o on 27, viz. if A, B €2", then
d(A, B) is the supremum of o(¢, B) and o (¢, A) for ¢ €A and ¢ € B.

LEMMA 2.1. If a finite signed measure v is absolutely continuous with
respect to a finite positive measure A, then for every sequence {x.} of elements of
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K converging to some real number x, the sequence {T,'(x,)} convergesto T.'(x)
in the Hausdorff metric on 2",

Proor. We shall first assume that v = A. Since the metric induced by A
on P is easily verified to be equivalent to the one induced by the variation | v|
of v, in this case we may further assume A =|v|. Let $*, S~ denote a Hahn
decomposition of S relative to v and let a = v(§7), B = v(S7). Since

T.(P)=K = cov(sf) = [ B].

it clearly suffices to show that d(T.'(x), T.'(y))=|x—y| for every
x,y €[a, B].

Let us first prove that for every ¢ € T.'(x), o(d, T.'(y))=|x — y|, and
for this we need to show that there exists ¢ € T '(y) such that ¢ — ¢ || =
[x —y|. When y = x, ¢ may clearly be taken to be ¢. In case y < x, let

v=d it )=t o+ Ly

X —« X —«

Since a = y < x, ¢ is then a convex combination of ¢ and ys-, whence ¢ € P,
and we have

LW =T($)+7—2 Tlxs ~d)=x+7—2(a-x)=y,

whereas

lo ol =222 [ 1x —alalv|=2=2{[ oav-[ a-s)a]

X~ «

:x_—x<f ¢du—a)=xx—__—l(x—a)= ~y.

X—a
When y > x, we have 8 = y > x, and so putting this time

=+ (= 9),
it follows as above that y € P, T.(y)=y and |¥ —¢|i=y—x. Thus
o(b, T\ (y)=|x —y| for every ¢ € T.'(x). On interchanging x and y it
follows that o(y, T.'(x))=|x — y| for every Y € T"'(y), and so we have
d(T.'(x), T.'(y))=|x — y|, which proves the lemma in case v = A.

In general there exists a set S, € o such that v is equivalent to the
restriction of A to S, and the complement S, of S, is v-null. Let

P={¢EPO0=¢=xs}, P.={0EP0=6=yxs}
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and let T, be the restriction of T to P,. For every x and y in T\(P,) = [a, B]

we have
T:'(x)=Ti'(x)+ P, T.'(y)=Ti'(y)+ P,,

from which it follows that
d(T.'(x), T.(y) = d(T7'(x), Ti'(y))

If {x.} is a sequence in {e, B] converging to x, it follows from the first part of
the proof that d(T7'(x.), T1'(x))— 0 as n - », and so d(T,'(x.), T.'(x))—
as n — ». Hence the lemma.

THEOREM 2.2. If the range of v is finite dimensional, then T, is open.

Proor. Let v:sf — R* and A be a control measure for v, e.g. its
variation. Foreach i = 1,2, - - -, k, let »,(A) be the i-th coordinate of v(A) for
every A € A, and T;(¢) be the i-th coordinate of T,(¢) for every ¢ € P. It
follows that T,(¢)=f¢dv, for every ¢ EP and 1=i=k. The map
T.: P— K is continuous, and to prove its openness it suffices to show by
Hajek’s theorem that Ls T.'(y,) = T.'(y) for every net (y.) of elements of K
converging to y € K. Since R* is a metric space, we may replace the net by a
sequence {y.}, and it further suffices to show that the sequence {T.'(y.)}
converges to T;'(y) in the Hausdorff metric on 27 (see Kuratowski (1966)).

Let, for every n, y. = (y.:)i-1 and y = (y.)i-:. Since the sequence {y.}
converges to y, the sequence {y..} converges to y; for 1 =i = k. For each i we
have, by Lemma 2.1, d(T:'(y..), T:'(y;))—0. Since the operation
(A,B)— A N B, A, B €2", is continuous relative to the Hausdorff metric on
27 (see Kuratowski (1966)), we obtain

a( () THow), () T00) -0,

i.e. d(T.'(y.), T"'(y))—0. Hence T, is open. This completes the proof.

ProrosiTION 2.3. If v is a measure such that T, is open, then the extreme
points of the closed convex hull of its range form a closed set.

