
Accepted Manuscript

This peer-reviewed article has been accepted for publication but not yet copyedited or

typeset, and so may be subject to change during the production process. The article is

considered published and may be cited using its DOI.

10.1017/cbp.2025.10002

© The Author(s), 2025. Published by Cambridge University Press.

This is an Open Access article, distributed under the terms of the Creative Commons

Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-

nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any

medium, provided the original work is unaltered and is properly cited. The written permission

of Cambridge University Press must be obtained for commercial re-use or in order to create a

derivative work.

A Proposed Conceptual Architecture for Time-Sensitive Software-Systems

Frank J. Furrer
1

1
Technical University of Dresden, Germany. Faculty for Computer Science

(frank.j.furrer@bluewin.ch)

Research Question:

«Time-Sensitive Software» (Lee et al., 2023)

Abstract

Many mission-critical systems today have stringent timing requirements. Especially for

cyber-physical systems that directly interact with real-world entities, violating correct timing

may cause accidents, damage, or endanger life, property, or the environment. To ensure the

timely execution of time-sensitive software, a suitable system architecture is essential. This

paper proposes a novel conceptual system architecture based on well-established

technologies, including transition systems, process algebras, Petri Nets, and time-triggered

communications. This architecture for time-sensitive software execution is described as a

conceptual model backed by an extensive list of references and opens up several additional

research topics. This paper focuses on the conceptual level and defers implementation issues

to further research and subsequent publications.

Downloaded from https://www.cambridge.org/core. 25 Jul 2025 at 15:56:21, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

Accepted Manuscript

Time in Computing

Time is a fascinating concept. Much has been thought and written about the physics of time

(e.g., Muller, 2016), the philosophy of time (e.g., Power, 2021), the measurement of time

(e.g., Struthers, 2024), and the history of time (e.g., Hawking, 2015). In computing, time has

precise meanings (Furia, 2012 / Buttazzo, 2024), such as:

(1) The time elapsed between an event and the completion of the correct response

(Latency);

(2) The maximum time guaranteed for a program to execute (Worst case execution time,

WCET);

(3) The maximum time allowed for the execution of a process or a function (Before a

time-out);

(4) The maximum time for a process to wait for an event, a response, or a message

(Synchronization);

(5) The time interval between measurement values received from a sensor (Input

sampling rate);

(6) The time interval between outputs to an actuator (Output sampling rate);

(7) The trigger times to start a process (Either absolute from UCT or relative to another

event or process);

(8) Relative timing: Before, not before, after (For events, messages, actions, process start,

etc.);

(9) … and other timing requirements or timing relationships.

Timing is a serious specification responsibility. In cyber-physical systems, strict adherence to

correct timing requirements is a decisive safety property. Therefore, time-sensitive software is

crucial for safety-critical cyber-physical systems!

State of the Art

The work on reference architectures for cyber-physical systems (e.g., Nakagawa et al., 2023)

is not new. Several such architectures have been proposed and are well documented, e.g.,

generic architectures, such as: CPS 5 Components Architecture (Ahmadi et al., 2021), 8C

architecture (Sony, 2020), NIST Framework for Cyber-Physical Systems (Griffor et al., 2017

/ NIST, 2017). Or domain-specific architectures, such as: AUTOSAR

(https://www.autosar.org/ Rajeev et al., 2012), IMA (Integrated Modular Avionics

Downloaded from https://www.cambridge.org/core. 25 Jul 2025 at 15:56:21, subject to the Cambridge Core terms of use.

https://www.autosar.org/
https://www.cambridge.org/core

Accepted Manuscript

Architecture, Gaska et al., 2015). Some architecture-centric standards, such as ISO 26262

(see, e.g., Debouk, 2019) and IEC 61499 (see, e.g., Thramboulidis, 2012; Yoong et al., 2013,

2016), are highly useful. However, these works treat timing as a quality attribute (=

measurable or testable characteristics of a system, such as availability, reliability, usability, or

scalability) and not as a correctness property of the system (= formal requirement that defines

and assures the system’s expected behavior), (Lee et al., 2023).

A different approach to handling time is the use of temporal logic. Many types of temporal

logic systems exist (e.g., 16 of them are explained in Bellini et al., 2000). Temporal logic

extends classical logic by defining temporal operators, allowing engineers to model and

reason about the behavior of systems over time. Using temporal logic is a powerful

methodology in software engineering, applicable to the specification, verification, and design

of programs, algorithms, and databases (e.g., Bolc et al., 2019; Furia et al., 2012; Kröger et

al., 2008). Temporal logic expresses timing well but cannot define and express the system

architecture (Structure, relationships, attributes).

A different, generic, layered architecture has been proposed by Ungureanu et al. (2017). Their

proposal utilizes different constructs, including the tagged signal model, the functional

programming paradigm, and algorithmic skeletons. An additional framework is developed by

Abdellatif et al. (2010) and Buckl et al. (2010), focusing on timing and safety.

The progress of this paper is a conceptual architecture with explicit, formalized, verifiable

timing at all levels of the architecture and all steps of the lifecycle of the CPS:

I. Elevating timing from a quality attribute (= measurable or testable characteristics of a

system, such as availability, reliability, usability, or scalability) to a correctness

property of the system (= formal requirement that defines and assures the system’s

expected behavior);

II. Proposing a layered architecture that respects the proven, well-documented

architecture principles, such as layering, partitioning, modularization, loose coupling,

separation of concerns, etc. (Furrer, 2019 / Furrer, 2022);

III. Combines accepted constructs for timing definition, verification, and implementation

(Process algebra, transition systems, Petri Nets, Time-Triggered Communications).

Downloaded from https://www.cambridge.org/core. 25 Jul 2025 at 15:56:21, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

Accepted Manuscript

Introduction and Context

The context for time-sensitive software is shown in Figure 1. It consists of 6 elements:

1. The functional processes: These processes specify the functionality of the system.

Note that the term is mainly used for business processes, but technical functionality is

also represented as a (functional) process. The symbol represents the timing

requirements of the process. Note that complete and correct error- and exception-

handling is an indispensable and integral part of the processes (e.g., Öztemür, 2015);

2. The components (programs) implementing the functionality;

3. The execution platforms (processors, memory, communications, databases, etc.): Note

that most of today’s cyber-physical systems are distributed systems, i.e., they have

more than one execution platform. Such systems are referred to as systems-of-systems

(SoS). The different execution platforms communicate with each other – they are

linked by one or several communication channels;

4. The interprocess-communication: The processes exchange information and flow

control (such as synchronization, checkpoints);

5. Mechanism for the process orchestration. Start, stop, or interrupt processes, e.g.,

following an event, a message, a timing, or a schedule;

6. The connection to the real world: Sensors to read information, and actuators to control

the physical world.

Functional Process

Exception Handling

Orchestration

Functional Process

Exception Handling

Functional Process

Exception Handling

Functional Process

Exception Handling

Functional Process

Exception Handling

Functional Process

Exception Handling

System
of
Systems
(SoS)

C
o

m
m

u
n

ic
a

ti
o
n

 C
h

a
n

n
e

l

Functional
Components

Functional
Components

Functional
Components

Functional
Components

Execution Infrastructure Execution Infrastructure Execution Infrastructure Execution Infrastructure

Inter-
Process
Communication

Figure 1: Context for Time-Sensitive Software

Downloaded from https://www.cambridge.org/core. 25 Jul 2025 at 15:56:21, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

Accepted Manuscript

Layered Architecture Proposal

Context: All development and evolution mechanisms for time-sensitive software – from

specification to operation – must have the proper constructs for correctly handling time.

Unfortunately, most of today’s methodologies and tools lack a consistent and verifiable

handling of time – and are thus only of limited use for developing and verifying time-sensitive

software.

Figure 2 is an attempt at a conceptual end-to-end architecture for time-sensitive software.

Please note that this first sketch is a conceptual proposal and leaves open points for future

research.

https://www.researchgate.net/figure/Simple-architecture-of-time-triggered-shared-clock-scheduler_fig1_308611848

Execution Infrastructure:
Time-Triggered Communication (TTC)

Software Architecture:
Timed Modular Petri Nets

Transformation Layer B

System Architecture:
Composition Model

Transformation Layer A

Specification, Modeling & Verification:
Process Algebra with Timing

Figure 2: Layered Architecture Proposal

Figure 2 proposes six architecture layers, each one with formal constructs to handle time

explicitly:

I. The specification, modeling, and verification layer (Top layer): For this layer, a

process algebra is used. Process algebra is a formal calculus for specifying, modeling,

and verifying transition processes (DeNicola, 2011/Aldini et al., 2009/ Fokkink,

1999/Chao, 2015). Some process algebras include the formal constructs for timing

(e.g., Baeten, 2001 /Baeten, 2002 / Wang, 2002 / Wolf, 2002);

Downloaded from https://www.cambridge.org/core. 25 Jul 2025 at 15:56:21, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

Accepted Manuscript

II. The system architecture layer: Describes the parts (= components), their composition

(= structure), and their relationships (= interactions). As a composition model, “Petri

Nets for Modeling of Large Discrete Systems” (Davidrajuh, 2021) is utilized;

III. The software architecture layer: As the component model providing the functionality,

“Petri Modules” and “Inter-modular connectors” (Davidrajuh, 2021) are selected. The

Petri modules are enriched with timing constructs (Popova-Zeugmann, 2016 / Liu,

2022);

IV. The execution infrastructure layer: All software runs on the execution infrastructure

layer. This layer encompasses all hardware, software systems, and communication

elements. Again, an execution infrastructure that is time-aware, i.e., can provide

execution timing guarantees, must be provided. The infrastructure of choice is the

“Time-Triggered Communications” (Obermaisser et al., 2012 /Kopetz, 2022/Kopetz

et al., 2003/Maier et al., 2002/ Rushby, 2005/Buttazzo, 2023);

V. In addition, two transformation layers are required. Transformation Layer A translates

the verified specification model into the Petri Net specifications. Note that the system

architecture (Petri Net structure) is designed before the transformation A.

Transformation layer B maps the timed functionality of the Petri Nets to the TTA

schedule, i.e., to the execution infrastructure.

Concurrency and Latency

The two most challenging topics in implementing time-critical CPS are concurrency (e.g.,

Gorrieri et al., 2015) and latency (e.g., Kopetz et al., 2022). In a modern CPS, many

applications share common resources, such as CPUs, memory, external storage, and

communications channels, i.e., parallel access to shared resources (Figure 3). This

concurrency may result in one application or process influencing the timing of another

application or process, sometimes adversarially, such that timing requirements may be

violated, such as response times prolongated! If concurrency is not handled correctly, non-

determinism can occur – delivering different results from a program run because of

interference by concurrency (Gorrieri et al., 2015).

