
Modelling interrupted time series to evaluate prevention and

control of infection in healthcare

V. GEBSKI 1,2*, K. ELLINGSON 1, J. EDWARDS1, J. JERNIGAN1

AND D. KLEINBAUM 1,3

1 Division of Healthcare Quality Promotion, Centres for Disease Control and Prevention, Atlanta GA, USA
2 NHMRC Clinical Trials Centre, University of Sydney, Camperdown, NSW, Australia
3 Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta GA, USA

Received 14 November 2011; Final revision 24 January 2012; Accepted 24 January 2012;

first published online 16 February 2012

SUMMARY

The most common methods for evaluating interventions to reduce the rate of new Staphylococcus

aureus (MRSA) infections in hospitals use segmented regression or interrupted time-series

analysis. We describe approaches to evaluating interventions introduced in different healthcare

units at different times. We compare fitting a segmented Poisson regression in each hospital unit

with pooling the individual estimates by inverse variance. An extension of this approach to

accommodate potential heterogeneity allows estimates to be calculated from a single statistical

model : a ‘stacked’ model. It can be used to ascertain whether transmission rates before the

intervention have the same slope in all units, whether the immediate impact of the intervention is

the same in all units, and whether transmission rates have the same slope after the intervention.

The methods are illustrated by analyses of data from a study at a Veterans Affairs hospital. Both

approaches yielded consistent results. Where feasible, a model adjusting for the unit effect should

be fitted, or if there is heterogeneity, an analysis incorporating a random effect for units may be

appropriate.
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INTRODUCTION

In the USA, methicillin-resistant Staphylococcus

aureus (MRSA) is the most common cause of skin and

soft tissue infections in patients presenting to emerg-

ency departments and is endemic in many hospitals

[1]. Interventions to reduce transmission include em-

phasizing hand hygiene, active surveillance culturing,

and educating healthcare workers in the ‘culture’ of

infection control. We explored options for evaluating

chronologically overlapping interventions in an ex-

isting dataset [2]. The outcome of interest was the

impact of specific interventions on the incidence of

MRSA in each unit, where interventions might take

weeks or months to become effective and might be

implemented in different units at different times. This

approach is also known as a step wedge design [3].

METHODOLOGICAL FRAMEWORK

Segmented models may explain sudden and gradual

shifts in data due to external mechanisms not
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accounted for by simple multiple regression models

[4–10]. Segmented modelling, a reasonable approach

for evaluating interventions when data are collected

over time [11], has been used extensively for public

health interventions [12–15] and for effects on

MRSA rates in particular [16, 17]. Biglan et al. [18]

overviewed models of the effect of community inter-

ventions using a conventional time series (auto-

regressive integrated moving average), and this was

applied to nosocomial infections by Fernández-Pérez

et al. [19]. Clinical incidence of MRSA is a proxy for

MRSA transmission [20]. We extended this idea to a

model of infection rates of MRSA transmission in-

corporating multiple hospital units.

Approaches to answering these questions can be

complicated by methodological concerns including:

(1) the same intervention may be implemented at dif-

ferent times in units within the same facility (i.e. hos-

pitals), (2) there may be a correlation of incidence

rates across time periods ; and (3) the intervention may

take weeks or months to produce a measurable effect.

RESULTS

Data sources

Data were collected over 109 months at a Veterans

Affairs (VA) hospital in Pittsburgh. The intervention

included culturing for MRSA colonization at ad-

mission before initiation of contact precautions and

hand-hygiene awareness, which were incrementally

phased in. The intervention began in October 2001

(month 25) in unit A; in October 2003 (month 49) in

unit B; then in July 2005 (month 70) in the remainder

of the acute care units (area C). The first date for

which MRSA incidence data were available for all

three areas was 1 October 1999. One study objective

was to quantify estimates of the changes in rates over

time to allow researchers and administrators to gauge

the effect of introduction of interventions introduced

to individual units or hospitals.

The outcome of interest was the monthly clinical

incidence of MRSA cases in each area of the hospital,

a proxy for MRSA transmission or new acquisition

of infection or colonization (at a clinical site). An

incident case was defined as: a positive, clinical

(non-surveillance) MRSA culture obtained at least

48 h after admission to an acute-care unit and, if

the patient was transferred, within 48 h of transfer to

another unit. Cases were excluded as ‘non-incident’

if a positive clinical culture in the previous year

(including long-term care and outpatient setting)

could be identified anywhere in the laboratory infor-

mation system. Nasal and rectal swabs were con-

sidered surveillance cultures and thus ineligible.

