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Abstract

We study the F,,—points of the Kisin—Pappas integral models of Shimura varieties of Hodge type with parahoric
level. We show that if the group is quasi-split, then every isogeny class contains the reduction of a CM point,
proving a conjecture of Kisin-Madapusi—Shin. We, furthermore, show that the mod p isogeny classes are of the
form predicted by the Langlands—Rapoport conjecture (cf. Conjecture 9.2 of [Rap05]) if either the Shimura variety
is proper or if the group at p is unramified. The main ingredient in our work is a global argument that allows us to
reduce the conjecture to the case of very special parahoric level. This case is dealt with in the Appendix by Zhou.
As a corollary to our arguments, we determine the connected components of Ekedahl-Oort strata.
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1. Introduction and statement of results
1.1. Introduction

In [Lan77], Langlands outlines a three-part approach to prove that the Hasse—Weil zeta functions of
Shimura varieties are related to L-functions of automorphic forms. The second part is about describing
the mod p points of suitable integral models of Shimura varieties, which is the central topic of this article.

A conjectural description of the mod p points of integral models of Shimura varieties was first given
by Langlands in [Lan76] and was later refined by Langlands—Rapoport and Rapoport [LR87, Rei97,
Rap05]. Together with the test function conjecture of Haines—Kottwitz [Hail4], which was recently
proved by Haines—Richarz [HR21], this conjecture is the main geometrical input to the Langlands—
Kottwitz method for Shimura varieties of parahoric level. To explain these conjectures, we first need to
introduce some notation.

Let (G, X) be a Shimura datum of Hodge type, let p be a prime number and let U, ¢ G(Q,,) be a
parahoric subgroup. For sufficiently small compact open subgroups U? c G(A?), there is a Shimura
variety Shy (G, X) of level U = UPU),, which is a smooth quasi-projective variety defined over the
reflex field E. For a prime v|p of E, we let Of () be the localisation of the ring of integers Of of E
at the prime ideal v. Then there should be a canonical integral model Sy (G, X) over O (,). When
U, is hyperspecial, canonical integral models should be smooth and are unique if they satisfy a certain
extension property (cf. [Mil92]). Recent work [Pap22, PR21] of Pappas and Pappas—Rapoport defines
anotion of canonical integral models when U, is an arbitrary parahoric and proves that they are unique
if they exist.

Then there should be a bijection (see [LR87, Section 5] and [Rap05, Conjecture 9.2])

lim Syru, (G, X)(Fy) = | [ 5(9), (1.L.1)
ur ¢

where

S(¢) = 15(Q\X,, (8) x XP(4).

Let us elaborate: If we think of $/» U, (G, X) as parametrizing ‘abelian varieties with G-structure’, then
the sets S(¢) should correspond to points in a single isogeny class of ‘abelian varieties with G-structure’
over Fp. For a fixed point x in such an isogeny class, the set X,,(¢) parametrises ‘abelian varieties with
G-structure’ with a fixed p-power isogeny to x, and the set X” (¢) parametrises ‘abelian varieties with
G-structure’ with a fixed prime-to-p isogeny to x. The isogeny class of x is then given by the quotient of
X, (¢) x XP(¢) by the group 14(Q) of self quasi-isogenies of x. The set X? (¢) is a G(A? )-torsor, and
Xp () is a subset of G(Q}))/G(Z};), where G/Z), is the parahoric group scheme with G(Z,,) = Up. In
fact, the set X, (¢) is the set of F,,-points of an affine Deligne—Lusztig variety (see Section 2.4.3). In
the unramified PEL case, (1.1.1) corresponds to Rapoport—Zink uniformisation of isogeny classes (see
[RZ96, Section 6]), with X, (¢) corresponding to the set of Fp -points of a Rapoport—Zink space. This
is why we will often refer to (1.1.1) as uniformisation of isogeny classes. Uniformisation of isogeny
classes for Shimura varieties of Hodge type is often assumed in recent work in the area (see, e.g. [HK 19,
Hes20, PR21]).
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One also expects that (1.1.1) is compatible with the action of G(A;) on both sides, and that the
action of Frobenius on the left-hand side should correspond to the action of a certain operator ® on the
right-hand side, see [Rap05, Conjecture 9.2]. If Gg,, is quasi-split, then we moreover expect that each
isogeny class contains the reduction of a special point (see [KMPS22, Conjecture 1]).