The second topic is latency (Figure 3): In a classical architecture implementation, there are

many sources of latency: Operating system functions, scheduling, communications delays,

shared memory access retardation, queuing, etc. Some of these delays may be unpredictable

Downloaded from https://www.cambridge.org/core. 25 Jul 2025 at 15:56:21, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

Accepted Manuscript

and can behave statistically. For dependable time-sensitive software, concurrency and latency

must be identified, quantified, and adequately managed. The proposed architecture in Figure

2 is designed to strongly support this objective.

Functional Process

Execution Platform
(Operating System, Libraries, Communications, DB’s, Utilities, etc.)

Application Software

Concurrency Management

https://support.apple.com

uz

Functional Process

Functional Process

Functional Process

Latency

Figure 3: Concurrency and Latency in a Computing System

Process Algebra

Context: For the specification, verification, and modeling of the time-aware functional

processes in the system (Top level layer of Figure 2), the methodology of Process Algebras

with Time is chosen (e.g., Baeten, 2001/Baeten, 2002 / Wang, 2002). Process algebras are

formalisms for specifying interactions (synchronization, flow control, semaphores, etc.)

between concurrent processes. Modern process algebras evolved from the idea of formalizing

communicating processes. The seminal contribution is the paper “A Calculus of

Communicating Systems (CSS)” (Milner, 1980). In the following years, several new Process

Algebras were developed (e.g., Baeten, 2005/Bergstra, 1984/Hoare, 1985). The early process

algebras had no explicit and formal notion of timing. Timing was introduced later (e.g.,

Nicollin, 1991). Today, process algebras with fully formalized timing exist (e.g., Baeten, 2001

/Baeten, 2002 / Wang, 2002). A process algebra defines a set of operators for the interaction

of concurrent processes. A process algebra with time has additional operators for formally

handling time.

Downloaded from https://www.cambridge.org/core. 25 Jul 2025 at 15:56:21, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

Accepted Manuscript

Many process algebras with rich literature are in use today (e.g., Aceto, 2003). So far, no

favorite, widely accepted, and used process algebra exists. Process algebras are selected for

the task at hand. For the widespread use of process algebras in industry, standardization by an

industry body would be highly beneficial. A first attempt is the ISO standardization of a

process algebra for communication protocols (Bolognesi et al., 1968 / ISO, 2001).

Transition Processes

Context: Process algebras require modeling the functionality of processes as transition

systems (e.g., Demri et al., 2016; Gorrieri et al., 2015).

Transition systems have states. An action triggers the transition from one state to another.

States and actions include explicit timing requirements in their specifications (Figure 4a, the

symbol represents the timing). The theory of state machines is well-known and provides

sufficient formality (e.g., Börger et al., 2013).

State
S1

State
S2

State
S4

State
S3

Start

a)

Q1

Q2

Coin

Dispense

Coffee

Dispense

Tea

Q3 Q4

Coffee Tea

Q5

Error

Time-out Time-out

b)

Functional Process

Result

State
Sn

Figure 4: Transition Systems

Figure 4b shows the example of a vending machine that is often used as a (much simplified)

transition system. It has five states: Q1 (= «Waiting for coin»), Q2 (= «Waiting selection»), Q3

(= «Coffee»), Q4 (= «Tea»), Q5 (= «Error»). The transitions are represented by arrows,

including time-out after coin insertion and pressing both buttons simultaneously.

Downloaded from https://www.cambridge.org/core. 25 Jul 2025 at 15:56:21, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

Accepted Manuscript

Timed Petri Modules and Inter-Modular Connectors

Context: Several realizations of the Petri Net idea exist. The one best suited for this

architecture has been developed by Reggie Davidrajuh (https://www.davidrajuh.net/reggie/).

It is applicable to large discrete systems and allows arbitrary system structures.

The functionality and quality properties of the system are implemented using “Timed Petri

Modules” (Popova-Zeugmann, 2016; Wang, 1998) and “Inter-Modular Connectors”

(Davidrajuh, 2021, Figure 5).

Petri Modules Inter-Modular

Connectors
Inter-Modular

Connectors
Input Port Output Port

Input Port

Transition

Output Port

Transition

Local

Transition

Inter-Modular

Transition

Figure 5: Timed Petri Modules and Inter-Modular Connectors

The Timed Petri Modules feature all the constructs and properties of Petri Modules with time

(e.g., Girault, 2010). They implement the functionality and data. The interconnections of the

Petri Modules specified by the process algebra are implemented by the Inter-Modular

Connectors (IMC). These two building blocks give the architecture designer a high level of

flexibility and allow any structure (not only hierarchical) to be defined.

The process algebra does not specify the system architecture. The distribution of functionality

to the individual Petri Modules (Partitioning, cohesion, and coherence, etc.), the coupling of

the Petri Modules by the Inter-Modular Connectors (Interfaces, loose coupling, etc.) must be

designed by a specialized system/software architect. Fortunately, proven, well-documented

Downloaded from https://www.cambridge.org/core. 25 Jul 2025 at 15:56:21, subject to the Cambridge Core terms of use.

https://www.davidrajuh.net/reggie/
https://www.cambridge.org/core

Accepted Manuscript

architecture principles and patterns (Figure 6) are available to construct a dependable,

maintainable, and evolvable architecture (e.g., Murer et al., 2014/Furrer, 2019/Furrer, 2022,

Transformation Layer A below).

Execution Infrastructure:
Time-Triggered Communication (TTC)

Software Architecture:
Timed Modular Petri Nets

Transformation Layer B

System Architecture:
Composition Model

Transformation Layer A

Specification, Modeling & Verification:
Process Algebra with Timing

System

Timing

Requirements

AP
AP

AP
AP

AP

AP
AP

AP
AP
P

Architecture

Principles

Architecture

Patterns

Figure 6: Software Architecture

Transformation Layer A

Context: While the four functional layers in Figure 6 use well-known, well-documented, and

proven technologies (Such as transition processes, process algebras, timed Petri Nets, the

IMC composition model, and time-triggered communications), the two transformation layers

are new concepts. The transformation layer A maps a timed transition system onto a timed

Modular Petri Net. Although some literature exists on this specific topic (e.g., Badouel et al.,

2015 / Devillers et al., 2022 / Best et al., 2024 / Cortadella et al., 1995 / Goltz, 1990), this

transformation layer becomes a research topic – especially concerning timing

implementation.

The transformation layer A has two transformation paths (Figure 7):

Transformation Path 1 (Architecture, Figure 7):

Downloaded from https://www.cambridge.org/core. 25 Jul 2025 at 15:56:21, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

Accepted Manuscript

The structural organization of the modular Petri Nets is of the highest importance, i.e., strict

adherence to proven architectural principles, such as modularization, correct partitioning

(respecting cohesion and coherence), loose coupling, and separation of concerns (e.g., Furrer,

2019; Platzer, 2018). This design of the adequate structure is independent of the formal

specification of the system and must be carried out by very experienced software architects.

Transformation path A requires a strong architecture governance in the IT organization (e.g.,

Murer, 2014 / Bell, 2023). Once the Petri Modules/IMC structural architecture has been

defined, the states and transitions that are to be encapsulated by each Petri Module are

selected (Figure 7). Once all states, transitions, and quality properties are transferred from the

timed transition system to the timed Petri Module system, the duty of transformation path 1 is

completed. Today, transformation Path 1 is state-of-the-art in methodology and architecture

knowledge.

State

State

State

State

State

State

State

State

State

Start

Action
Transition

Action
Transition

Result

Transistion System

PM PM

PM
PM

PM

PM

PM

I
M
C

I
M
C

IMC

I
M
C

Start
PM

PM

PM
PM

I
M
C

I
M
C

I
M
C

Result

Petri Modules/IMC System

Transformation

Layer A

Tran
sfo

rm
atio

n
 P

ath
 1

A
R

C
H

ITEC
TU

R
E:

•
Stru

ctu
re

•
R

elatio
n

sh
ip

s
•

A
ttrib

u
tes

Tran
sfo

rm
atio

n
 P

ath
 2

TIM
IN

G
:

•
A

b
so

lu
te

•
R

elative
•

O
rd

erin
g

Architecture
Principles

Architecture
Patterns

Methodology

Figure 7: Elements of the Transformation Layer A

Transformation Path 2 (Timing, Figure 7):

Timed transition systems (e.g., Furia et al., 2012, chapters 7.3 & 7.4 / Henzinger et al., 1991 /

Hale et al., 1994) and timed Petri Nets have different formal notations for time representation

(e.g., Furia et al., 2012, chapter 8 / Wang, 1998 / Penczek et al., 2006). These different

Downloaded from https://www.cambridge.org/core. 25 Jul 2025 at 15:56:21, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

Accepted Manuscript

notations have differing expressiveness, and suitable notations must be selected for this

application.

The transformation path 2 transcribes the transition system timing information to the Petri

Net timing information (e.g., Best et al., 1998), including all constraints. Promising initial

work has been done on such transformations (e.g., Khomenko et al., 2022 / Huang et al.,

2021), but more consolidating research is needed for this transformation path, focussed on the

proposed architecture.

Transformation Layer B

Context: The responsibility of the transformation layer B is to select one or more Petri

Modules and use them to form a task (Figure 8). This includes correctly transforming not

only the functionality and data, but also the timing and the quality properties.

The transformation layer B has two transformation paths (Figure 8):

Transformation path 3 (Architecture):

Transformation path 3 selects one or several coherent Petri Modules, allocates them to

specific tasks, and uses the IMCs to define the relationships from task to task and from task to

the environment. While the adequate architecture (structure, relationships) has already been

defined by transformation path 1, the transfer of functionality/data/relationships/quality

attributes from the Petri Module system to the task universe by the transformation path 3

must at least preserve – preferably improve – the quality of the software architecture. This

means, again, strict adherence to proven architectural principles and patterns, such as

modularization, correct partitioning (respecting cohesion and coherence), loose coupling, and

separation of concerns, etc. (e.g., Furrer, 2019 / Richards et al., 2025 / Martin, 2017 /

Cervantes, 2024 / Khononov, 2025 / Fettke et al., 2022). Once all Petri Modules/IMC are

transferred to the task structure, the duty of transformation path 3 is completed. Today,

transformation Path 3 is state-of-the-art in terms of both methodology and architecture

knowledge.

Transformation path 4 (Timing):

Transformation path 4 transfers the timing specifications from the Petri Net module system to

the task universe, i.e., to the implementation level. Timing in Petri Nets is introduced

Downloaded from https://www.cambridge.org/core. 25 Jul 2025 at 15:56:21, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

Accepted Manuscript

associated with places, transitions, or both. Some work has been done on software

implementations of timed Petri Nets (e.g., Girault et al., 2010 (Chapters 20 & 21 / Ferscha,

1994 / Barad, 2016 / Moreno et al., 2006 / Andrezejwski, 2001). However, neither approach

is sufficient for the application to the transformation path 4. Therefore, transformation Path 4

needs more research, specifically directed to the proposed architecture.

