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Abstract

Let A be a dual B *-algebra and Ap the p -class in A. We show that the conjugate space of A,
is A **, the second conjugate space of A. We also obtain a three lines theorem for A, (1 S p £ °°).

1. Introduction

Let if be a (complex) Hilbert space, LC(H) the algebra of all compact
operators on H and L(H) the algebra of all continuous linear operators on H.
Then LC(H) is a simple dual B "-algebra and every simple dual B "-algebra is
of this form. Also the second conjugate space of LC(H) is L (H). The class Cp

(0 < p ^ oo) of compact operators in LC(H) has many interesting properties
and has been studied in various articles (e.g., see Gohberg and Krein (1969)
and McCarthy (1967)). In Wong (1974), a similar class of spaces Ap ( 0 < p g
a=) in an arbitrary dual B "-algebra A was introduced and studied. The pur-
pose of this paper is to establish three more results for Ap.

It is well known that the conjugate space of C, is L(H) (see Schatten
(1960), p. 47, Theorem 2). In this paper, we generalize this result to an arbit-
rary dual B"-algebra A. In fact, we show that the conjugate space of A, is
A**, the second conjugate space of A. By identifying A, as a subspace of
A ***, we prove that for every F in A ***, F = G + H uniquely with'G G A,,
H e A 1 and || F || = || G || + || H \\. For the case A is a simple algebra, this result
was proved by Dixmier (see Schatten (1960), Theorem 5). We also obtain a
three lines theorem for Ap (1 =§ p S= °°) which is a generalization of Gohberg
and Krein (1969), Theorem 13.1.

2. Notation and preliminaries

In this paper, all algebras and linear spaces under consideration are over
the field of complex numbers. Definitions not explicitly given are taken from
Rickart's book (Rickart (I960)).
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NOTATION 1. If B is a Banach space, then B * and B ** will be its conju-
gate space and second conjugate space respectively. Also £?*** will be the
conjugate space of B**.

NOTATION 2. In this paper, A will denote a dual B*-algebra with norm

REMARK. It is well known that A ** is a W*-algebra containing A as a *-
subalgebra (see Sakai (1971), Theorem 1.17.2). Since A is a dual algebra, by
Wong (1973), Theorem 3.1, A is a two-sided ideal of A**.

Let b be a nonzero normal element in A and {eT} a maximal orthogonal
family of hermitian minimal idempotents in A such that eTb = be., = kTeT,
where kT is a constant. Then it is shown in Wong (1974), that the set {kn} =
{kT: kT^0} is countable and independent of the choice of {er} and

(2.1) b = 2 eTb = 2 kHem

where en G {er} with enb = knen. (2.1) is called a spectal representation of b.
Now suppose A is a nonzero element in A and a *a = ~2.nrnen is a spectral

representation of a*a. Since a*a is a positive element, rn > 0 . Put kn =
and define

and

| a |=c = max {&„: n = 1,2, • • •}.

For a = 0, we define | a |p = 0 (0 < p S =°). Let

Ap = {a G A : | a |p < oc} (0 < p g oo).

It was shown in Wong (1974) that for l S p g ^ Ap is a dual A *-a!gebra
which is a dense two-sided ideal of A, A = A* and A, = {a6: a, b G A2}. Let
b,ce.A2 and {/T} a maximal orthogonal family of hermitian minimal idempo-
tents in A. Then frc*bfr = mTfT for some constant mT. By Wong (1974),
Theorem 4.1, STmT is absolutely summable and independent of {/T} and A2 is a
proper /f *-algebra with the inner product defined by (b, c) = STmT. For each
a G Ai, let a = c*b with b,cE A2. Define

(2.2) t r ( a ) = ( b , c ) = 2 "»-

Then by Wong (1974), Lemma 4.4, t r (a) = ZT(afT,fT) and | t r ( a ) | S | a |,.
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3. The conjugate spaces of A, and A**

A bounded linear operator T on A is called a right centralizer if T(ab) —
(T(a))b for all a, b in A. The set of all right centralizers on A is denoted by
R(A).

LEMMA 3.1. As normed linear spaces, A** and R(A) are isometrically
isomorphic.

PROOF. Let {xr} be an approximate identity for A. For each T in R(A),
let 7"° be a weak limit point of {TxT} in A * *. Then by a similar argument in the
proof of Wong (1971), Lemma 2.1, we can show that T° is unique and T°a =
T(a) for all a in A.

Conversely, let T°G A **. Since T°a G A for all a in A, it follows that
the mapping T:a-*T°a is a right centralizer on A, clearly || T | |g | | T°\\.
Since for all / in A *,

it follows that || T° \\S\\T || and so they are equal. The lemma now follows.
For each right centralizer T on A and x in A,, by Wong (1974), Lemma

3.6, T x G A , and | Tx |, =S || T|| | JC [,. We define

(3.1) FT(x) = tr(Tx) (xGA) .