Proor. Let K = co v(), and let {x,} be a sequence of extreme points of
K which converges to some x € X. Since K is closed, x €EK. As X is a
Fréchet space, K = T, (P) (see Section 1). By Proposition 2 of Anantharaman
(1973) (or see Kluvanek and Knowles (1974), Corollary VI1.1.1), a point x of K
is an extreme point of K if and only if T.'(x) is a singleton and a characteristic
function. Thus for each n there exists a unique set E, € o such that
x, = v(E,). Since P and K are metrizable and T,: P— K is open, it follows
from Sikorski’s theorem that T.'(x) is the superior and inferior limit of
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{T.'(x.)}, i.e. of the sequence {{xe,}}, and so T;'(x) must be a singleton in P.
Since xe, € P for every n, and Py is closed in P, we have T.'(x) € P,, and so x
is an extreme point of K. This completes the proof.

The above proposition yields, with the help of Theorem 2.2,

CoroLLARY 2.4. The extreme points of the closed convex hull of the range
of every finite dimensional measure form a closed set.

ReMARK 2.5. The above corollary does not hold in infinite dimensions in
general. The following example was suggested by Professor J. L. B. Gamlen.
Let A be the restriction of the Lebesgue measure on R to [ —1,1], s be the
domain of A, and define the measure v: & — L [0,1] by

v(E) = xenpn+ A(E N[~ 1,0Dx00
for each E € &. It may be verified that

K=cov(sd)={d+ayo ¢ €EL[0,1],0=¢=1,0=a=1}
and
extK={xa:AE A AC[0,1],0=A(A)<1}U
{xa + x10.: A € &, A C[0,1], A(A)>0}.

Then ext K contains the convergent sequence {xo:1-4} whose limit (o, is not
in ext K. It also shows, according to Proposition 2.3, that T, is not open in
general.

In the next proposition we compare the openness of T, relative to two
topologies on its domain and range. For any net (A.) in 2°, its superior limit
relative to the weak*-topology on P will be denoted by Ls* A,.

ProposITION 2.6. If the range of v is relatively compact and T, is open, then
the map T,: (P, w*)— (K, w) is open.

Conversely, if v is semi-convex and the map T,: (P, w*)— (K, w) is open,
then the range of v is compact and T, is open.

ProOF. Suppose that v(H) is relatively compact and T, is open. Then
K = co v(s) is compct. Let (x.) be a net of elements of K converging weakly
to some x € K. Then (x.) converges to x relative to the given topology on X,
and as T, is open, according to Hajek’s theorem we have
T.'(x)=Ls T, (x,).

Since the weak*-topology of P is coarser than the L,-norm topology, we
obtain

https://doi.org/10.1017/51446788700019601 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700019601

wl Properties of vector measures 459
T.'(x)=Ls T, (x.) CLs* T;(x.)C T."(x),

the last inclusion being a consequence of the continuity of
T.:(P,w*)—(K,w). Now it follows from Hajek’s theorem that
T.:(P,w*)— (K, w) is open.

Conversely, suppose that v is semi-convex and T.:(P,w*)— (K, w) is
open. According to Kingman and Robertson (1968) we have v(«f)= K. The
map v: (A, 7)— (K, w) is clearly continuous, and we claim that it is open.

For let (x,) be a net of elements of K converging weakly to some x € K.
Since K = T,(P) and T.: (P, w*)— (K, w) is assumed to be open, by Hajek’s
theorem we have '

T.'(x)=Ls* T.'(xa).

According to a theorem of Jerison (1954) we have

Ls* T.'(x.) = co (Ls* ext T2 (x.. ).
Since v is semi-convex, it has property (*) and so
ext T.'(x.)={xe: EE€ A, v(E)=x.}

for each a. Hence .We obtain

T:'(x)=co(Ls*{xs: E € &, v(E) = x.}).
According to Milman’s theorem we have

ext T.'(x)CLs*{xz: E € o, v(E) = x.},
and as x € v(&f) and v has property (), we get

{xe:E€E A, v(E)=x}CLs*{xs: EE€ A, v(E) = x.}.

Since the weak*-topology coincides with the L;-norm topology on the set P,
we have
{xe:E€ A, v(E)=x}CLs{xs: E€ oA v(E)= x.},
and as (P,, || |l;) can be identified with (&, 7), we get
v I{(x)CLs v '(x,).