… and one feedback path (Timing adjustments): Timing Feedback

The applications prescribe the timing requirements for the system (Processes in Figure 1). At

the moment of timing specification, there is no guarantee that their successful implementation

will be feasible (e.g., Klemm et al., 2021 / Philippou et al., 2007). The following obstacles

may appear:

 Some tasks may have an unexpectedly large WCET (Worst Case Execution Time);

 The task system is not schedulable (TTA);

 The physical communications channel’s transmission times negatively impact timing;

 The system does not provide sufficient resources to handle concurrency and latency;

 Correct error and fault handling require more resources than expected;

 etc.

 If the timing can not be implemented in the real CPS, three resorts are possible:

I. Weaken the initial timing requirements (if the applications/processes allow it);

II. Try to modify the architecture (Structure, relationships);

III. Provide more implementation resources.

Once the complete system of timed Petri Net modules has been transferred into tasks and

their relationships, and the feasibility of the implementation has been assured, the mission of

transformation layer B is complete.

Downloaded from https://www.cambridge.org/core. 25 Jul 2025 at 15:56:21, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

Accepted Manuscript

PM PM

PM
PM

PM

PM

PM

I
M
C

I
M
C

IMC
I
M
C

Start
PM

PM

PM
PM

I
M
C

I
M
C

I
M
C

Result

Petri Modules/IMC System

Transformation

Layer B

Distributed Task System (Execution)

Tran
sfo

rm
atio

n
 P

ath
 3

A
R

C
H

ITEC
TU

R
E:

•
Stru

ctu
re

•
R

elatio
n

sh
ip

s
•

A
ttrib

u
tes

Architecture
Principles

Architecture
Patterns

Tran
sfo

rm
atio

n
 P

ath
 4

TIM
IN

G
:

•
A

b
so

lu
te

•
R

elative
•

O
rd

erin
g

Methodology

T
im

in
g
 F

e
e
d
b
a
c
k

Figure 8: Elements of the Transformation Layer B

Downloaded from https://www.cambridge.org/core. 25 Jul 2025 at 15:56:21, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

Accepted Manuscript

Processes Transition System

Modular Petri Nets

Transformation Layer A

Tran
sfo

rm
atio

n
 Layer B

Time-Triggered Communications (TTC)

WCET

Task

WCET

Task

WCET

Task

System- & Comm-Software

Scheduler

Runtime System

Computing Platform

Ti
m

in
g

Fe
as

ib
ili

ty
Fe

e
d

b
ac

k

Figure 9: Transformation Layers and Runtime System

Time-Triggered Protocol (TTP) - Time-Triggered Architecture (TTA)

The time-triggered architecture (TTA) defines a fault-tolerant execution platform for large,

distributed, embedded real-time systems in mission- and safety-critical cyber-physical

applications, such as avionics (e.g., Fuhrmann et al., 2006). It is based on the time-triggered

model of computation (Kopetz, 1998 / Kopetz, 2017) and introduces the paradigm of time-

triggered communications (TTC, e.g., Kopetz et al., 2003 / Obermaisser, 2012 / Kopetz,

2022/ /Maier et al., 2002/ Rushby, 2005/Buttazzo, 2023). The basic concepts of TTA are

shown in Figure 10. Note that the time-triggered communication (TTC) is a paradigm for

electronic information exchange (as opposed to the event-triggered communications), the

time-triggered protocol (TTP) is the implementation, and the time-triggered architecture

(TTA) includes in addition system components, such as scheduler, redundant communication

channel, global time synchronization, etc. (Figure 10).

Downloaded from https://www.cambridge.org/core. 25 Jul 2025 at 15:56:21, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

Accepted Manuscript

Communication Bus

Channel A

Channel B

Ti
m

e
-T

ri
gg

er
ed

P
ro

to
co

l (
T
T
P

)

Tim
e-Triggered

A
rch

itectu
re (T

T
A

)

Node 2…NNode 1 Node 2…NNode 1Node 2…NNode 1Node 2…NNode 1

TDMA Round
Cluster Cycle

Mx, … Mx ,…Mx ,…Mx ,…

Time

Task

Task
Task

Task

Global Time (Global Clock)13:07:21:43

Figure 10: Time-Triggered Architecture

The Figure 10 introduces the following elements (From lowest to highest):

(1) A redundant communication bus that allows the exchange of messages. Initially, a

TDMA (Time Division Multiple Access)-scheme was used in the TTP. Later – forced

by industry standardization – TTP was implemented on top of more communication

schemes, such as CAN (Führer et al., 2000), Ethernet (Kopetz et al., 2005), and

FlexRay (Shaw et al., 2008);

(2) Two time-triggered protocols (TTP), managing the exchange of messages between the

N nodes in the network, are implemented on top of the two communication channels,

providing the necessary redundancy for safe operation. TTP provides fault-tolerant

message transport with a fixed schedule at known times and minimal jitter by

employing a TDMA (Time-Division Multiple Access) strategy;

(3) A protocol to establish a global, synchronized time in all the nodes. TTA provides

system-wide, fault-tolerant, and distributed clock synchronization, establishing a

global time base without relying on a central time server.

Downloaded from https://www.cambridge.org/core. 25 Jul 2025 at 15:56:21, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

Accepted Manuscript

(4) The runtime systems in each node, i.e., a set of tasks governed by a scheduler.

(5) Several algorithms for system functions (Obermaisser et al., 2012, Chapter 4):

i. Clock synchronization,

ii. Startup and Restart,

iii. Diagnostic Services,

iv. Error Detection and Fault Isolation,

v. Configuration Service,

vi. Schedule Generation and Schedulability Analysis

(6) The interfaces for the interaction of the tasks with the physical world (Sensors,

Actuators).

The Time-Triggered Protocol is a deterministic, verifiable, well-analyzed message exchange

scheme for fault-tolerant, distributed systems (e.g., Rushby, 2002). Therefore, it forms a

predictable foundation for the execution platform in Figure 6.

Worst-Case Execution Time (WCET)

Each program (= a piece of code) has a worst-case execution time (WCET, e.g.,

Lokuciejewski, 2011). The worst-case execution time (WCET) of a program is the maximum

amount of time the program could take to execute on a specific execution platform, i.e., the

longest path through the program. Unfortunately, the WCET determination corresponds to the

halting problem and is therefore not generally solvable. Estimation methods, such as

simulation and code analysis (e.g., Franke, 2016 / Ferdinand et al., 2004), must be used to

obtain valuable results. For time-sensitive software, the WCET of each program/module/task

must be determined with sufficient accuracy (e.g., Wolf, 2002).

 Runtime System and Task Scheduling

The resulting runtime system is shown in Figure 9. It consists of a set of tasks, system- and

communications software, a computing platform (today often a cached, multicore CPU), the

Downloaded from https://www.cambridge.org/core. 25 Jul 2025 at 15:56:21, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

Accepted Manuscript

TTC bus, and a task scheduler. The scheduler orchestrates the sequence of execution of the

tasks in the distributed nodes of the system.

Except for the scheduling, all elements of the conceptual architecture in Figure 6 have been

chosen due to the predictability and verifiability of their correct timing behavior. Scheduling,

preemption, and resource sharing may cause timing uncertainties and must be analyzed and

implemented very carefully. A rich literature related to building, verifying, and operating

predictable, hard real-time computing platforms exists (e.g., Buttazzo, 2024 / Gliwa, 2022 /

Obermaisser, 2012 [Chapter 15] / Ayman et al., 2009 / Antolak et al., 2023). There is no space

to handle this topic, only to raise awareness.

Cyber-physical systems need global time, i.e., a system-wide, precise, and synchronized

common physical time scale in all elements of the CPS (Shrivastava et al., 2016 / Broman et

al., 2013 / Rajeev et al., 2012). In the conceptual architecture of Figure 2, the Time-Triggered

Architecture provides the global clock (Figure 10 / Obermaisser, 2011, Chapter 4).

Mixed-Criticality Systems

Many CPSs are “mixed-criticality systems”, i.e., they contain time-sensitive processes/parts

and non-time-sensitive processes/parts. The system design must be based on solid

partitioning and loose coupling between the two criticality regions.

Timing Verification

The final truth of timing correctness lies in the runtime system (Lowest layer in Figure 6).

Only if the runtime system strictly adheres to all timing specifications in all operating

conditions can it be qualified as safe. The strong formalism and model-checking capabilities

of the 3 top layers in Figure 6 ensure high confidence in the system timing conformance with

the specifications because of the formal verification. Process algebras, transition systems, and

Petri Nets allow the verification of their timing properties (e.g., Becker, 2020 / Willemse,

2003 / Camargo, 1998 / Corradini et al., 1999 / Philippou et al., 2007 / Penczek et al., 2006 /

Wolf, 2002).

Timing verification on the lowest layer in Figure 6 (Runtime system) requires measurements,

tracing, statistics, analysis, and assessment (e.g., Rohr, 2015 / Becker, 2020). Runtime

Downloaded from https://www.cambridge.org/core. 25 Jul 2025 at 15:56:21, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

Accepted Manuscript

verification, especially for the timing, is a challenging task but sufficiently researched (e.g.,

Colombo et al., 2022).

Real-Time Calculus (RTC)

A promising development for formalizing the timing behavior and formal verification of the

runtime system is the real-time calculus RTC (e.g., Guan, 2018 / Thiele et al., 2000 / Two

Examples: Chokshi, 2010 / Bazzal et al., 2020). The key concept in RTC is the Greedy

Processing Component (GPC, Figure 11). The GPC accepts input events, launches the

appropriate processing, and outputs the processed event stream. The event streams are

formalized by arrival curves based on the number of events arriving at an interval (one for the

lower bound, the other for the upper bound). The resources consumed to process the input

events are also formalized by service curves based on the amount of resources consumed in

an interval , one for the lower bound, the other for the upper bound.

Greedy
Processing

Component
[GPC]

Arrival Curve:

Input: Upper

Input: Lower

Service Curve before Processing:

 Before: Upper

Before: Lower

Input

Event

Stream

Changed Arrival Curve:

Output: Upper

Output: Lower

time
Output

Event

Stream

time

Service Curve after Processing:

 After: Upper

After: Lower

Figure 11: RTC Key Concept – Greedy Processing Component (GPC)

For the arrival and service curves, operators are defined to build compositions of GPCs and

thus describe systems of arbitrary complexity. The benefits of the RTC include the formalism

for determining bounds for execution, communication, queues, and buffer sizes. Additionally,

Downloaded from https://www.cambridge.org/core. 25 Jul 2025 at 15:56:21, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

Accepted Manuscript

the schedulability of multitasking software systems can be determined using Real-Time

Calculus (RTC).