LEMMA 3.2. For each T in R (A), FT is an element in A * with || FT || =
|| T\\. Conversely, for each F in A*, there exists some T in R(A) such that
F = FT.

PROOF. Let T be a right centralizer on A. Since for all x in A,,

it follows that FT G A f and || FT \\^\\T ||. We show that || FT || g || T ||. In fact,
let a G A and {er} a maximal orthogonal family of hermitian minimal idempo-
tents in A such that (Ta)(Ta)*eT = eT(Ta)(Ta)*eT. Then

\\eT(Ta)(Ta)*eT\\ = tr{er(Ta){Ta)*eT) (by Wong (1974), Lemma4.4)

= Xx{T(a{Ta)*eT))^\\FT\\\a{Ta)*e^l
(3.2)

S || FT II || a || || Ta || | eT |, (by Wong (1974), Lemma 3.6)

= II Fr || || fl || || r a | | ,

where the last equality in (3.2) follows from the fact that | e T | ,= 1 (Wong
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(1974), Lemma 3.1). Since {eT} is maximal and commutes with (Ta)(Ta)*, it
follows easily that

|| Ta ||2 = ||(Ta)(Ta)*|| = sup||eT(7
(3.3)

Therefore it follows immediately from (3.3) that || T || S= || FT || and so they are
equal.

Conversely, let F be an element in AT- Then by Saworotnow (1970),
Theorem 2, F gives a right centralizer 5 on A2 such that tr(5x) =
F(x)(x G A,) and | |5 | | = ||F||. We show that S can be extended to a right
centralizer T on A. In fact, let a be an element in the socle of A. Then a G
A2. Let {fr} be a maximal orthogonal family of hermitian minimal idempo-
tents in A such that (Sa)(Sa)*fr = fr(Sa)(Sa)*fr. By (3.2) and (3.3), we see
that ||5a ||2S | |F| | ||a || ||5a || and so || 5a || == || F| | || a ||. Since the socle of A is
dense in A, it follows easily that 5 admits an extension T in R(A) and this
completes the proof.

Now we have a generalization of Schatten (1960), Theorem 2.

THEOREM 3.3. Let A be a dual B*-algebra. Then the conjugate space of
A, is A * *

PROOF. This result immediately follows from Lemma 3.1 and Lemma 3.2.
In Wong (1974), p. 367, we had shown that A* = Aj. Hence Schatten

(1960), Theorem 3 holds for an arbitrary dual B "-algebra.
Let A ̂  be the subspace of A *** which vanishes identically on A C A **.

If a is in A,, then the expression tr(ax)(;t 6 A) gives a linear functional in
A * (see Wong (1974)). Since aT £ A, (T e A **), the expression tr(aT) also
gives a linear functional in A***. Thus we can identify Ai as a subspace of
A***. If a G A ^ r i A , , then tr(ax) = 0 for all xEA and so tr(aa*e) =
tr(eaa*e) = 0 for any hermitian minimal idempotent e £ A. Hence
||eaa*e || = tr{eaa*e) = 0 and so ea =0. Since e is arbitrary, it follows that
a = 0. Consequently Ax fl A, = (0).

The following theorem is a generalization of a result by Dixmier. The ar-
gument used here is similar to that given in the proof of Schatten (1960),
Theorem 5.

THEOREM 3.4. Let f be a continuous linear functional on A**. Then
F = G + H uniquely with G G A,, H G A x and \\F\\ = \\G\\ + \\H\\.

PROOF By the proof of Schatten (1960), Theorem 5, it is sufficient to
show that | |Fj |g | |G| | + ||H||. Let 5 > 0 be given. Write G= WO, where
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WGR(A) with || W\\= 1 and Q = {G*G)m see Wong (1974). By Lemma
3.1, we can assume that W E. A**. Let Q = 2,/c^ = STeTQ be a spectral rep-
resentation of Q (see (2.1)). By Wong (1974), Lemma 3.1, | Q |, = | G |, = 2^, ,
Since {eT} is maximal, 1TeTA is dense in A and so we can choose some a £
STerA with || a || S 1 such that

(3-4) G(a) > || G || - 5 .

Write a = X,"L, eTay with a, G A and eT, G {eT}- Choose n so large that £;>„ fc, >
8 and choose b°SA** with | | b ° | | S l such that

(3.5) H(b°)>\\H\\-8.

Let £ = {e;};.,U{eT/};
m.i. Then E C{er} and eTE = (0) if e T £ E . Let P =

2 { e : e G £ } and fr = (1 - P)b°(l - P). Since - | | 1 - P | | = 1 , | | fo | |Sl . Since
a = Pa, we have

(3-6) || a + b\\ = max (|| a ||, || 6 | | ) ^ 1 .

