
J. Austral. Math. Soc. Ser. B 41(1999), 41-57

A BRIDGING METHOD FOR GLOBAL OPTIMIZATION

Y. LIU1 and K. L. TEO1

(Received 9 February 1998; revised 26 February 1998)

Abstract

In this paper a bridging method is introduced for numerical solutions of one-dimensional
global optimization problems where a continuously differentiable function is to be mini-
mized over a finite interval which can be given either explicitly or by constraints involving
continuously differentiable functions. The concept of a bridged function is introduced.
Some properties of the bridged function are given. On this basis, several bridging algo-
rithm are developed for the computation of global optimal solutions. The algorithms are
demonstrated by solving several numerical examples.

1. Introduction

In the optimization literature, most optimization techniques seek to find local rather
than global optimal solutions. Local optimal solutions may not be very useful for many
practical optimization problems, as their cost values may be very far from the true
optimal one. One representative example is the minimization of a concave function.
In the past decade or so, global optimization has received increasing attention due to
its practical importance. As a result, many interesting methods have been developed
such as the filled function method [3], LLBF methods [1,7,8] and the branch and
bound method [2,4].

For a minimization problem without convexity structure, a classical optimization
technique often fails to find a global optimal solution. The main reason is that,
once a local minimum is reached, the method does not know how to pass a hill (for
minimization) or cross a valley (for maximization) so as to find a better local optimum.
The filled function method tries to go through a hill (for minimization) so that it does
not get stuck at a local minimum point. The branch and bound methods and the LLBF
methods try to discard subregions of the feasible region which do not contain a global
optimal solution.
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42 Y. Liu and K. L. Teo [2]

In this paper we present a new method, called the bridging method, for global
optimization. While the name bridging is used for general optimization problems, it
comes from the consideration of maximization problems. The idea of the bridging
method for maximization is to build a "bridge" over any valley which separates two
local maximum points, enabling a certain (local) maximization method to move from
one local maximum to a better one. This idea is adapted in this paper in conjunc-
tion with a smoothing technique similar to the one developed in [5] for minimization
problems involving only a single decision variable. Extension of this result to multi-
dimensional problems, which is currently under investigation, is highly nontrivial and
requires substantial effort.

The organization of the paper is as follows. The methods for constructing the right
and left bridged functions are introduced in Section 2, where some useful properties
of these bridged functions are also given. In Section 3 a computational algorithm is
developed based on the results presented in Section 2. The efficiency of the algorithm
is illustrated through solving numerous numerical examples. Some numerical results
are presented in Section 4. Concluding remarks are given in Section 5.

2. Construction of bridged functions

An important part of the bridging method is the construction of the bridged func-
tions. Suppose we have reached a local minimum using a certain local optimization
algorithm. We want to build a bridged function to replace the original cost function
so that the algorithm is able to move from the present local minimum point to a better
local minimum if the current local minimum is not globally optimal. Such a bridged
function should have the smoothness required by the algorithm in use and the current
point is no longer a local minimum point of the bridged function.

Le t / (JC) be a given continuously differentiate function on a given interval [a,b].
For any x0 e [a, b], s > 0 and S > 0, let

r(x,x0,S)=f(x0)-S(x-Xo) (2.1)

and

l(x,xo,S)=f(x0) + S(x-x0). (2.2)

For simplicity, we write r(x) for r(x,x0, 8) and l(x) for l(x, x0, S) when there is no
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ambiguity. Now define two functions, fr(x, x0, £, 8) and / ; (* , x0, e, 8), as follows:

fr(x,x0,e, 8) =

fi(x,xo,e, 8) =

r(x), if x <x0orf(x) > r(x),
r(x) - (r(je) - / (x))2/2£, if x > *„ and

f(x) + e/2,
r(x) -e <f(x) < r(x),
if x > xomdf(x) <r(x)-s,

l(x) - (/(*) -f(x))2/2s, if x < xo and
Z(x)-e</(

f{x) + e/2, ifx <x0 and f(x) <l(x)-s.

DEFINITION 2.1. The function r(jc, x0,5) (respectively, l(x, x0,8)) is called a right
(respectively, left) bridging function. The function fr{x,x0,e, 8) (respectively,
fi(x,x0, s, 8)) is called a right (respectively, left) bridged function at x0. Both
fr(x, xQ, e, 8) and ft(x, x0, e, 8) are called bridged functions at x0. The point x0

is called the bridging point, e is called the smoothing constant and 8 is called the
bridging slope of the bridged functions fr(x,x0, e,8) and fi(x,x0, e, 8).

