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Abstract

In Bhatt and Roy’s minimal directed spanning tree construction for a random, partially
ordered set of points in the unit square, all edges must respect the ‘coordinatewise’partial
order and there must be a directed path from each vertex to a minimal element. We study
the asymptotic behaviour of the total length of this graph with power-weighted edges. The
limiting distribution is given by the sum of a normal component away from the boundary
plus a contribution introduced by the boundary effects, which can be characterized by a
fixed-point equation, and is reminiscent of limits arising in the probabilistic analysis of
certain algorithms. As the exponent of the power weighting increases, the distribution
undergoes a phase transition from the normal contribution being dominant to the boundary
effects being dominant. In the critical case in which the weight is simple Euclidean length,
both effects contribute significantly to the limit law.
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1. Introduction

Recent interest in graphs, generated over random point sets consisting of independent
uniform points in the unit square by connecting nearby points according to some deterministic
rule, has been considerable. Such graphs include the geometric graph, the nearest-neighbour
graph and the minimal-length spanning tree. Many aspects of the large-sample asymptotic
theory for such graphs, when they are locally determined in a certain sense, are by now quite
well understood. See, for example, [8], [11], [16], [17], [21], [22], and [23].

One such graph is the minimal directed spanning tree (MDST), which was introduced by
Bhatt and Roy in [5]. In the MDST, each point x of a finite (random) subset S of (0, 1]2 is
connected by a directed edge to the nearest point y ∈ S ∪ {(0, 0)} such that y �= x and y �∗ x,
where y �∗ x means that each component of x−y is nonnegative. See Figure 1 for a realization
of the MDST on simulated random points.

Motivation comes from the modelling of communications or drainage networks (see [5], [14],
and [18]). For example, consider the problem of designing a set of canals to connect a set of hubs
so as to minimize their total length subject to the constraint that all canals must flow downhill.
The mathematical formulation given above for this constraint can lead to significant boundary
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Figure 1: Realizations of the MDSF (left) and MDST (right) on 50 simulated uniform random points in
the unit square, under the partial ordering ‘�∗’.

effects due to the possibility of long edges occurring near the lower and left-hand boundaries of
the unit square; these boundary effects distinguish the MDST qualitatively from the standard
minimal spanning tree and the nearest-neighbour graph for point sets in the plane. Another
difference is the fact that there is no uniform upper bound on vertex degrees in the MDST.

In the present work, we consider the total length, with power-weighted edges, of the MDST
on random points in (0, 1]2, as the number of points becomes large. We also consider the total
power-weighted length of the minimal directed spanning forest (MDSF), which is the MDST
with edges incident at the origin removed (see Figure 1 for an example). In [5], Bhatt and Roy
mentioned that the total length is an object of considerable interest, although they restricted their
analysis to the length of the edges joined to the origin (subsequently also examined in [14]). A
first-order result for the total power-weighted length of the MDST or MDSF is a law of large
numbers; this was given in [13] for a family of MDSFs indexed by partial orderings on R

2,
which include ‘�∗’ as a special case.

In this paper we are mainly concerned with establishing second-order results, i.e. weak
convergence results for the distribution of the total power-weighted length, suitably centred and
scaled, when the partial order is ‘�∗’. For the length of edges from points in the region away
from the boundary, we prove a central limit theorem. The boundary effects are significant,
and near the boundary the MDST can be described in terms of a one-dimensional, on-line
(i.e. sequentially generated) version of the MDST which we call the directed linear tree (DLT),
and which we examine in Section 3. In the DLT, each point in a sequence of independent
uniform random points in an interval is joined to its nearest neighbour to the left, amongst
those points arriving earlier in the sequence. This DLT is of separate interest in relation to, for
example, network modelling and molecular fragmentation (see [4], [3], and references therein).

In Theorem 3.1 we establish that the limiting distribution of the centred total length of the
DLT is characterized by a distributional fixed-point equation which resembles those encountered
in the probabilistic analysis of algorithms such as Quicksort [6]. Such fixed-point distributional
equalities, and the so-called ‘divide and conquer’or recursive algorithms from which they arise,
have received considerable attention recently; see, for example, [7], [10], [19], and [20].

Our weak convergence results (Theorem 2.1) demonstrate that, depending on the value
chosen for the weight exponent of the edges, there are two regimes – one in which the boundary
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effects dominate and one in which those edges away from the boundary are dominant – and
that there is a critical value (when we take simple Euclidean length as the weight) for which
neither effect dominates.

In the related paper [14], we give results dealing with the weight of the edges joined to
the origin, including weak convergence results in which the limiting distributions are given in
terms of some generalized Dickman distributions. Subsequently, it has been shown [1] that
this two-dimensional case is rather special: in higher dimensions the corresponding limits are
normally distributed. Reference [14] also deals with the maximum edge length of the MDST
(the maximum length of those edges incident at the origin was dealt with in [5]).

In the next section we give formal definitions of the MDST and MDSF and state our main
results (Theorem 2.1) on the total lengths of the MDST and MDSF. The results on the DLT
which we present in Section 3 and the general central limit theorems which we present in
Section 4 are of some independent interest.

2. Definitions and main results

We work in the same framework as [14]. Here we briefly recall the relevant terminology.
See [14] for more details.

Suppose that V is a finite set endowed with a partial ordering ‘�’. A minimal element, or
sink, of V is a vertex v0 ∈ V for which there exists no v ∈ V \ {v0} such that v � v0. Let V0
denote the set of all sinks of V .

The partial ordering induces a directed graph G = (V , E), with vertex set V and with edge
set E consisting of all ordered pairs, (v, u), of distinct elements of V such that u � v. A directed
spanning forest (DSF) on V is a subgraph T = (VT , ET ) of (V , E) such that (i) VT = V and
ET ⊆ E and, (ii) for each vertex v ∈ V \ V0, there exists a unique directed path in T that starts
at v and ends at some sink u ∈ V0. In the case in which V0 consists of a single sink, we refer
to any DSF on V as a directed spanning tree (DST) on V . If we ignore the orientation of edges
then (see [14]) a DSF on V is indeed a forest and if there is just one sink then any DST on V

is a tree.
Suppose that the directed graph (V , E) carries a weight function w : E → [0, ∞) on its

edges. If T is a DSF on V then we set w(T ) := ∑
e∈ET

w(e). A minimal directed spanning
forest (MDSF) on V is a directed spanning forest T on V such that w(T ) ≤ w(T ′) for every
DSF T ′ on V . If V has a single sink then a minimal directed spanning forest on V is called a
minimal directed spanning tree (MDST) on V .

For v ∈ V , we say that u ∈ V \ {v} is a directed nearest neighbour of v if u � v and
w(v, u) ≤ w(v, u′) for all u′ ∈ V \ {v} such that u′ � v. For each v ∈ V \ V0, let nv

denote a directed nearest neighbour of v (chosen arbitrarily if v has more than one directed
nearest neighbour). Then (see [14]) the subgraph (V , EM) of (V , E), obtained by taking
EM := {(v, nv) : v ∈ V \ V0}, is an MDSF of V . Thus, if all edge weights are distinct, the
MDSF is unique and is obtained by connecting each nonminimal vertex to its directed nearest
neighbour.

The partial order that we consider here is the same as in [5], and we denote it by ‘�∗’. In
this case, u �∗ v for u = (u1, u2) and v = (v1, v2) if and only if u1 ≤ v1 and u2 ≤ v2. This
is sometimes called the ‘coordinatewise’ partial order. The symbol ‘�’ will denote a general
partial order on R

2.
The weight function is given by power-weighted Euclidean distance; i.e. to the edge

(u, v) ∈ E we assign weight w(u, v) = ‖u − v‖α , where ‖ · ‖ denotes the Euclidean norm
on R

2 and α > 0 is an arbitrary fixed parameter. Thus, when α = 1 the weight of an edge is
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simply its Euclidean length. Moreover, we shall assume that V ⊂ R
2 is given by V = S or

V = S0 := S ∪ {0}, where 0 is the origin of R
2 and S is generated in a random manner. The

random point set S will usually be either the set of points given by a homogeneous Poisson
point process, Pn, of intensity n on the unit square (0, 1]2, or a binomial point process, Xn,
consisting of n independent, uniformly distributed points on (0, 1]2.

Note that in this random setting, each point of S almost surely has a unique directed nearest
neighbour, meaning that V has a unique MDSF, which does not depend on the choice of α.
Denote by Lα(S) the total weight of all the edges in the MDSF on S, and let L̃α(S) :=
Lα(S) − E[Lα(S)], the centred total weight.

Our main result (Theorem 2.1) presents convergence in distribution for the partial order
‘�∗’; the limiting distributions are of different types in the three cases α = 1 (the same
situation as [5]), 0 < α < 1, and α > 1. We define these limiting distributions in Theorem 2.1,
in terms of distributional fixed-point equations. These fixed-point equations are of the form

X
d=

k∑
r=1

ArX
{r} + B, (2.1)

where k ∈ N; X{r}, r = 1, . . . , k, are independent copies of the random variable X; and
(A1, . . . , Ak, B) is a random vector, independent of (X{1}, . . . , X{k}), satisfying the conditions

E

[ k∑
r=1

|Ar |2
]

< 1, E[B] = 0, E[B2] < ∞. (2.2)

(By ‘
d=’ we denote equality in distribution.) Theorem 3 of Rösler [19] (proved using the

contraction mapping theorem; see also [10] and [20]) says that if (2.2) holds, there is a unique
square-integrable distribution with mean 0 satisfying the fixed-point equation (2.1); this will
guarantee uniqueness of solutions to all the distributional fixed-point equalities considered in
the sequel.

We define our random variables of interest as (unique) solutions to distributional fixed-point
equations. In each of these equations, U denotes a uniform random variable, and all the different
random variables on the right-hand sides are independent.

Define D̃1 by

D̃1
d= UD̃

{1}
1 + (1 − U)D̃

{2}
1 + U log U + (1 − U) log(1 − U) + U. (2.3)

In Section 3.4, we give a plot (Figure 2) of the probability density function of this distribution,
estimated by simulation. We shall see later (in Propositions 3.5 and 3.6) that E[D̃1] = 0 and
var[D̃1] = 2 − π2/6; higher-order moments may be obtained recursively from (2.3). For
example, E[D̃3

1] ≈ 0.154 11, which shows that D̃1 is not Gaussian and is consistent with the
skewness of the plot in Figure 2.

For α > 1, define D̃α by

D̃α
d= UαD̃{1}

α + (1 − U)αD̃{2}
α + α

α − 1
Uα + 1

α − 1
(1 − U)α − 1

α − 1
. (2.4)

Also for α > 1, let F̃α be defined by

F̃α
d= UαF̃α + (1 − U)αD̃α + Uα

α(α − 1)
+ (1 − U)α

α − 1
− 1

α(α − 1)
, (2.5)
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where D̃α has the distribution given by (2.4). In Section 3 we shall see that for α > 1 the
random variables D̃α and F̃α arise as centred versions of random variables (denoted by Dα and
Fα , respectively) satisfying somewhat simpler fixed-point equations. Thus, D̃α and F̃α both
have mean 0; their variances are given by (3.22) and (3.24), below.

Let N (0, s2) denote the normal distribution with mean 0 and variance s2, and let ‘
d−→’denote

convergence in distribution.

Theorem 2.1. For α > 0 and partial order ‘�∗’, there exist constants tα and sα , 0 < t2
α ≤ s2

α ,
such that, for normal random variables Yα ∼ N (0, s2

α) and Wα ∼ N (0, t2
α), the following

statements hold.

(i) As n → ∞,

n(α−1)/2L̃α(P 0
n )

d−→ Yα and n(α−1)/2L̃α(X0
n)

d−→ Wα, 0 < α < 1, (2.6)

L̃1(P 0
n )

d−→ D̃
{1}
1 + D̃

{2}
1 + Y1 and L̃1(X0

n)
d−→ D̃

{1}
1 + D̃

{2}
1 + W1, (2.7)

L̃α(P 0
n )

d−→ D̃{1}
α + D̃{2}

α and L̃α(X0
n)

d−→ D̃{1}
α + D̃{2}

α , α > 1. (2.8)

Here all the random variables in the limits are independent, and D̃
{i}
α , i = 1, 2, are

independent copies of D̃α as defined in (2.3) for α = 1 and (2.4) for α > 1.

(ii) As n → ∞,

n(α−1)/2L̃α(Pn)
d−→ Yα and n(α−1)/2L̃α(Xn)

d−→ Wα, 0 < α < 1, (2.9)

L̃1(Pn)
d−→ D̃

{1}
1 + D̃

{2}
1 + Y1 and L̃1(Xn)

d−→ D̃
{1}
1 + D̃

{2}
1 + W1, (2.10)

L̃α(Pn)
d−→ F̃ {1}

α + F̃ {2}
α and L̃α(Xn)

d−→ F̃ {1}
α + F̃ {2}

α , α > 1. (2.11)

Here all the random variables in the limits are independent, D̃
{i}
1 , i = 1, 2, are inde-

pendent copies of D̃1 as defined in (2.3), and, for α > 1, F̃
{i}
α , i = 1, 2, are independent

copies of F̃α as defined in (2.5).

Remarks 2.1. The normal random variables Yα and Wα arise from the edges away from the
boundary (see Section 5). The nonnormal variables (the D̃αs and F̃αs) arise from the edges very
close to the boundary, where the MDSF is asymptotically close to the ‘directed linear forest’
discussed below in Section 3.