Runtime Monitoring

As a last defense against timing violations, runtime monitoring can be used. Whereas runtime

verification aims to check specific parameters of the program execution, such as the

execution times of a set of tasks, runtime monitoring supervises the system in order to detect

anomalous or dangerous behavior. If anomalous behavior is detected, the system may

automatically take protective actions, thus trying to avoid safety accidents or security

incidents. Machine learning algorithms are often used for anomaly detection. (e.g., Furrer,

2023).

Results

Strict adherence to timing requirements is a crucial precondition for the safety of cyber-

physical systems. Therefore, the software controlling the CPS becomes time-sensitive. The

conceptual system architecture is the foundation for the assurance of timing requirements in a

CPS. Only an adequate system architecture allows the formal specification, verification,

modeling, and implementation of timing requirements on all levels and for all process steps.

This paper proposes a novel timing-aware architecture composed of well-known

technologies: process algebra for modeling transition processes, Petri Nets for

implementation, and time-triggered communications as the execution platform. The timing-

aware 4-layer architecture is presented as a conceptual 4-layer model. From this model, many

research topics follow.

Open Questions and Future Work

 Develop a complete and consistent metamodel to ensure the conceptual integrity of all

layers in Figure 2 (e.g., Gonzalez-Perez et al., 2008)

 Choose and agree on a semantic and notation for a suitably timed process algebra.

Codify it as an industry standard;

 Choose and agree on a semantic and notation for timed transition systems. Propose it

as an industry standard;

Downloaded from https://www.cambridge.org/core. 25 Jul 2025 at 15:56:21, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

Accepted Manuscript

 Choose and agree on a semantic and notation for a timed Petri Nets (Preferably based

on Davidrajuh, 2021). Propose it as an industry standard;

 Develop, discuss, and document a modeling methodology for systems based on

Figure 6 (Metamodel, notation, semantics, graphical representation, etc.);

 Define a methodology, principles, and metrics for the transformation layer A;

 Define a methodology, principles, and metrics for the transformation layer B;

 Integrate the formalism of real-time calculus (RTC) into the architecture of Figure 6;

 Investigate the applicability of the (possibly extended) conceptual architecture of

Figure 2 to continuous and hybrid cyber-physical systems (e.g., David et al., 2010 /

Gu et al., 2005 / Bera et al., 2014 / David et al., 2010);

 Demonstrate the capability of the conceptual architecture (Figure 2) for closed-loop

CPS (e.g., Pasandideh et al., 2023 / Núñez-Alvarez et al., 2023);

 Does the conceptual architecture (Figure 2) have the capability to generate the most

efficient solution regarding resources? (Rodriguez, 2013 / Jarabo, 2024 / Shi, 2023);

 Is adding more resources until timing constraints can be satisfied always feasible?

Conclusions

For mission-critical cyber-physical systems, the correct specification, implementation, and

execution of complete timing specifications is a correctness property rather than a quality

attribute. To answer this challenge, the underlying system architecture must provide formal,

verifiable, and complete timing constructs on all levels. This paper proposes a novel, four-

layer architecture with sufficient formalism based on established technologies to handle and

verify timing in a Cyber-Physical System (CPS).

Declarations

The author is the only contributor to this paper.

The author has no conflicts of interest.

This research received no specific grant from any funding agency, commercial or not-for-

profit sectors.

Data availability does not apply to this article as no new data were created or analyzed in this

study.

Ethical approval and consent are not relevant to this article type.

Downloaded from https://www.cambridge.org/core. 25 Jul 2025 at 15:56:21, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

Accepted Manuscript

Acknowledgments

First and foremost, I would like to extend my sincere thanks to my colleagues and students at

the Computer Science Faculty of the Technical University of Dresden, Germany. In my ten

years of teaching, they enabled me to gain extensive knowledge in many new areas. Next, I

would like to extend my sincere thanks to all the authors (listed in the references) who

provided the knowledge base for this paper. Special thanks are due to Prof. Dr. Hermann

Kopetz (Technical University of Vienna) for numerous discussions on real-time systems and

their architecture. Finally, I thank Mónica Moniz and Ellie Pilat (from Cambridge University

Press, UK) and Jim Woodcock (University of York, UK) for their valuable support during the

preparation of this paper, as well as the two reviewers: (1) Associate Professor Arvind

Easwaran, NTU, Singapore (named with permission), and (2) Professor Partha Roop,

University of Auckland, New Zealand (also named with permission) who significantly

improved the content and quality of this paper.

Connections Reference

Lee E. A., Woodcock J. (2023): Time-Sensitive Software. Research Directions, Cyber-

Physical Systems, Vol 1. Cambridge University Press, Cambridge, UK.

https://doi.org/10.1017/cbp.2023.1

General References

Abdellatif, T., Combaz, J., Sifakis, J. (2010): Model-based implementation of real-time

applications. EMSOFT ’10: Proceedings of the tenth ACM international conference on

Embedded software, pp. 229 – 238. https://doi.org/10.1145/1879021.1879052

Aceto, L. (2003): Some of my Favourite Results in Classic Process Algebra. BRICS Notes

Series NS-03-2. University of Aarhus, Aarhus, Denmark. ISSN 0909-3206. Downloadable

from: https://www.brics.dk/NS/03/2/BRICS-NS-03-2.pdf

Ahmadi, A., Cherifi C., Cheutet, V., Ouzrot, Y., (2021): A Review of CPS 5 Components

Architecture for Manufacturing Based on Standards. 11th IEEE International Conference on

Software, Knowledge, Information Management and Applications (SKIMA 2017), Colombo,

Sri Lanka. Downloadable from:

https://www.researchgate.net/publication/224264704_Design_and_architectures_for_dependa

ble_embedded_systems

Downloaded from https://www.cambridge.org/core. 25 Jul 2025 at 15:56:21, subject to the Cambridge Core terms of use.

https://doi.org/10.1017/cbp.2023.1
https://doi.org/10.1145/1879021.1879052
https://www.brics.dk/NS/03/2/BRICS-NS-03-2.pdf
https://www.researchgate.net/publication/224264704_Design_and_architectures_for_dependable_embedded_systems
https://www.researchgate.net/publication/224264704_Design_and_architectures_for_dependable_embedded_systems
https://www.cambridge.org/core

Accepted Manuscript

Aldini A., Bernardo M., Corradini F. (2009): A Process Algebraic Approach to Software

Architecture Design. Springer Verlag, London, UK. ISBN 978-1-84800-222-7.

https://doi.org/10.1007/978-1-84800-223-4

Andrezejwski, G. (2001): Timed Petri Nets for Software Applications. The International

Workshop on Discrete-Event System Design, DESDes’01, June 27-29, 2001, Przytok near

Zielona Gora, Poland. Downloadable from:

http://www.iie.uz.zgora.pl/iie_archiwum/desdes01/files/ref/I-9.pdf

Antolak, E., Pulka, A. (2023): Validation of Task Scheduling Techniques in Multithread Time

Predictable Systems. IEEE Access, New York, NY, USA.

https://doi.org/10.1109/ACCESS.2023.3275437. Downloadable from:

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10122958 (Open Acess)

Ayman K. G. Gendy, A.K.G. (2009): Techniques for scheduling time-triggered resource-

constrained embedded systems. Embedded Systems Laboratory. PhD Thesis, Department of

Engineering, University of Leicester, Leicester, UK. Downloadable from:

https://figshare.le.ac.uk/articles/thesis/Techniques_for_scheduling_time-triggered_resource-

constrained_embedded_systems/10092473?file=18194459

Badouel, E., Bernardinello, L., Darondeau, P. (2015): Synthesis of P/T-Nets from Finite

Initialized Transition Systems. Chapter 7 in Badouel, E., Bernardinello, L., Darondeau, P.

(2015): Petri Net Synthesis. Springer Verlag, Berlin, Germany. ISBN 978-3-662-47966-7.

https://doi.org/10.1007/978-3-662-47967-4

Baeten, J.C.M., Middelburg C.A. (2001): Process Algebra with Timing - Real-Time and

Discrete Time. CHAPTER 10 in: Bergstra J.A., Ponse A., Smolka S.A. (Editors, 2001):

Handbook of Process Algebra. Elsevier Science B.V., Amsterdam, The Nederlands, Pages

627-684. ISBN 978-0-444-82830-9.

Baeten J.C.M., Middelburg C.A. (2002): Process Algebra with Timing. Springer Verlag,

Berlin, Germany. ISBN 978-3-540-43447-4

Baeten, J.C.M. (2005): A Brief History of Process Algebra. Theoretical Computer Science

Journal, 335(2-3), p. 131-146. 2025 Elsevier B.V., Amsterdam, The Netherlands.

https://doi.org/10.1016/j.tcs.2004.07.036. Downloadable from:

https://www.researchgate.net/publication/220150532_A_brief_history_of_process_algebra

Downloaded from https://www.cambridge.org/core. 25 Jul 2025 at 15:56:21, subject to the Cambridge Core terms of use.

https://doi.org/10.1007/978-1-84800-223-4
http://www.iie.uz.zgora.pl/iie_archiwum/desdes01/files/ref/I-9.pdf
https://doi.org/10.1109/ACCESS.2023.3275437
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10122958
https://figshare.le.ac.uk/articles/thesis/Techniques_for_scheduling_time-triggered_resource-constrained_embedded_systems/10092473?file=18194459
https://figshare.le.ac.uk/articles/thesis/Techniques_for_scheduling_time-triggered_resource-constrained_embedded_systems/10092473?file=18194459
https://doi.org/10.1007/978-3-662-47967-4
https://doi.org/10.1016/j.tcs.2004.07.036
https://www.researchgate.net/publication/220150532_A_brief_history_of_process_algebra
https://www.cambridge.org/core

Accepted Manuscript

Barad, M. (2016): Petri Nets—A Versatile Modeling Structure. Applied Mathematics, Vol.7

No.9, May 2016. http://dx.doi.org/10.4236/am.2016.79074. Downloadable from:

https://www.scirp.org/pdf/AM_2016052613411594.pdf

Bazzal, M., Krawczyk, L., Govindarajan, R.P., Wolff, C. (2020): Timing Analysis of Car-to-

Car Communication Systems Using Real-Time Calculus - A Case Study. The 5
th

 IEEE

International Symposium on Smart and Wireless Systems within the International

Conferences on Intelligent Data Acquisition and Advanced Computing Systems, 17-18

September 2020, Dortmund, Germany. Downloadable from:

https://www.researchgate.net/figure/A-Greedy-Processing-Component-GPC-element-

transforms-the-input-pairs-of-arrival-and_fig2_347867475

Becker, M., 2020: Towards Source-Level Timing Analysis of Embedded Software Using

Functional Verification Methods. PhD Thesis, Fakultat fur Elektrotechnik und

Informationstechnik der Technischen Universitat Munchen, Munich Germany.