DEFINITION 2.2. For given x0, s and 8, a subinterval of [a, b] on which fr(x, x0, e,
8) = r(x,xo, 8) is said to be under bridge. Let [rlt r2] C [*o. b] be an interval under
bridge. If no other interval contained in [x0, b] and strictly containing [ru r2] is still
under bridge, we call [r,, r2] a right bridging interval of fr(x, x0, e, 8). Let [rt, r2] be
a right bridging interval of fr{x, x0, £, 8). The restriction of fr(x, x0, £, 8) on \r\, r2]
is called a right bridge of fr(x, XQ, S, 8).

We can introduce the concepts of a left bridging interval and a left bridge for
fi(x,x0, e,8) similarly. We are specifically interested in the right bridge of fr(x, x0,
e, 8) and the left bridge of f/(x, x0, e, 8) starting from x0. We see that a right bridge
of fr(x, x0, £, 8) is a segment of this function on [x0, b] where it equals r(x, x0,8).
Similarly, a left bridge of ft(x, x0, £, 8) is a segment of this function on [a, x0] where it
equals l(x,x0, 8). In the following, we give some properties of the bridged functions.

LEMMA 2.1. For any xo € [a, b], £ > 0 and 8 > 0, we have

fr(x,x0,£,8)<f(x) + £/2, xe[xo,b] (2.3)

and

f,(x,xQ,£,8)<f(x) , xe[a,x0]. (2.4)
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PROOF. The result follows directly from the definition of the right and left bridged
functions.

LEMMA 2.2. Let f (x) be continuously differentiable on [a, b]. Then for any a <
x0 < b, e > 0 and 8 > 0, the bridged functions fr(x,x0, e, 8) and fi(x,x0, e, 8) are
continuous and continuously differentiable on [a, b]. Furthermore,

—fr(x,xo,s,8)
ox

and

—fi(x,xo,e,8) =
ox

-8,

r(x)-f(x))
8+f'(x)

ifx < x0 orf(x) > r(x),

/'(*),

ifx > x0 and
r(x)-e<f(x)<r(x),
ifx > x0 and
f (x) < r(x) - e,

(2.5)

8,

8 + (r(x)-f(x))
f'(x)-l

ifx >x0orf(x) > r(x),

ifx < x0 and
r(x)-e<f(x)<r(x),
ifx < x0 and
f(x)<r(x)-e,

(2.6)

where r(x) (respectively, l(x)) is the right (respectively, left) bridging function at x0

with smoothing constant e and slope constant 8.

PROOF. The continuity of the right bridged and left bridged functions is clear from
their definitions.

For the continuous differentiability, we only give proof for the right bridged func-
tion. The proof for the left bridged function can be obtained similarly.

Let x e[a,b]. Consider four possible cases.

1. If* < x0 or f (x) > r(x), then/,. (*,*(), £, 8) = r(x) in a neighborhood of x.
Thus

—fr(x,x0,£,8) = -8
dx

and (2.5) holds true in this case.
2. We can similarly show that (2.5) is true ifx > x0 and r(x) — e < f (x) < r(x),

or if* > *0 and/(x) < r(x) — e.
3. If f(x) = r(x), by the continuity of fr(x,xQ, s, 8), we see that, for any

increment A* ^ 0 such that x + Ax e [a, b], when A* is sufficiently small, we have
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r(x + Ax) — e < f (x + Ax). Thus, if Ax is small enough, we have

fr(x + Ax,xo,s,8) -fr(x,x0,s,8)
Ax

-8, ifx + Ax<x0OTf(x + Ax)>r(x + Ax),
-8 - 82Ax/2e, if x + Ax > x0 and

r(x+Ax)-e <f(x+Ax) < r(x+Ax)
-*• -8 (Ax -*• 0) . (2.7)