Theorem 2.1 indicates a phase transition in the character of the limit law as α increases.
The normal contribution (from the points away from the boundary) dominates for 0 < α < 1,
while the boundary contributions dominate for α > 1. In the critical case, α = 1, neither effect
dominates and both terms contribute significantly to the asymptotic behaviour.

Noteworthy in the case α = 1 is the fact that, by (2.7) and (2.10), the limiting distribution is
the same for L̃1(Pn) as for L̃1(P 0

n ), and the same for L̃1(Xn) as for L̃1(X0
n). Note, however,

that the difference L̃1(Pn) − L̃1(P 0
n ) is the (centred) total length of edges incident at the origin,

which is not negligible, but itself converges in distribution (see [14]) to a nondegenerate random
variable, namely a centred generalized Dickman random variable with parameter 2 (see (3.14),
below). As an extension of Theorem 2.1, it should be possible to show that the joint distribution
of (L̃1(Pn), L̃

1(P 0
n )) converges to that of two coupled random variables, both having the

distribution of D̃1, whose difference has the centred generalized Dickman distribution with
parameter 2; likewise for the joint distribution of (L̃1(Xn), L̃

1(X0
n)).
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The remainder of the paper is organized as follows. After a discussion of the DLT in Section 3,
in Section 4 we present general limit theorems in geometric probability, which we shall use in
obtaining our main results for the MDST. The proof of Theorem 2.1 is prepared in Sections 5
and 6 and completed in Section 7. In these proofs, we repeatedly use Slutsky’s theorem (see, for
example, [11]) which says that if Xn

d−→ X and Yn
p−→ 0 (i.e. Yn converges to 0 in probability),

then Xn + Yn
d−→ X. For brevity, we omit details of some proofs. More details can be found in

the longer version of this paper, which is available electronically [13].

3. The directed linear forest and tree

The directed linear forest and directed linear tree are for us tools for the analysis of the
limiting behaviour of the contribution to the total weight of the random MDSF or MDST from
edges near the boundary of the unit square. In this section we derive the properties of the DLF
that we need (in particular Theorem 3.1); subsequently, in Theorem 6.1, we shall see that the
total weight of edges from the points near the boundaries converges in distribution to the limit
of the total weight of the DLF, as n → ∞.

The DLT is also of some intrinsic interest. It is a one-dimensional directed analogue of the so-
called ‘on-line nearest-neighbour graph’, which is of interest in the study of networks such as the
World Wide Web (see, e.g. [4]; also see [12] and [15] for more on the on-line nearest-neighbour
graph). Moreover, the DLT is constructed via a fragmentation process similar to those seen in,
for example, [3]; the tree provides a historical representation of the fragmentation process.

For any finite sequence Tm = (x1, x2, . . . , xm) ∈ (0, 1]m, we construct the directed linear
forest as follows. We insert the points xi in order, one at a time, starting with i = 1. At the
insertion of each point, we join the new point to its nearest neighbour among those points already
present that lie to the left of the point (provided that such a point exists). In other words, for
each point xi, i ≥ 2, we join xi by a directed edge to the point max{xj : 1 ≤ j < i, xj < xi}.
If {xj : 1 ≤ j < i, xj < xi} is empty, we do not add any directed edge from xi . In this way
we construct the so-called directed linear forest, which we denote by DLF(Tm). We denote the
total weight (under weight function with exponent α) of DLF(Tm) by Dα(Tm), that is, we set

Dα(Tm) :=
m∑

i=2

(xi − max{xj : 1 ≤ j < i, xj < xi})α1{min{xj : 1 ≤ j < i} < xi}.

Here we will take Tm to be random. In this case, set D̃α(Tm) := Dα(Tm)− E[Dα(Tm)], the
centred total weight of the DLF. In particular, let (X1, X2, X3, . . .) be a sequence of independent,
uniformly distributed random variables in (0, 1], and for m ∈ N set Um := (X1, X2, . . . , Xm)

and U0
m := (0, X1, X2, . . . , Xm). We consider Dα(Um) and Dα(U0

m). Note that the DLF on
U0

m will always be a tree rooted at 0, and in this case we call it the directed linear tree.
For the random variables Dα(Um) and Dα(U0

m) we establish asymptotic behaviour of the
mean value in Propositions 3.1 and 3.2, along with the following convergence results, which
are the principal results of this section.

For α > 1, let Dα denote a random variable with distribution characterized by

Dα
d= UαD{1}

α + (1 − U)αD{2}
α + Uα, (3.1)

where U is uniform on (0, 1) and independent of the other variables on the right-hand side.
Also for α > 1, let Fα denote a random variable with distribution characterized by

Fα
d= UαFα + (1 − U)αDα, (3.2)

https://doi.org/10.1239/aap/1151337075 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1151337075


342 • SGSA M. D. PENROSE AND A. R. WADE

where U is uniform on (0, 1), Dα has the distribution given by (3.1), and U , the Dα , and
the Fα on the right-hand side are independent. The corresponding centred random variables,
D̃α := Dα − E[Dα] and F̃α := Fα − E[Fα], respectively satisfy (2.4) and (2.5). The solutions
to (2.4) and (2.5) are unique by the criterion given in (2.2), and hence the solutions to (3.1)
and (3.2) are also unique. For p = 1, 2, let ‘→Lp ’ denote convergence in pth mean.

Theorem 3.1. (i) As m → ∞ we have D̃1(U0
m) →L2 D̃1 and D̃1(Um) →L2 F̃1, where D̃1

has the distribution given by (2.3) and F̃1 has the same distribution as D̃1. Also, the variance
of D̃1 (and hence also of F̃1) is 2 − π2/6 ≈ 0.355 066. Finally, cov(D̃1, F̃1) = 7/4 − π2/6 ≈
0.105 066.

(ii) For α > 1, as m → ∞ we have Dα(U0
m) → Dα almost surely and in L2, and

Dα(Um) → Fα almost surely and in L2, where the distributions of Dα and Fα are respectively
given by (3.1) and (3.2). Also, E[Dα] = (α − 1)−1 and E[Fα] = (α(α − 1))−1, while var(Dα)

and var(Fα) are respectively given by (3.22) and (3.24), below.

Proof. Part (i) follows from Propositions 3.5, 3.6, and 3.7, below. Part (ii) follows from
Propositions 3.3 and 3.4. We prove these results in the following sections.

An interesting property of the DLT, which we use in establishing fixed-point equations for
limit distributions, is its self-similarity (scaling property). In terms of the total weight, this says
that, for any t ∈ (0, 1), if Y1, . . . , Yn are independent and uniformly distributed on (0, t], then
the distribution of Dα(Y1, . . . , Yn) is the same as that of tαDα(X1, . . . , Xn).

3.1. The mean total weight of the DLF and DLT

First we consider the rooted case, i.e. the DLT on U0
m. For m ∈ N, denote by Zm the

random variable given by the gain in length of the tree upon the addition of one point, Xm, to an
existing m − 1 points in the DLT on a sequence of uniform random variables U0

m−1; i.e. with
the conventions D1(U0

0) = 0 and X0 = 0, we set

Zm := D1(U0
m) − D1(U0

m−1) = Xm − max{Xj : 0 ≤ j < m, Xj < Xm}. (3.3)

Thus, with weight exponent α, the mth edge to be added has weight Zα
m.

Lemma 3.1. (i) Zm has distribution function Fm, given by Fm(t) = 0 for t < 0, Fm(t) = 1
for t > 1, and Fm(t) = 1 − (1 − t)m for 0 ≤ t ≤ 1.

(ii) For β > 0, Zm has moments

E[Zβ
m] = �(m + 1)�(1 + β)

�(1 + β + m)
. (3.4)

In particular,

E[Zm] = 1

m + 1
, var[Zm] = m

(m + 1)2(m + 2)
. (3.5)

(iii) For β > 0, as m → ∞ we have

E[Zβ
m] ∼ �(1 + β)m−α. (3.6)

(iv) As m → ∞, mZm converges in distribution to an exponential random variable with
parameter 1.
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Proof. For 0 ≤ t ≤ 1, we have

P[Zm > t] = P[Xm > t and none of X1, . . . , Xm−1 lies in (Xm − t, Xm)] = (1 − t)m,

and (i) follows. We then obtain (ii), since for any β > 0 we have

E[Zβ
m] =

∫ 1

0
P[Zm > t1/β ] dt =

∫ 1

0
(1 − t1/β)m dt = �(m + 1)�(1 + β)

�(1 + β + m)
.

Then (iii) follows by Stirling’s formula. For (iv), we have from (i) that, for t ∈ [0, ∞) and m

large enough that t/m ≤ 1,

P[mZm ≤ t] = Fm

(
t

m

)
= 1 −

(
1 − t

m

)m

→ 1 − e−t , as m → ∞.

However, 1 − e−t , t ≥ 0, is the exponential distribution function with parameter 1.

Note that Zm has the same distribution as the spacing Sn
1 (see Section 3.2). The following

result gives the asymptotic behaviour of the expected total weight of the DLT. Let γ denote
Euler’s constant, whence

k∑
i=1

1

i
− log k = γ + O(k−1). (3.7)

Proposition 3.1. As m → ∞, the expected total weight of the DLT on U0
m satisfies

E[Dα(U0
m)] ∼ �(α + 1)

1 − α
m1−α, 0 < α < 1, (3.8)

E[D1(U0
m)] − log m → γ − 1, (3.9)

E[Dα(U0
m)] = 1

α − 1
+ O(m1−α), α > 1. (3.10)

Proof. We have

E[Dα(U0
m)] =

m∑
i=1

(E[Dα(U0
i )] − E[Dα(U0

i−1)]) =
m∑

i=1

E[Zα
i ].

For α = 1, E[Zi] = (i + 1)−1 by (3.5), and (3.9) follows from (3.7). For a general α > 0, with
α �= 1, from (3.4) we have

E[Dα(U0
m)] = �(1 + α)

m∑
i=1

�(i + 1)

�(1 + α + i)
= 1

α − 1
− �(1 + α)�(m + 2)

(α − 1)�(m + 1 + α)
, (3.11)

which can be proved by induction on m. By Stirling’s formula, the last term satisfies

− �(1 + α)�(m + 2)

(α − 1)�(m + 1 + α)
= −�(1 + α)

α − 1
m1−α(1 + O(m−1)), (3.12)

which, for α > 1, tends to 0 as m → ∞, to give us (3.10). For α < 1, we obtain (3.8)
from (3.11) and (3.12).
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Now consider the unrooted case, i.e. the DLF. For Um as above, the total weight of the DLF
is denoted by Dα(Um), and the centred total weight by D̃α(Um) := Dα(Um) − E[Dα(Um)].
We then see that

Dα(U0
m) = Dα(Um) + Lα

0 (U0
m), (3.13)

where Lα
0 (U0

m) is the total weight of edges incident at 0 in the DLT on U0
m.

The following lemma says that Lα
0 (U0

m) converges to a random variable that has the
generalized Dickman distribution with parameter 1/α (see [14]), that is, the distribution of
a random variable X which satisfies the distributional fixed-point equation

X
d= Uα(1 + X), (3.14)

where U is uniform on (0, 1) and independent of the X on the right-hand side. We recall from
Proposition 3 of [14] that if X satisfies (3.14), then

E[X] = 1

α
and E[X2] = α + 2

2α2 . (3.15)

Lemma 3.2. Let α > 0. There is a random variable Lα
0 , with the generalized Dickman

distribution with parameter 1/α, such that as m → ∞ we have Lα
0 (U0

m) → Lα
0 almost surely

and in L2.

Proof. Let δD(U0
m)denote the degree of the origin in the directed linear tree onU0

m, implying
that δD(U0

m) is the number of lower records in the sequence (X1, . . . , Xm). Then

Lα
0 (U0

m) = Uα
1 + (U1U2)

α + · · · + (U1 · · · UδD(U0
m))

α,

where (U1, U2, . . .) is a certain sequence of independent, uniform random variables on (0, 1),
namely the ratios between successive lower records of the sequence (Xn). The sum Uα

1 +
(U1U2)

α+(U1U2U3)
α+· · · has nonnegative terms and finite expectation, so it converges almost

surely to a limit, which we denote Lα
0 . Then Lα

0 has the generalized Dickman distribution with
parameter 1/α (see Proposition 2 of [14]).

Since δD(U0
m) tends to ∞ almost surely as m → ∞, we have Lα

0 (U0
m) → Lα

0 almost
surely. Also, E[(Lα

0 )2] < ∞ by (3.15), and (Lα
0 − Lα

0 (U0
m))2 ≤ (Lα

0 )2 for all m. Thus,
E[(Lα

0 (U0
m)−Lα

0 )2] → 0 by the dominated convergence theorem, from which the required
L2-convergence also follows.

Proposition 3.2. As m → ∞, the expected total weight of the DLF on Um satisfies

E[Dα(Um)] ∼ �(α + 1)

1 − α
m1−α, 0 < α < 1, (3.16)

E[D1(Um)] − log m → γ − 2, (3.17)

E[Dα(Um)] → 1

α(α − 1)
, α > 1. (3.18)

Proof. By (3.13) we have E[Dα(Um)] = E[Dα(U0
m)] − E[Lα

0 (U0
m)], and by Lemma 3.2

and (3.15) we have
E[Lα

0 (U0
m)] −→ E[Lα

0 ] = 1/α.

We then obtain (3.16), (3.17), and (3.18) from Proposition 3.1.
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In the following sections we present the limiting behaviour of the DLT or DLF in the cases
α = 1 and α > 1. The case α < 1 does not concern us here. However, a divide and conquer
approach, as used in [15] to prove a limit theorem for the total weight of the on-line nearest-
neighbour graph on (0, 1) when 1

2 < α < 1, can be used to give a similar result for the DLT or
DLF.