1.2. Main results

Let (G, X) be a Shimura datum of Hodge type, and let p > 2 be a prime number. We will assume
throughout this Introduction that: The group Ggq,, is quasi-split and splits over a tamely ramified
extension, the prime p does not divide the order of 7;(G%") and n1(G)y, is torsion-free'. Here,

I, C Gal(Q »/Qp) is the inertia group and 711 (G) is the algebraic fundamental group of G (see [Bor98]).

Let U, c G(Qp) be a parahoric subgroup, let U” C G(A?) be a sufficiently small compact open
subgroup and consider the Shimura variety Shy (G, X) of level U = UPU,. By [KP18, Theorem 0.1],
this Shimura variety has an extension to a flat normal scheme Sy (G, X) over O (y, where v|p is a
prime of the reflex field E. Under our assumptions, these integral models are canonical in the sense of
[Pap22, Definition 7.1.3] (see [Pap22, Theorem 1.4]).

Theorem 1. Let (G, X) be a Shimura variety of Hodge type as above. Then each isogeny class of
Su (G, X)(F,) contains a point x which is the reduction of a special point on Shy (G, X).

This confirms [KMPS22, Conjecture 1]. Theorem 1 for very special parahoric subgroups U, is part 2
of Theorem A.4.5 of the Appendix by Zhou.?

Theorem 1 was proved by Kisin when U, is a hyperspecial subgroup, see [Kis17], and proved by
Zhou when Gq, is residually split in the sense of [KP23, Definition 9.10.2] (see [Zho20]). We remind
the reader that split implies residually split, implies quasi-split, and that residually split and unramified
implies split. As in [Kisl7, Zho20], such a lifting result is deduced from uniformisation of isogeny
classes, which is our second main result. Part 1 of the next theorem is part 1 of Theorem A.4.5 of the
Appendix.

Theorem 2. Let (G, X) be as above, and let U,, denote a parahoric subgroup of G(Qp).

1. If U, is very special, then each isogeny class of Sy (G, X) (Fp) has the form
15(Q\X, (9) x XP()/U".

2. Ifeither Gq,, splits over an unramified extension or if Shy (G, X) is proper, then the same conclusion
holds for arbitrary parahoric subgroups Up.

As a consequence of part 2 of Theorem 2, we verify that the He—Rapoport axioms of [HR17] hold
for the Kisin—Pappas integral models. All but one of the axioms (Axiom 4(c)) were proved in earlier
work of Zhou (see [Zho20]).

Theorem 3. Let (G, X) be a Shimura datum of Hodge type as above. If either Gg,, splits over an
unramified extension or if Shy (G, X) is proper, then the He—Rapoport axioms of [HR17, Section 3]
hold for the Kisin—Pappas integral models.

Combining our proof of part 2 of Theorem 2 with the £-adic monodromy theorem of [vH24], we
obtain a computation of the set of irreducible components of the Ekedahl-Kottwitz—Oort—Rapoport
(EKOR) strata defined by Shen—Yu—Zhang in [SYZ21]. We assume for simplicity that G is simple
over Q (see Theorem 4.5.2 for a more general statement).

1For Shimura data of abelian type that are not of type D™ in the sense of [Mil05, Appendix B], one can always find an auxiliary
Shimura datum of Hodge type where the last two conditions are satisfied (see [KP18, Lemma 4.6.22].
2This article has an Appendix by Rong Zhou.
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Theorem 4. Let (G, X) be as above, and let U,, denote a very special parahoric. Let Sy, F,,{W} be
an EKOR stratum that is not contained in the smallest Newton stratum. If either Gq,, splits over an
unramified extension or if Shy (G, X) is proper, then the natural map

SU,FP{W} — éjU,ﬂEp (G, X)

induces a bijection on sets of connected components.

If U, is hyperspecial, then EKOR strata coincide with Ekedahl-Oort strata, and this theorem de-
termines their connected components. Theorem 4 was proved by Ekedahl and van der Geer [EvdG09]
in the Siegel case. Theorem 4 is used in [VanHX24] to determine the connected components of Igusa
varieties and Newton strata.

Remark 1.2.1. We have stated Theorem 4 only for very special parahoric subgroups because we do not
understand the set of connected components of 5U,Fp (G, X) when U, is a general parahoric subgroup
and Shy; (G, X) is not proper. If the Shimura variety is proper, then a similar statement holds at arbitrary
parahoric level (see the proof of Theorem 4.5.2).