4. If / (x) = r(x) — E and x > x0, from the continuity of fr(x, x0, s, 8), we see
that when Ax is small enough, we have x + Ax > x0 and/ (x + Ax) < r(x + Ax).
Thus, if Ax is small enough, we have

fr(x + AJC, Xp, £, 8) -frJX, XQ, £, 8)
Ax

-8 Ax + e/2-(f(x + Ax) - f (x) + 8 Ax - e)2/2e
A^ '
if r(x + Ax)-e<f(x + Ax)< r(x + Ax),

-8 +

Ax
e2 - (fix + Ax) -f(x) + 8Ax - s)2

2s Ax
if r(x + Ax) — e < f (x + Ax) < r(x + AJC),

-8-

Ax
(f(x + Ax)-f (x) + 8Ax)(f(x + Ax) - f (x) - 8Ax - 2s)

2s Ax
if r(x + Ax) - e < f (x + Ax) < r(x + Ax),

iff (x + Ax) < r(x + Ax) — s,
Ax

-» .O) . . (2.8)

Now we see that fr(x, x0, s, 8) is differentiable with respect to x and its derivative
is given by (2.5). The continuity of the derivative is clear from (2.5). The proof is
complete.

LEMMA 2.3. Let e > 0 and 8 > 0 be given. Then we have the following.

(a) If a < x0 < b, then all of the local minimum points of fr(x, x0, s, 8) on [a, b]
must be contained in (XQ, b].

(b) Ifa < x0 < b, then all of the local minimum points offi(x,x0, s, 8) must be
contained in [a, x0).
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PROOF. From Lemma 2.2, j^fr(x, x0, e, 8) = —8 for all x e [a,x0]. Therefore,
the right bridged function fr(x,x0, e, 8) is strictly decreasing in [a, x0] and its local
minimum points must lie in (x0, b]. This proves (a). The proof for (b) can be obtained
similarly.

LEMMA 2.4. The following statements hold.

(a) If X\ e (x0, b] is a local minimum point off(x) and f (x{) < f (x0), then for
sufficiently small smoothing constant e > 0 and slope constant 8 > 0, xt is a
local minimum point offr(x,x0, e, 8).

(b) Ifx\ is a local minimum point offr(x,x0, e, 8) and

fr(xi,xQ,s,8) < r(xi,xo,8) -e/2,

then X\ is a local minimum point off (x) satisfying f {x{) < f (xo).

PROOF, (a) Let x\ e (x0, b] be a local minimum point of / (x) and/ (xi) < f (x0).
Then for any e and 8 such that

0 < £ < ( / T ( X 0 ) - / ( J C , ) ) / 2 and 0 < 8 < (f (x0) -f{xx))/2{b - * „ ) ,

it is easy to check that x\ is a local minimum of fr(x, x0, e, 8).
(b) The result is clear from the definition of fi(x, x0, e, 8).

We note that if X\ is a local minimum point of fr(x, x0, e, 8) or ft(x, x0, e, 8), but

fr(x,x0,e, 8) > r(x,xo,8) -e/2,

then Xi is not necessarily a local minimum point of / (x).

DEFINITION 2.3. Let x0 e [a, b] be a given point and g(x) be any function defined
on [a, b\. A global minimum point of g(x) on [x0, b] (respectively, [a, xQ]) is called
a right (respectively, left) global minimum point of g(x) with respect to x0.

LEMMA 2.5. Let e > 0 and 8 > 0 be any given numbers.

(a) Ifxi e [a, b) is a global minimum point offr(x, xo,s,8) such that

fr(xu x0, s,8) <r(xux0,8)- e/2, (2.9)

then X\ is a right global minimum point for f (x) with respect to XQ.
(b) Ifxi = bis a global minimum offr{x,x0,e, 8) and f {x\) < fr(x, x0, e, 8) — e/2,

then Xi = b is a right global minimum point for f (x) with respect to x0.
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PROOF. Let Xi e [a, b) be a global minimum point offr(x, x0, £, 8) such that (2.9)
holds. In order to prove that X\ is a right global minimum point, we need only to show
that X\ is a global minimum point off(x) over [x0, b\.

From the definition of fr{x, xo, e, 8), it is clear from (2.9) that

f(x)=Mxl,x0,e,S)-s/2.