3.2. Orthogonal increments for α = 1

In this section we shall show (in Lemma 3.5) that when α = 1, the variables Zi, i ≥ 1, are
mutually orthogonal, in the sense of having zero covariances, which fact will be used later on
to establish convergence of the (centred) total length of the DLT. To prove this, we first need
some further notation.

Given X1, . . . , Xm, let us denote the order statistics of X1, . . . , Xm, taken in increasing order,
as Xm

(1), X
m
(2), . . . , X

m
(m). Thus, (Xm

(1), X
m
(2), . . . , X

m
(m)) is a nondecreasing sequence forming a

permutation of the original, (X1, . . . , Xm). Denote the existing m+ 1 intervals between points
by Im

j := (Xm
(j−1), X

m
(j)), j = 1, 2, . . . , m + 1, where we set Xm

(0) := 0 and Xm
(m+1) := 1. Let

the widths of these intervals (the spacings) be

Sm
j := |Im

j | = Xm
(j) − Xm

(j−1), 1 ≤ j ≤ m + 1.

Then 0 ≤ Sm
j < 1 for 1 ≤ j ≤ m + 1, and

∑m+1
j=1 Sm

j = 1, i.e. the vector (Sm
1 , Sm

2 , . . . , Sm
m+1)

belongs to the m-dimensional simplex �m. Note that only m of the Sm
j are required to specify

the vector.
We can arrange the spacings themselves (i.e. Sm

j , 1 ≤ j ≤ m+1) into increasing order to give
Sm

(1), Sm
(2), . . . , Sm

(m+1). Then let F m
S denote the σ -field generated by these ordered spacings,

i.e. F m
S = σ(Sm

(1), . . . , S
m
(m+1)). The following interpretation of F m

S may be helpful. The set
(0, 1) \ {X1, . . . , Xm} consists almost surely of m + 1 connected components (‘fragments’) of
total length 1, and F m

S is the σ -field generated by the collection of lengths of these fragments,
ignoring the order in which they appear.

By definition, the value of Zm must be one of the (ordered) spacings Sm
(1), . . . , S

m
(m+1). The

next result says that, given the values of these spacings, each of the possible values for Zm is
equally likely.

Lemma 3.3. For m ≥ 1, we have

P[Zm = Sm
(i) | F m

S ] = 1

m + 1
almost surely, for i = 1, . . . , m + 1. (3.19)

Hence,

E[Zm | F m
S ] = 1

m + 1

m+1∑
i=1

Sm
(i) = 1

m + 1
. (3.20)

Proof. We know that (Sm
1 , . . . , Sm

m+1) is uniform over the m-dimensional simplex �m. In
particular, the Sm

j are exchangeable. Thus, given Sm
(1), . . . , S

m
(m+1), i.e. F m

S , the actual values
of Sm

1 , . . . , Sm
m+1 are equally likely to be any permutation of Sm

(1), . . . , S
m
(m+1), and, given

Sm
1 , . . . , Sm

m+1, the value of Zm is equally likely to be any one of Sm
1 , . . . , Sm

m (but cannot
be Sm

m+1).
Hence, given Sm

(1), . . . , S
m
(m+1), the probability that Zm = Sm

(i) is (1/m) × m/(m + 1) =
1/(m + 1), yielding (3.19); (3.20) then follows from

∑m+1
j=1 Sm

(j) = 1.
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Lemma 3.4. Let 1 ≤ m < 	. Given F m
S , Z	 and Zm are conditionally independent.

Proof. Given F m
S , we have Sm

(1), . . . , S
m
(m+1), and by (3.19) the (conditional) distribution of

Zm is uniform on {Sm
(1), . . . , S

m
(m+1)}. Furthermore, given F m

S , the conditional distribution of
Z	, 	 > m, depends only on Sm

(1), . . . , S
m
(m+1), and not which one of them Zm happens to be.

Hence, Zm and Z	 are conditionally independent.

Lemma 3.5. For 1 ≤ m < 	, the random variables Zm and Z	 satisfy cov(Zm, Z	) = 0.

Proof. From Lemmas 3.4 and 3.3,

E[ZmZ	 | F m
S ] = E[Zm | F m

S ] E[Z	 | F m
S ] = 1

m + 1
E[Z	 | F m

S ],

and by taking expectations we obtain

E[ZmZ	] = 1

m + 1
E[Z	] = 1

m + 1

1

	 + 1
= E[Zm] E[Z	].

Hence, the covariance of Zm and Z	 is 0.

3.3. Limit behaviour for α > 1

We now consider the limit distribution of the total weight of the DLT and DLF. In this
section we consider the case of α-power-weighted edges with α > 1; that is, we prove part (ii)
of Theorem 3.1. To describe the moments of the limiting distribution of Dα(U0

m) and Dα(Um),
we introduce the notation

J (α) :=
∫ 1

0
uα(1 − u)α du = 2−1−2α

√
π

�(α + 1)

�(α + 3
2 )

. (3.21)

We start with the rooted case, Dα(U0
m), and subsequently consider the unrooted case, Dα(Um).

Proposition 3.3. Let α > 1. Then there exists a random variable Dα such that, as m → ∞, we
have Dα(U0

m) → Dα almost surely and in L2. Also, Dα satisfies the distributional fixed-point
equality (3.1). Furthermore, E[Dα] = 1/(α − 1) and

var(Dα) = α(α − 2 + 2(2α + 1)J (α))

(α − 1)2(2α − 1)
. (3.22)

Proof. Let Zi be the length of the ith edge of the DLT, as defined in (3.3). Let Dα :=∑∞
i=1 Zα

i . The sum converges almost surely, since it has nonnegative terms and, by (3.6), has
finite expectation for α > 1. By (3.6) and the Cauchy–Schwarz inequality, there exists a
constant, C, 0 < C < ∞, such that

E[D2
α] =

∞∑
i=1

∞∑
j=1

E[Zα
i Zα

j ] ≤ C

∞∑
i=1

∞∑
j=1

i−αj−α < ∞,

since α > 1. The stated L2-convergence then follows from the dominated convergence theorem.
Taking U = X1 here, by the self-similarity of the DLT we have

Dα(U0
m)

d= UαDα{1}(U0
N) + (1 − U)αDα{2}(U0

m−1−N) + Uα, (3.23)
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where N ∼ Bin(m − 1, U), given U , and, given U and N , Dα{1}(U0
N) and Dα{2}(U0

m−1−N)

are independent and have the distributions of Dα(U0
N) and Dα(U0

m−1−N), respectively. As
m → ∞, N and m − N both tend to ∞ almost surely; thus, by taking m → ∞ in (3.23), we
obtain the fixed-point equation (3.1).

The identity E[Dα] = (α − 1)−1 is obtained either from (3.10) or by taking expectations
in (3.1). Next, if we set D̃α = Dα −E[Dα], (3.1) yields (2.4). Then, using the definition, (3.21),
of J (α), the fact that E[D̃α] = 0, and independence, from (2.4) we obtain

E[D̃2
α] = 2 E[D̃2

α]
2α + 1

+ α2 + 1

(α − 1)2(2α + 1)
+ 2αJ (α)

(α − 1)2 − 1

(α − 1)2 .

Rearranging this gives (3.22).

Recall from Lemma 3.2 that Lα
0 is the limiting weight of edges attached to the origin in the

DLT on uniform points. Combining this fact with Proposition 3.3, we obtain a similar result to
the latter for the unrooted case, as follows.

Proposition 3.4. Let α > 1. There is a random variable Fα , satisfying the distributional
fixed-point equality (3.2), such that as n → ∞, Dα(Um) → Fα almost surely and in L2.
Furthermore, E[Fα] = 1/(α(α − 1)) and

var(Fα) = 1

2α
var(Dα) + α + 2(2α + 1)J (α) − 2

2α2(α − 1)2 , (3.24)

where J (α) is given by (3.21) and var(Dα) by (3.22).

Proof. By Lemma 3.2 and Proposition 3.3, there are random variables Dα and Lα
0 such that,

as m → ∞, we have Dα(U0
m) →L2 Dα and Lα

0 (U0
m) →L2 Lα

0 , with almost-sure convergence
in both cases. Hence, with Fα := Dα − Lα

0 , by (3.13) we have

Dα(Um) = Dα(U0
m) − Lα

0 (U0
m) → Fα almost surely and in L2. (3.25)

Next we show that Fα satisfies the distributional fixed-point equality (3.2). The self-
similarity of the DLT implies that

Dα(Um)
d= UαDα(UN) + (1 − U)αDα(U0

m−1−N), (3.26)

where N ∼ Bin(m − 1, U), given U , and Dα(UN) and Dα(U0
m−1−N) are independent, given

U and N . As m → ∞, N and m − N both tend to ∞ almost surely, so by taking m → ∞
in (3.26) and using Proposition 3.3 and (3.25), we obtain the fixed-point equation (3.2).

The identity E[Fα] = α−1(α −1)−1 is obtained either from (3.18) or by taking expectations
in (3.2) and using the formula for E[Dα] of Proposition 3.3. Then, with F̃α := Fα − E[Fα],
we obtain (2.5) from (3.2), and, using independence and the fact that E[F̃α] = E[D̃α] = 0, we
obtain

2α

2α + 1
E[F̃ 2

α ] = E[D̃2
α]

2α + 1
+ 2αJ (α) − 1

α2(α − 1)2 + α2 + 1

α2(α − 1)2(2α + 1)
,

which yields (3.24).
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3.4. Limit behaviour for α = 1

Unlike in the case α > 1, for α = 1 the mean of the total weight D1(U0
m) diverges as m → ∞

(see Proposition 3.1), so clearly there is no limiting distribution for D1(U0
m). Nevertheless, by

using the orthogonality of the increments of the sequence (D1(U0
m), m ≥ 1), we are able to

show that the centred total weight, D̃1(U0
m), does converge in distribution (in fact, in L2) to a

limiting random variable, and likewise in the unrooted case; this is our next result.
Subsequently, we shall characterize the distribution of the limiting random variable (in both

the rooted and unrooted cases) by a fixed-point identity, and thereby complete the proof of
Theorem 3.1(i).

Proposition 3.5. (i) As m → ∞, the random variable D̃1(U0
m) converges in L2 to a limiting

random variable D̃1 with E[D̃1] = 0 and var(D̃1) = 2−π2/6. In particular, var(D1(U0
m)) →

2 − π2/6 as m → ∞.

(ii) As m → ∞, D̃1(Um) converges in L2 to the limiting random variable F̃1 := D̃1 −L1
0 + 1.

Proof. Adopt the convention D1(U0
0) = 0. By the orthogonality of the Zj (Lemma 3.5)

and (3.5), for 0 ≤ 	 < m we have

var(D̃1(U0
m) − D̃1(U0

	)) = var

( m∑
j=	+1

(Zj − E[Zj ])
)

=
m∑

j=	+1

j

(j + 1)2(j + 2)

→ 0 as m, 	 → ∞.

Hence, D̃1(U
0
m) is a Cauchy sequence in L2 and, so, converges in L2 to a limiting random

variable, which we denote D̃1. Then E[D̃1] = limm→∞ E[D̃1(U
0
m)] = 0 and

var(D̃1) = lim
m→∞ var(D̃1(U0

m))

=
∞∑

j=1

j

(j + 1)2(j + 2)

=
∞∑

j=1

[
2

j + 1
− 2

j + 2

]
−

∞∑
j=1

1

(j + 1)2

= 1 −
(

π2

6
− 1

)

= 2 − π2

6
.

It remains to prove part (ii), the convergence of the centred total length of the DLF D̃1(Um).
By (3.13) we have

D̃1(Um) = D̃1(U0
m) − L1

0(U
0
m) + E[L1

0(U
0
m)] →L2 D̃1 − L1

0 + 1,

where the convergence follows by Lemma 3.2 and part (i). Thus, D̃1(Um) converges in L2 as
m → ∞.
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For the next few results it is more convenient to consider the DLF defined on a Poisson-
distributed number of points. Let (X1, X2, . . .) be a sequence of independent, uniformly
distributed random variables in (0, 1], and let (N(t), t ≥ 0) be the counting process of a
homogeneous Poisson process of unit rate in (0, ∞), independent of (X1, X2, . . .). Thus, N(t)

is a Poisson variable with parameter t . As before, let Um = (X1, . . . , Xm), and (in this section
only) let Pt := UN(t). Let P 0

t := U0
N(t), whence P 0

t = (0, X1, X2, . . . , XN(t)).
We construct the DLF and DLT on X1, X2, . . . , XN(t) as before. Let D̃1(P 0

t ) = D1(P 0
t )−

E[D1(P 0
t )] and D̃1(Pt ) = D1(Pt ) − E[D1(Pt )]. We aim to show that the limit distribution

for D̃1(P 0
t ) is the same as that for D̃1(U0

m), and likewise in the unrooted case. We shall need
the following result.

Lemma 3.6. As t → ∞,

d

dt
E[D1(Pt )] = 1

t
+ O(t−2) and

d

dt
E[D1(P 0

t )] = 1

t
+ O(t−2).

Proof. The point set {X1, . . . , XN(t)} is a homogeneous Poisson point process in (0, 1), so
we have

d

dt
E[D1(Pt )] = E[length of new arrival]

=
∫ 1

0
du E[distance to next point to the left of u in Pt ]

=
∫ 1

0
du

∫ u

0
ste−ts ds

= 1

t
+ 2

t2 (e−t − 1) + e−t

t

= 1

t
+ O(t−2).

