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Let PGL(2, F) denote the group of all Moebius transformations

az+b
cz+d

over a field F. In a recent paper [2], the author has given a characterisation
of the groups PGL(2, F), F finite, char F # 2. It is the purpose of this
paper to give a similar characterisation of the group PGL(2, F), char F = 2,
F finite or infinite.

The similarity transformations z — az+4-b(a % 0) form a subgroup
$(2, F) of PGL(2, F). A simple direct calculation shows that, for any field
F of characteristic 2, S(2F) is an S;-subgroup of PGL(2, F) in the sense
of the following definition.

Definition. A subgroup H of a group G is called an S,-subgroup of G
if, whenever a4 ¢ H and b~'ab ¢ H, there exists a unique % € H such that
bab = hlah.

S;-subgroups were first studied by H. W. E. Schwerdtfeger in [3],
where he discusses T,-subgroups, being those S;-subgroups which are
normal.

The main result of this paper is

Z >

(ad—bc = 0)

THEOREM 1. Let H be a non-normal S,-subgroup of a group G and suppose
that G— H contains an involution t suchthat H n H* % 1. Then G is isomorphic
to a group PGL(2, F), char F = 2.

There is a similar characterisation of the groups S(2, F). It is easy
to verify that, if F is any field, then the transformations

2 —>az(a £ 0)
form an S;-subgroup of S(2, F). We prove

THEOREM 2. Let H(# 1) be an S,-subgroup of the group G, and suppose
that G— H contains an involution t suchthat H n H* = 1. Then G is isomorphic
to a group S(2, F).

Notations. Upper case Latin letters stand for groups and fields, lower
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case Latin letters for their elements. H <] G means that H is a normal
subgroup of G. N(H) is the normaliser of the subgroup H, C(k) is the cen-
traliser of the element k4, [H| is the order of the group H, and (G; H) is the
index of the subgroup H in the group G. G—H is the set of elements of G
not in H and a® = 2 'ax, H®* = x"1Hz.

By the results of Zassenhaus [6] and Tits [5] it is sufficient to prove

THEOREM 1'. Under the conditions of Theorem 1, G is isomorphic to a
triply transitive permutation group in which only the identity fixes three
symbols and in which the group fixing two symbols is abelian.

TueoREM 2'. Under the conditions of Theorem 2, G is isomorphic to a
doubly transitive permutation group in which only the identity fixes two
symbols, and in which the group fizing one symbol is abelian.

In both theorems, H is a non-normal S;-subgroup of the group G.
We prove a series of lemmas under this assumption.

LemMa 1. If h(s£ 1) e H, then C(h) C H.

Proor. If a ¢ H, then by the property S,, the only element of H
which commutes with & is the unit element.

LemMa 2. If H and H are S;-subgroups of G, then H n H is an Si-
subgroup of H.

ProoF. Suppose @, a® € H—(H n H) where be H. We wish to show
that there exists exactly one € H n H such that a* = a®.

By the property S,, there exists exactly one % € H such that a* = a®.
Then a®*1 = q. ie. b 1eC(a)CH by Lemma 1. Hence 21 e b2 H =H,
and so he H n H.

Lemma 3. N(H) = H.

Proor. We assume H % N(H) and deduce the contradiction that #
is normal in G. By lemma 1, N(H) is a Frobenius group with Frobenius
kernel H, so that H is a characteristic subgroup of N(H). Hence it is suf-
ficient to prove that N(H) is normal in G, i.e. N(H)* = N{H) for each
zeG.

Let ne N(H)—H. If n*¢ N(H), then, since H is an S;-subgroup of
G, n® = w* for some ke H; but then n*e N(H), which is a contradiction.
Hence #* € N(H). Since N(H)—H generates N (H), we have N(H)* = N(H)
as required.

Lemma 4. If 1 e G—H, then G = H4-HzH.

ProorF. By lemma 3 it suffices to prove that if H + H?, then y € HzH.
Since x ¢ H, H # H* Hence H—H" generates H and so, since H #* HY,
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we have H—H* ¢ HY. Thus we can choose ke H such that # ¢ H* and
h¢ HY, ie. W' ¢ H and W ¢ H. Since H is an S,-subgroup of G,
W = h*™ for some h, € H. Then y~h*z e C(h) and so, by lemma 1,
y ' = hye H. Thus y = hi'ah;' € HxH as required.

We can now prove theorem 2’. Suppose H = H® and consider the
permutation representation P of G on the left cosets of H. By lemma 4,
P is doubly transitive. Since H n H* = 1, P is faithful and only the identity
fixes the symbols H and «zH. Finally, the group fixing the symbol H, viz.
H itself is abelian; for by Lemma 2, H n H* = 1 is an S,-subgroup of H.
This completes the proof of Theorem 2°.

LEMMA 5. The group K = H n H* is abelian and k' = k™ for each
keK.

Proor. Kt = (H nH')' = H' n H = K. Thus ¢{ maps K onto itself
and, as 2 =1, K UK is a subgroup of G. Further K <] K v ¢K.

Suppose % € K. Then (¢k)?e K, say (tk)®2 = k,. Then k* = kjk7! and
so (k1) = kky'. Thus k= k" = ki(k1)" = RERET' and so & = k7!
ie. theC(k) <= K by lemma 1, which is a contradiction unless &, = 1.
Hence for every ke K, (tk)? =1, i.e. kB = k7). Thus £ — k! is an auto-
morphism of K and hence K is abelian.

LemMa 6. If H* is a conjugate of H diffevent from H and H°', then
HnH' nH*=1.

ProoF. By lemma 4, x = h;th, e HtH, so that H®* = H* where # is
the involution ¢*. Suppose A(#1)eH N H'~ H*. By lemma 5,
h* = h* = k1. Therefore by lemma 1, tu~' =%, e H. Then H!= H"*=H"
contrary to assumption.

We can now prove theorem 1'. Set K =— H n H* and let H* be a
conjugate of H different from H, H*. Consider the permutation representation
P of G on the left cosets of H. By lemma 6, P is faithful and only the
identity fixes the three symbols H, ¢tH, H. It remains to prove that P
is triply transitive.

Now, by lemma 4, H* = H™ for some ke H. Then, by lemma 6,
KnK'=Hn H' n H* =1 so that K is not normal in H. By lemma 2,
K is an S;-subgroup of H. By lemma 4, H = K+KaK for some a e K.
Then, since Kt = ¢tK by lemma 5, we have

G = H+HtH = H+ (K+KaK)tH,
= H-+4+tH-+KatH.
This shows that the group K which fixes the cosets H and ¢H permutes

the remaining cosets transitively. Since, by lemma 4, P is doubly transitive,
it is hence triply transitive. This completes the proof.
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