If JCJ is not a global minimum point of f (x) over [x0, b], then there exists a point
x e (x0, b] such that/ (x) < f (xi). Now we have

f (x) < f (Xl) =fr(xuxo,e,8) - s/2. (2.10)

Therefore, from Lemma 2.1,

fr(.x,xo,s,8)<f(x)+E/2<fr(xuXo,£,8). (2.11)

This contradicts the assumption that xx is a global minimum point of fr(x, x0, e, 8) on
[a, b]. Part (a) is proved.

Part (b) is obviously true.

Lemma 2.5 singles out the cases when a global minimum point of fr is a right
global minimum point of / . If (2.9) is not satisfied in (a), xi is generally not a right
global minimum of/, since then

r(xux0, 8) > / (* , ) > r(xux0, 8) -e/2

may occur and hence, in a neighbourhood of JCI,

fr(x,x0,e, 8) = r(x,xo,8) - (r(x,xo,8) -f(x))2/2e,

and X\ may not even be a local minimum point of fr(x, x0, s, 8).

LEMMA 2.6. Let x0 e [a, b) be a point such that

fix) >f(x0), a < x < x0.

Let £ > 0 be given. If, for any 8 > 0, x' = b is the only minimum point of the right
bridged function fr(x,x0, e, 8) over [a, b] and fr(b, x0, e,8) < f (b), then x0 is a
global minimum point off (JC).

PROOF. Suppose x0 is not a global minimum point of f(x). Then there exists a
global minimum point x* such that x0 < x* < b and f (x*) < f(x0)- Let 8* =
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if (xo) —f(x*))/2(b — a). Then 8* > 0 and, hence, by the assumption of the lemma,
fr{b, x0, s, 8*) < / (b). On the other hand,

fr{b, xo, e, 8*) = f (x0) -8*(b- x0)

fl , /fro)-/(**),,. ,
= / (so) r-T : (b - Xo)

2(b - a)

> / ( s * ) . (2.12)

Thus x0 ^ b and we must have JC0 < x* < b. Since r(x, x0, 8*) is strictly decreasing,
we see from (2.12) that

/ (x*) < fr(b, x0, e, 8*) = r(b, x0, 8*) < r(x\ x0, 8*).

Hence, by the definition of fr(x, x0, s, 8*), we have

Mb, xo, e, 8*) < Mb, xo, s, 8*). (2.13)

Furthermore, by assumption, X\ = b is the only local minimum point of fr(x,x0, e, 8*)
over [a, b]. Hence, b is a global minimum point of fr(x, x0, £.8*). This contradicts
(2.13). Thus x0 is a global minimum point of/ (x).

REMARK 2.1. We note that all results given in Lemma 2.4-Lemma 2.6 have their
corresponding version for the left bridged function.

3. Bridging algorithm

The results presented in the previous section leads to several numerical algorithms,
called bridging algorithms, for one-dimensional minimization problems. The aim of
this section is to present and discuss these algorithms.

This section is divided into two subsections. Section 3.1 considers minimization
problems over a given interval. Section 3.2 considers minimization problems subject
to inequality constraints.

3.1. Algorithm for minimization over interval Let [a, b] be a given interval
and / (x) be a continuously differentiate function on [a, b]. Consider the following
problem:

Problem (P°): minimize f (x)

subject to x e [a, b].
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In this section, we shall use x* to denote a global minimum solution of the above
problem. For any x0 e [a, b],s>0 and 8 > 0, we define two minimization problems
associated with Problem (P°):

Problem (P°r(x0, e, 8)): minimize fr(x, xQ, e, 8)

subject to x € [a, b\.

Problem (P°0co, s, 8)) : minimize fiix, x0, e, 8)

subject to x e [a, b\.

In the above, the functions f, and / / are the bridged functions of/ at x0-
Algorithm (RB) (the right bridging algorithm):

1. Choose an accuracy number 50 > 0, a starting number 8t > 80 and a dividing
number d > 1 for the slope constant 8. Choose a smoothing constant £0 > 0.
(See the comment following this algorithm for the choice of these numbers.)
Let x* be a variable to store the value of the calculated global minimum
solution.

2. Set x0 = a, 8 — 80, e = e0.
3. If x0 = b, set x* = b and go to Step 8. Else, go to Step 4.
4. Find the leftmost local minimum solution, denoted by x, of Problem (J*l{x0,

£. ,<$)) •

5. If r(x,xo,8) > fr(x,x0,e,8) > r(x,xo,8) - e/2, set e = r(x,xo,8) -
fr(x, x0, e, 8), 8 = 80 and go to Step 4. Else, go to Step 6.