1.3. Overview of the proof

Both [Kis17] and [Zho20] employ roughly the same strategy, which we will now briefly sketch: The
integral models &y (G, X) of Shimura varieties of Hodge type come equipped, by construction, with
finite maps Sy (G, X) — S (GSp, S*) to Siegel modular varieties. Given a point x € Sy (G, X) (Fp),
classical Dieudonné theory produces a map

Xp($) = Su(GSp, $*)(Fp),

and the main difficulty is to show that it factors through 8y (G, X). A deformation theoretic argument
shows that it suffices to prove this factorisation for one point on each connected component of X, (¢)>,
and, therefore, we need to understand these connected components. In the hyperspecial case, this is
done in [CKV15], and in the parahoric case, this is done in [HZ20], under the assumption that Gq, is
residually split. The main obstruction to extend the methods of [Zho20] beyond the residually split case
is that we do not understand connected components of affine Deligne—Lusztig varieties of parahoric
level for more general groups.*

1.3.1.

The geometry of affine Deligne-Lusztig varieties is simpler the larger the parahoric subgroup is. For
unramified groups, the geometry is simplest for hyperspecial subgroups, and for more general quasi-
split groups, the geometry is simplest for very special subgroups. This is why it is reasonable to try to
prove Theorems 2 and 1 for very special parahoric subgroups, using the above strategy.

In Appendix A, Zhou studies connected components of affine Deligne—Lusztig varieties for quasi-
split groups and very special parahoric subgroups, generalising results of [CKV15] and [Niel8] in the
case of unramified groups and hyperspecial level. In particular, part 1 of Theorem 2 and Theorem [ in
the case of a very special parahoric are proved there (see Theorem A.4.5).

1.3.2.
To prove uniformisation for a general parahoric subgroup, we use the fact that every parahoric subgroup
contains an Iwahori subgroup, and that every Iwahori subgroup is contained in a very special parahoric

3There is a perfect scheme whose set of F,, -points is naturally identified with X, (¢), which gives a decomposition of X, (¢)
into connected components (see Lemma 2.4.5).

4After a first version of our paper appeared, we learned of work of Nie [Nie21], which solves this problem for unramified
groups. Recently, there has been work of Gleason—Lim—Xu [GLX22] and Gleason—Lourengo [G1.22], which completely settles
the problem of understanding connected components of affine Deligne—Lusztig varieties.
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subgroup if Gq,, is quasi-split. Thus, given the results of Appendix A, we need to show that the validity
of Theorems 2 and | propagates ‘up’ from very special parahoric subgroups to Iwahori subgroups,
and propagates ‘down’ from Iwahori subgroups to general parahoric subgroups. The latter is proved in
[Zho20, Proposition 7.7], and so we focus on the former.

Let U, denote a very special parahoric subgroup, and let U}, denote an Iwahori subgroup contained in
U,, then, by [Zho20, Section 7], there is a proper morphism of integral models S/ (G, X) — Su (G, X),
and we let Shy; — Shy, be the induced morphism on the perfections of their special fibres. There is a
commutative diagram

Shg.yr — ShtG,y,U,’,

l l (13.1)

ShG,U H ShtG,’u,Up )

where Shtg v, is the stack of parahoric U, -shtukas of type u introduced by Xiao—Zhu [XZ17] and
Shen-Yu—Zhang [SYZ21] (see Sections 2.2.9, 2.2.14), with u the inverse of the Hodge cocharacter
induced by the Shimura datum (G, X).

The horizontal morphisms in (1.3.1) are the Hodge type analogues of the morphism from the moduli
space of abelian varieties to the moduli stack of quasi-polarised Dieudonné modules. If (G, X) =
(GSp, $*), then this diagram is Cartesian. In general, it follows from ‘local uniformisation’ of Sht, WU’
that isogeny classes in ShG,U,’, have the correct form if (1.3.1) is Cartesian (see Theorem 3.3.1). One
of the main technical results of this paper, Theorem 4.4.1, is that the diagram is Cartesian under the
assumptions of part 2 of Theorem 2, which proves a conjecture of He and Rapoport that we learned
from Zhou.

1.3.3.