Also

(3.7) Gb = WQb =

By identifying A, as a subspace of A***, it follows from (3.7) that

(3.8)

Since a and b - b° are in A, we have H(a ) = 0 and H{b) = H(b°). It follows
now easily from (3.4), (3.5), (3.6) and (3.8) that | | F | | g || G || + || H\\ and this
completes the proof.

4. A three lines theorem for Ap (1 S= p Si °°)

For 1 g p S ac, it was shown in Wong (1974) that Ap can be identified with
A * (p~' + q~' = 1). In fact, for each F in A *, there exists some a in Ap such
that F(x) = tr(ax)(xGAq) and | |F | | = | a |p.

In this section, SA will denote the socle of A. By Wong (1974), Theorem
3.9, SA is dense in Ap ( I S p S °c).

Let a(^jO) be a positive element in A with a spectral representation a =
£„&„£„. Then kn > 0 . Let z be a complex number. Define a z ( R e z SO) by
a' = 2nilc^en, where k'n = e2ln<l1^. If a E SA, then it is clear that Az is always
well defined.
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LEMMA 4.1 . Let a G A ** and p ' + q~l = I ( l S p < °c). Then a G Ap if

and only if

(4.1)

PROOF. If a G Ap, then by Wong (1974), Lemma 4.2,

| t r ( a s ) | S | a s | , S | a |p | s |, (sGSA).

Hence (4.1) holds. Conversely, suppose (4.1) holds. Then the functional
F(s) = tr(as) is continuous on SA (with norm |. |,). Since 5A is dense in Aq, it
follows that F can be extended to a linear functional in A *. Hence by Wong
(1974), Theorem 6.2, there exists some b in Ap such that F(x) = tr(bx) for all
x G Aq. Thus tr(as) = tr(bs) for all 5 G SA. Let e be a hermitian minimal
idempotent in A. Since a*e G SA, we have

(4.2) tr(eaa*<?) = tr(aa*e) = tr(ba*e) = tr(eba*e).

Since by Wong (1974), Lemma 4.4, eaa*e = (lr(eaa*e))e and eba*e =
(tr(eba*e))e, it follows from (4.2) that eaa*e = eab*e. Similarly eab*e =
ebb*e. Consequently, e(a — b)(a — b)*e = 0 and so e(a - b) = 0. Since e is
arbitrary, we see easily that A (a — b) = 0. Thus A **(a — b) = 0 and so a =
/> G Ap. This completes the proof.

REMARK. Some arguments in the above proof are similar to those in the
proof of Gohberg and Krein (1969), Lemma 12.1.

Let EA be the set of all hermitian minimal idempotents in A. For each
e G EA, a G A and TGA**, let k(e,T,a) be the constant such that
k(e, T, a)e = eTae.

DEFINITION. Let G be a region in the complex plane. We call {Tz G
A**: z G G} holomorphic in the region G, if for any e G EA and a G A, the
scalar function z —* k(e, Tz, a) is holomorphic in G.

REMARK. It is easy to see that if A is a simple algebra, then the above de-
finition is equivalent to that given in Gohberg and Krein (1969), since A =
LC(H) for some Hilbert space H and e G EA has the form e = x (£)x with x
in H.

Now we have the main result in this section which is a generalization of
Gohberg and Krein (1969), Theorem 13.1.

THEOREM 4.2. Let (T, £ A " : « s Re z f= v} (u < v) be holomorphic.
Suppose that Tz G Ari (1 S r, < *=) on the line z = u + iy ( - so < y < =c) and
Tz G AT2 (r, < r2 g x) On the line z = v + iy (- * < y <*>). // | Tu+iy |r, g C,,
| Tv+,y \r2 S C2 ( - oc < y < oc) and
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In | k (e, Tz, a | S Ne,a exp (&,.„ | Im z |),

u <Rez <v, e E EA, a £ A and 0 S fc,,o < n/(v - u), then, for all z =
x + iy (u <x < v, -x<y < oc), 7; = Tx,,y <= A , and \Tx.,y\r S Cl'xC't,
where tx = (x - u)/(v - u) and r~' = r\l + t^r^ - ri~').

PROOF. Let s G SA with | s \r• = 1 ((r1)'1 + rl = 1) and G = (i*s)"2. Then
we can write s = WG and G = W*s, where W, W* e R(A) (see Wong
(1974)). By Lemma 3.1, we can assume that W and W* are in A**. Hence
G G SA and so it has a spectral representation G =£,",, it,e,. Consider the
function

where
c + dz = r'((t) - Z) / (P - u)r\ + (z - M)/(U - u)r^),

(r',~' + r~' = 1; / = 1,2). Then it is easy to see that f(z) = 2,"_i k,, where k, =
k(er Tz, WGc^dt). Hence f(z) is holomorphic on u g Re z S u. Now by using
Lemma 4.1 and the argument in the proof of Gohberg and Krein (1969),
Theorem 13.1, we can prove the theorem.
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