Similarly,

d

dt
E[D1(P 0

t )] =
∫ 1

0
du E[distance to next point to the left of u in Pt ∪ {0}]

=
∫ 1

0
du

∫ u

0
e−ts ds

= 1

t
+ e−t − 1

t2

= 1

t
+ O(t−2).

Lemma 3.7. (i) As t → ∞, D̃1(P 0
t ) converges in distribution to D̃1, the L2 large-m limit of

D̃1(U0
m).

(ii) As t → ∞, D̃1(Pt ) converges in distribution to F̃1, the L2 large-m limit of D̃1(Um).

Proof. (i) From Proposition 3.5, we have D̃1(U0
m) →L2 D̃1 as m → ∞. Let at :=

E[D1(P 0
t )] and µm := E[D1(U0

m)]. Since

µm = E

[ m∑
i=1

Zi

]
=

m∑
i=1

(1 + i)−1,
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by (3.5), for any positive integers 	 and m we have

|µm − µ	| =
max(m,	)∑

j=min(m,	)+1

1

j + 1
≤ log

(
max(m, 	) + 1

min(m, 	) + 1

)
=

∣∣∣∣ log

(
m + 1

	 + 1

)∣∣∣∣. (3.27)

Note the distributional equalities

L(D1(P 0
t ) | N(t) = m) = L(D1(U0

m)),

L(D1(P 0
t ) − µN(t) | N(t) = m) = L(D̃1(U0

m)). (3.28)

First we aim to show that at −µ�t� → 0 as t → ∞, where �x� denotes the integer part of x.
Set pm(t) := e−t tm/m!. Then we can write

at − µ�t� =
∞∑

m=0

pm(t)(µm − µ�t�)

=
∑

{m : |m−�t�|≤t3/4}
pm(t)(µm − µ�t�) +

∑
{m : |m−�t�|>t3/4}

pm(t)(µm − µ�t�). (3.29)

We examine these two sums separately. First consider the sum for |m−�t�| ≤ t3/4. By (3.27),
we have

sup
{m : |m−�t�|≤t3/4}

|µm − µ�t�| ≤ max

(
log

(�t� + 1 + t3/4

�t� + 1

)
, log

( �t� + 1

�t� + 1 − t3/4

))

= O(t−1/4)

→ 0 as t → ∞.

Hence, the first sum in (3.29) tends to 0 as t → ∞. To estimate the second sum, observe that

∑
{m : |m−�t�|>t3/4}

pm(t)(µm − µ�t�) ≤
∑

{m : |m−�t�|>t3/4}
pm(t)(m + t)

= E[(N(t) + t)1{|N(t) − �t�| > t3/4}]
≤ (E[(N(t) + t)2] P[|N(t) − �t�| > t3/4])1/2. (3.30)

By Chernoff bounds on the tail probabilities of a Poisson random variable (see, e.g. Lemma 1.4
of [11]), (3.30) is O(t exp(−t2/18)) and, so, tends to 0. Hence, the second sum in (3.29) tends
to 0 and, thus,

at − µ�t� → 0 as t → ∞. (3.31)

Now we show that D̃1(P 0
t )

d−→ D̃1 as t → ∞. We have

D̃1(P 0
t ) = (D1(P 0

t ) − µN(t)) + (µN(t) − µ�t�) + (µ�t� − at ). (3.32)

The final bracket tends to 0, by (3.31). Also, by (3.28) and the fact that N(t) → ∞ almost
surely as t → ∞, we have

D1(P 0
t ) − µN(t)

d−→ D̃1.
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Finally, using (3.27), we have

|µN(t) − µ�t�| ≤
∣∣∣∣ log

(
N(t) + 1

�t� + 1

)∣∣∣∣ p−→ 0 as t → ∞,

since N(t)/�t� p−→ 1 in the same limit. Slutsky’s theorem applied to (3.32) thus yields
D̃1(P 0

t )
d−→ D̃1 as t → ∞, completing the proof of (i).

The proof of (ii) follows in the same way as that of (i), except that in (3.27) the first equality
is replaced by the inequality ‘≤’. This does not affect the rest of the proof.

The next two propositions complete the proof of Theorem 3.1.

Proposition 3.6. The limiting random variable D̃1 of Proposition 3.5(i) satisfies the fixed-point
equation (2.3).

Proof. For integer n > 0, let Tn := min{s : N(s) ≥ n}, the nth arrival time of the Poisson
process with counting process N(·). Set T := T1 and set U := X1 (the latter of which is
uniform on (0, 1)).

By the marking theorem for Poisson processes [9, p. 55], the two-dimensional point process
Q := {(Xn, Tn) : n ≥ 1} is a homogeneous Poisson process of unit intensity on (0, 1)×(0, ∞).
Given the value of (U, T ), the restriction of Q to (0, U ] × (T , ∞) and the restriction of Q to
(U, 1] × (T , ∞) are independent, homogeneous Poisson processes on these regions. Hence,
by scaling properties of the Poisson process (see the mapping theorem of [9, pp. 17–19]) and
of the DLT, and writing D1{i}(·), i = 1, 2, for independent copies of D1(·), we have

D1(P 0
t )

d= (UD1{1}(P 0
U(t−T )) + (1 − U)D1{2}(P 0

(1−U)(t−T )) + U)1{t > T }. (3.33)

Let as = 0 for s ≤ 0 and as = E[D1(P 0
s )] for s > 0. Then D̃1(P 0

t ) = D1(P 0
t ) − at , whence,

by (3.33),

D̃1(P 0
t )

d= (UD̃1{1}(P 0
U(t−T )) + (1 − U)D̃1{2}(P 0

(1−U)(t−T )) + U)1{t > T }
+ U(aU(t−T ) − at ) + (1 − U)(a(1−U)(t−T ) − at ). (3.34)

From Lemma 3.6 we have dat/dt = 1/t + O(t−2). Hence, if T < t then

at − aU(t−T ) =
∫ t

U(t−T )

das

ds
ds = log t − log(U(t − T )) + O((U(t − T ))−1)

and, hence, as t → ∞,

at − aU(t−T ) → − log U almost surely. (3.35)

Since P[T < t] tends to 1, by taking t → ∞ in (3.34) and using Slutsky’s theorem we
obtain (2.3).

Proposition 3.7. The limiting random variable F̃1 of Proposition 3.5(ii) satisfies the fixed-point
equation (2.3) and, so, has the same distribution as D̃1. Also, cov(F̃1, D̃1) = 7/4 − π2/6.
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Figure 2: Estimated probability density function of D̃1.

Proof. The proof follows similar lines to that of Proposition 3.6. Once more let as =
E[D1(P 0

s )] for s ≥ 0 and as = 0 for s < 0. Let bs = E[D1(Ps)] for s > 0 and bs = 0 for
s ≤ 0, and let T := min{t : N(t) ≥ 1}. Then

D1(Pt )
d= (UD1{1}(PU(t−T )) + (1 − U)D1{2}(P 0

(1−U)(t−T )))1{t > T }, (3.36)

where D1{1}(·) and D1{2}(·) are independent copies of D1(·). Then D̃1(Pt ) = D1(Pt ) − bt and
D̃1(P 0

t ) = D1(P 0
t ) − at , by which (3.36) yields

D̃1(Pt )
d= (UD̃1{1}(PU(t−T )) + (1 − U)D̃1{2}(P 0

(1−U)(t−T )))1{t > T }
+ U(bU(t−T ) − bt ) + (1 − U)(a(1−U)(t−T ) − bt ). (3.37)

From Lemma 3.6 we have dbt/dt = 1/t + O(t−2). Hence, by the same argument as used to
obtain (3.35),

bt − bU(t−T ) → − log U almost surely.

Also, at − bt = E[L1
0(P

0
t )] by (3.13), whence limt→∞(at − bt ) = 1 by Lemma 3.2 and the

fact that E[L1
0] = 1 (by (3.15)). From (3.35) we also find that as t → ∞,

a(1−U)(t−T ) − bt = (a(1−U)(t−T ) − at ) + (at − bt ) → 1 + log (1 − U) almost surely.

By taking t → ∞ in (3.37) and using Slutsky’s theorem we obtain

F̃1
d= UF̃1 + (1 − U)D̃1 + U log U + (1 − U) log (1 − U) + (1 − U). (3.38)

The change of variable (1 − U) �→ U then shows that D̃1, as defined in (2.3), satisfies (3.38);
thus, by the uniqueness of solution, F̃1 has the same distribution as D̃1 and satisfies (2.3).
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To obtain the covariance of F̃1 and D̃1, observe from Proposition 3.5(ii) that L1
0 = D̃1 −

F̃1 + 1. Therefore, by (3.15), we have

1
2 = var(L1

0) = var(D̃1) + var(F̃1) − 2 cov(D̃1, F̃1). (3.39)

Since var(F̃1) = var(D̃1) = 2 − π2/6 by Proposition 3.5(i), by rearranging (3.39) we find that
cov(D̃1, F̃1) = 7/4 − π2/6.

Remark 3.1. Figure 2 is a plot of the estimated probability density function of D̃1. This was
obtained by performing 106 repeated simulations of the DLT on a sequence of 103 uniform
(simulated) random points in (0, 1]. For each simulation, the expected value of D1(U103)

(which is precisely 1
2 + 1

3 + · · · + 1
1001 , by Lemma 3.1) was subtracted from the total length

of the simulated DLT to give an approximate realization of D̃1. The density function was
then estimated from the sample of 106 approximate realizations of D̃1, using a window width
of 0.0025. The simulated sample from which the density estimate for D̃1 was taken had
approximate sample mean −2 × 10−4 and approximate sample variance 0.3543, which are
reasonably close to the expectation and variance of D̃1.

4. General central limit theorems in geometric probability

Notions of stabilizing functionals of point sets have recently proved to be a useful basis for a
general methodology for establishing limit theorems for functionals of random point sets in R

d .
In particular, Penrose and Yukich [16] provided general central limit theorems for stabilizing
functionals. One might hope to apply these results in the case of the MDSF weight. However,
to obtain the central limit theorem for edges away from the boundary in the MDSF and MDST,
we need an extension of the general result of [16], which we describe in this section.

To describe our general results we use the following notation. Let d ≥ 1 be an integer. For
X ⊂ R

d , a constant a > 0, and y ∈ R
d , let y+aX denote the transformed set {y+ax : x ∈ X}.

Let diam(X) := sup{‖x1 − x2‖: x1, x2 ∈ X} and let card(X) denote the cardinality (the
number of elements) of X (when finite).

For x ∈ R
d and r > 0, let B(x; r) denote the closed Euclidean ball with centre x and

radius r , and let Q(x; r) denote the corresponding l∞-ball, i.e. the d-cube x + [−r, r]d . For a
bounded measurable set R ⊂ R

d , let |R| denote the Lebesgue measure of R, let ∂R denote the
topological boundary of R, and, for r > 0, set ∂rR := ⋃

x∈∂R Q(x; r), the r-neighbourhood
of the boundary of R.

Let ξ(x; X)be a measurable, R+-valued function defined for all pairs (x, X), whereX ⊂ R
d

is finite and x ∈ X. Assume that ξ is translation invariant, that is, ξ(y + x; y + X) = ξ(x; X)

for all y ∈ R
d . When x /∈ X, we abbreviate the notation ξ(x; X ∪ {x}) to ξ(x; X). For

τ ∈ (0, ∞), let Hτ be a homogeneous Poisson process of intensity τ on R
d .

A translation-invariant, real-valued functional ξ(x; X) defined for finite point sets X ⊂ R
d

and points x ∈ X induces a translation-invariant functional H(X; S) defined on all X ⊂ R
d

and all Borel-measurable regions S ⊆ R
d by

H(X; S) :=
∑

x∈X∩S

ξ(x; X). (4.1)

It is this ‘restricted’ functional that interests us here; in [16] the authors were concerned rather
with the global functional H(X; R

d). In our particular application (the length of the edges of
the MDST on random points in a square), the global functional fails to satisfy the conditions
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of the central limit theorems of [16], owing to boundary effects. Here we generalize the result
of [16] to the ‘restricted’ functional H(X; S). It is this generalized result that we can apply to
the MDST, when we take S to be a region ‘away from the boundary’ of the square in which the
random points are placed.

We use a notion of stabilization for H . Loosely speaking, ξ is stabilizing if, when a point is
inserted at the origin into a homogeneous Poisson process, only nearby Poisson points affect
the inserted point; for H to be stabilizing we require also that the inserted point affects only
nearby points.

For B ⊆ R
d , let �(X; B) denote the ‘add-one cost’ of the functional H on the insertion of

a point at the origin:
�(X; B) := H(X ∪ {0}; B) − H(X; B).

Let P := H1, a homogeneous Poisson point process of unit intensity on R
d . Adapting the

ideas of [16], we make the following definitions.

Definition 4.1. We say the functional H is strongly stabilizing if there exist almost surely finite
random variables R (a radius of stabilization) and �(∞) such that with probability 1, for any
B ⊇ B(0; R),

�(P ∩ B(0; R) ∪ A; B) = �(∞) for all finite sets A ⊂ R
d \ B(0; R).

We say that the functional H is polynomially bounded if for all B � 0 there exists a constant,
β, such that for all finite sets X ⊂ R

d ,

|H(X; B)| ≤ β(diam(X) + card(X))β . (4.2)

We say that H is homogeneous of order γ if for all finite sets X ⊂ R
d , all Borel sets B ⊆ R

d ,
and all a ∈ R, it is the case that

H(aX; aB) = aγ H(X; B).