Downloadable from: https://mediatum.ub.tum.de/doc/1506241/1506241.pdf

Bell, M., 2023: Software Architect. John Wiley & Sons Inc., Hoboken, NJ, USA. ISBN 978-1-

119-82097-0.

Bellini, R., Mattolini, P., Nesi, P. (2000): Temporal Logics for Real-Time System

Specification. ACM Computing Surveys (CSUR), Volume 32, Issue 1, pp. 12 – 42.

https://doi.org/10.1145/349194.349197. Downloadable from:

https://dl.acm.org/doi/10.1145/349194.349197.

Bera, D., Van Hee, K.M., Nijmeijer, H. (2014): Modeling hybrid systems with Petri nets. 4
th

International Conference on Simulation and Modeling Methodologies, Technologies and

Applications, SIMULTECH 2014 - Vienna, Austria, 28.-30.4.2014. Downloadable from:

https://research.tue.nl/en/publications/modeling-hybrid-systems-with-petri-nets.

Bergstra J.A., Klop J.W. (1984): Process Algebra for Synchronous Communication.

Information and Control, Elsevier, Amsterdam, NL. Downloadable from:

https://ir.cwi.nl/pub/1836/1836D.pdf

Best, E., Devillers, R., Koutny, M. (1998). Petri nets, process algebras, and concurrent

programming languages. In: Reisig, W., Rozenberg, G. (editors) Lectures on Petri Nets II:

Applications. ACPN 1996. Lecture Notes in Computer Science, vol 1492. Springer, Berlin,

Heidelberg. https://doi.org/10.1007/3-540-65307-4_46. Downloadable from:

Downloaded from https://www.cambridge.org/core. 25 Jul 2025 at 15:56:21, subject to the Cambridge Core terms of use.

https://www.scirp.org/pdf/AM_2016052613411594.pdf
https://www.researchgate.net/figure/A-Greedy-Processing-Component-GPC-element-transforms-the-input-pairs-of-arrival-and_fig2_347867475
https://www.researchgate.net/figure/A-Greedy-Processing-Component-GPC-element-transforms-the-input-pairs-of-arrival-and_fig2_347867475
https://mediatum.ub.tum.de/doc/1506241/1506241.pdf
https://doi.org/10.1145/349194.349197
https://dl.acm.org/doi/10.1145/349194.349197
https://research.tue.nl/en/publications/modeling-hybrid-systems-with-petri-nets
https://ir.cwi.nl/pub/1836/1836D.pdf
https://doi.org/10.1007/3-540-65307-4_46
https://www.cambridge.org/core

Accepted Manuscript

https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=7f08fe879a322db3b04dec

51a06c9417d5e02ba4

Best, E., Devillers, R. (2024): Synthesis of Petri Nets from Labelled Transition Systems.

Chapter 11 in Best, E., Devillers, R. (2024): Petri Net Primer - A Compendium on the Core

Model, Analysis, and Synthesis. Birkhäuser Verlag, Basle, Switzerland. ISBN 978-3-031-

48277-9. https://doi.org/10.1007/978-3-031-48278-6_11

Bolc, L., Szalas, A. (Editors, 2019 / initially published in 1995): Time & Logic - A

Computational Approach. Routledge Revival, Milton Park, Abingdon, UK. ISBN 978-0-367-

33657-8.

Börger, E., Stärk, R. (2013): Abstract State Machines - A Method for High-Level System

Design and Analysis. Springer Verlag, Berlin. Germany. ISBN 978-3642621161.

Bolognesi, T., Brinksma, E. (1968): Introduction to the ISO Specification Language LOTOS.

Technical Report CNUCE-C.N.R., Pisa, Italy & University of Twente, Enschede, The

Netherlands. Downloadable from: https://cadp.inria.fr/ftp/publications/others/Bolognesi-

Brinksma-87.pdf

Broman, D., Derler, P., Eidson, J.C. (2013): Temporal Issues in Cyber-Physical Systems.

Journal of the Indian Institute of Science, Vol. 93, Nr 3, July/September 2013. Bangalore,

India. Downloadable from: https://journal.iisc.ac.in/index.php/iisc/article/view/1686

Buckl, C., Gaponova, I., Geisinger, M., Knoll, A., Lee, E.A. (2010): Model-based

specification of timing requirements. EMSOFT ’10, Proceedings of the tenth ACM

international conference on Embedded software, pp. 239 – 248. Scottsdale, Arizona, USA,

October 24-29, 2010. https://doi.org/10.1145/1879021.1879053. Available at:

https://dl.acm.org/doi/10.1145/1879021

Buttazzo G. (2023): Hard Real-Time Computing Systems - Predictable Scheduling

Algorithms and Applications. 4
th

 edition. Springer Nature Switzerland, Cham, Switzerland.

ISBN 978-3-031-45409-7. https://doi.org/10.1007/978-3-031-45410-3

Camargo, M. (1998): Formal Specification, Verification, and Simulation of Time-Dependent

Systems - A Timed Process Algebra Approach. Electronic Notes in Theoretical Computer

Science. Published by Elsevier Science BV, Amsterdam, Netherlands. Downloadable from:

Downloaded from https://www.cambridge.org/core. 25 Jul 2025 at 15:56:21, subject to the Cambridge Core terms of use.

https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=7f08fe879a322db3b04dec51a06c9417d5e02ba4
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=7f08fe879a322db3b04dec51a06c9417d5e02ba4
https://doi.org/10.1007/978-3-031-48278-6_11
https://cadp.inria.fr/ftp/publications/others/Bolognesi-Brinksma-87.pdf
https://cadp.inria.fr/ftp/publications/others/Bolognesi-Brinksma-87.pdf
https://journal.iisc.ac.in/index.php/iisc/article/view/1686
https://doi.org/10.1145/1879021.1879053
https://dl.acm.org/doi/10.1145/1879021
https://doi.org/10.1007/978-3-031-45410-3
https://www.cambridge.org/core

Accepted Manuscript

https://www.academia.edu/123683998/Formal_Specification_Verification_and_Simulation_o

f_Time_Dependent_Systems_a_Timed_Process_Algebra_Approach

Cervantes, H., Kazman, R. (2024): Designing Software Architectures - A Practical Approach.

Pearson Education, Addison-Wesley, Boston, USA. ISBN 978-0-138-10802-1

Chao W.S. (2015): A Process Algebra For Systems Architecture - The Structure-Behavior

Coalescence Approach. CreateSpace Independent Publishing Platform. ISBN 978-1-517-

25861-0

Chokshi, D.B., Bhaduri, P. (2010): Performance analysis of FlexRay-based systems using

real-time calculus. Proceedings of the 2010 ACM Symposium on Applied Computing - SAC

’10, Sierre, Switzerland. ISBN 978-1-60558-638-0/10/03. Downloadable from:

https://www.academia.edu/13201410/Performance_analysis_of_FlexRay_based_systems_usi

ng_real_time_calculus_revisited

Colombo, C., Pace, G.J. (2022): Runtime Verification - A Hands-On Approach in Java.

Springer Nature Switzerland AG, Cham, Switzerland. ISBN 978-3-031-09266-4.

https://doi.org/10.1007/978-3-031-09268-8

Corradini, F., D’Ortenzio, D., Inverardi, P. (1999): On the Relationship among four Timed

Process Algebras. Fundamenta Informaticae, 38 (1999), Nr. 4, pp. 377-395. IOS Press, IOS

Press, Amsterdam, Netherlands. Available from:

https://content.iospress.com/articles/fundamenta-informaticae/fi38-4-03Cortadella, J.,

Lavagno, L., Kishinevsky, M., Yakovlev, A. (1995): Deriving Petri Nets from Finite

Transition Systems. IEEE Transactions on Computers, vol. 47, no. 8, pp. 859-882, Aug. 1998.

https://ieeexplore.ieee.org/document/707587. Downloadable from:

https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=bc1c6bf9a14e8683a0e3f0

2433d265c1a87d9fb9

David, R., Alla, H. (2010): Discrete, Continuous, and Hybrid Petri Nets. Springer Verlag,

Berlin, Germany. 2
nd

 edition. ISBN 978-3-642-10668-2. https://doi.org/10.1007/978-3-642-

10669-9

Davidrajuh R. (2021): Petri Nets for Modeling of Large Discrete Systems. Springer Nature

Singapore, Singapore. ISBN 978-981-16-5202-8. https://doi.org/10.1007/978-981-16-5203-5

Downloaded from https://www.cambridge.org/core. 25 Jul 2025 at 15:56:21, subject to the Cambridge Core terms of use.

https://www.academia.edu/123683998/Formal_Specification_Verification_and_Simulation_of_Time_Dependent_Systems_a_Timed_Process_Algebra_Approach
https://www.academia.edu/123683998/Formal_Specification_Verification_and_Simulation_of_Time_Dependent_Systems_a_Timed_Process_Algebra_Approach
https://978-1-60558-638-0/10/03
https://www.academia.edu/13201410/Performance_analysis_of_FlexRay_based_systems_using_real_time_calculus_revisited
https://www.academia.edu/13201410/Performance_analysis_of_FlexRay_based_systems_using_real_time_calculus_revisited
https://doi.org/10.1007/978-3-031-09268-8
https://content.iospress.com/articles/fundamenta-informaticae/fi38-4-03
https://ieeexplore.ieee.org/document/707587
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=bc1c6bf9a14e8683a0e3f02433d265c1a87d9fb9
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=bc1c6bf9a14e8683a0e3f02433d265c1a87d9fb9
https://doi.org/10.1007/978-3-642-10669-9
https://doi.org/10.1007/978-3-642-10669-9
https://doi.org/10.1007/978-981-16-5203-5
https://www.cambridge.org/core

Accepted Manuscript

Debouk, R. (2019): Overview of the Second Edition of ISO 26262: Functional Safety – Road

Vehicles. Journal of System Safety, Saint Paul, MS, USA, Vol. 55, Nr. 1.

https://doi.org/10.56094/jss.v55i1.55

Demri S., Goranko V., Lange M. (2016): Temporal Logics in Computer Science - Finite-State

Systems. Cambridge Tracts in Theoretical Computer Science, Vol. 58. Cambridge University

Press, Cambridge, UK. ISBN 978-1-107-02836-4

DeNicola R. (2011): A gentle introduction to Process Algebras. IMT- Institute for Advanced