Clinical incidence was expressed as the number of in-

cident cases per 1000 patient-days. The corresponding

incidence rate for month i (i=1, 2, …, 109), denoted

as li, was estimated by dividing the number of

patients with incident MRSA by the patient-days for

each month (Fig. 1).

Pooled analysis : fixed effects

Within each unit, the number of MRSA events in any

one month can be thought of as a Poisson count, with

the number of patient-days being the exposure time.

An interrupted time series (or segmented regression)

using a generalized linear model for a Poisson distri-

bution, by using a segmented approach [8] can be fit-

ted.

The form for a Poisson distribution is, for the ith

unit (i=1, 2, 3)

Pr(y cases)=
exlilyi
y!

(y=0, 1, 2, . . . )

within each unit where a case equates to a positive

microbiology culture. If the intervention occurs at

time t0, we can link the number of infections (y) to

time using the following model

Model 1 : ln(l)=b0+b1T+b2I+b3T*,

where l=monthly incidence rate,

T=time in months,

I=intervention status=
0 if Tft0

1 if T>t0

�

T*=post-intervention time= 0 if Tft0
Txt0 if T>t0

�
:

In this model, b0 represents the baseline MRSA rate;

b1, the slope before the intervention at t0 ; b2, the

change in the rate just after t0 ; b1+b3, the slope after

t0, and b3, the change in slope after t0. The model can

be fitted using standard software, the standard error

of the post-intervention slope, b1,j+b3,j for the jth

hospital unit is

S:E:(b̂b1, j, b̂b3, j)=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var(b̂b1, j)+var(b̂b3, j)+2cov(b̂b1, j, b̂b3, j)

q
:

The quantity cov(b̂b1, j, b̂b3, j) is can be obtained from the

output of statistical packages (Fig. 2). Fitting seg-

mented Poisson regression separately for each unit in
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the hospital, gives, for the jth unit, parameter esti-

mates of the coefficients : b̂b0, j, b̂b1, j, b̂b2, j and b̂b3, j and

their associated standard errors : S.E.(b̂b0, j), S.E.(b̂b1, j),

S.E.(b̂b2, j) and S.E.(b̂b3, j). Assuming the rate in each unit

is independent of the rate in the other units, an overall

estimate of b0, b1, b2 and b3 can be obtained by
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Fig. 1. Observed incident MRSA cases per 1000 patient-days. (a) Unit A, (b) unit B, and (c) area C.
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pooling the individual estimates [21]. This is achieved

by a weighted average of the individual unit estimates,

where the weights are the inverse of the variances of

the estimates from the fitted model. The variances are

obtained by squaring the respective standard errors. If

there are k units over which we need to pool, the es-

timates are obtained as:

b̂b0=

Pk
j=1

w0, jb̂b0, j

Pk
j=1

w0, j

,

where w0, j= 1
v0, j

and v0, j={S:E:(b̂b0, j)}
2 (j=1, 2, …, k).

Similarly,

b̂b1=

Pk
j=1

w1, jb̂b1, j

Pk
j=1

w1, j

;

b̂b2=

Pk
j=1

w2, jb̂b2, j

Pk
j=1

w2, j

and b̂b3=

Pk
j=1

w3, jb̂b3, j

Pk
j=1

w3, j

:

Confidence intervals for the pooled estimates, b̂bi
(i=0, 1, 2, 3) are constructed by noting that the vari-

ance of b̂bi is

var(b̂bi)=
1

Pk
j=1

wi, j

(i=0, 1, 2, 3):

The 95% confidence interval for b̂bi is b̂bit1�96ffiffiffiffiffiffiffiffiffiffiffi
var(b̂b

q
i
): These estimates and their standard errors

are based on the logarithm of the rate, and need to be

exponentiated to reflect the actual rates. These rates
are referred to as incidence density ratios. The esti-
mate of the variances of these coefficients can be ad-
justed if there is evidence of substantial heterogeneity
between the units. This adjustment for the extra vari-
ation due to heterogeneity is also referred to as a
random-effects adjustment and statistical tests are
available to determine whether significant heterogen-
eity is present. The random-effects estimate simply
adds a component to each the weights wi,j reflecting
this variability [21, 22].