Let (Rn, Sn), n = 1, 2, . . . , be a sequence of ordered pairs of bounded Borel subsets of R
d

such that Sn ⊆ Rn for all n. Assume that, for all r > 0, n−1|∂rRn| → 0 and n−1|∂rSn| → 0
(the vanishing relative boundary condition). Assume also that |Rn| = n for all n and that
|Sn|/n → 1 as n → ∞; that Sn tends to R

d in the sense that
⋃

n≥1
⋂

m≥n Sm = R
d ; and that

there exists a constant, β, such that diam(Rn) ≤ βnβ for all n (the polynomial boundedness
condition on (Rn, Sn)n≥1). Subject to these conditions, the choice of (Rn, Sn)n≥1 is arbitrary.

Let U1,n, U2,n, . . . be independent, identically distributed uniform random vectors on Rn.
Let

Um,n = {U1,n, . . . ,Um,n}
(a binomial point process), and for Borel sets A ⊆ R

d with 0 < |A| < ∞, let Um,A be the
binomial point process of m independent, identically distributed uniform random vectors on A.

Let R be the collection of all pairs (A, B), with A, B ⊂ R
d , of the form

(A, B) = (x + Rn, x + Sn),

with x ∈ R
d and n ∈ N. That is, R is the collection of all the (Rn, Sn) and their translates.

We say that the functional H satisfies the uniform bounded moments condition on R if

sup
{(A,B)∈R : 0 ∈ A}

(
sup

|A|/2≤m≤3|A|/2
E[�(Um,A; B)4]

)
< ∞. (4.3)
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Our first general result extends Theorem 2.1 of [16]. We omit the proof here; it can be found
in [13]. Let Qn := P ∩ Rn, the restriction of P to Rn

Theorem 4.1. Suppose that H is strongly stabilizing, is polynomially bounded (see 4.2)), and
satisfies the uniform bounded moments condition, (4.3), on R. Then there exist constants s2

and t2, with 0 ≤ t2 ≤ s2, such that as n → ∞,

(i) n−1 var(H(Qn; Sn)) → s2,

(ii) n−1/2(H(Qn; Sn) − E[H(Qn; Sn)]) d−→ N (0, s2),

(iii) n−1 var(H(Un,n; Sn)) → t2,

(iv) n−1/2(H(Un,n; Sn) − E[H(Un,n; Sn)]) d−→ N (0, t2).

Also, s2 and t2 are independent of the choice of the (Rn, Sn). Furthermore, if the distribution
of �(∞) is nondegenerate, then s2 ≥ t2 > 0.

Our second general result generalizes Corollary 2.1 of [16]. Let R0 be a fixed, bounded Borel
subset of R

d with |R0| = 1 and |∂R0| = 0. Let (S0,n, n ≥ 1) be a sequence of Borel sets with
S0,n ⊆ R0, such that both |S0,n| → 1 as n → ∞ and, for all r > 0, we have |∂n−1/d rS0,n| → 0
as n → ∞.

Let R0 be the collection of all pairs of the form

(x + n1/dR0, x + n1/dS0,n)

with n ≥ 1 and x ∈ R
d . Let Xn be the binomial point process of n independent, identically

distributed uniform random vectors on R0, and let Pn be a homogeneous Poisson point process
of intensity n on R0.

Corollary 4.1. Suppose that H is strongly stabilizing, satisfies the uniform bounded moments
condition on R0, is polynomially bounded, and is homogeneous of order γ . Then with s2 and
t2 as in Theorem 4.1, as n → ∞ we have

(i) n2γ /d−1 var(H(Pn; S0,n)) → s2,

(ii) nγ/d−1/2(H(Pn; S0,n) − E[H(Pn; S0,n)]) d−→ N (0, s2),

(iii) n2γ /d−1 var(H(Xn; S0,n)) → t2,

(iv) nγ/d−1/2(H(Xn; S0,n) − E[H(Xn; S0,n)]) d−→ N (0, t2).

Proof. The corollary follows from Theorem 4.1 by taking Rn = n1/dR0 and Sn = n1/dS0,n

(or suitable translates thereof), and scaling, since H is homogeneous of order γ .

5. Central limit theorem away from the boundary

While it should be possible to adapt the argument of this section to more general partial
orders, from now on we take the partial order on R

2 to be ‘�∗’. For each n, define the region
S0,n := (nε−1/2, 1]2, where ε ∈ (0, 1

2 ) is a small constant to be chosen later. In this section,
we use the general central limit theorems of Section 4 to demonstrate a central limit theorem
for the contribution to the total weight of the MDSF, under ‘�∗’, from edges away from the
boundary, that is, from points in the region S0,n.
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Given α > 0, consider the MDSF total weight functional H = Lα on point sets in R
2. We

take ξ(x; X) to be d(x; X)α , where d(x; X) is the distance from point x to its directed nearest
neighbour in X under ‘�∗’, if such a neighbour exists, and is 0 otherwise. Thus, in our case,

ξ(x; X) = d(x; X)α with d(x; X) := min{‖x − y‖: y ∈ X \ {x}, y �∗ x},
with the convention that min ∅ = 0. For R ⊆ R

2, let

Lα(X; R) =
∑

x∈X∩R

ξ(x; X) (5.1)

and Lα(X) := Lα(X; R
2).

Let Xn be the binomial point process of n independent, identically distributed uniform
random vectors in (0, 1]2, and let Pn be a homogeneous Poisson process of intensity n on
(0, 1]2. The main result of this section is the following theorem.

Theorem 5.1. Suppose that α > 0 and the partial order is ‘�∗’. Then there exist constants tα
and sα , 0 < tα ≤ sα , not depending on the choice of ε, such that as n → ∞,

(i) nα−1 var(Lα(Xn; S0,n)) → t2
α ,

(ii) n(α−1)/2L̃α(Xn; S0,n)
d−→ N (0, t2

α),

(iii) nα−1 var(Lα(Pn; S0,n)) → s2
α ,

(iv) n(α−1)/2L̃α(Pn; S0,n)
d−→ N (0, s2

α).

The following corollary states that Theorem 5.1 is also true in the rooted cases, i.e. with Xn

replaced by X0
n and Pn replaced by P 0

n .

Corollary 5.1. Suppose that α > 0 and the partial order is ‘�∗’. Then, with tα and sα as given
in Theorem 5.1, as n → ∞ we have

(i) nα−1 var(Lα(X0
n; S0,n)) → t2

α ,

(ii) n(α−1)/2L̃α(X0
n; S0,n)

d−→ N (0, t2
α),

(iii) nα−1 var(Lα(P 0
n ; S0,n)) → s2

α ,

(iv) n(α−1)/2L̃α(P 0
n ; S0,n)

d−→ N (0, s2
α).

Theorem 5.1 and Corollary 5.1 were proved in [13]. The proof of the theorem relies on
showing that the functional Lα satisfies suitable versions of the conditions of Theorem 4.1 and
Corollary 4.1, namely that Lα is polynomially bounded (see (4.2)), homogeneous of order α,
and strongly stabilizing (see Definition 4.1). Also, the distribution of �(∞) is nondegenerate.
Finally, with R0 := (0, 1]2, recalling that S0,n := (nε−1/2, 1]2 throughout this section, and
with R0 as defined just before Corollary 4.1, Lα satisfies the uniform bounded moments
condition, (4.3), on R0. For the details, see [13].

6. The edges near the boundary

Next in our analysis of the MDST on random points in the unit square, we consider the
length of the edges close to the boundary of the square. The limiting structure of the MDSF
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and MDST near the boundaries is described by the directed linear forest model discussed in
Section 3.

We initially consider the ‘rooted’ case, in which we insert a point at the origin. Later we
shall analyse the multiple sink (or ‘unrooted’) case, in which we do not insert a point at the
origin, in a similar way.

Fix σ ∈ ( 1
2 , 2

3 ). Let Bn denote the L-shaped boundary region (0, 1]2 \ (n−σ , 1]2. Recall
from (5.1) that Lα(X; R) denotes the contribution to the total weight of the MDST on X
from edges starting at points of X ∩ R. When X is a random point set, set L̃α(X; R) :=
Lα(X; R) − E[Lα(X; R)].
Theorem 6.1. Suppose that the partial order is ‘�∗’. Then as n → ∞,

L̃α(P 0
n ; Bn)

d−→ D̃{1}
α + D̃{2}

α , α ≥ 1, (6.1)

L̃α(X0
n; Bn)

d−→ D̃{1}
α + D̃{2}

α , α ≥ 1, (6.2)

where D̃
{1}
α and D̃

{2}
α are independent random variables with the distribution of D̃α given by

the fixed-point equation (2.3) for α = 1 and by (2.4) for α > 1. As n → ∞ we also have

L̃α(Pn; Bn)
d−→ F̃ {1}

α + F̃ {2}
α , α ≥ 1, (6.3)

L̃α(Xn; Bn)
d−→ F̃ {1}

α + F̃ {2}
α , α ≥ 1, (6.4)

where F̃
{1}
α and F̃

{2}
α are independent random variables with the same distribution as D̃1 for

α = 1, and with the distribution given by the fixed-point equation (2.5) for α > 1. Finally, as
n → ∞ we additionally have

n(α−1)/2Lα(Pn; Bn) →L1 0, 0 < α < 1, (6.5)

n(α−1)/2Lα(P 0
n ; Bn) →L1 0, 0 < α < 1. (6.6)

The idea behind the proof of Theorem 6.1 is to show that the MDSF near each of the two
boundaries is close to a DLF system defined on a sequence of uniform random variables coupled
to the points of the MDSF. To do this, we produce two explicit sequences of random variables
on which we construct the DLF coupled to Pn, the Poisson process of intensity n on (0, 1]2,
on which the MDSF is constructed.

Let Bx
n be the rectangle (n−σ , 1] × (0, n−σ ], let B

y
n be the rectangle (0, n−σ ] × (n−σ , 1],

and let B0
n be the square (0, n−σ ]2; see Figure 3. Then Bn = B0

n ∪ Bx
n ∪ B

y
n . Define the point

processes

Vx
n := Pn ∩ (Bx

n ∪ B0
n), V

y
n := Pn ∩ (B

y
n ∪ B0

n), and V0
n := Pn ∩ B0

n, (6.7)

and let Nx
n := card(Vx

n ), Ny
n := card(V

y
n ), and N0

n := card(V0
n). List Vx

n , in order of increasing
y-coordinate, as Xx

i , i = 1, 2, . . . , Nx
n . In coordinates, set Xx

i = (Xx
i , Y x

i ) for each i.
Similarly, list V

y
n , in order of increasing x-coordinate, as X

y
i = (X

y
i , Y

y
i ), i = 1, . . . , N

y
n . Let

Ux
n = (Xx

i , i = 1, 2, . . . , Nx
n ) and U

y
n = (Y

y
i , i = 1, 2, . . . , N

y
n ). Then Ux

n and U
y
n are se-

quences of uniform random variables in (0, 1], on which we may construct a DLF.Also, we write
Ux,0

n for the sequence (0, Xx
1 , Xx

2 , . . . , Xx
Nx

n
), and U

y,0
n for the sequence (0, Y

y
1 , Y

y
2 , . . . , Y

y

N
y
n
).

With the total DLF or DLT weight functional Dα(·) defined in Section 3 for random finite
sequences in (0, 1), the DLF weight Dα(Ux

n) is coupled in a natural way to the MDSF
contribution Lα(Vx

n ), and likewise for Dα(U
y
n) and Lα(V

y
n ), for Dα(Ux,0

n ) and Lα(Vx
n ∪{0}),

and for Dα(U
y,0
n ) and Lα(V

y
n ∪ {0}).
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n–σ
0

By
n

B0
n Bx

n

1

Figure 3: The boundary regions.

Lemma 6.1. For any α ≥ 1, as n → ∞,

Lα(Vx
n ) − Dα(Ux

n) →L2 0 and Lα(V
y
n ) − Dα(U

y
n) →L2 0, (6.8)

Lα(Vx
n ∪ {0}) − Dα(Ux,0

n ) →L2 0 and Lα(V
y
n ∪ {0}) − Dα(U

y,0
n ) →L2 0. (6.9)

Furthermore, for 0 < α < 1, as n → ∞,

E[|Lα(Vx
n ) − Dα(Ux

n)|2] = O(n2−2σ−2ασ ), (6.10)

and a corresponding result holds for V
y
n and U

y
n, and for the rooted cases (with the addition

of the origin).

Proof. We approximate the MDSF in the region Bn by two DLFs, coupled to the MDSF.
Consider Vx

n ; the argument for V
y
n is entirely analogous.

We have the set of points Vx
n = {(Xx

i , Y x
i ), i = 1, . . . , Nx

n }. We construct the MDSF
on these points and construct the DLF on the x-coordinates, Ux

n = (Xx
i , i = 1, . . . , Nx

n ).
Consider any point (Xx

i , Y x
i ). For any single point, either an edge exists from that point in

both constructions or in neither. Suppose that an edge exists; that is, suppose that Xx
i is

joined to a point Xx
D(i), D(i) < i, in the DLF model, and (Xx

i , Y x
i ) to a point (Xx

N(i), Y
x
N(i))

in the MDST (we do not necessarily have N(i) = D(i)). By construction, we know that
|Xx

i − Xx
D(i)| ≤ |Xx

i − Xx
N(i)|, since N(i) < i according to the ordering of our points. It then

follows that

‖(Xx
i , Y x

i ) − (Xx
N(i), Y

x
N(i))‖α ≥ |Xx

i − Xx
N(i)|α ≥ |Xx

i − Xx
D(i)|α,

and so we have established that for all α > 0,

Dα(Ux
n) ≤ Lα(Vx

n ) and Dα(Ux,0
n ) ≤ Lα(Vx

n ∪ {0}).
Now, by the construction of the MDST, we have

‖(Xx
i , Y x

i ) − (Xx
N(i), Y

x
N(i))‖ ≤ ‖(Xx

i , Y x
i ) − (Xx

D(i), Y
x
D(i))‖. (6.11)
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If (x, y) ∈ (0, 1]2 then ‖(x, y)‖ ≤ x + y, and, by the mean value theorem for the function
t �→ tα , for α ≥ 1 we have

‖(x, y)‖α − xα ≤ (x + y)α − xα ≤ α2α−1y, α ≥ 1.