6. If x < b, set x0 = x,e = s0,8 = 5, and go to Step 4. Else if f (b) <
fr(b, x0, e, 8), set x* = b and go to Step 8. Else, set 8 = 8/d and go to Step 7.

7. If 8 < 80, set x* = b and goto Step 8. Else, set e = Si and go to Step 4.
8. Stop.

A few comments are given below to clarify several points in the above algorithm.
First, we note that it is required in Step 4 to find the leftmost local minimum point

of the right bridged function over [a,b]. A few available local minimization methods
such as the Dichotomy method (with directives) [6] can be used for this purpose. We
also note that in solving Problem (P?(*o. e, 8)), x0 is strongly suggested to be taken as
the starting point.

Secondly, in the above algorithm, the user is required to choose the constants
<50, Si, e0 and d. Here are some suggestions on the choice of these numbers. The
numbers 80,8{ and d are closely related. The accuracy number 80 should be chosen
first. It should be big enough so that when 8 > 80, the computer does not treat —8
as zero. (—8 is the gradient of fr(x, x0, e, 8) on its bridge. If —8 is recognized as
negative by the computer, a local minimization algorithm can pass the bridge from its
left end to its right end to locate a better local minimum.) At the same time, 80 should
be small enough so that any local minimum off(x) that is smaller than / (x0) is still
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a local minimum of fr(x, x0, e, 8) if e is sufficiently small. We see that 80 is problem
dependent. It is not known beforehand in general. However, in practice, it can be
taken as a positive number such that a local minimum which is larger than the global
minimum by no more than So could be considered a global solution. Usually, 80 is taken
to be 10~2 or 10"3. The choice of Si is important. If it is chosen too large, even a global
minimum point x* off (x) may no longer be a local minimum point of fr(x, x0, £, 8),
since then we may have/(;c*) > r(x*,x0, 8); hence fr(x,x0, s, 8) = r(x,x0, 8) near
x* and x* is not a local minimum of fr(x, x0, e, 8). If it is too small, unnecessary
local minimum points off could be found, increasing the computing effort. Usually,
<5i is taken to be 0.1 or 1. For given e and 8 at some stage, if fr(x,x0, e, 8) has no
local minimum point other than x = b and / (b) > fr(b), then the number d is used
to decrease 8 to 8/d. If, in this way, 8 is reduced to a value smaller than 80, then x0

can be considered a global minimum point. Usually d is chosen so that 8\/dk = 80

with k = 1 or 2. A larger k will possibly increase the computing effort. The value of
the smoothing constant £0 is usually chosen between 10~2 and 1. If it is too small, the
smoothness of fr(x, x0, s, 8) may become numerically ill-conditioned. On the other
hand, if it is too big, the leftmost local minimum points of fr(x, x0, s, 8) in the interval
(x0, b) may not be minimum points of / (x). This will cause additional computing
effort (see Step 5 of the algorithm).

Finally, we note that for any xi e [a, b], Algorithm (RB) can be used to find the
right global minimum of f (x) with respect to xi if we set the value of x0 to xx in
Step 4.

Algorithm (RB) above uses the right bridged function and starts from the left end
point of the feasible interval. Similarly, we can use the left bridged function to devise
a left bridging algorithm. We have the following.
Algorithm (LB) (the left bridging algorithm):

1. Choose an accuracy number <50 > 0 and a starting number Si > 80 for the slope
constant^. Choose a smoothing constant e0 > 0 and a constant d > 1. (These
numbers are chosen the same way as in Algorithm (RB).) Let x* be a variable
to store the value of the calculated global minimum solution.

2. Set x0 = b, s = e0, 8 = <50.
3. If x0 = a, set x* = a and go to Step 8. Else, go to Step 4.
4. Find the rightmost local minimum solution, denoted by x, of Problem (P^(x0,

Ei, 8)) and go to Step 5.
5. If l(x,xo,8) > fi(x,x0, s, 8) > l(x,xo,8) — e/2, set s = l(x,xo,8) —

f,(x, x0, E, 8), 8 = 80, go to Step 4. Else, go to Step 6.
6. If x < a, set x0 = x, £ = s0, S = <5, and go to Step 4. Else, if f (a) <

f,(a,x0, £, 8), set x* — a and go to Step 8. Else, set 8 = 8/d and go to Step 7.
7. If 8 < So, set x* = a and go to Step 8. Else, go to Step 4.
8. Stop.
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Comments similar to the ones given for Algorithm (RB) are available for Algo-
rithm (LB). We omit the details to avoid redundancy.