Studies, Lucca, Italy. Downloadable from: https://www.pst.ifi.lmu.de/Lehre/fruhere-

semester/sose-2013/formale-spezifikation-und-verifikation/intro-to-pa.pdf

Devillers, R., Tredup, R. (2022): Some Basic Techniques allowing Petri Net Synthesis -

Complexity and Algorithmic Issues. Fundamenta Informaticae, Volume 187, Issues 2-4: Petri

Nets. Villeurbanne, France. Downloadable from: https://doi.org/10.48550/arXiv.2112.03605

Ferdinand, C., Heckmann, R. (2004): aiT – Worst-Case Execution Time Prediction by Static

Program Analysis. In: Building the Information Society, IFIP 18
th

 World Computer Congress

Topical Sessions, 22–27 August 2004, Toulouse, France, pp 377–383. Springer New York,

NY, USA. https://doi.org/10.1007/b98986. Downloadable from:

https://link.springer.com/content/pdf/10.1007/978-1-4020-8157-6_29.pdf (Open Access)

Ferscha, A. (1994): Concurrent execution of timed Petri nets. Proceedings of Winter

Simulation Conference, Lake Buena Vista, FL, USA, 1994, pp. 229-236.

https://doi.org/10.1109/WSC.1994.717133

Fettke, P., Reisig, W. (2022): Modularization, Composition, and Hierarchization of Petri Nets

with Heraklit. German Research Center for Artificial Intelligence (DFKI), Saarbrücken,

Germany. https://doi.org/10.48550/arXiv.2202.01830. Downloadable from:

https://arxiv.org/abs/2202.01830.

Fokkink W. (1999): Introduction to Process Algebra. Springer Verlag, Berlin, Germany.

ISBN 978-3-540-66579-3

Franke B. (2016): Embedded Systems - Lecture 11: Worst-Case Execution Time. The

University of Edinburgh, Edinburgh, Scotland. Downloadable from:

https://www.inf.ed.ac.uk/teaching/courses/es/PDFs/lecture_11.pdf

Downloaded from https://www.cambridge.org/core. 25 Jul 2025 at 15:56:21, subject to the Cambridge Core terms of use.

https://doi.org/10.56094/jss.v55i1.55
https://www.pst.ifi.lmu.de/Lehre/fruhere-semester/sose-2013/formale-spezifikation-und-verifikation/intro-to-pa.pdf
https://www.pst.ifi.lmu.de/Lehre/fruhere-semester/sose-2013/formale-spezifikation-und-verifikation/intro-to-pa.pdf
https://doi.org/10.48550/arXiv.2112.03605
https://doi.org/10.1007/b98986
https://link.springer.com/content/pdf/10.1007/978-1-4020-8157-6_29.pdf
https://doi.org/10.1109/WSC.1994.717133
https://doi.org/10.48550/arXiv.2202.01830
https://arxiv.org/abs/2202.01830
https://www.inf.ed.ac.uk/teaching/courses/es/PDFs/lecture_11.pdf
https://www.cambridge.org/core

Accepted Manuscript

Führer, T., Müller, B., Dieterle, W., Hartwich, F. Hugel, R., Walther, M. (2000): Time-

Triggered Communication on CAN (TTCAN), Draft for TC 22/SC3/WG1/TF6 (ISO 11898-

4). Robert Bosch Gmbh, Suttgart, Germany. Downloadable from:

https://www.jstor.org/stable/44718317

Fuhrmann, H., von Hanxleden, R., Rennhack, J., Koch, J. (2006): Model-Based System

Design of Time-Triggered Architectures - Avionics Case Study. 2006 ieee/aiaa, 25
th

 Digital

Avionics Systems Conference. Portland, OR, USA.

https://doi.org/10.1109/DASC.2006.313745

Furia C.A., Mandrioli D., Morzenti D., Ross M. (2012): Modeling Time in Computing.

Springer Science & Business Media, Berlin, Germany. ISBN 978-3-642-32331-7.

https://doi.org/10.1007/978-3-642-32332-4

Furrer F.J. (2019): Future-Proof Software-Systems - A Sustainable Evolution Strategy.

Springer Vieweg Fachmedien, Wiesbaden, Germany. ISBN 978-3-658-19937-1.

https://doi.org/10.1007/978-3-658-19938-8

Furrer F.J. (2022): Safety and Security of Cyber-Physical Systems - Engineering dependable

Software using Principle-based Development. Springer Vieweg Fachmedien, Wiesbaden,

Germany. ISBN 978-3-658-37181-4. https://doi.org/10.1007/978-3-658-37182-1

Furrer F.J. (2023): Safe and secure system architectures for cyber-physical systems.

Informatik Spektrum 46, 96–103, Open access. https://doi.org/10.1007/s00287-023-01533-z

Gaska, T., Watkins, C., Chen, Y. (2015): Integrated Modular Avionics — Past, Present, and

Future. IEEE Aerospace and Electronic Systems Magazine, 30 (9), September 2015, pp. 12-

23. https://doi.org/10.1109/MAES.2015.150014. Downloadable from:

https://www.researchgate.net/publication/284113137_Integrated_Modular_Avionics_-

_Past_present_and_future

Girault C., Valk R. (2010): Petri Nets for Systems Engineering - A Guide to Modeling,

Verification, and Applications. Springer Verlag, Berlin, Germany. ISBN 978-3-642-07447-9.

Gliwa, P. (2022)E: Embedded Software Timing - Methodology, Analysis, and Practical Tips

with a Focus on Automotive. Springer Nature Switzerland AG, Cham, Switzerland. ISBN

978-3-03-064146-7. https://doi.org/10.1007/978-3-030-64144-3

Downloaded from https://www.cambridge.org/core. 25 Jul 2025 at 15:56:21, subject to the Cambridge Core terms of use.

https://www.jstor.org/stable/44718317
https://doi.org/10.1109/DASC.2006.313745
https://doi.org/10.1007/978-3-642-32332-4
https://doi.org/10.1007/s00287-023-01533-z
https://doi.org/10.1109/MAES.2015.150014
https://www.researchgate.net/publication/284113137_Integrated_Modular_Avionics_-_Past_present_and_future
https://www.researchgate.net/publication/284113137_Integrated_Modular_Avionics_-_Past_present_and_future
https://doi.org/10.1007/978-3-030-64144-3
https://www.cambridge.org/core

Accepted Manuscript

Goltz, U. (1990): CCS and Petri Nets. In: Guessarian, I. (editor): Semantics of Systems of

Concurrent Processes. LITP 1990. Lecture Notes in Computer Science, vol 469. Springer,

Berlin, Germany. ISBN 978-3-540-53479-2. https://doi.org/10.1007/3-540-53479-2_14

Gonzalez-Perez, C., Henderson-Sellers, B. (2008): Metamodelling for Software Engineering.

John Wiley & Sons, Chichester, UK. ISBN 978-0-470-03036-3

Gorrieri R., Versari C. (2015): Introduction to Concurrency Theory - Transition Systems and

CCS. Springer International Publishing Switzerland, Cham, Switzerland. ISBN 978-3-319-

36638-8. https://doi.org/10.1007/978-3-319-21491-7

Griffor, E., Greer, C., Wollman, D. and Burns, M. (2017): Framework for Cyber-Physical

Systems. Volume 1, Overview. Special Publication (NIST SP), National Institute of Standards

and Technology, Gaithersburg, MD, USA. https://doi.org/10.6028/NIST.SP.1500-201.

Downloadable from: https://www.nist.gov/publications/framework-cyber-physical-systems-

volume-1-overview

Gu, T., Dong, R. (2005): A novel continuous model to approximate time Petri nets -

Modelling and Analysis. International Journal of Applied Mathematics and Computer

Science, Vol 15, Nr. 1, pp. 141–150. University of Zielona Góra, Poland. Available at:

https://www.amcs.uz.zgora.pl/?action=paper&paper=234

Guan, N. (2018): Techniques for Building Timing-Predictable Embedded Systems. Springer

International Publishing Switzerland, Cham, Switzerland. ISBN 978-3-319-80089-9.

https://doi.org/10.1007/978-3-319-27198-9

Hale, R.W.S., Cardell-Oliver, R.M., Herbert J.M.J. (1994): Real-Time Safety Critical

Systems. https://doi.org/10.1016/B978-0-444-89901-9.50013-6. Chapter 4 in: Towards

Verified Systems, Volume 2, 1994, Pages 71-90. Elsevier, Amsterdam, The Netherlands.

https://doi.org/10.1016/B978-0-444-89901-9.50013-6. Downloadable from:

https://www.comp.nus.edu.sg/~cs5270/Notes/chapt4.pdf

Hawking S. (2015): The Illustrated Brief History of Time. Bantam Books, New York, NY,

USA. ISBN 978-0-593-07718-4

Henzinger, T., Manna, Z., Pnueli, A. (1991): Timed Transition Systems. Pages 226-251 in:

Real-Time - Theory in Practice, Proceedings of the REX Workshop, Mook, The Netherlands,

Downloaded from https://www.cambridge.org/core. 25 Jul 2025 at 15:56:21, subject to the Cambridge Core terms of use.

https://doi.org/10.1007/3-540-53479-2_14
https://www.nist.gov/publications/framework-cyber-physical-systems-volume-1-overview
https://www.nist.gov/publications/framework-cyber-physical-systems-volume-1-overview
https://www.amcs.uz.zgora.pl/?action=paper&paper=234
https://doi.org/10.1007/978-3-319-27198-9
https://doi.org/10.1016/B978-0-444-89901-9.50013-6
https://doi.org/10.1016/B978-0-444-89901-9.50013-6
https://www.comp.nus.edu.sg/~cs5270/Notes/chapt4.pdf
https://www.cambridge.org/core

Accepted Manuscript

June 3-7, 1991. Springer-Verlag, Berlin, Germany. LNCS, volume 600.

https://doi.org/10.1007/BFb0031984.

Huang, H., Jiao, L., Cheung, T.Y., Wak, W.M. (2012): Property-preserving Petri Net Process

Algebra in Software Engineering. World Scientific Publishing, Singapore, Singapore. ISBN

978-9-81-432428-1

Klemm, M., Cownie, J. (2021): High-Performance Parallel Runtimes - Design and

Implementation. Walter de Gruyter Gmbh, Berlin, Germany. ISBN 978-3-11-063268-2

Hoare C.A.R. (1985): Communicating Sequential Processes. Prentice-Hall International,

Englewood Cliffs, USA. ISBN 978-0-131-53289-2. Downloadable from:

https://www.cs.cmu.edu/~crary/819-f09/Hoare78.pdf

ISO (2001) International Organization for Standardization: ISO/IEC 15437:2001(en),

Information technology — Enhancements to LOTOS (E-LOTOS). Joint Technical Committee

ISO/IEC JTC 1, Information Technology, Subcommittee SC 7, Software Engineering. Geneva,

Switzerland. Available at: https://www.iso.org/obp/ui/en/#iso:std:iso-iec:15437:ed-1:v1:en

Jarabo, J.I.R., Gómez-Martínez1, E., Kallwies, H., Haustein, M., Leucker, M., Stolz, V.,

Stünkel, P. (2024): Runtime Verification of Timed Petri Nets. PNSE’24, International

Workshop on Petri Nets and Software Engineering, Geneva, Switzerland, 2024.

