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1. Introduction

The inverse problem we will consider in this paper has its origins in the
following problem connected with the scattering of acoustic waves in a
nonhomogeneous medium. Let an incoming plane acoustic wave of
frequency w moving in the direction of the z axis be scattered off a "soft"
sphere ft of radius one which is surrounded by a pocket of rarefied or
condensed air in which the local speed of sound is given by c(r) where
r — \x\ for x €E R3. Let us(x)e'°" be the velocity potential of the scattered
wave and let r, 6, <f> be spherical coordinates in /?3. Then from a knowledge
of the far field pattern f(6,<t>;k) for A = w/c0 contained in some finite
interval 0 < Ao =£ A =£ A,, we would like to determine the unknown function
c(r). Under the assumptions that Vc(r) is small in magnitude compared
with Ac(r) and c(r) = co = constant for r 5 = a > l , we can formulate this
problem mathematically as follows (c.f. (1)):

Let B(r) = (cjcir))2- 1 and set us(x) = v(x)+ u(x) where u(x) satisfies

A3M+A2(l+B(r))u=O in R3\Cl (1.1)

u(x) = -(e'Xz + v(x)) on dd (1.2)

lim r(duldr-i\u) = 0 (1.3)

and u(x) is such that eUz + u(x) is a solution of (1.1) in R3\ft where v(x) = 0
for r 2* a. Then given

/(0,4>;A) = limnriAru(x) (1.4)

we want to determine the function B(r). The approach we will use in this
paper is to use the theory of integral operators for partial differential
equations in unbounded domains as recently initiated by Colton and
Wendland in (1) to reduce the inverse scattering problem described above
to a generalised moment problem for the unknown function B(r). In this
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sense our work has some relation to the work of Rorres, who solved the
inverse scattering problem for small frequencies in the absence of an
obstacle by reducing the inverse problem to a moment problem over a
finite interval (5).

2. Integral Operators and the Inverse Scattering Problem

Assume that B(r) is continuously differentiable and vanishes for r & a,
and let h(r, 8, <f>) be a solution of

A3h + A2h=0 (2.1)

in l?3\ft- Then in (1) it was shown that every solution of (1.1) in i?3\ft can
be represented in the form

= h(r,e,d>)+\ K(r,s;\)h(s,O,<t>)ds (2.2)

K
where h(r,6,<f>) is a solution of (2.1) in R\fl, and, for l « r ^ s < ° ° ,
K(r, s; A) can be represented in the form

K(r, s; A) = (re)"* 2A**2**/ Oog r> lo8 s ) (2-3)
j=0

w i t h

N 0 ( l o g r , l o g s ) = - - I e2TB(eT)dr (2.4)
2 J ilog rs

and the functions Nj(log r, logs), j = 0 , 1 , . . . , being determined recur-
sively. Each Nj(log r, log s) is independent of A, vanishes identically for
rs 5£ a2 (since B(r) = 0 for r ^ a), and satisfies a bound of the form

max |N/(logr,logs)|«C/(2j + l)! (2.5)

where C is a constant which is independent of j and depends only on the
maximum of |B(r)| in the interval 1 «£ r « a. In particular (2.5) implies that
the series (2.3) is uniformly convergent for 1« r «s s < °o and is an entire
function of A. Since efo is a solution of (2.1), the above considerations
imply that a suitable choice for v(x) is given by

v(x) = v(r, 6) = f K(r,s;A)e*scos9ds. (2.6)

Now let Jn+i(Ar) and H^+i(Ar) denote respectively a Bessel function and
Hankel function of the first kind, and define jn+i(r) and hn+i(r) by
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Then from the representat ion (2, p . 64)

*z = yj— 2 (2n + l)/nJn+i(Ar)Pn(cos 0) (2.8)
' ^Ar

where Pn(cos 0) denotes Legendre's polynomial, it is easily verified that
the solution of (1.1)—(1.3) is given by

= u(r, 8)—yE± ^ " t ' y 0 ^r)P.(co. 0). (2.9)
y 2 n = 0 ni{l)

Note that from the uniqueness of the solution to (1.1)—(1.3) (1) we can
conclude that hn+i(l)?*0, and the convergence of the series (2.9) for
l s s r<°° , O=£0«ir follows from (2.7) and well known estimates for Bessel
functions and Legendre polynomials for large values of n (c.f. (2), p. 22-23
and p. 205). From the fact that

hn+i(r) = (Ar)-*H™i(Ar); r^a (2.10)

and the asymptotic estimate (2, p. 85)

we can conclude (c.f. (3)) that the far field pattern /(0, <f>; A) = /(0; A) is
given by

±ii2n+l)i"f) (2.12)