Autocorrelation

As the data is a time series, any significant serial cor-

relation (correlation between successive observations)

present after the regression models have been fitted

needs to be examined to determine the extent of any

(first-order) serial autocorrelation in the residuals.

The Durbin–Watson statistic [23], measures such

correlation, and is calculated as

DW=

PT
i=2

{etxetx1}
2

PT
i=1

e2i

,

where the observations range from 1, …, T and ei is

the ith residual from the Poisson regression model.

The range of the statistic is 0–4, with values substan-

tially less than 2 indicating (first-order) serial auto-

correlation.

The data layout for the three hospital units is

shown in Table 1. Table 2 shows the coefficients for

each unit, the fixed- and random-effect [21, 22] pooled

estimates, and the Durbin–Watson statistic. Based on

109 observations, values of this statistic >1.58 indi-

cate no autocorrelation at the 1% and >1.71 at the

5% levels of significance. Values <1.54, and <1.67

suggest the presence of autocorrelation at the 1% and

5% levels of significance, respectively. Critical values

at the 5%, 2.5% and 1% significance levels are

available online (http://www.stanford.edu/yclint/

bench/dwcrit.htm).

The interpretation of the pooled coefficients is as

follows: At the start of data collection, compared

with a rate of 0, there was a significant rate of MRSA

of approximately 3/1000 in the hospital (estimated by

b0). Before the intervention, the estimate of the rate

(b1) was no change from the start (baseline) of data

collection. The plausible rate was within the range of

a 0.5% decrease and a 0.4% increase. The immediate

β

β

β

1

Tt0

0

2

ln(λ)=

ln(λ)

β0 + β1T β2I β3T *

Fig. 2.Representation of model 1: within an individual unit.
b0=Starting baseline MRSA rate ; b1=slope of line prior to
t0 ; b2=drop at t0 ; b1+b3=slope after t0.
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effect of the intervention (b2) was a significant 39%

decrease in the rate with a plausible effect ranging from

a decrease of 55% to 14%. There was no significant

reduction in clinical MRSA incidence of 1% per

month of the intervention after implementation (b3).

The plausible reduction ranged from 2% per month

Table 1. Data layout for MRSA data from hospital units A and B and area C#

Unit A: t0=25
Patient
days

MRSA
counts

Unit B: t0=48
Patient
days

MRSA
counts

Area C: t0=70
Patient
days

MRSA
countsT I T* T I T* T I T*

A 1 0 0 615 3 B 1 0 0 244 0 C 1 0 0 2289 4
A 2 0 0 460 0 B 2 0 0 245 0 C 2 0 0 2111 6
: : : : : : : : : : : : : : : : : :

A 24 0 0 B 47 0 0 249 1 C 69 0 0 2122 8
A 25 1 1 B 48 1 1 230 0 C 70 1 1 2035 6
A 26 1 2 : : B 49 1 2 259 3 C 71 1 2 2213 5
: : : : : : : : : : : : : : : : : :

A 109 1 85 645 1 B 109 1 62 252 0 C 109 1 39 2383 3

t0, Time of the intervention; T, time period before the intervention (months) ; I, intervention time period (months) ;
T*, time period after the intervention (months).
# Clinical incidence density rates (MRSA counts/patient days) over a period of 109 months were calculated for all units.

Table 2. Individual and pooled incidence density rates, 95% CI and P values

Unit* Coefficient Rate# 95% CI P

b̂b0 (constant)$ Unit A x6.529 0.0014 0.001–0.002 <0.001
Unit B x5.812 0.0030 0.002–0.004 <0.001
Area C x5.882 0.0028 0.002–0.003 <0.001
Fixed x5.907 0.0027 0.002–0.003 <0.001

Random x6.006 0.002 0.001–0.004 <0.001
b̂b1 (time) Unit A 0.0349 1.0355 0.98–1.04 0.19