We prove in Section 2, see Proposition 2.2.17, that the morphism Shtg ,,u; — Shtg . v, is repre-
sentable in perfectly proper algebraic spaces, and we let Shg 7 + be the fibre product of (1.3.1). There is
amap : Shg yr — Shg,u « given by the universal property of the fibre product, and we prove that it is
a closed immersion (see Proposition 4.1.4). To prove the main theorem, it suffices to show that ¢ is an iso-
morphism. We do this by showing it is a closed immersion of equidimensional perfect algebraic spaces
of the same dimension whose image intersects every irreducible component of the target, which clearly
must then be an isomorphism. We first show that Shg 7 « is equidimensional of the same dimension as
Shg - and that it has a Kottwitz—Rapoport (KR) stratification with the expected properties. To do this,
we build a local model diagram for Shg 7 « in the world of perfect algebraic geometry (see Proposition
4.2.1). This requires us to produce a version of the diagram in (1.3.1) for stacks of restricted shtukas,
and to analyse the forgetful maps for these stacks. Another key ingredient is the fact, proved by Hoff,
[Hof23], that the morphisms from Shg ¢s to these stacks of restricted shtukas are perfectly smooth.

The next step is to study the irreducible components of Shg 7« and Shg . In Section 4.3, see
Proposition 4.3.17, we will show that each irreducible component of Shg 7« can be moved into Shg ¢/
using prime-to-p Hecke operators. Since Shg 17 « is stable under the prime-to-p Hecke operators, we
may conclude from this that ¢ : Shg y» — Shg y .« is an isomorphism.

To prove Proposition 4.3.17, we use the KR stratification of both Shg v and Shg ¢« to reduce
to analysing irreducible components in each KR stratum separately. Our proof then proceeds by de-
generating to the zero-dimensional KR stratum, which we describe explicitly using Rapoport—Zink
uniformisation of the basic locus.

Our assumption that either Gg,, splits over an unramified extension or that Shy; (G, X) is proper will
be used to prove that every irreducible component of the closure of a KR stratum in Shg ¢/ « intersects
the zero-dimensional KR stratum (see Lemma 4.3.4 and Proposition 4.3.5). In the proper case, it is
enough to prove that KR strata in Shg 1/« are quasi-affine. In the unramified case, we use results
of [WZ18] and [And21] on the Ekedahl-Oort stratification and results of [Hel4] on the geometry of
forgetful maps.
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1.4. Outline of the paper

In Section 2, we will study forgetful maps for moduli stacks of local shtukas and moduli stacks of
restricted local shtukas. We will also study Newton strata in moduli spaces of shtukas and describe them
explicitly in terms of affine Deligne—Lusztig varieties. In Section 3, we study uniformisation of isogeny
classes in Shimura varieties of Hodge type at parahoric level. We will deduce the existence of CM lifts
at arbitrary parahoric level from the results of Appendix A, and we will show that uniformisation for
general parahoric subgroups is equivalent to a certain diagram being Cartesian. In Section 4, we prove
that this diagram is Cartesian.

2. Local shtukas

We start this section by recalling some perfect algebraic geometry from [XZ17, Appendix A] and
defining a notion of weakly perfectly smooth morphisms of perfect algebraic stacks.

In the rest of the section, we will recall the moduli stacks of local shtukas with parahoric level of
[SYZ21] and study the forgetful maps between them. We start by proving Proposition 2.2.17, which
states that this forgetful map is representable and (perfectly) proper. We then study forgetful maps of
restricted local shtukas and prove Proposition 2.3.4, which is an important technical result that will be
used in Section 3 to prove equidimensionality of Shg vy, +-

In the second half, we discuss o-conjugacy classes and the Newton stratification on moduli stacks
of local shtukas. We end by discussing affine Deligne-Lusztig varieties and use them in Lemma 2.4.6
to describe Newton strata in moduli stacks of local shtukas. This latter result is used in Section 3 to lift
uniformisation along forgetful maps.

2.1. Some perfect algebraic geometry

We will use the language of perfect algebraic geometry from [Zhul7, Appendix A]. Let k be a perfect
field and denote by Aifierf the category of perfect k-algebras, on which we will consider both the étale
and fpqc topologies. Perfect k-schemes define fpqc sheaves on Aﬁ'ierf, and for X a scheme over k, we
will write XP°'f for the (inverse) perfection of X, given by the inverse limit over the relative k-Frobenius
of X. This inverse limit exists in the category of schemes, see [BGA 18, Section 5], and the natural map
XPerf X is a universal homeomorphism.