Recall once again that although the far field pattern /(0; A) is assumed
to be known, the functions }n+\(r) and hn+i(r) are unknown since B(r) is as
of yet unknown. However if we expand /(0;A) in a Legendre series

(2.13)
n=0

then from (2.12) and (2.13) we have

2n+1(ano + an,A2 + - - - ) (2.14)

•A4"+2(cno+cn,A2+---)
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where

are known (analytic) functions of A. The fact that an(A) has a zero of order
2n + 1 at the origin follows from (2.3), (2.7), and the series representations
(c.f. (2), p. 4)

_i IT 4, (Ar/2)2m+n

(Ar)" H:».(Ar)= J j (-1)" f ff"2**''
* 2 TO=0 Lm!r(m + n+j)

. (

Equating like powers of A in (2.14) we have for n 5=0

. ( - l ) T ( - n + ^ ) 2 " + l

a - = I roTTg (217)

and, for n > 0,

a">

•r
r i\n+l/K-n-l -n-3/2

(2.18)

The equation corresponding to (2.18) for n = 0 is exactly the same except
that the term c^Fd) is added to the right hand side. Note that the
coefficient a^ is independent of B(r). From (2.4) we have

f N0(log 1, log s)smds = - \ \ \

2(m + l)Ji

\ dsd£ (2.19)

and hence using (2.17) and (2.19) we can rewrite (2.18) in the form
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(2.20)

where for n > 0

For n = 0, /A0 is the same as defined by (2.21) except that the term c^ is
subtracted from the right hand side. The /An are known from the far field
pattern, and hence the problem of determining the function B(r) has been
reduced to solving the generalised moment problem (2.20), (2.21) (note that
if we assume that B{r) is real valued, then from (2.17) and (2.18) we have
that an| is purely imaginary, and hence /*„ is real for n = 0,1, . . .) .

3. The Generalised Moment Problem

We will assume the existence of a continuously differentiable function
B(r) such that (2.20), (2.21) is valid, and address ourselves to the problem
of the uniqueness of B(r) and the approximation of B(r) in the L2 norm
over the interval [ l , a ] . As will be clear from the analysis which follows,
necessary and sufficient conditions on the sequence n.n, n = 0 , 1 , . . . , for
(2.20), (2.21) to determine a function B(r)E.L2[l, a] can be obtained from
known results on the classical Hausdorff moment problem over the interval
[I/a2, a2] (c.f. (4)). We however restrict ourselves solely to the problem of
uniqueness and approximation since in the context of the present paper it
is these problems which are of paramount interest. This is due to the fact
that the sequence /An (or equivalently the sequence ani) is obtained from
physical measurement and it is assumed a priori that the sequence /i,n is a
(generalised) moment sequence for some function B(r) to be determined.

The basic problems of uniqueness and approximation can be settled by
appealing to the following theorem:

Theorem. The functions

n =0,1,2,..., are complete in L2[l, a].

Proof. Let /(r) be a continuous function on the interval [I, a]. Since
the space of continuous functions on [1, a] is dense in L2[l, a] , to prove the
theorem it suffices to show that if

f f(s)pn(s)ds = 0 (3.1)
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for n = 0,1, 2 , . . . , then f(r) = 0 for r G [1, a]. For r G [I/a, 1] define /(r) by

/(r) = r-4/( l /r) ; r e [ l / c , l ] . (3.2)

Then

f f(s)s-2nds = f /(s)s2"+2</s (3.3)

and hence from (3.1)

0 = J /(s)[p«(s)-pB+,(s)]ds

f 2n+2 - 2 . 2n+4

r"2

Jl/fl

f
/a

2

*)[** —«*]*"<** (3-4)

for n = 0,1,2 . . . . Since the set {r"}^=0 is complete in L2[l/a2, a2], we have
from (3.4) that

- r«) = 0 (3.5)

for r e [I/a2, a2], and hence / ( r ) = 0 for r E [ l , a ] and the theorem is
proved.

The uniqueness of the function B(r) follows immediately from the
above theorem. Furthermore the function B(r) can be approximated in
L2[l ,a] by orthonormalizing the set {pn(r)}™=0 over the interval [ l ,a] to
obtain the orthonormal set {<pn(r)}^=0 and then approximating B(r) in
L2[l, a] by the function

N

Bsiry = 2 bn<Pn{r) (3.6)

where

bn = f <pn(s)B(s)ds. (3.7)

The coefficients bn can be found by using (2.20), (2.21). If it is assumed that
B ( r ) £ C ' [ l , a ] , then it can be concluded that BN(r) approximates B(r)
pointwise almost everywhere on [\,a] (4, p. 71). Other approximation
procedures are also of course available, for example by using (2.20), (2.21)
to compute the Fourier cosine transform of B(r)(r2 - r4) over the interval
[I/a, a] (c.f. (5)).
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