Unit B 0.0054 1.0054 0.98–1.01 0.64

Area C x0.0008 0.9992 0.995–0.999 0.74
Fixed x0.0003 1.000 0.995–1.004 0.91
Random 0.011 1.011 0.9961–1.064 0.34

b̂b2 (intervention) Unit A x0.3051 0.7370 0.340–0.999 0.44
Unit B x0.4368 0.6461 0.258–0.992 0.35
Area C x0.5372 0.5844 0.395–0.632 0.01
Fixed x0.4828 0.617 0.445–0.856 <0.01

Random x0.483 0.617 0.445–0.855 <0.01
b̂b3 (change in slope after the intervention) Unit A x0.0478 0.9533 0.904–0.955 0.08

Unit B x0.0331 0.9674 0.935–0.968 0.06

Area C x0.0028 0.9972 0.982–0.997 0.72
Fixed x0.0106 0.989 0.976–1.003 0.13
Random x0.025 0.976 0.934–1.019 0.13

b̂b1+b̂b3 (post-intervention slope) Unit A x0.0129 0.9872 0.978–0.987 <0.01
Unit B x0.0277 0.9727 0.948–0.973 0.04
Area C x0.0036 0.9964 0.982–0.997 0.63

Fixed x0.0118 0.9883 0.981–0.996 <0.01
Random x0.012 0.988 0.977–0.999 <0.01

CI, Confidence interval.
* Durbin–Watson A: 1.90 ; B: 2.87 ; C: 1.87. Values >1.58 and 1.71 indicate no evidence of autocorrelation at the 1% and
5% levels of significance, respectively.

# Rate is the exponential of the coefficient.
$ Adjusted for number of patient days at risk/month in each unit.
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reduction to 0.3% increase. Adjustment for random

effects does not substantially change the results.

Stacked analysis

Rather than fitting a separate model and pooling

the estimates, we can fit a single model for all the

units simultaneously to obtain estimates for pre-

intervention, intervention, and post-intervention. A

single model has the advantage of using the data

across the units as part of the estimation procedure

for each of the parameters resulting in an improve-

ment in the efficiency of some of the estimates. In this

model we concatenated the data row-wise to obtain

one dataset of 327 rows.

Two extra columns appear in the array of Table 3,

indicator variables representing unit B (U2) and area

C (U3), leaving unit A as the reference category. We

address the columns labelled T1*, T2* and T3* later.

The model we fit may be represented as:

Model 2 : ln(l)=b0+b1T+b2I+b3T*+c1U2+c2U3,

where l is the monthly incidence rate, T and I are as

previously defined, and T*=0 if Tft0 and T*=Txt0
for T>t0.

For our study, t0=24 if U2=0 and U3=0; t0=48 if

U2=1 and U3=0, and t0=69 if U2=0 and U3=1. c

denotes the parameters relating to the effects of the

individual units. The results of fitting this Poisson

model (Table 4) are consistent with the pooled

analysis (Table 2).

Using model 2, the contribution of the individual

components to the overall estimates can be summar-

ized as:

Unit A: U2=U3=0, T<25: ln(l)=b0+b1T,

T=25: ln(l)=(b0+b2+(25b1+b3)
T>25: ln(l)=(b0+b2x24b3)+(b1+b3)T.

Unit B: U2=1, U3=0, T<49: ln(l)=(b0+c1)+b1T,

T=49: ln(l)=(b0+c1+b2)+(49b1+b3)
T>49: ln(l)=(b0+c1+b2x48b3)+(b1+b3)T.

Area C: U2=0, U3=1, T<70: ln(l)=(b0+c2)+b1T,

T=70: ln(l)=(b0+c2+b2)+(70b1+b3)
T>70: ln(l)=(b0+c2+b2x69b3)+(b1+b3)T

(see Fig. 3).