Downloadable from: https://ceur-ws.org/Vol-3730/paper07.pdf

Khomenko, V., Koutny, M., Yakovlev, A. (2022): Slimming down Petri Boxes - Compact

Petri Net Models of Control Flows. In 33
rd

 International Conference on Concurrency Theory

(CONCUR 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 243, pp.

8:1-8:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022).

https://doi.org/10.4230/LIPIcs.CONCUR.2022.8

Khononov, V. (2025): Balancing Coupling in Software Design - Universal Design Principles

for Architecting Modular Software Systems. Addison-Wesley, Hoboken, NJ, USA. ISBN 978-

0-137-35348-4

Kopetz, H. (1998): The Time-Triggered Model of Computation. RTSS ’98: Proceedings of the

IEEE Real-Time Systems Symposium. IEEE Computer Society, New York, N.Y., USA, pp. 168-

177. https://dl.acm.org/doi/10.5555/827270.829023

Downloaded from https://www.cambridge.org/core. 25 Jul 2025 at 15:56:21, subject to the Cambridge Core terms of use.

https://doi.org/10.1007/BFb0031984
https://www.cs.cmu.edu/~crary/819-f09/Hoare78.pdf
https://www.iso.org/obp/ui/en/#iso:std:iso-iec:15437:ed-1:v1:en
https://ceur-ws.org/Vol-3730/paper07.pdf
https://doi.org/10.4230/LIPIcs.CONCUR.2022.8
https://dl.acm.org/doi/10.5555/827270.829023
https://www.cambridge.org/core

Accepted Manuscript

Kopetz H., Bauer G. (2003): The Time-Triggered Architecture. Proceedings of the IEEE, Vol.

91, No. 1, January 2003. DOI: 10.1109/JPROC.2002.805821. Downloadable from:

https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=5e461d6b54890ae3bce70

334393560aa9235a769

Kopetz, H., Ademaj, A., Grillinger, P., Steinhammer, K. (2005): The Time-Triggered Ethernet

(TTE) Design. Proceedings of the Eighth IEEE International Symposium on Object-Oriented

Real-Time Distributed Computing (ISORC’05), Seattle, WA, USA. Downloadable from:

http://www.ann.ece.ufl.edu/courses/eel6686_15spr/papers/TTE_Design.pdf

Kopetz, H. (2017): The Time-Triggered Model of Computation. The Ptolemy Project,

University of Berkeley, Berkeley, USA. Downloadable from:

https://ptolemy.berkeley.edu/projects/embedded/research/hsc/class.F03/ee249/publications/T

TmodelofComp.pdf

Kopetz H., Steiner W. (2022): Real-Time Systems - Design Principles for Distributed

Embedded Applications. 3
rd

 edition. Springer Nature Switzerland, Cham, Switzerland. ISBN

978-3-031-11991-0. https://doi.org/10.1007/978-3-031-11992-7

Kröger, F., Merz, S. (2008): Temporal Logic and State Systems. Springer-Verlag, Berlin,

Germany. ISBN 978-3-540-67401-6

Lee E. A., Woodcock J. (2023): Time-Sensitive Software. Research Directions, Cyber-

Physical Systems, Vol 1. Cambridge University Press, Cambridge, UK.

https://doi.org/10.1017/cbp.2023.1

Liu G. (2022): Petri Nets - Theoretical Models and Analysis Methods for Concurrent

Systems. Springer Nature Singapore, Singapore. ISBN 978-981-19-6308-7.

https://doi.org/10.1007/978-981-19-6309-4

Lokuciejewski P., Marwedel P. (2011): Worst-Case Execution Time Aware Compilation

Techniques for Real-Time Systems. Springer Science & Business Media B.V., Dordrecht, The

Nederlands. ISBN 978-90-481-9928-0. https://doi.org/10.1007/978-90-481-9929-7

Maier R., Bauer G., Stoger G., Poledna S. (2002): Time-triggered architecture -A consistent

computing platform. IEEE Micro, vol. 22, no. 4, pp. 36-45, July-Aug. 2002. doi:

10.1109/MM.2002.1028474. Available at:

https://ieeexplore.ieee.org/abstract/document/1028474

Downloaded from https://www.cambridge.org/core. 25 Jul 2025 at 15:56:21, subject to the Cambridge Core terms of use.

https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=5e461d6b54890ae3bce70334393560aa9235a769
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=5e461d6b54890ae3bce70334393560aa9235a769
http://www.ann.ece.ufl.edu/courses/eel6686_15spr/papers/TTE_Design.pdf
https://ptolemy.berkeley.edu/projects/embedded/research/hsc/class.F03/ee249/publications/TTmodelofComp.pdf
https://ptolemy.berkeley.edu/projects/embedded/research/hsc/class.F03/ee249/publications/TTmodelofComp.pdf
https://doi.org/10.1007/978-3-031-11992-7
https://doi.org/10.1017/cbp.2023.1
https://doi.org/10.1007/978-981-19-6309-4
https://doi.org/10.1007/978-90-481-9929-7
https://ieeexplore.ieee.org/abstract/document/1028474
https://www.cambridge.org/core

Accepted Manuscript

Martin, R.C. (2017): Clean Architecture - A Craftsman’s Guide to Software Structure and

Design. Addison-Wesley, Boston, USA. ISBN 978-0134494166

Maruf, A.A., Niu, L., Clark, A., Mertoguno, J.S., Poovendran, R. (2022): A Timing-Based

Framework for Designing Resilient Cyber-Physical Systems under Safety Constraints.

https://arxiv.org/abs/2208.14282

Milner, R. (1980): A Calculus of Communicating Systems. Springer Verlag, Berlin, Germany.

LNCS Vol 92. Downloadable from: https://www.lfcs.inf.ed.ac.uk/reports/86/ECS-LFCS-86-

7/ECS-LFCS-86-7.pdf

Moreno, R.P., Salcedo, J.L.V. (2006): Implementation of time Petri nets in real-time Java.

JTRES ’06, Proceedings of the 4th international workshop on Java technologies for real-

time and embedded systems, pp. 178 – 187. https://doi.org/10.1145/1167999.1168029

Muller R.A. (2016): Now - The Physics of Time. W. W. Norton & Company, New York, NY,

USA. ISBN 978-0-393-28523-9

Murer S., Bonati B., Furrer, F.J. (2014): Managed Evolution - A Strategy for Very Large

Information Systems. Springer Verlag, Berlin, Germany. ISBN 978-3-642-43131-9.

https://doi.org/10.1007/978-3-642-01633-2

Nakagawa E.Y., Antonino, P.O. [Editors] (2024): Reference Architectures for Critical

Domains - Industrial Uses and Impacts. Springer Nature, Cham, Switzerland. ISBN 978-3-

031-16959-5. https://doi.org/10.1007/978-3-031-16957-1

Nicollin X., Sifakis J, (1991): An Overview and Synthesis on Timed Process Algebras.

Presented at CAV’91, Alborg Denmark, July 1991. Downloadable from: https://www-

verimag.imag.fr/PEOPLE/Joseph.Sifakis/overviewtimedprocalg-cav91.pdf

NIST (2017): Framework for Cyber-Physical Systems - Volume 3: Timing Annex. NIST

Special Publication 1500-203. National Institute of Standards and Technology, Gaithersburg,

MD, USA. https://doi.org/10.6028/NIST.SP.1500-203.

Núñez-Alvarez, J. R., Benítez-Pina, I., Acosta-Montoya, G., Pino-Escalona, A., Villafuela-

Loperena, L. (2023): Design of an Integrated Automation & Control System Using Petri Nets

- Case Study. Journal of Applied Research and Technology, 21(2), 169–180.

https://doi.org/10.22201/icat.24486736e.2023.21.2.1562

Downloaded from https://www.cambridge.org/core. 25 Jul 2025 at 15:56:21, subject to the Cambridge Core terms of use.

https://arxiv.org/abs/2208.14282
https://www.lfcs.inf.ed.ac.uk/reports/86/ECS-LFCS-86-7/ECS-LFCS-86-7.pdf
https://www.lfcs.inf.ed.ac.uk/reports/86/ECS-LFCS-86-7/ECS-LFCS-86-7.pdf
https://doi.org/10.1145/1167999.1168029
https://doi.org/10.1007/978-3-642-01633-2
https://doi.org/10.1007/978-3-031-16957-1
https://www-verimag.imag.fr/PEOPLE/Joseph.Sifakis/overviewtimedprocalg-cav91.pdf
https://www-verimag.imag.fr/PEOPLE/Joseph.Sifakis/overviewtimedprocalg-cav91.pdf
https://doi.org/10.6028/NIST.SP.1500-203
https://doi.org/10.22201/icat.24486736e.2023.21.2.1562
https://www.cambridge.org/core

Accepted Manuscript

Obermaisser, R. (Editor), 2011: Time-Triggered Communication. CRC Press, Boca Raton,

FL, USA. ISBN 978-1-439-84661-2

Öztemür, S. (2015): Exceptions and Exception Handling in Business Process Management

Systems - Analysis and Classification. Ulm University, Ulm, Germany. Faculty of

Engineering and Computer Science. Institute of Database and Information Systems.

Downloadable from: https://dbis.eprints.uni-ulm.de/id/eprint/1311/1/NA_Oez_2015.pdf

Pasandideh, S., Gomes, L., Maló, P. (2022): Modelling Cyber-Physical Social Systems Using

Dynamic Time Petri Nets. Faculty of Science and Technology, NOVA University of Lisbon,

Centre of Technology and Systems - CTS, UNINOVA, Campus da Caparica, 2829-516 Monte

Caparica, Portugal. Downloadable from:

https://research.unl.pt/ws/portalfiles/portal/12931496/Modelling_Cyber_Physical_Social_Sys

tems_Using_Dynamic_Time.pdf

Penczek, W., Pólrola, A. (2006): Advances in Verification of Time Petri Nets and Timed

Automata - A Temporal Logic Approach. Springer Verlag, Berlin, Germany. ISBN 978-3-

540-32869-8

Philippou, A., Sokolsky, O., (2007): Process-Algebraic Analysis of Timing and Schedulability

Properties. Technical Paper. Downloadable from:

https://www.cs.ucy.ac.cy/~annap/papers/rtpa.pdf

Platzer, A. (2018): Logical Foundations of Cyber-Physical Systems. Springer International

Publishing, Cham, Switzerland. ISBN 978-3-319-63587-3. https://doi.org/10.1007/978-3-

319-63588-0

Popova-Zeugmann L. (2016): Time and Petri Nets. Springer Verlag, Heidelberg, Germany.