Perfect algebraic spaces are defined to be sheaves X on Aﬂ'ierf, such that the diagonal X — X x X is
representable in perfect schemes, and such that X admits an étale surjection from a scheme (cf. [Sta23,
Definition 025Y]; see [XZ17, Definition A.1.7] for the definition of a perfectly finite presentation (pfp)
algebraic space). A perfect algebraic space is pfp if and only if it is isomorphic to the perfection of
an algebraic space of finite presentation over k (see [XZ17, Proposition A.1.8]). We will often write
pfp algebraic space to mean pfp perfect algebraic space. A deperfection of a pfp algebraic space Y
is a morphism ¥ — Y, with Y an algebraic space of finite presentation that induces an isomorphism
y 5 ypet

0 -
Lemma 2.1.1. If X is a pfp algebraic space, then for every directed set I and any inverse system {T;};c;
of perfect qcqs k-schemes with affine transition maps T; — Ty, the natural map

Hom(lim7;, X) — lim Hom(7;, X)
- -

4 4

is a bijection.”

SNote that the inverse limit 7 = lin T; exists in the category of schemes by [Sta23, Tag 01YX]. Moreover, this T is a perfect
1
scheme since perfection commutes with inverse limits (being an inverse limit).
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Proof. Choose a deperfection X — Xy of X using [XZ17, Proposition A.1.8]. We may then apply
[Sta23, Proposition 01ZC] to deduce that the natural map

Hom(llnﬂ,Xo) — h';)nHom(E,Xo) (2.1.1)

12 12

is an isomorphism. We conclude by noting that (2.1.1) can be identified

Hom(](in 1;,X) — mHom(ﬂ,X)

4 4

since the 7; are perfect and since 131 T; is perfect. m}
L

2.1.2.
We will use the notion of perfectly proper morphisms of perfect algebraic spaces (see [Zhu 17, Definition
A.18]). A morphism f : X — Y of pfp algebraic spaces over k is perfectly proper if and only if it is
isomorphic to the perfection of a proper morphism of algebraic spaces of finite presentation over k (see
[Zhul7, Lemma A.19]). We will often write perfectly proper algebraic space to mean a perfect algebraic
space whose structure map to Spec k is perfectly proper.

Recall that a morphism f : X — Y of perfect algebraic spaces is called perfectly smooth of relative
dimension d at x, where x € X, if there is an étale neighbourhood U — X of x and V — Y of f(x),
such that U — X — Y factors through a map /# : U — V and such that i factors as

/ lh lf 2.12)

(adpet xy Py y sy,

where A’ is étale and where pr is the projection onto V. It is called perfectly smooth of relative dimension
d if it is perfectly smooth of relative dimension d at all points x € X. This property is preserved
under base change, and the composition of a perfectly smooth morphism of relative dimension d with
a perfectly smooth morphism of relative dimension d’ is perfectly smooth of relative dimension d + d’.
A morphism X — Y is called perfectly smooth if it is perfectly smooth of some dimension at every
x € X. This property is also preserved under base change and composition.

Example 2.1.3. If f : X — Y is a morphism of schemes over k that is smooth of relative dimension d
at x € X, then fpet ; xperf s yperf jg perfectly smooth of relative dimension d at x by [Sta23, Lemma
054L]. Indeed, the natural map X perf 5 X is a universal homeomorphism and thus identifies the étale
sites of X and XP°" (see [Sta23, Theorem 05ZH]).

Example 2.1.4. Let G be a pfp group scheme over Spec k. Then G — Spec k arises as the perfection
of a smooth group scheme over k by [Zhul7, Lemma A.26], and, therefore, G — Spec k is perfectly
smooth by Example 2.1.3. This, furthermore, means that G-torsors for the étale topology are perfectly
smooth morphisms, as the property of being perfectly smooth is clearly étale local on the target.

The following lemma is a straightforward consequence of the definition.

Lemma 2.1.5. Let f : X — Y be a perfectly smooth morphism of perfect algebraic spaces. If X is
connected, then f'is perfectly smooth of relative dimension d for some integer d.

We will later use the notion of normality for perfect algebraic spaces. Note that if an algebraic space
Y is normal, then its perfection yPerf i normal. Indeed, since normality is étale local, see [Sta23, Lemma
034F], this can be reduced to the affine case using the fact that Frobenius is affine, and then it follows
from the fact that a filtered colimit of normal rings is normal.