The reverse inclusion follows from the continuity of v, whence
v: (o, 7)— (K, w) is open by Héjek’s theorem.

Now K is weakly compact, and to show that it is compact let (x,) be a net

of elements of K converging weakly to some x € K. Since x € v(H),
Lsv7'(x.) is not empty by above. Hence there exists a subnet (v '(x;)) of
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(v '(x.)) and, for each B, a set E; € v™'(x,) such that (E,z) converges to some
E € v'(x). As v is continuous relative to the given topology of K, (xg)
converges to x in the latter topology as well, and so the two topologies on K
coincide. Hence K is compact.

Finally we need to prove that T, is open. The spaces P and K are
metrizable. Thus let {x,} be a sequence in K(= v()) converging to some
x € K. Then {x,} converges weakly to x, and as v: («, 7)— (K, w) is open, by
Hajek’s theorem we have v '(x) = Ls v~ '(x,). Further, for any subsequence
{xn} of {x.} we have v '(x)=Lsv '(x,), and so it follows that v7'(x)=
Liv~'(x.) (see Kuratowski (1966)). Hence we obtain

{xe: E € o, v(E) = x} CLi T5'(x.).

As v has the property () and x € v(«), we have

T.'(x)Cco{xe: E € o, v(E) = x},
whence
T'(x)CLi T, (x,) CLs T, '(x,),

and so T, is open by Sikorski’s theorem. This completes the proof of the
proposition.

With the help of Theorem 2.2 we obtain, from the first part of
Proposition 2.6,

CoroLLARY 2.7. If vis finite dimensional, then the map T,: (P,w*)— K is
open.

3. Properties of v
THEOREM 3.1, Every semi-convex measure is weakly monotone.

ProOF. Let A be a control measure of v. For every pair of sets A, B in &,
let A=B if A(A/B)=0. Then = is a partial order on o and (&, <)is a
complete lattice (see Halmos (1950), p. 169). It is easy to see that this order is
independent of the choice of A. If € is a chain for =, then the order topology
(see Birkhoff (1967)) of C coincides with the one induced by 7 on €. Indeed, if
C € € and (C,, ;) is an open order interval containing C, then on putting

r=1A(C) if C=é
=1min{A(C\C\),A(C\C)} if ¢<C<S
= 1A (5\C) if C=S$
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we have

B(C,r)={E € 6, A\(EAC)< r}C(C,, C)).

On the other hand, for every C € € and r >0 one may easily find an order
interval (C,, C>) containing C ([C, ;) if C = ¢ and (C,, S]if C = §) such that
(C,, C.)CB(C,r).

Now assume v to be semi-convex and A, B to be any two distinct
elements of & such that v(A) = v(B). It is sufficient to show that A and B
are members of a connected subset € of v'(v(A)). We have v(A\B)=
v(B\A) = x, say. Since v is semi-convex, one can find, (see Schmets (1966), p.
185), chains € ={C,: 0 €[0,1]} and @ = {D,: 6 €[0, 1]} of subsets of A\B
and B\A respectively with the following properties:

Co=Dy= ¢, C,= A\B, D, = B\A,
C,, < G, if and only if 8, < 9,,
D, < D, if and only if 6, < 8,,

and v(C,) = 6x = v(D,) for every 6 € [0,1].

Since the maps 8§ — C, and 6 — D, are order-isomorphisms of the chain
[0, 1] onto the chains € and & respectively, they are also homeomorphisms
relative to their chain topologies. Since these chain topologies coincide with
their induced r-topologies, the maps are homeomorphisms relative to the
latter topologies as well. As each of the operations of union, intersection and
complementation is continuous on & X & relative to the product topology
7 X 7 (see Halmos (1950), p. 168), the map

9 — E, =(A\C,)UD,, 6 €[0,1]

is continuous. Hence € = {E,: 8 €[0, 1]} is a connected subset of «. Further,
for every 8 €[0,1] we have
v(Es)=v(A)— v(GCo) + v(Dy) = v(A),

while E, = A, E, = (A\(A\B))U(B\A)= B. Thus A and B belong to the
connected subset € of v™'(A), which completes the proof.

As a consequence of Theorem 3.1 we obtain the following well-known
result of Halmos (1948):

CoroLLARY 3.2 (Halmos). Every finite dimensional non-atomic measure
is semi-convex.