While models 1 and 2 estimate the same quantities,

the estimation approaches are different. In model 2,

the pre-intervention effect (b1) has simultaneous

contributions from all three units until the first

intervention (24 months) and from two units (unit B

Table 3. Stacked data layout combining units

Unit# T I T* U2 U3 T1* T2* T3*
Patient
days

MRSA
counts

A 1 0 0 0 0 0 0 0 615 3

A 2 0 0 0 0 0 0 0 460 0
: : : : : : : : :
A 24 0 0 0 0 0 0 0

A 25 1 1 0 0 1 0 0
A 26 1 2 0 0 2 0 0
: : : : : : : : :
A 109 1 84 0 0 84 0 0 645 1

B 1 0 0 1 0 0 0 0 244 0
B 2 0 0 1 0 0 0 0 245 0
: : : : : : : : : :

B 48 0 0 1 0 0 0 0 244 0
B 49 1 1 1 0 0 1 0 245 0
B 50 1 2 1 0 0 2 0

: : : : : : : : :
B 109 1 58 1 0 0 58 0 252 0
C 1 0 0 0 1 0 0 0 2289 4
C 2 0 0 0 1 0 0 0 2111 6

: : : : : : : : : :
C 69 0 0 0 1 0 0 0 2125 0
C 70 1 1 0 1 0 0 1 1933 0

C 71 1 2 0 1 0 0 2
: : : : : : : : : : :
C 109 1 40 0 1 0 0 40 2383 3

# U2 and U3 are indicators representing unit B and area C.
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and area C) until the second intervention (48 months).

In model 1 they are estimated separately. Similarly,

for the estimation of the post-intervention

effect, the contribution to b1+b3 comes from the three

units.

In a stacked analysis, the effects are adjusted

for differences between units ; however, this may

not be feasible if (a) the number of units is large,

(b) there are different durations of time series in

different units, or (c) numerical instability in the

model fitting or parameter estimates is observed. In

these situations, a pooled analysis may be a useful

option.

If the unit effects are not significant, model 2 can

be simplified by omitting the variables U2 and U3.

In this case, we revert to model 1, but with all the

units pooled in one (stacked) dataset and assume

no unit effect (Table 4). Differences between the un-

adjusted estimates in Table 4 and pooled analyses

(Table 2) may arise because estimates in Table 4

use information from all units simultaneously.

For the pooled analysis, the rate is a weighted sum of

the intervention rates calculated separately for each

unit.

These results assume no pair-wise correlation

among the MRSA rates within each unit (rates from

one month to the next are independent) (Tables 2 and

4). As rates are fitted over time, any correlations will

be accounted for by the terms in the model(s) that

involve time, T and T*. Monthly overlap of patients

or seasonal effects would be unusual, but, if found,

the model should be modified accordingly. Any

correlation would manifest itself after the residuals

have been fitted and, at most, the first-order

Table 4. Stacked model : incidence density rates

Coefficient Rate 95% CI P

Adjusted model#
b̂b0 (constant) x5.7920 0.0031 0.0024–0.0038 <0.001

b̂b1 (time) x0.0012 0.9988 0.9943–1.0034 0.62
b̂b2(intervention) x0.3544 0.7016 0.5334–0.9228 0.01
b̂b3 (post-intervention) x0.0088 0.9912 0.9831–0.9994 0.03

b̂b1+ b̂b3 x0.0100 0.9900 0.9830–0.9971 0.06
ĉc1 (unit B) 0.0288 1.0292 0.7412–1.4291 0.86
ĉc2 (area C) x0.0884 0.9154 0.6976–1.2013 0.52

Unadjusted model$
b̂b0 (constant) x5.833 0.003 0.0025–0.0034 <0.001

b̂b1 (time) x0.002 0.997 0.994–1.002 0.26
b̂b2(intervention) x0.320 0.726 0.558–0.943 0.02
b̂b3 (post-intervention) x0.007 0.993 0.986–0.999 0.04

b̂b1+b̂b3 x0.009 0.991 0.984–0.998 <0.01

CI, Confidence interval.
# ln(l)=b0+b1T+b2I+b3T*+c1U2+c2U3.
$ ln(l)=b+b1T+b2I+b3T*.

β1

β1

β1
β0 + γ2

β0 + γ1

T

25 49 70 88

Area C

Unit B

Unit A

ln(λ)

Fig. 3. Representation of stacked data in model 2.
ln(l)=b0+b1T+b2I+b3T*+c1U2+c2U3 ; b1=slope of line

prior to intervention for units A, B, and area C; b2=average
drop at the intervention (drop occurs at T=25 for unit A,
T=49 for unit B, T=70 for area C; b1+b3=slope after
intervention for units A, B, and area C. If b3=0, then the

slopes are the same (b1) both before and after the inter-
vention for all three units.
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autocorrelation would be dominant. When the size of

this correlation is examined via the Durbin–Watson

statistic, non-significance should be sufficient to ex-

clude any correlation, indicating that any correlation

between successive observations is negligible and ac-

counted for by the Poisson model.