Hence, for α ≥ 1,

‖(Xx
i , Y x

i ) − (Xx
D(i), Y

x
D(i))‖α − (Xx

i − Xx
D(i))

α ≤ α2α−1(Y x
i − Yx

D(i)). (6.12)

Then, for α ≥ 1, (6.11) and (6.12) yield

‖(Xx
i , Y x

i ) − (Xx
N(i), Y

x
N(i))‖α − (Xx

i − Xx
D(i))

α ≤ α2α−1(Y x
i − Yx

D(i)).

Hence, for α ≥ 1,

0 ≤ Lα(Vx
n ) − Dα(Ux

n) ≤ α2α−1
Nx

n∑
i=1

(Y x
i − Yx

D(i))

and, thus,

0 ≤ Lα(Vx
n ) − Dα(Ux

n) ≤ α2α−1Nx
n n−σ ,

0 ≤ Lα(Vx
n ∪ {0}) − Dα(Ux,0

n ) ≤ α2α−1Nx
n n−σ . (6.13)

We have Nx
n ∼ Po(n1−σ ), whence, since σ > 1

2 ,

E[(Lα(Vx
n ∪ {0}) − Dα(Ux,0

n ))2] ≤ α222α−2n−2σ E[(Nx
n )2] → 0, α ≥ 1.

An entirely analogous argument leads to the same statement for U
y
n and V

y
n , and we obtain (6.8),

and (6.9) in identical fashion.
Now let 0 < α < 1. By the concavity of the function t �→ tα for α < 1, for x > 0 and

y > 0 we have

‖(x, y)‖α − xα ≤ (x + y)α − xα ≤ yα, 0 < α < 1.

Then, by an argument similar to that yielding (6.13) in the α ≥ 1 case, we obtain

0 ≤ Lα(Vx
n ) − Dα(Ux

n) ≤ Nx
n n−ασ .

Then (6.10) follows since Nx
n ∼ Po(n1−σ ), and the rooted case is similar.

Lemma 6.2. Suppose that D̃1 has distribution given by (2.3), D̃α, α > 1, has distribution
given by (2.4), and F̃α, α > 1, has distribution given by (2.5). Then as n → ∞,

L̃1(Vx
n ∪ {0}) d−→ D̃1 and L̃1(Vx

n )
d−→ D̃1, (6.14)

L̃α(Vx
n ∪ {0}) d−→ D̃α and L̃α(Vx

n )
d−→ F̃α, α > 1. (6.15)

Moreover, (6.14) and (6.15) also hold with Vx
n replaced by V

y
n .
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Proof. As usual we present the argument for Vx
n only, since the result for V

y
n follows in the

same manner. First consider the α > 1 case. We have the distributional equalities

L(Dα(Ux,0
n ) | Nx

n = m) = L(Dα(U0
m)), L(Dα(Ux

n) | Nx
n = m) = L(Dα(Um)).

However, Nx
n is Poisson with mean n1−σ and, so, tends to ∞ almost surely. Thus, by

Theorem 3.1(ii),

Dα(Ux,0
n )

d−→ Dα and Dα(Ux
n)

d−→ Fα as n → ∞,

and by Lemma 6.1 and Slutsky’s theorem,

Lα(Vx
n ∪ {0}) d−→ Dα and Lα(Vx

n )
d−→ Fα as n → ∞. (6.16)

Also, E[Dα(Ux,0
n )] → (α − 1)−1 by (3.10), whence, by Lemma 6.1 and Proposition 3.3,

E[Lα(Vx
n ∪ {0})] → (α − 1)−1 = E[Dα].

Similarly, by (3.18), Lemma 6.1, and Proposition 3.4,

E[Lα(Vx
n )] → (α(α − 1))−1 = E[Fα].

Hence, (6.16) also holds with the centred variables (i.e. (6.15) holds).
Now suppose that α = 1. Since Nx

n is Poisson with parameter n1−σ , Lemma 3.7(i) with
t = n1−σ shows that D̃1(Ux,0

n )
d−→ D̃1 as n → ∞. Slutsky’s theorem with Lemma 6.1 then

implies that L̃1(Vx
n ∪ {0}) d−→ D̃1. In the same way we obtain L̃1(Vx

n )
d−→ D̃1, this time using

part (ii) of Lemma 3.7 instead of part (i), along with Proposition 3.7.

Note that Dα(Ux
n) and Dα(U

y
n) are not independent. To deal with this, we define

Ṽx
n := Pn ∩ Bn

x and Ṽ
y
n := Pn ∩ Bn

y .

(Also, recall the definition of V0
n in (6.7).) Let Ñx

n := card(Ṽx
n ) and Ñ

y
n := card(Ṽ

y
n ). Since

Bx
n and B

y
n are disjoint, Lα(Ṽx

n ) and Lα(Ṽ
y
n ) are independent, by the spatial independence

property of the Poisson process Pn.
Now we make the following observation. Using notation from Section 4, for k ∈ N and for

a < b and c < d, let Uk,(a,b]×(c,d] denote the point process consisting of k independent random
vectors uniformly distributed on the rectangle (a, b] × (c, d]. Before proceeding further, we
recall that if M(X) denotes the number of minimal elements of a point set X ⊂ R

2 (under the
ordering ‘�∗’), then

E[M(Uk,(a,b]×(c,d])] = E[M(Xk)] = 1 + 1

2
+ · · · + 1

k
≤ 1 + log k. (6.17)

The first equality in (6.17) comes from some obvious scaling showing that the distribution of
M(Uk,(a,b]×(c,d]) does not depend on a, b, c, and d. For the second equality in (6.17), see [2]
or the proof of Theorem 1.1(a) of [5].
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Lemma 6.3. Suppose that α > 0.

(i) As n → ∞,

Lα(Vx
n ) − Lα(Ṽx

n ) →L1 0 and Lα(V
y
n ) − Lα(Ṽ

y
n ) →L1 0, (6.18)

Lα(Vx
n ∪ {0}) − Lα(Ṽx

n ∪ {0}) →L1 0 and Lα(V
y
n ∪ {0}) − Lα(Ṽ

y
n ∪ {0}) →L1 0.

(6.19)

(ii) As n → ∞, we have Lα(V0
n) →L1 0 and Lα(V0

n ∪ {0}) →L1 0.

Proof. We first prove (i). We give only the argument for Vx
n , as that for V

y
n is analogous.

Let � := Lα(Vx
n ) − Lα(Ṽx

n ) and β = (σ + 1
2 )/2. Then 1

2 < β < σ .
Assume without loss of generality that Pn is the restriction to (0, 1]2 of a homogeneous

Poisson process, Hn, of intensity n on R
2. Let X− = (X−, Y−) be the point of Hn ∩

((0, n−β ] × (0, ∞)) with minimal y-coordinate. Then X− is uniform on (0, n−β ]. Let En be
the event that X− > 3n−σ ; then P[Ec

n] = 3nβ−σ for large enough n.
Let �1 be the contribution to � from edges starting at points in (0, n−β ] × (0, n−σ ]. The

absolute value of �1 is then bounded by the product of (
√

2n−β)α and the number of points of
Pn in (0, n−β ] × (0, n−σ ]. Hence, for any α > 0,

E[|�1|] ≤ (
√

2n−β)α E[card(Pn ∩ ((0, n−β ] × (0, n−σ ]))]
= 2α/2n1−β−σ−αβ

→ 0. (6.20)

Let �2 := �−�1, the contribution to � from edges starting at points in (n−β, 1]×(0, n−σ ].
Then, by the triangle inequality, if En occurs these edges are unaffected by points in B0

n and,
so, �2 = 0. Also, only minimal elements of Pn ∩ (n−β, 1] × (0, n−σ ] can possibly have their
directed nearest neighbour in (0, n−σ ] × (0, n−σ ]; hence, if Mn denotes the number of such
minimal elements, then |�2| is bounded by 2α/2Mn. Hence, using (6.17), we obtain

E[|�2|] ≤ 2α/2 P[Ec
n] E[Mn] = O(nβ−σ log n),

which tends to 0. Combined with (6.20), this gives us (6.18). The same argument gives us (6.19).
To prove part (ii), note that

E[Lα(V0
n)] ≤ (

√
2n−σ )α E[N0

n ] = 2α/2n1−2σ−σα → 0 as n → ∞,

for any α > 0. Thus, Lα(V0
n) →L1 0 and, similarly, Lα(V0

n ∪ {0}) →L1 0.

In proving our next lemma (and again later on) we use the following elementary fact. If
N(n) is Poisson-distributed with parameter n, then as n → ∞,

E[|N(n) − n| log max(N(n), n)] = O(n1/2 log n). (6.21)

To see this, let Yn := |N(n) − n| log max(N(n), n). Then

Yn1{N(n) ≤ 2n} ≤ |N(n) − n| log(2n),

and the expectation of this is O(n1/2 log n) by Jensen’s inequality, since var(N(n)) = n. As the
Cauchy–Schwarz inequality shows that E[Yn1{N(n) > 2n}] → O(n1/2), (6.21) thus follows.
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We now state a lemma for coupling Xn and Pn. The result for α ≥ 1 will be used in
the proof of Theorem 6.1. The result for 0 < α < 1 will be needed later, in the proof of
Theorem 2.1. As in Section 5, let S0,n denote the ‘inner’ region (nε−1/2, 1]2, with ε ∈ (0, 1

2 ) a
constant. The boundary region Bn is disjoint from S0,n; let Cn denote the intermediate region
(0, 1]2 \ (Bn ∪ S0,n), whence Bn ∪ Cn = (0, 1]2 \ S0,n.

Lemma 6.4. There exists a coupling of Xn and Pn such that the following statements hold.

(i) For 0 < α < 1, provided that ε < (1 − α)/2, as n → ∞ we have

n(α−1)/2 E[|Lα(Xn; Bn ∪ Cn) − Lα(Pn; Bn ∪ Cn)|] → 0 (6.22)

and
n(α−1)/2 E[|Lα(X0

n; Bn ∪ Cn) − Lα(P 0
n ; Bn ∪ Cn)|] → 0. (6.23)

(ii) For α ≥ 1, as n → ∞ we have

E[|Lα(Xn; Bn) − Lα(Pn; Bn)|] → 0 (6.24)

and
E[|Lα(X0

n; Bn) − Lα(P 0
n ; Bn)|] → 0. (6.25)

Proof. We couple Xn and Pn in the following standard way. Let X1, X2, X3, . . . be
independent, uniform random vectors in (0, 1]2, and let N(n) ∼ Po(n) be independent of
(X1, X2, . . .). For m ∈ N (in particular for m = n), set Xm := {X1, . . . ,Xm}, and set
Pn := {X1, . . . ,XN(n)}.

For each m ∈ N, let Ym denote the in-degree of vertex Xm in the MDST on Xm. Suppose
that Xm = x. An upper bound for Ym is then provided by the number of minimal elements
of the restriction of Xm−1 to the rectangle {y ∈ (0, 1]2 : x �∗ y}. Hence, conditional on
Xm = x and on there being k points of Xm−1 in this rectangle, the expected value of Ym is
bounded by the expected number of minimal elements in a random uniform sample of k points
in this rectangle, and, hence (see (6.17)), by 1 + log k. Given the value of Xm, the conditional
expectation of Ym is thus bounded by 1 + log m.

We first prove the statements in part (i), with 0 < α < 1. Suppose that ε < (1−α)/2. Then

|Lα(Xm; Bn ∪ Cn) − Lα(Xm−1; Bn ∪ Cn)| ≤ 2α/2(Ym + 1)1{Xm ∈ Bn ∪ Cn}. (6.26)

Since Bn ∪ Cn has area 2nε−1/2 − n2ε−1, we obtain

E[(Ym + 1)1{Xm ∈ Bn ∪ Cn}] ≤ (2 + log m)2nε−1/2.

Hence, by (6.26) there exists a constant, C, such that

n(α−1)/2 E[|Lα(Pn; Bn ∪ Cn) − Lα(Xn; Bn ∪ Cn)| | N(n)]
≤ C|N(n) − n| log(max(N(n), n))n(α+2ε−2)/2,

and, since we assume that α +2ε < 1, by (6.21) the expected value of the right-hand side tends
to 0 as n → ∞, and we obtain (6.22). A similar argument yields (6.23) in the rooted case.

Now we prove part (ii). For α ≥ 1, we have

|Lα(Xm; Bn) − Lα(Xm−1; Bn)| ≤ 2α/2(Ym + 1)1{Xm ∈ Bn}. (6.27)
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Since Bn has area 2n−σ − n−2σ , by (6.27) there is a constant, C, such that

E[|Lα(Pn; Bn) − Lα(Xn; Bn)| | N(n)] ≤ C|N(n) − n| log(max(N(n), n))n−σ ,

and, since σ > 1
2 , by (6.21) the expected value of the right-hand side tends to 0 as n → ∞,

and we obtain (6.24). We obtain (6.25) similarly.

Proof of Theorem 6.1. Suppose that α ≥ 1. Then

L̃α(Ṽx
n ) = L̃α(Vx

n ) + (L̃α(Ṽx
n ) − L̃α(Vx

n )).