Proor. It will clearly suffice to prove the following: Let v: A — X be
semi-convex, and u be a finite signed measure on &f that is absolutely
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continuous with respect to ». Then the measure 7 : & — X X R defined by
7(E)= (v(E), n(E)), E € o is also semi-convex.

Let A be a control measure of v, A € &, and w(A) = a = (a;, az). Since
the restriction v, of v to A is semi-convex, the set €=
{E € : E CA, v(E)=3a}is nonempty, and is by Theorem 3.1 connected in
(4, 7). As u is continuous on &, w(%) is an interval. For each E € &,
A\E €€, and so a.=u(A)=u(E)+ u(A\E)E n(¥), i.e. 7w '(Ga) is
nonempty.

Remark 3.3. Theorem 3.1 does not hold in general for non-atomic
measures in infinite dimensions. For if v is the measure as defined in Remark
2.5, it may be easily verified that v '{xq.} = {xi-1.01 X0.)}, Which is not
connected.

The converse of Theorem 3.1 does not hold even in finite dimensions, as
is evident from any atomic measure with a single atom. In infinite dimensions
there exist non-atomic monotone measures that are not semi-convex. For let
A be the restriction of the Lebesgue measure on R to [0, 1], o be the domain
of A, and define the measure v: o/ — L,[0,1] by v(E) = x, for every E € .
As v = A, it is non-atomic. As | v(E)— v(F)||= A(EAF) forevery E, FE o, v
is a homeomorphism, and so it is monotone. However, v is obviously not
semi-convex.

LemMa 3.4. If v has property (x) and T, is open, then v is open.
Proor. Similar to the second part of Proposition 2.6.

THEOREM 3.5. Every finite dimensional non-atomic measure is open and
monotone.

Proor. Since a finite dimensional non-atomic measure v is semi-convex
(Corollary 3.2), it has property (*), and so v is open by Theorem 2.2 and
Lemma 3.4. Moreover, since an open map from a Hausdorff space to a locally
compact space is monotone whenever it is weakly monotone (see Whyburn
(1970), p. 558), it follows from Thoerem 3.1 that v is monotone.

ReMARK 3.6. The converse of Lemma 3.4 holds for semi-convex meas-
ures. The proof is similar to that of Proposition 2.6. The first conclusion of
Theorem 3.5 does not hold in infinite dimensions in general even for
semi-convex measures. For let v be the measure defined in Remark 25.
According to Theorem V.5.1 of Kluvanek and Knowles (1974) there exists a
semi-convex measure u (defined possibly on a different o-algebra) whose
range is equal to &;v(&f). As we saw in Remark 2.5, extz:gv(yf) is not
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norm-closed, whence T, is not open by Proposition 2.3. Since u is semi-
convex, u is not open either, by Lemma 3.4.

ProBLEM 3.7. To investigate conditions on an infinite dimensional semi-
convex measure v under which v (or equivalently T,) is open or otherwise
biquotient (see Theorem 3.11).

ProposiTioN 3.8. If vand T, are both open, then the range of v is closed.

Proor. Let us identify of with Po={y.: A € }. The maps T,': K —2°
and v™": v(A)— 2% are then lower semi-continuous. Since K and v (&) have
the relative topology of X, they are metrizable, and so are paracompact. Since
v and T, are continuous, and their domains are complete metric spaces,
v (v(A)) and T.'(x) are complete for every A € &f and x € K. Hence,
according to a theorem of Michael (1959), there exist two lower semi-
continuous maps f: K —2° and g: v(«f)— 2% such that f(x) is a compact
subset of T.'(x) for every x € K, while g(v(A)) is a compact subset of
v '(v(A)) for every A € . Define h: K —2° by

h(x)=f(x)Ug(x) when x€v(dA)
= f(x) when x € K\v(H).
Then h(x) is compact for each x € K.

To prove that v(«) is closed, suppose that there exists a sequence {x.} in
v(&f) that converges to some element x, € v(#). We claim that Ls g(x,.) = ¢.
For, if not, then there exists a subsequence {g(x,.)} of {g(x.)} and for each m, a
function ye,, € g(x.)(C v '(x.)) such that the sequence {xx,} converges to

some element @ of P. Since P,is closed in P, ¢ € Py, say ¢ = xe (E € &), and
as T,: P— K is continuous by Lemma 2 of Anantharaman (1973), we have

Xo=limx,, = lim T.(xs,) = T.(¢) = v(E),

which contradicts the fact that x, & v(sf). Thus we have (see Kuratowski
(1966), p. 337)

Lsh(x,)=Ls{f(x,)Ug(x.)} =Lsf(x,) ULs g(x.)=Ls f(x,).