Full interaction model parameterization

The pooled analysis may be thought of as equivalent

to a single model including interactions of unit with

the variables of interest [intercept, time (T), inter-

vention (I) and post-intervention time (T*)] over the

units. If the number of units are few, we can incor-

porate the models for each unit by fitting a single

model that adds to all the main effects (T, I, Ui, T*)

interaction terms with unit. For the stacked data, this

‘ full ’ model can be written as:

Model 3 : ln(l)=b0+b1T+b2I+b3T*+c1U2+
c2U3+d1U2T+d2U3T+d3U2I+d4U3I+d5U2T*+
d6U3T*.

This model has 12 parameters and, via the inter-

actions, the effects in each unit are modelled separ-

ately. The interaction effects d1, …, d6 are obtained

by multiplying, in the stacked dataset, the U2

and U3 columns by T, I, and T*, respectively

(Table 5).

As with the previous models, we can determine the

effects for the individual units :

Unit A: U2=U3=0,

T<25: ln(l)=b0+b1T

T=25: ln(l)=(b0+b2)+(25b1+b3)

T>25: ln(l)=(b0+b2x24b3)+(b1+b3)T.

Unit B: U2=1, U3=0,

T<49: ln(l)=(b0+c1)+(b1+d1)T

T=49: ln(l)=(b0+b2+c1+d3)+49(b1+d1)+
(b3+d5)

T>49: ln(l)=(b0+b2+c1+d3)x48(b3+d5)+
(b1+b3+d1+d5)T.

Area C: U2=0, U3=1,

T<70: ln(l)=( b0+c2)+ (b1+d2)T

T=70: ln(l)=(b0+b2+ c2+d4)+70(b1+d2)+
(b3+d6)

T>70: ln(l)=(b0+b2+c2+d4)x69(b3+d6)+
(b1+b3+d2+d6)T.

The effects (in terms of ‘rates ’) for the individual units

are obtained by exponentiating the sum of the ap-

propriate coefficients in the model. The effects for the

reference unit (unit A) are determined from the coef-

ficients b0, b1, b2, and b3. The effects for the various

components for the other units are obtained by ex-

ponentiating the sum of coefficients involving appro-

priate c’s and d’s in addition to b’s in the model. For

example, the (immediate) intervention effect for unit

Table 5. Full parameterized interaction model : Poisson and logistic

regression#

Poisson regression Logistic regression

Variable RR$ 95% CI P OR 95% CI P

T 1.034 0.983–1.091 0.19 1.036 0.983–1.091 0.19
I 0.737 0.341–1.591 0.44 0.736 0.340–1.595 0.44

T* 0.953 0.904–1.05 0.08 0.953 0.904–1.005 0.08
U2 2.048 0.730–5.751 0.17 2.052 0.727–5.789 0.77
U3 1.910 0.826–4.419 0.13 1.913 0.823–4.449 0.13

U2rT 0.971 0.918–1.027 0.31 0.971 0.917–1.028 0.31
U3rT 0.965 0.916–1.017 0.18 0.965 0.915–1.017 0.18
U2rI 0.877 0.265–2.904 0.83 0.876 0.264–2.912 0.83

U3rI 0.793 0.334–1.883 0.79 0.978 0.333–1.889 0.60
U2rT* 1.015 0.953–1.081 0.65 1.015 0.953–1.081 0.65
U3rT* 1.046 0.990–1.105 0.11 1.046 0.990–1.106 0.11

RR, Rate ratio ; CI, confidence interval ; OR, odds ratio.
# Wald test for testing H0 : d5=d6=0 (second order) interaction term P=0.10.

$ Rate=exp(b̂b) where b̂b is the estimated regression coefficient of the variable listed
in column 1, for example, for the variable I, the rate=0.7367=exp(b̂b) where b̂b=ln
(0.7367)=x0.3056.
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B is obtained by adding the estimates for b2 and

d3 and then exponentiating the result. For this data-

set, we have: b̂b2=x0�306 (=ln 0.7367 from Table 5)

and d̂d3=x0�2319 (=ln 0.7931 from Table 5)

yielding an estimate of the intervention effect in

unit B as exp(x0.5371)=0.5844. This result can

also be obtained as the product of the rates :

0.7367*0
.7931.