Lemma 2.1.6. A normal pfp algebraic space Y admits a normal deperfection.
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Proof. Since Y has finitely many irreducible components (because it is pfp), it follows from [Sta23,
Lemma 0357] that Y is a disjoint union of finitely many integral normal algebraic spaces. Thus, we may
assume that Y is integral and normal. Choose a deperfection Y — Y, with Yy reduced, and observe that
Yy is irreducible because Y is, and thus Y is integral. Let Yy — Y, be the normalisation of ¥y, and note
that it suffices to show that ¥, has the same perfection as Y. Since normalisation commutes with étale
base change, see [Sta23, Lemma 082F], we may assume that Yy = Spec Ag with Ag an integral domain.

Then Y, corresponds to an Ag-algebra B, and Y corresponds to an Ag-algebra A. Since the morphism
Ap — A is an injective integral morphism and A is normal, it follows that B is isomorphic to the integral
closure of Ay inside of A. But this implies that B has the same perfection as Ag. m]

Lemma 2.1.7. Let f : X — Y be a perfectly smooth morphism of pfp algebraic spaces. If Y is normal,
then X is normal. If f is, moreover, surjective and X is normal, then Y is normal.

Proof. Fix x € X with image y € Y. By definition, we know that f is perfectly smooth of relative
dimension d at x. Thus, there are étale neighbourhoods U — X of x and V — Y of u, such that
U — X — Y factors through amap & : U — V and such that 4 factors as in equation (2.1.2).

Assume that Y is normal, and choose a normal deperfection Y — Y; of Y using Lemma 2.1.6. Then,
by topological invariance of the étale site, see [Sta23, Theorem 05ZH], there is a unique étale morphism
Vo — Yo whose perfection recovers V — Y. Similarly, there is a unique étale morphism Uy — A‘]f x Vo
whose perfection recovers /#’. The induced map Uy — Yj is smooth because it is a composition of
smooth maps. It follows from [Sta23, Lemma 034F] that Uy is normal since Y; is normal. Hence, U is
normal and so X is normal (in a neighbourhood of x) (by [Sta23, Lemma 034F]). This argument works
for arbitrary x and thus proves the normality of X.

We will now assume that X is normal and show that Y is normal in a neighbourhood of y (if f
is surjective, this thus shows that normality of X implies the normality of Y). Let Y — Y, be any
deperfection, then we will show that the normalisation Yy — Yo is a universal homeomorphism. This
implies that ¥y — Y; induces an isomorphism on perfections by [BS17, Lemma 3.8], and thus Y is the
perfection of a normal scheme, and hence normal.

Let Vy — Yy and Uy — AZ X Vj be as above. Since normalisation commutes with smooth base
change, see [Sta23, Lemma 082F], we find that there is a Cartesian diagram (where Uy — Uy is the
normalisation of Uy)

Uy — Yo
Uy — Y.
Since X is normal, we find that U is normal by [Sta23, Lemma 034F]. By [Sta23, Lemma OBB4], there
is a unique commutative diagram
U ¢&——— U

N

This shows that Uy — Uy is injective on k-points, and hence universally injective. Since Uy — Up
is also surjective and closed, it follows that Uy — Uj is a universal homeomorphism. It follows from
[Sta23, Lemma OCFX] that ¥y — Y is a universal homeomorphism, as desired. m]

2.1.8.

Let f : X — Y be a morphism of pfp algebraic spaces. We expect that if there is a perfectly smooth
surjective map g : Z — X, such that f o g is perfectly smooth, then f itself is perfectly smooth. However,
we do not know how to prove this, hence, we make the auxiliary definitions 2.1.9 and 2.1.16.
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Definition 2.1.9. A morphism f : Y — Z of perfect algebraic spaces is called weakly perfectly smooth
of relative dimension d at y for y € Y if: there exists an open neighbourhood U of y and a surjective map
g : X — U that is perfectly smooth of relative dimension e, where X is a perfect algebraic space, such
that fog : X — Z is perfectly smooth of relative dimension e +d. A morphism is called weakly perfectly
smooth of relative dimension d if it is weakly perfectly smooth of relative dimensiond at y forall y € Y.