The final bracket converges to 0 in probability, by Lemma 6.3(i). Thus, by Lemma 6.2 and
Slutsky’s theorem, we obtain L̃α(Ṽx

n )
d−→ F̃α (where F̃1

d= D̃1). Now,

L̃α(Vx
n ) + L̃α(V

y
n ) = L̃α(Ṽx

n ) + L̃α(Ṽ
y
n ) + (L̃α(Vx

n ) − L̃α(Ṽx
n )) + (L̃α(V

y
n ) − L̃α(Ṽ

y
n )).

The last two brackets converge to 0 in probability, by Lemma 6.3(i). Then the independence of
L̃α(Vx

n ) and L̃α(V
y
n ) and another application of Slutsky’s theorem yield

L̃α(Vx
n ) + L̃α(V

y
n )

d−→ F̃ {1}
α + F̃ {2}

α ,

where F̃
{1}
α and F̃

{2}
α are independent copies of F̃α . Similarly,

L̃α(Vx
n ∪ {0}) + L̃α(V

y
n ∪ {0}) d−→ D̃{1}

α + D̃{2}
α .

Finally, since L̃α(Pn; Bn) = L̃α(Vx
n )+L̃α(V

y
n )−L̃α(V0

n) (with a similar statement including
the origin), Lemma 6.3(ii) and Slutsky’s theorem complete the proof of (6.1) and (6.3).

To deduce (6.2) and (6.4), assume without loss of generality that Xn and Pn are coupled
in the manner of Lemma 6.4. Then L̃α(Pn; Bn) − L̃α(Xn; Bn) tends to 0 in probability
by (6.24), and L̃α(P 0

n ; Bn) − L̃α(X0
n; Bn) tends to 0 in probability by (6.25). Hence, by

Slutsky’s theorem, the convergence results (6.1) and (6.3) carry through to the binomial point
process case, i.e. (6.2) and (6.4) hold.

Now suppose that 0 < α < 1. Then (6.10) gives us

E[|n(α−1)/2(Lα(Vx
n ) − Dα(Ux

n))|2] = O(n(α+1)(1−2σ)), (6.28)

which tends to 0 as n → ∞, since σ > 1
2 . Likewise, for the rooted case,

E[|n(α−1)/2(Lα(Vx
n ∪ {0}) − Dα(Ux,0

n ))|2] = O(n(α+1)(1−2σ)). (6.29)

By Proposition 3.2, we have

E[n(α−1)/2Dα(Ux
n)] = O(n(α−1)/2 E[(Nx

n )1−α]) = O(n(α−1)(σ−1/2)) → 0,

and combined with (6.28) this completes the proof of (6.5). Similarly, by Proposition 3.1,

E[n(α−1)/2Dα(Ux,0
n )] = O(n(α−1)/2 E[(Nx

n )1−α]) = O(n(α−1)(σ−1/2)) → 0,

and combined with (6.29) this gives us (6.6).
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7. Proof of Theorem 2.1

Let σ ∈ ( 1
2 , 2

3 ), and let ε > 0 with

ε < min

(
1

2
,

1 − σ

3
,

3 − 4σ

10
,

2 − 3σ

8

)
. (7.1)

In addition, if 0 < α < 1 we impose the further condition that ε < (1 − α)/2. As in
Section 5, denote by S0,n the region (nε−1/2, 1]2. As in Section 6, let Bn denote the region
(0, 1]2 \ (n−σ , 1]2, and let Cn denote the region (0, 1]2 \ (Bn ∪ S0,n).

We know from Sections 5 and 6 that, for large n, the weight of edges starting in S0,n satisfies
a central limit theorem, and the weight of edges starting in Bn can be approximated by the
directed linear forest. We shall show in Lemmas 7.2 and 7.3 that (with a suitable scaling factor
for α < 1) the contribution to the total weight from points in Cn has a variance converging
to 0. To complete the proof of Theorem 2.1 in the Poisson case, we shall show that the lengths
from Bn and S0,n are asymptotically independent by virtue of the fact that the configuration of
points in Cn is (with probability approaching 1) sufficient to ensure that the configuration of
points in Bn has no effect on the edges from points in S0,n. To extend the result to the binomial
point process case, we shall use a de-Poissonization argument related to that used in [16].

First consider the region Cn. We divide this naturally into three regions. Let

Cx
n := (nε−1/2, 1] × (n−σ , nε−1/2],

C
y
n := (n−σ , nε−1/2] × (nε−1/2, 1],

C0
n := (n−σ , nε−1/2]2.

Also, as in Section 6, let

Bx
n := (n−σ , 1] × (0, n−σ ], B

y
n := (0, n−σ ] × (n−σ , 1], B0

n := (0, n−σ ]2.

We divide the Cn and Bn into rectangular cells as follows (see Figure 4), leaving C0
n undivided.

We set
kn := �n1−σ−2ε� (7.2)

and divide Cx
n lengthways into kn cells. For each cell,

width = (1 − nε−1/2)/kn ∼ n2ε+σ−1, height = nε−1/2 − n−σ ∼ nε−1/2. (7.3)

Label these cells �x
i , i = 1, 2, . . . , kn, from left to right. For each cell �x

i , define the adjoining
cell of Bx

n , formed by extending the vertical edges of �x
i , to be βx

i . Each cell βx
i then has width

(1 − nε−1/2)/kn ∼ n2ε+σ−1 and height n−σ .
In a similar way, we divide C

y
n into kn cells, �

y
i , of height (1 − nε−1/2)/kn and width

nε−1/2 − n−σ , and divide B
y
n into the corresponding cells β

y
i , i = 1, . . . , kn.

For i = 2, . . . , kn, let Ex,i denote the event that the cell βx
i−1 contains at least one point of

Pn, and let Ey,i denote the event that β
y
i−1 contains at least one point of Pn.

Lemma 7.1. For sufficiently large n, and for 1 ≤ j < i ≤ kn with i − j > 3, if Ex,i occurs
then no point in the cell �x

i has a directed nearest neighbour in the cell �x
j or βx

j . Similarly,
under the same conditions, if Ey,i occurs then no point in the cell �

y
i has a directed nearest

neighbour in the cell �
y
j or β

y
j .
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(1 – nε–1/2)/kn

nε–1/2 – n–σ

0

C0
n

S0,n

βx
i

�x
i

βy
j �y

j

n–σ

n–σ

1

Figure 4: The regions of [0, 1]2.

Proof. Consider a point X, say, in cell �x
i in Cx

n . Given Ex,i , we know that there is a point
Y , say, in the cell, βx

i−1, to the left of the cell, βx
i , immediately below �x

i , such that Y �∗ X

yet the difference in x-coordinates between X and Y is no more than twice the width of a cell.
Thus, by the triangle inequality, we have

‖X − Y‖ ≤ 2(1 − nε−1/2)/kn + nε−1/2 ∼ 2n2ε+σ−1, (7.4)

since σ > 1
2 . Now consider a point Z, say, in a cell �x

j or βx
j with j ≤ i − 4. In this case, the

difference in x-coordinates between X and Z is at least the width of three cells, meaning that

‖X − Z‖ ≥ 3(1 − nε−1/2)/kn ∼ 3n2ε+σ−1. (7.5)

By comparing (7.4) and (7.5), we see that X is not connected to Z, which completes the proof.

Recall from (5.1) that for a point set S ⊂ R
2 and a region R ⊆ R

2, Lα(S; R) denotes the
total weight of the edges of the MDSF on S which originate in the region R.

Lemma 7.2. As n → ∞, we have

var(Lα(Pn; Cn)) → 0 and var(Lα(P 0
n ; Cn)) → 0, α ≥ 1, (7.6)

var(n(α−1)/2Lα(Pn; Cn)) → 0, 0 < α < 1, (7.7)

var(n(α−1)/2Lα(P 0
n ; Cn)) → 0, 0 < α < 1. (7.8)

https://doi.org/10.1239/aap/1151337075 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1151337075


366 • SGSA M. D. PENROSE AND A. R. WADE

Proof. For ease of notation, we write Xi = Lα(Pn; �x
i ) and Yi = Lα(Pn; �

y
i ), for i =

1, 2, . . . , kn. Also, let Z = Lα(Pn; C0
n). Then

var(Lα(Pn; Cn)) = var

(
Z +

kn∑
i=1

Xi +
kn∑

i=1

Yi

)
. (7.9)

Let Nx
i , N

y
i , and N0 respectively denote the number of points of Pn in �x

i , �
y
i , and C0

n .
Then, by (7.3), Nx

i is Poisson-distributed with parameter asymptotic to n3ε+σ−1/2, while
Nx

1 + N
y
1 + N0 is Poisson-distributed with parameter asymptotic to 2n3ε+σ−1/2; hence, as

n → ∞ we have

E[(Nx
i )2] ∼ n6ε+2σ−1, E[(Nx

1 + N
y
1 + N0)

2] ∼ 4n6ε+2σ−1. (7.10)

Edges from points in �x
1 ∪ �

y
1 ∪ C0

n are of length at most 2n2ε+σ−1, and, hence,

var(X1 + Y1 + Z) ≤ (2n2ε+σ−1)2α E[(Nx
1 + N

y
1 + N0)

2]
∼ 22+2αn6ε+2σ−1+2α(2ε+σ−1). (7.11)

For α ≥ 1, since ε is small (see (7.1)), the expression (7.11) is O(n10ε+4σ−3) and in fact tends
to 0, implying that

var(X1 + Y1 + Z) → 0, α ≥ 1. (7.12)

By Lemma 7.1 and (7.4), given Ex,i , an edge from a point of �x
i can be of length no more

than 3n2ε+σ−1. Thus, using (7.10), we have

var(Xi1{Ex,i}) ≤ E[X2
i 1{Ex,i}] ≤ (3n2ε+σ−1)2α E[(Nx

i )2]
= O(n6ε+2σ−1+2α(2ε+σ−1)). (7.13)

Next observe that cov(Xi1{Ex,i}, Xj 1{Ex,j }) = 0 for i − j > 3, since, by Lemma 7.1,
Xi1{Ex,i} is determined by the restriction of Pn to the union of the regions �x

	 ∪ βx
	 , i − 3 ≤

	 ≤ i. Thus, by (7.2), the Cauchy–Schwarz inequality, and (7.13), we obtain

var

( kn∑
i=2

Xi1{Ex,i}
)

=
kn∑

i=2

var(Xi1{Ex,i}) +
kn∑

i=2

∑
{j : 1≤|j−i|≤3}

cov(Xi1{Ex,i}, Xj 1{Ex,j })

= O(n4ε+σ+2α(2ε+σ−1)). (7.14)

For α ≥ 1, the bound in (7.14) tends to 0 as n → ∞, since 1
2 < σ < 2

3 and ε is small (see (7.1)).
By (7.2), each cell βx

i , i = 1, . . . , kn, has width asymptotic to n2ε+σ−1 and height n−σ ,
implying that the mean number of points of Pn in one of these cells is asymptotic to n2ε;
hence, for any cell βx

i or β
y
i , i = 1, . . . , kn, the probability that the cell contains no point of

Pn is given by exp(−n2ε(1 + o(1))). Hence, for large enough n, and i = 2, . . . , kn, we have
P[Ec

x,i] ≤ exp(−nε) and, thus, by (7.10),

var(Xi1{Ec
x,i}) ≤ E[X2

i | Ec
x,i] P[Ec

x,i] ≤ 2α E[(Nx
i )2] P[Ec

x,i]
= O(n6ε+2σ−1 exp(−nε)).
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Hence, by the Cauchy–Schwarz inequality, we have

var

( kn∑
i=2

Xi1{Ec
x,i}

)
=

kn∑
i=2

var(Xi1{Ec
x,i}) +

∑
i �=j

cov(Xi1{Ec
x,i}, Xj 1{Ec

x,j })

= O(k2
nn

6ε+2σ−1 exp(−nε)) → 0 as n → ∞. (7.15)

Then, by (7.14), (7.15), and the analogous estimates for Yi , along with the Cauchy–Schwarz
inequality, for α ≥ 1 we obtain

var

( kn∑
i=2

Xi1{Ex,i} +
kn∑

i=2

Yi1{Ey,i} +
kn∑

i=2

Xi1{Ec
x,i} +

kn∑
i=2

Yi1{Ec
y,i}

)
→ 0 as n → ∞.

(7.16)
From (7.9) with (7.12), (7.16), and the Cauchy–Schwarz inequality, we obtain the first part
of (7.6). The argument for P 0

n is the same as for Pn, which yields the second part of (7.6).
Now suppose that 0 < α < 1. We obtain (7.7) and (7.8) in a similar way to (7.6), since (7.11)

implies that
var(n(α−1)/2(X1 + Y1 + Z)) = O(n6ε+2σ−2+α(4ε+2σ−1))

and (7.14) implies that

var

(
n(α−1)/2

kn∑
i=2

Xi1{Ex,i}
)

= O(n4ε+σ−1+α(4ε+2σ−1)),

and both of these bounds tend to 0 when 0 < α < 1, 1
2 < σ < 2

3 , and ε is small (see (7.1)).

To prove those parts of Theorem 2.1 that refer to the binomial process Xn, we need further
results comparing the processes Xn and Pn when they are coupled as in Lemma 6.4.