We note that both algorithms require the computation of the local minimum point
of the bridged functions that is closest to the bridging point. The efficiency of both
algorithms depends on the method used to calculate this local minimum point. When
the function/ (x) has more than one global minimum point over [a, b], Algorithm (RB)
can be used to determine the leftmost global minimum point and Algorithm (LB) to
determine the rightmost one. If a third global minimum point exists, it can be
determined by using both algorithms starting from a point between the leftmost and
the rightmost global minimum points. In this way, all the global minimum points (if
there are finitely many) can be found.

3.2. Problems with inequality constraints L e t / (x) and gi(x),i = 1 ,2 , . . . , m be
m + 1 continuously differentiable functions on R1. Consider the following problem.

Problem (P) : Minimize / (x)

subject to gi(x) < 0, i = 1,2,... , m.

We assume that the feasible region of Problem (P) is a finite interval. For any
feasible point x0 of Problem (P) and numbers e > 0 and S > 0, we define two
problems associated with Problem (P):

Problem (Pr(jco, £. 8)) '• Minimize fr(x,x0, £, 8)

subject to gi(x) < 0, i = 1,2,... , m.

Problem (Pi(x0, e, 8)): Minimize fi(x,x0, e, 8)

subject to gi(x) < 0, i = 1,2,... , m.

Here fr and / / are, respectively, the right and left bridged functions.
The concept of right and left global minimum point introduced in Section 2 can be

extended to the current situation. Let & be the feasible interval of Problem (P). For
a given feasible point x0 e &, a point xT e & D [x0, oo) is said to be a right global
minimum solution of Problem (P) with respect to x° iixr is a global minimum point
of/ (x) over & D [x0, oo). Similarly, a point xt e & n (—oo, x0] is said to be a left
global minimum solution of Problem (P) with respect to x° if JC, is a global minimum
point of f (x) over & D (—oo, JC0]. Let JC° be any feasible point of Problem (P).
The idea of the bridging method for Problem (P) is to find a right global minimum
solution xr of Problem (P) with respect to x°, then find a left global minimum solution
x* of Problem (P) with respect to xr. The point JC* is a global minimum solution of
Problem (P).

Thus, in order to solve Problem (P), our main task is to find right and left global
minimum solutions given an initial feasible point x°. The following procedure can be
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used to calculate the right global minimum solution. It is similar to Algorithms (RB),
but differs in that the feasible interval is not explicitly known for the present situation.

The following is a procedure for calculating the right global minimum solu-
tion.

1. Choose an accuracy number 80 > 0 and a starting number 8t > 80 and a
dividing constant d for the slope constant S. Choose a smoothing constant
e0 > 0 and a constant d > 1. (These numbers should be chosen in the same
way as for Algorithm (RB).) Let x° be a known feasible point and xr be a
variable to store the value of the calculated right global minimum solution.

2. Setxo=x°,e = eo,8 = 8l.
3. Find the leftmost local minimum solution, denoted by x, of Problem (Pr(x0,

s,8)).
4. If/ (x) = fr(x, x0, e, 8), go to Step 7. Else, go to Step 5.
5. If f (x) > fr(x, x0, e, 8), set 8 = 8/d, e = E0 and go to Step 6. Else if

/ (x) > r(x, x0, 8) — e, set e = r(x) —fr(x, x0, e, 8), 8 = 8t and go to Step 3.
Else, set x0 = x, e = e0, 8 = 8t and go to Step 3.

6. If 8 < 80, set x* — x and go to Step 7. Else, set s = s0 and go to Step 3.
7. Stop.

It is clear that a similar procedure for calculating the left global minimum solution
can be obtained by symmetry.
Algorithm (B) (the bridging algorithm):

1. Choose an initial feasible point x°. Let x* be a variable to store the value of
the computed global minimum point. Set x0 = x°.