ISBN 978-3-662-51435-1. https://doi.org/10.1007/978-3-642-41115-1

Power S.E. (2021): Philosophy of Time - A Contemporary Introduction. Routledge

Publishing, New York, NY, USA. ISBN 978-1-138-24049-0

Rajeev, A.C., Mohalik, S., Ramesh, S. (2012): Verifying timing synchronization constraints in

distributed embedded architectures. 2012 Design, Automation & Test in Europe Conference

and Exhibition (DATE), Dresden, Germany, 12-16 March 2012, pp. 200-205,

https://doi.org/10.1109/DATE.2012.6176463. Available at:

https://ieeexplore.ieee.org/document/6176463

Downloaded from https://www.cambridge.org/core. 25 Jul 2025 at 15:56:21, subject to the Cambridge Core terms of use.

https://dbis.eprints.uni-ulm.de/id/eprint/1311/1/NA_Oez_2015.pdf
https://research.unl.pt/ws/portalfiles/portal/12931496/Modelling_Cyber_Physical_Social_Systems_Using_Dynamic_Time.pdf
https://research.unl.pt/ws/portalfiles/portal/12931496/Modelling_Cyber_Physical_Social_Systems_Using_Dynamic_Time.pdf
https://www.cs.ucy.ac.cy/~annap/papers/rtpa.pdf
https://doi.org/10.1007/978-3-319-63588-0
https://doi.org/10.1007/978-3-319-63588-0
https://doi.org/10.1007/978-3-642-41115-1
https://doi.org/10.1109/DATE.2012.6176463
https://ieeexplore.ieee.org/document/6176463
https://www.cambridge.org/core

Accepted Manuscript

Richards, M., Ford, N. (2025): Fundamentals of Software Architecture - An Engineering

Approach. O’Reilly Media, Boston, USA. ISBN 978-1-098-17551-1

Rodriguez, R.J., Julvez, J., Merseguer, J. (2013): On the Performance Estimation and

Resource Optimisation in Process Petri Nets. IEEE Transactions on Systems, Man, and

Cybernetics: Systems. New York, USA. Vol. 43, No. 6, pp. 1385-1398, Nov. 2013.

https://doi.org/10.1109/TSMC.2013.2245118. Downloadable from:

https://zaguan.unizar.es/record/57494/files/texto_completo.pdf

Rohr, M., (2015): Workload-sensitive Timing Behavior Analysis for Fault Localization in

Software Systems. PhD Thesis, Kiel University, Kiel, Germany. Printed by Books on

Demand, Norderstedt, Germany. ISBN 978-3-7347-4516-4

Rushby, J. (2002): An Overview of Formal Verification for the Time-Triggered Architecture.

Invited paper, presented at FTRTFT’02, Oldenburg, Germany, September 2002. Springer-

Verlag, Heidelberg, Germany (LNCS Vol. 2469, pp. 83–105). Downloadable from:

https://depend.cs.uni-

saarland.de/fileadmin/user_upload/depend/dnjansen/rushbyOverview.pdf

Rushby J. (2005): An Overview of The Time-Triggered Architecture (TTA) and its Formal

Verification. Computer Science Laboratory, SRI International, Menlo Park, California, USA.

Downloadable from: https://www.csl.sri.com/users/rushby/slides/kestrel05.pdf

Shaw, R., Jackman, B. (2008): An Introduction to FlexRay as an Industrial Network. IEEE,

New York, USA. ISBN 978-1-4244-1666-0. Downloadable from:

https://www.researchgate.net/publication/224349830_An_introduction_to_FlexRay_as_an_in

dustrial_network

Shi, W., He, Z., Gu, C., Ran 3, N., Ma, Z. (2023): Performance Optimization for a Class of

Petri Nets. Sensors, Basel, Switzerland. 2023, January 28;23(3):1447.

https://doi.org/10.3390/s23031447

Shrivastava, A., Derler, P., Baboud, Y.S.L., Stanton, K., Khayatian, M., Andrade, H.A., Weiss,

M., Eidson, J., Chandhoke, S. (2016): Time in cyber-physical systems. CODES ’16:

Proceedings of the Eleventh IEEE/ACM/IFIP International Conference on

Hardware/Software Codesign and System Synthesis, Article No. 4, Pages 1 – 10. Pittsburgh,

PA, USA. https://doi.org/10.1145/2968456.2974012. Available from:

https://ieeexplore.ieee.org/document/7750983

Downloaded from https://www.cambridge.org/core. 25 Jul 2025 at 15:56:21, subject to the Cambridge Core terms of use.

https://doi.org/10.1109/TSMC.2013.2245118
https://zaguan.unizar.es/record/57494/files/texto_completo.pdf
https://depend.cs.uni-saarland.de/fileadmin/user_upload/depend/dnjansen/rushbyOverview.pdf
https://depend.cs.uni-saarland.de/fileadmin/user_upload/depend/dnjansen/rushbyOverview.pdf
https://www.csl.sri.com/users/rushby/slides/kestrel05.pdf
https://www.researchgate.net/publication/224349830_An_introduction_to_FlexRay_as_an_industrial_network
https://www.researchgate.net/publication/224349830_An_introduction_to_FlexRay_as_an_industrial_network
https://doi.org/10.3390/s23031447
https://doi.org/10.1145/2968456.2974012
https://ieeexplore.ieee.org/document/7750983
https://www.cambridge.org/core

Accepted Manuscript

Sony, M. (2020): Design of cyber-physical system architecture for industry 4.0 through Lean

Six Sigma - conceptual foundations and research issues. Production and Manufacturing

Research, Vol. 8, No. 1, 158–181. https://doi.org/10.1080/21693277.2020.1774814.

Downloadable from:

https://www.tandfonline.com/doi/epdf/10.1080/21693277.2020.1774814?needAccess=true

Struthers R. (2024): Hands of Time - A Watchmaker’s History of Time. Harper-Collins

Publishers, New York, NY, USA. ISBN 978-1-529-33904-8

Thiele, L., Chakraborty, S., Naedele, M. (2000): Real-time calculus for scheduling hard real-

time systems. 2000 IEEE International Symposium on Circuits and Systems (ISCAS),

Geneva, Switzerland, 2000, pp. 101-104, vol.4. https://doi.org/10.1109/ISCAS.2000.858698.

Available from: https://ieeexplore.ieee.org/abstract/document/858698

Thramboulidis, K. (2010): IEC 61499 Function Block Model - Facts and Fallacies. IEEE

Industrial Electronics Magazine, New York, NY, USA, Vol. 3, Nr. 4, pp. 7 – 26.

https://doi.org/10.1109/MIE.2009.934788. Downloadable from:

https://www.researchgate.net/publication/224089609_IEC_61499_Function_Block_Model_F

acts_and_Fallacies

Ungureanu, G., Sander, I. (2017): A Layered Formal Framework for Modeling of Cyber-

Physical Systems. Design, Automation and Test in Europe Conference and Exhibition

(DATE), Lausanne, Switzerland, 2017, pp. 1715-1720.

https://doi.org/10.23919/DATE.2017.7927270. Downloadable from: https://kth.diva-

portal.org/smash/get/diva2:1114832/FULLTEXT02.pdf

Wang J. (1998): Timed Petri Nets - Theory and Application. Springer Science+Business

Media, New York, NY, USA. ISBN 978-0-7923-8270-6. https://doi.org/10.1007/978-1-4615-

5537-7.

Wang, Y. (2002): The Real-Time Process Algebra (RTPA). Annals of Software Engineering

14, 235–274, 2002. Kluwer Academic Publishers, Amsterdam, The Netherlands.

Willemse, T.A.C. (2003): Semantics and Verification in Process Algebras with Data and

Timing. IPA Dissertation Series 2003-05. Printed by University Press Facilities, Eindhoven,

Netherlands. ISBN 90-386-0672-9. Downloadable from:

https://timw.win.tue.nl/articles/thesis.pdf

Downloaded from https://www.cambridge.org/core. 25 Jul 2025 at 15:56:21, subject to the Cambridge Core terms of use.

https://doi.org/10.1080/21693277.2020.1774814
https://www.tandfonline.com/doi/epdf/10.1080/21693277.2020.1774814?needAccess=true
https://doi.org/10.1109/ISCAS.2000.858698
https://ieeexplore.ieee.org/abstract/document/858698
https://doi.org/10.1109/MIE.2009.934788
https://www.researchgate.net/publication/224089609_IEC_61499_Function_Block_Model_Facts_and_Fallacies
https://www.researchgate.net/publication/224089609_IEC_61499_Function_Block_Model_Facts_and_Fallacies
https://doi.org/10.23919/DATE.2017.7927270
https://kth.diva-portal.org/smash/get/diva2:1114832/FULLTEXT02.pdf
https://kth.diva-portal.org/smash/get/diva2:1114832/FULLTEXT02.pdf
https://doi.org/10.1007/978-1-4615-5537-7
https://doi.org/10.1007/978-1-4615-5537-7
https://timw.win.tue.nl/articles/thesis.pdf
https://www.cambridge.org/core

Accepted Manuscript

Wolf, F. (2002): Behavioral Intervals in Embedded Software - Timing and Power Analysis of

Embedded Real-Time Software Processes. Kluwer Academic Publishers, Boston, USA. ISBN

978-1-402-07135-5.

Yoong, L.H., Roop, P.S., Salcic, Z. (2013): Implementing constrained cyber-physical

systems with IEC 61499. ACM Transactions on Embedded Computing Systems (TECS),

Volume 11, Issue 4, Article No. 78, pp. 1 – 22. https://doi.org/10.1145/2362336.2362345

Yoong, L.H., Roop, P.S., Bhatti, Z.E., Kuo, M.M.K. (2016): Model-Driven Design Using IEC

61499 - A Synchronous Approach for Embedded and Automation Systems. Springer

International Publishing, Cham, Switzerland. ISBN 978-3-319-10520-8.

https://doi.org/10.1007/978-3-319-10521-5

Downloaded from https://www.cambridge.org/core. 25 Jul 2025 at 15:56:21, subject to the Cambridge Core terms of use.

https://doi.org/10.1145/2362336.2362345
https://doi.org/10.1007/978-3-319-10521-5
https://www.cambridge.org/core