Lemma 7.3. Suppose that α ≥ 1. With Xn and Pn coupled as in Lemma 6.4, as n → ∞ we
have

Lα(Xn; Cn) − Lα(Pn; Cn) →L1 0 and Lα(X0
n; Cn) − Lα(P 0

n ; Cn) →L1 0. (7.17)

Proof. Let Pn and Xm, m ∈ N, be coupled as described in Lemma 6.4. Given n, for m ∈ N

define the event

Em,n :=
⋂

1≤i≤kn

({Xm−1 ∩ βx
i �= ∅} ∩ {Xm−1 ∩ β

y
i �= ∅}),

with the subcells βx
i and β

y
i of Bn as defined near the start of Section 7. Then, by arguments

similar to those for P[Ec
x,i] above, we have

P[Ec
m,n] = O(n1−σ−2ε exp(−nε/2)), m ≥ n/2 + 1.

As in the proof of Lemma 6.4, let Ym denote the in-degree of vertex Xm in the MDST on Xm.
Then

|Lα(Xm; Cn) − Lα(Xm−1; Cn)| ≤ (Ym + 1)1{Xm ∈ Cn}((3n2ε+σ−1)α + 2α/21{Ec
m,n}).
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Thus, given N(n),

|Lα(Xn; Cn) − Lα(Pn; Cn)|

≤
max(N(n),n)∑

m=min(N(n),n)

(Ym + 1)1{Xm ∈ Cn}(3αnα(2ε+σ−1) + 2α/21{Ec
m,n}).

Since Cn has area less than 2nε−1/2, by (6.17) there exists a constant, C, such that for n

sufficiently large and N(n) ≥ n/2 + 1,

E[|Lα(Xn; Cn) − Lα(Pn; Cn)| | N(n)]
≤ 2α/2n1{N(n) < n/2 + 1}

+ C|N(n) − n| log(max(N(n), n))nα(2ε+σ−1)+ε−1/21{N(n) ≥ n/2 + 1}. (7.18)

By tail bounds for the Poisson distribution, we have n P[N(n) < n/2 + 1] → 0 as n → ∞,
and, hence, by taking expectations in (7.18) and using (6.21), we obtain

E[|Lα(Xn; Cn) − Lα(Pn; Cn)|] = O(nα(2ε+σ−1)+ε log n) + o(1),

which tends to 0 since α ≥ 1, 1
2 < σ < 2

3 , and ε is small (see (7.1)). We thus obtain the
unrooted part of (7.17). The argument is the same in the rooted case.

Lemma 7.4. Suppose that Xn and Pn are coupled as described in Lemma 6.4, with N(n) :=
card(Pn). Let �(∞) be given by Definition 4.1 with H = L1, and let α1 := E[�(∞)]. Then
as n → ∞,

L1(Pn; S0,n) − L1(Xn; S0,n) − n−1/2α1(N(n) − n) →L2 0, (7.19)

L1(P 0
n ; S0,n) − L1(X0

n; S0,n) − n−1/2α1(N(n) − n) →L2 0. (7.20)

We omit the proof of this lemma; see [13] for more details.
We are now in a position to prove Theorem 2.1. We divide the proof into two cases: α �= 1

and α = 1. In the latter case, to prove the result for the Poisson process Pn we need to show
that L1(Pn; Bn) and L1(Pn; S0,n) are asymptotically independent; likewise for P 0

n . We shall
then obtain the results both for the binomial process Xn and for X0

n from those for Pn and P 0
n ,

via the coupling described in Lemma 6.4.

Proof of Theorem 2.1 for α �= 1. First suppose that 0 < α < 1. For the Poisson case, we
have

n(α−1)/2L̃α(Pn) = n(α−1)/2L̃α(Pn; S0,n) + n(α−1)/2L̃α(Pn; Bn) + n(α−1)/2L̃α(Pn; Cn).

(7.21)
The first term on the right-hand side of (7.21) converges in distribution to N (0, s2

α) by The-
orem 5.1(iv), and the other two terms converge in probability to 0 by (6.5) and (7.7). Thus,
Slutsky’s theorem yields the first (Poisson) part of (2.9). To obtain the second (binomial) part
of (2.9), we use the coupling of Lemma 6.4. We write

n(α−1)/2L̃α(Xn) = n(α−1)/2L̃α(Xn; S0,n) + n(α−1)/2L̃α(Pn; Bn ∪ Cn)

+ n(α−1)/2(L̃α(Xn; Bn ∪ Cn) − L̃α(Pn; Bn ∪ Cn)). (7.22)
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The first term on the right-hand side of (7.22) is asymptotically N (0, t2
α), by Theorem 5.1(ii).

The second term tends to 0 in probability, by (6.5) and (7.7). The third term tends to 0 in
probability, by (6.22). Thus, we obtain the binomial case of (2.9).

The rooted case, (2.6), is similar. For the first (Poisson) part of (2.6), we use Corollary 5.1(iv)
with (6.6) and (7.8), and Slutsky’s theorem. The second part of (2.6) follows from the statement
analogous to (7.22) with the addition of the origin, using Corollary 5.1(ii) with (6.6), (7.8),
and (6.23), and, again, Slutsky’s theorem.

Next suppose that α > 1. We have

L̃α(Pn) = L̃α(Pn; S0,n) + L̃α(Pn; Cn) + L̃α(Pn; Bn). (7.23)

The first term on the right-hand side converges to 0 in probability, by Theorem 5.1(iii). The
second term also converges to 0 in probability, by the first part of (7.6). Then, by (6.3) and
Slutsky’s theorem, we obtain the first (Poisson) part of (2.11). To obtain the rooted version,
i.e. the first part of (2.8), we replace Pn by P 0

n in (7.23), combine (6.1) with Corollary 5.1(iii)
and the second part of (7.6), and apply Slutsky’s theorem again.

To obtain the binomial versions of the results (2.8) and (2.11), we again make use of the
coupling described in Lemma 6.4. We have

L̃α(Xn) = L̃α(Xn; S0,n) + L̃α(Xn; Cn) + L̃α(Xn; Bn). (7.24)

The first term on the right-hand side converges in probability to 0, by Theorem 5.1(i). The
second term also converges in probability to 0, by the first part of (7.6) and the first part
of (7.17). The third part converges in distribution to F̃

{1}
α + F̃

{2}
α , by (6.4). Hence, Slutsky’s

theorem yields the binomial part of (2.11).
Similarly, by replacing Pn by P 0

n and Xn by X0
n in (7.24), and using Corollary 5.1(i), the

second parts of (7.6) and (7.17), (6.2), and Slutsky’s theorem, we obtain the binomial part
of (2.8). This completes the proof for α �= 1.

Proof of Theorem 2.1 for α = 1: the Poisson case. We now prove the first part of (2.7) and
the first part of (2.10). Given n, let qn := 4�nε+σ−1/2�. Split each cell �x

i of Cx
n into a grid

of 4qn rectangular subcells by splitting the horizontal edge into qn segments and the vertical
edge into four segments. Similarly, split each cell �

y
i by splitting the vertical edge into qn

segments and the horizontal edge into four segments. Finally, add a single square subcell in the
top right-hand corner of C0

n , of side-length (1/4)nε−1/2, and denote this the ‘corner subcell’.
The total number of all such subcells is 1 + 8knqn ∼ 32n(1/2)−ε. Each of the subcells

has width and height asymptotic to (1/4)nε−1/2, and so the area of each cell is asymptotic to
(1/16)n2ε−1. Therefore, for large n, for each of these subcells, the probability that it contains
no point of Pn is bounded by exp(−nε).

Let En be the event that each of the subcells described above contains at least one point of
Pn. Then

P[Ec
n] = O(n(1/2)−ε exp(−nε)) → 0.

Suppose that x lies on the lower boundary of S0,n. Consider the rectangular subcell of �x
i lying

just to the left of the subcell directly below x (or the corner subcell, if it lies just to the left
of the subcell directly below x). All points y in this subcell satisfy y �∗ x and, for large n,
satisfy ‖y − x‖ < (3/4)nε−1/2, whereas the nearest point to x in Bn is at a distance at least
(3/4)nε−1/2. Arguing similarly for points x on the left-hand boundary of S0,n, and using the

https://doi.org/10.1239/aap/1151337075 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1151337075


370 • SGSA M. D. PENROSE AND A. R. WADE

triangle inequality, we see that if En occurs, no point in S0,n can be connected to any point in
Bn, provided that n is sufficiently large.

For simplicity of notation, we write Xn := L̃1(Pn; Bn) and Yn := L̃1(Pn; S0,n). We also
write X := D̃

{1}
1 + D̃

{2}
1 and Y ∼ N (0, s2

1 ), independent of X, with s1 as given in Theorem 5.1.
We know from Theorem 6.1 and Theorem 5.1 that Xn

d−→ X and Yn
d−→ Y as n → ∞.

We need to show that Xn +Yn
d−→ X+Y , where X and Y are independent random variables.

We show this by convergence of the characteristic function,

E[exp(it (Xn + Yn))] → E[exp(itX)] E[exp(itY )]. (7.25)

With ω denoting the configuration of points in Cn, we have

E[exp(it (Xn + Yn))] =
∫

En

E[eitXneitYn | ω] dP(ω) + E[eit (Xn+Yn)1{Ec
n}]

=
∫

En

E[eitXn ] E[eitYn | ω] dP(ω) + E[eit (Xn+Yn)1{Ec
n}],

where we have used the facts that Xn and Yn are conditionally independent, given ω ∈ En,
for n sufficiently large, and that Xn is independent of the configuration in Cn. It follows that
E[eit (Xn+Yn)1{Ec

n}] → 0 as n → ∞, since P[Ec
n] → 0. Thus,

E[exp(it (Xn + Yn))] − E[eitXn ] E[eitYn1{En}] → 0,

and we obtain (7.25) since E[eitYn1{En}] = E[eitYn ] − E[eitYn1{Ec
n}], E[eitYn1{Ec

n}] → 0,
E[eitXn ] → E[eitX], and E[eitYn ] → E[eitY ], as n → ∞.

We can now prove the first (Poisson) part of (2.10). Consider the α = 1 case of (7.23).
The contribution from Cn converges in probability to 0, by the first part of (7.6). Slutsky’s
theorem and (7.25) then give the first (Poisson) part of (2.10). The rooted Poisson case, (2.7),
follows from the rooted version of (7.23), this time applying the argument for (7.25) with
Xn := L̃1(P 0

n ; Bn), Yn := L̃1(P 0
n ; S0,n), and X and Y as before, and then using the second

part of (7.6) and, again, Slutsky’s theorem. Thus, we obtain the first (Poisson) part of (2.7).

Proof of Theorem 2.1 for α = 1: the binomial case. It remains for us to prove the
second part of (2.7) and the second part of (2.10). To do this, we use the coupling of
Lemma 6.4 once more. Considering first the unrooted case, we here let Xn := L1(Xn; Bn),
Yn := L1(Xn; S0,n), X′

n := L1(Pn; Bn), and Y ′
n := L1(Pn; S0,n) (note that all these random

variables are uncentred).
Let Y ∼ N (0, s2

1 ) with s1 as given in Theorem 5.1, and let X := D̃
{1}
1 + D̃

{2}
1 , independent

of Y . Then, by (7.25), we have (in our new notation)

X′
n − E[X′

n] + Y ′
n − E[Y ′

n] d−→ X + Y. (7.26)

By (6.24), we have Xn − X′
n

p−→ 0 and E[Xn] − E[X′
n] → 0. Also, with α1 as defined in

Lemma 7.4, (7.19) yields

Y ′
n − Yn − n−1/2α1(N(n) − n) →L2 0, (7.27)

whence E[Y ′
n]− E[Yn] → 0. By combining these observations with (7.26) and using Slutsky’s

theorem, we obtain

Xn − E[Xn] + Yn − E[Yn] + n−1/2α1(N(n) − n)
d−→ X + Y. (7.28)
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By Theorem 5.1(iii) we have var(Y ′
n) → s2

1 as n → ∞. By (7.27) and the independence of
N(n) and Yn, we have

s2
1 = lim

n→∞ var(Yn + n−1/2α1(N(n) − n)) = lim
n→∞(var(Yn) + α2

1),

whence α2
1 ≤ s2

1 . Also, n−1/2α1(N(n) − n) is independent of Xn + Yn and asymptotically
N (0, α2

1)-distributed. Since the characteristic function of N (0, s2) is exp(−s2t2/2), for all
t ∈ R we find from (7.28) that

E[exp(it (Xn − E[Xn] + Yn − E[Yn]))] → exp

(
− (s2

1 − α2
1)t2

2

)
E[exp(itX)],

whence
Xn − E[Xn] + Yn − E[Yn] d−→ X + W, (7.29)

where W ∼ N (0, s2
1 − α2

1) is independent of X.
Consider the α = 1 case of (7.24). By the first part of (7.6) and the first part of (7.17), the

contribution from Cn tends to 0 in probability. Hence, by (7.29) and Slutsky’s theorem, we
obtain the second (binomial) part of (2.10).

For the rooted case, we apply the argument for (7.29), now with Xn := L1(X0
n; Bn),

Yn := L1(X0
n; S0,n), and X, Y , and W as before. The rooted case of (7.26) follows from the

rooted case of (7.25), and now we have Xn − X′
n

p−→ 0 and E[Xn] − E[X′
n] → 0, by (6.25). In

the rooted case (7.27) still holds, by (7.20), and we obtain the rooted case of (7.29) as before.
To obtain the second (binomial) part of (2.7), we start with the rooted version of the α = 1

case of (7.24). By the second parts of (7.6) and (7.17), the contribution from Cn tends to 0 in
probability. Hence, by the rooted version of (7.29) and Slutsky’s theorem, we obtain the second
part of (2.7).

This completes the proof of the α = 1 case, and, hence, the proof of Theorem 2.1.
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