3. Find a right global minimum solution (with respect to x°), denoted by xr, of
Problem (P).

4. Find a left global minimum solution (with respect to xr), denoted by xt, of
Problem (P). Set x* = x,.

5. Stop.

We note that when looking for the left global minimum point of Problem (P) in
Step 4, the point x° can be taken as the starting point although it may be true that
x° < xr. The reason is that the only possible feasible left global minimum solution
of Problem (P) (with respect to JCI) in (x°, oo) is xr and any feasible local minimum
point of Problem (Pi(xu£, 8)) must be less than or equal to x°.

4. Numerical examples

The bridging method has been tested by successfully solving many numerical
examples including the ones presented in [7]. In this section we present some of the
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-3

O—starting point

x —bridging points

• —global minimum

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

FIGURE 4.1. Minimization procedure for Example 4.1.

test results. For each of the examples, the plot for the whole minimization procedure
is given to show how the method works.

EXAMPLE 4.1. a = 0, b = 3 and

/ (x) = (3x - 1) sin(9;t2 - 3x)

+ 3(x - 1X3* - 2)2(3x + 0.5)3 cos(9;t2 - 6x + (n

EXAMPLE 4.2. a = -5, b = - 3 and

(JC) = _ L ( 1 _
An \5

EXAMPLE 4.3. a = -10, b = 10 and

-5)

= -e°-"2_,sin((i + l)jt + 0-
/=!

EXAMPLE 4.4. gt(x) = x2 - 4x - 21, g2(x) = —e* - x and

/(*) = :(sin(2jc - 1)).
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15

10 - O — starting point

x — bridging points

* — global minimum

-25
6 8 10 12

FIGURE 4.2.1. Minimization procedure by right-bridging for Example 4.2.

15

10

O — starting point

- « — bridging points

— global minimum

FIGURE 4.2.2. Minimization procedure by left-bridging for Example 4.2.
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10

* — global minimum
x — Bridging points
O — starting point

-10 -8 -6 -4 -2 0 2 4
x

6 8 10

FIGURE 4.3. Minimization procedure for Example 4.3.

2 -

f(x)

right-bridged functions

left-bridged functions

feasible region: [-.567. 7]

: V—

O — right global minimum

/ \ * —starting point

/ \ * —global minimum

- -\J 1

1 /
FIGURE 4.4. Minimization procedure for Example 4.4.
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TABLE 4.1. Numerical results for Examples 4.1-4.4.

[16]

Example
1
2
2
3
4

Algorithm
right bridging
right bridging
left bridging
right bridging
bridging

£o
0.1

1
1

0.01
0.5

So
0.01

0.001
0.001
0.001
0.001

Si
0.01

1
1

0.1
0.1

d
10
10
10
10
10

X*

0.96046
9.09475
9.09475
5.85114
2.53334

fix*)
-2.80927

-18.79307
-18.79307
-6.05355
-3.18852

Examples 4.1^1.3 are solved using the right bridging algorithm. Example 4.2 is
also solved by the left bridging algorithm. In finding the leftmost or rightmost local
minimum points for each example, we have used the dichotomy method. Example 4.4
is solved using the bridging algorithm in Section 3.2. Although the feasible interval
can be easily determined from the given constraints, we didn't use this information in
solving the problem.

We note that all the examples presented in [7] can be easily solved by the bridging
method. Comparisons on computing time with other global minimization methods
are, however, not made since the computing time for the bridging method depends on
the method used for minimizing the bridged functions. In general, the total time used
to obtain a global solution is approximately the total time used to minimize the bridge
functions. The computation results are listed in Table 4.1. The whole computing
procedure for all of the four examples are shown in Figures 4.1-4.4. For Example 4.2,
the procedures corresponding to the right and left bridging algorithms are shown in
Figures 4.2.1 and 4.2.2, respectively. The solid line in each figure represents the
original cost function. The broken lines represent the right bridged functions and the
dotted broken lines the left bridged functions used in the minimization procedure.

5. Conclusion

In this paper, a bridging method for one-dimensional optimization problems is
proposed and several bridging algorithms are developed for both simply bounded and
analytically constrained problems. Numerical experiment has shown that the bridging
method is efficient in locating a global optimal solution. This method has the potential
of being generalized or applied to multi-dimensional problems, though some features
appearing in the one-dimensional case may not be preserved. Further research in this
direction is under consideration.
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