Since f is lower semi-continuous, according to a theorem of Sikorski (1955)
we have f(x,) = Li f(x,)=Lsf(x.). As h(x,) = f(x,), we have

h(xo)=Lif(x,)CLih(x,)CLs h(x,) = Ls f(x.) = f(xo) = h(x0),

so that h(x)=Lih(x.)=Lsh(x,).
Thus {h(x.)} is a sequence in 2° converging to h(x,) in the Vietoris
topology (see Kuratowski (1966)), and so the set {h(x,): n =0} is a compact

https://doi.org/10.1017/51446788700019601 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700019601

464 R. Anantharman and K. M. Garg [12]

subset of 2°. Since h(x.) is compact for every n, according to a theorem of
Michael (1951) the set C = U{h(x,):n=0}} is a compact subset of P.
Choosing xe, € g(x.)(Ch(x.)) for every n = 1, the sequence {yg,} is con-
tained in C, and so it contains a subsequence {yg, } which converges to some
element ¢ of C. It follows as in the above proof of Lsg(x.)= ¢ that
xo=T.,(¢) € v(A), and since x, € v(A), this is a contradiction. This com-
pletes the proof of the proposition.

With the help of Theorems 2.2 and 3.5 we obtain the following
well-known theorem of Liapounoff (1940):

CoroLLARY 3.9 (Liapounoft). The range of every finite dimensional non-
atomic measure is compact.

ReMARk 3.10. The range of an infinite dimensional measure v, with v
and T, both open, is not in general weakly closed. For let v be the measure
defined in Remark 3.3. Then the map T,: P— K is an ’isometry. As
v(sd)={xe: E € A} = P,, we have K = co P, = P. Since A is non-atomic, it is
clear that P, is weak*-dense in P. Further it may be verified that the
topologies o (L, L) and o(L,, L) coincide on P, and so P, is weakly dense in
P relative to the latter topology as well. As P,# P, P, cannot be weakly
closed.

As an extension of the Liapounoff’s compactness and convexity theorems
it has been proved by Knowles (1973) (see also Anantharaman (1974)) that the
range of each restriction of every semi-convex measure is convex and weakly
compact. For other equivalent conditions in this direction, see Kingman and
Robertson (1968) and Anantharaman and Garg.

THEOREM 3.11. Every finite dimensional measure is biquotient.

Proor. Let v be a finite dimensional measure and A be a control
measure of v. Then v and A have the same atoms. Let &, and &, denote the
atomic and non-atomic parts (see Halmos (1948)) of o respectively, v, and v,
be the restrictions of v to &, and #,, and R, and R, be the ranges of v, and
v, respectively. Further, for every A € o, let A, and A, denote the atomic
and non-atomic parts of A respectively.

Define the map f: o — o, X A, by f(A)= (A, A,) for every A € A,
g: A xA, >R, xR, byg=v.Xvy,andh:R, X R, - X byh(x,y)=x+y
for x € R,, y € R.. Then v = h o g o f, and according to a theorem of Michael
(1968) it is sufficient to prove that the maps f, g and h are biquotient.

The product topology on &, X &, is induced by the metric

7((A, B),(C,D))= A(AAC)+ A(BAD), (A, B),(C,D)E o, x s,
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and the map f is in fact an isometry relative to the metrics p and =
respectively. For f is clearly one-to-one, and if A, B € o, we have

m(f(A), f(B)) = m((As, A.), (Ba, B.)) = A(A.AB.) + A(A.AB,)
= A((A.AB,)U(A.AB,))= A(AAB) = p(A, B).

As v, is continuous and &, is compact (see Halmos (1947)), v, is
biquotient. Since v, is open by Thoerem 3.2, it is also biquotient, and it
follows from Thoerem 1.2 of Michael (1968) that the map g = v, X v, is
biquotient.

Finally, the set R, is clearly compact, and since v, is finite dimensional,
R, is also compact by Liapounoft’s theorem (see Cor. 3.9). Thus R, X R, is
compact, and since & is continuous on it, it is equally biquotient. Hence the
theorem.
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