The advantage of model 3 is that it allows testing

for equality of effects for the different components (T,

I, T*) by testing d1=d2=0, d3=d4=0, and d5=d6=0,

respectively.We first test d5=d6=0. The termT* is the

interaction of T and I (with an offset of 24, 48, or 69

months, depending on the unit). Therefore, U2T* and

U3T* are second (or higher)-order interaction terms,

and the convention is to test whether these are signifi-

cant before performing tests for the first (lower)-order

interaction. If we accept H0 : d5=d6=0, then the tests

H0 : d1=d2=0 and H0 : d3=d4=0 can be performed.

For this test, P=0.30, and we can proceed to test the

interaction effects for T and I, i.e. U2T, U3T, U2I, and

U3I. The tests of H0 : d3=d4=0 and H0 : d1=d2=0

yield P=0.23 and P=0.70, respectively, and so model

2 is preferred to model 3.

Apart from numerical fitting problems, such com-

prehensive (stacked) models have the drawback of

using the statistical analyses to guide the questions

and the interpretation of the clinical mechanisms. A

more prudent approach is to use the data or model to

address prespecified hypotheses. As the number of

parameters increases, so does the potential for type I

errors. Nevertheless, in this instance, the fully para-

meterized model suggests model 2 is a satisfactory

representation of the data.

Assessing model accuracy and potential correlations

An important consideration in fitting any if the pro-

posed models is the assurance that the data are ad-

equately represented by a Poisson model. While

numerous approaches exist to assess the adequacy of

the Poisson fit, two methods can readily provide a

guide as to whether the fitted models are appropriate.

The deviance (D) from the model fit is a quantity de-

rived from the model likelihood and has an (asymp-

totic) x2 distribution with (nxp) degrees of freedom

(n being the number of observations in the model and

p the number of parameters fitted, including the con-

stant). If Pr(D>xnxp
2 >0.05 we conclude that there is

insufficient evidence to reject the hypothesis that the

Poisson model is adequate. A second quantity which

can be calculated is the dispersion which, in the case of

a Poisson model measures the relationship between

the mean and the variance of the model, i.e.

var(Yi)=s2 E(Yi). As the mean and the variance for

the Poisson model are equal, a dispersion value

greatly different from unity will indicate inadequacy

of the Poisson model assumption. Of the different

methods used for estimating the dispersion par-

ameter, that based on Pearson residuals is the more

common. Most computer packages provide estimates

of the deviance and dispersion in their output. In

our dataset, there was no evidence, based on the

deviance that the Poisson model was inadequate for

all models fitted. The maximum value of the disper-

sion parameter was <1.15 for all models suggesting

that, for this dataset, the Poisson assumption was

appropriate.

We can also obtain an estimate of the correlation

between the different units to examine the impact

of the intervention in the different units. This

can be achieved by fitting the model ln(l)=
b0+b1T+b2I+b3T* and treating the unit variables

U1, U2, U3 as repeated measures in a generalised esti-

mating equations (GEE) model with a Poisson

link and compound-symmetric correlation structure

[24]. For our data, the magnitude of this cor-

relation was 0.009 indicating independence within

and across units. This analysis is not appropriate

in models 2 and 3 as unit effects are being formally

estimated.

Poisson or logistic regression?

If the rates are low, the odds ratio will estimate the

relative risk, and fitting a logistic regression may be

just as useful and less complicated. For our data, a

‘success ’ is a MRSA case, the number of successes is

the number of cases in a month, and the exposure time

is the total number of patients at risk in each month.

The data structure is identical to that of the stacked

data in Table 3. The model is fitted to the number

of cases each month out of the total exposure

time (patient-days) in each month (Table 5). There is

no appreciable difference between the coefficients

and 95% confidence intervals in the Poisson and

logistic models. While logistic regression provides

estimates of the odds ratio, a binomial model

with a log-link (rather than logistic-link) will yield

relative risks as opposed to odds ratios. However,

these models are still the subject of research and

can suffer from numerical instability when being
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fitted and yield expected probabilities greater than

unity [25].

Long-term follow-up

If the post-intervention series is measured over a long

period (e.g. o60 months), the model for a single re-

duction in the slope after the intervention may not

be the most appropriate choice over the whole series

(Fig. 4).

If, after MRSA incidence rates decrease to some

threshold then cease to decrease, a linear represen-

tation of the total post-intervention experience would

underestimate the effect of the intervention. In this

instance, the model would be of the form:

Model 4 : ln(l)=b0+b1T+b2I+b3T*+b4T
#,

where l=monthly incidence rate= 0 if Tft0
1 if T>t0

�

T=time in months, I=intervention status,

T*=post-intervention time=
0 if Tft0
Txt0 if T>t0ft1
0 if T>t1

8<
:

T#=long term post-intervention time=

0 ifft1

Txt1 if T>t1

�

In this model, b0 represents the baseline MRSA rate;

b1 is the slope of line before the intervention (t0) ; b2 is

the change in theMRSA rate just after t0 ; b1+b3 is the

slope after t0, and b3 is the change in slope of line after

t0 but before t1, a predetermined time after which it is

assumed that the rate has attained a threshold and is

stable. Similarly, b4 is the change in slope of the line

after t1 and b1+b4 is the slope after t1.

DISCUSSION

In setting up an interrupted time-series model, we

considered individual units in separate models, and

used a single model allowing for statistical adjustment

for each unit. Modelling individual units provides

individual estimates, and so allows for evaluation of

local practices and health policies. To estimate overall

effects, individual estimates can be pooled, with

modification to account for heterogeneity among the

units. The key assumption in obtaining overall effects

is the independence of the effects in individual units.

Using a random-effects adjustment when pooling es-

timates is analogous to fitting a multilevel model, since

both approaches assume the estimates are themselves

drawn from a normal distributionwith somemean and

variance. A drawback of the pooled approach is that

as the number of individual units increases, so does the

number of parameters requiring estimation and then

combination; when this happens, overdispersion may

arise. If there are many hospitals, the random-effects

component can be modified to adjust for possible

heterogeneity across the hospitals by pooling across

the units within each hospital using the fixed-effects

approach and then using the random-effects adjust-

ment to pool the effects over all the hospitals.

The second approach is to consider all the data

simultaneously in a stacked model. This has the ad-

vantage of explaining all intervention effects in a

single model. If population-level information (such as

state or regional health policy information) is avail-

able, a multilevel approach may allow inclusion of

information available at different levels of the hier-

archy. Such models can be complex, requiring care in

interpreting the coefficients. The stacked approach

can also allow for random effects across different

units or different hospitals (or both) in a mixed model.

Such models allow extra variability due to a unit’s

effect to be included in the analysis. This may also be

achieved in the pooled approach.

If there is good evidence of overflow into other

months (i.e. patients who stay in wards for a long time

and thus are at risk over a number of months), a dif-

ferent modelling strategy will be required, for example

taking a longer period (say, 3 months) to minimize the

effect of such overflow, or assuming a particular cor-

relation structure as part of the model.

Any residual serial correlation from the fitted model

can be examined via the Durbin–Watson statistic. If

this statistic suggests significant autocorrelation,

either extra terms related to time (some form of

Threshold

Pre-intervention slope

Post-intervention slope

T

Intervention effect

t 0 t 1

ln(λ)

Fig. 4. Representation of a model with a post-intervention
threshold. ln(l)=b0+b1T+b2I +b3T*+b4T

#.
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autoregressive model) may need to be investigated, or

some form of differencing to reduce the serial corre-

lation should be considered. The question that remains

is whether these should be incorporated in the analysis

of all the units or just the units exhibiting the serial

correlation. If there is evidence of strong seasonal

effect(s) and/or high autocorrelation present, then

the modelling approach along the lines described by

Fernández-Pérez et al. [19] may be more appropriate.

CONCLUSION

We developed a model to examine the immediate and

longer-term effects of a MRSA intervention pro-

gramme in different units of the same hospital. Where

feasible, a model adjusting for the unit effect should

be fitted, or if there is strong evidence of heterogeneity

between the units, an analysis incorporating a random

effect for units may be appropriate.
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