This property is preserved under base change, and the composition of a weakly perfectly smooth
morphism of relative dimension d; with a weakly perfectly smooth morphism of relative dimension d;
is a weakly perfectly smooth morphism of relative dimension d; + d». Indeed, suppose we are given
morphisms f; : X — Y and f, : Y — Z together with surjections g; : X’ — X and g, : V' —» Y
that are perfectly smooth of relative dimension e and e, respectively, and such that X’ — X — Y
and Y’ — Y — Z are perfectly smooth of relative dimension d; + e¢; and d» + e, respectively. Then
X" = X' xy Y’ is perfectly smooth over X of relative dimension ¢ + ¢;, and X"/ — X — Z is perfectly
smooth of relative dimension e, + d; + e + d; by writing it as the composition of X"’ — Y” and Y’ — Z.

The following lemmas show that the integer d is well-defined.

Lemma2.1.10. Let f : X — Y be aweakly perfectly smooth morphism of equidimensional pfp algebraic
spaces, such that the fibres of f are equidimensional of dimension d. Then Dim X + d = DimY.

Proof. Since the dimension can be computed étale locally, we may assume that X and Y are equidi-
mensional pfp schemes. We can, moreover, compute the dimensions of X and Y in terms of the Krull
dimensions of their local rings at closed points since X and Y are pfp. So let x € X be a closed point
with image y € Y, then since f is the perfection of a finite type morphism between Noetherian schemes,
it follows from [Sta23, Lemma 00OM] that

Dim Oy, < Dim Oy, + Dim Oy 1y . (2.1.3)

Since f is flat (perfectly smooth morphisms are clearly flat, and flatness can be checked after an fpqc
cover (in particular a perfectly smooth cover)), it follows that going down holds for Ox , — Oy , (see
[Sta23, Lemma OOHS]). The inequality in (2.1.3) is then an equality by [Sta23, Lemma O0ON] applied
to the local rings of a choice of deperfection of f. m}

The following lemma has a straightforward proof.

Lemma 2.1.11. If f : Y — Z is weakly perfectly smooth of relative dimension d at y € Y, then there is
an open neighbourhood U of y, such that U N f=1(f(y)) is equidimensional of dimension d.

A morphism f : Y — Z is called weakly perfectly smooth if there is a perfectly smooth surjection
g : X — Y, such that f o g is perfectly smooth. The following lemma relates this to Definition 2.1.9,
the proof is straightforward.

Lemma 2.1.12. A morphism f : Y — Z is weakly perfectly smooth if and only if for all y € Y, the
morphism f is weakly perfectly smooth of relative dimension dy at y, for some positive integer d,, which
is allowed to depend on y.

Lemma 2.1.13. Let f : Y — Z be a weakly perfectly smooth morphism of perfect algebraic spaces. If Y
is connected, then f is weakly perfectly smooth of relative dimension d for some d.

Proof. It follows from Lemma 2.1.12 that for y € Y, there exists a positive integer dy, such that f is
weakly perfectly smooth of relative dimension d, at y. Moreover, the same is true for all « in an open
neighbourhood Uy, of y.

Thus, if y,y’ € Y with positive integers d,, d; and open neighbourhoods Uy, Uy, then U, N U,

is nonempty because Y is connected. Therefore, there is a point u € Uy N Uy, such that f is weakly
perfectly smooth of relative dimensions d and d’ at u. By Lemma 2.1.11, it follows that d = d’, and we
conclude that f is weakly perfectly smooth of relative dimension d. O
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Lemma 2.1.14. Let f : Y — Z be a weakly perfectly smooth surjective morphism of pfp algebraic
spaces. Then Z is normal if and only if Y is normal.

Proof. This can be deduced from Lemma 2.1.7. O

2.1.15.

We follow [Sta23, Section 04XB] to define certain properties of morphisms of prestacks on Affierf that
are representable in morphisms of perfect algebraic spaces. For example, a morphism f : X — Y of
prestacks that is representable in perfect algebraic spaces is called perfectly smooth if it is representable
in perfectly smooth morphisms of perfect algebraic spaces. In other words, if for every morphism
T — Y, where T is a perfect algebraic space, the base change X7 — T is a perfectly smooth morphism
of perfect algebraic spaces.

A pfp algebraic stack is a stack Y on Aﬁ'zerf for the étale topology with diagonal representable in pfp
algebraic spaces that admits a perfectly smooth surjective® map f : U — Y from a pfp algebraic space.
The main example that we will be interested in is the quotient stack” [X/G] of a pfp algebraic space X
by a pfp group scheme G. This is a pfp algebraic stack because X — [X/G] is perfectly smooth since
G is perfectly smooth over Spec k (see Example 2.1.4). We will also need a notion of weak perfect
smoothness for morphisms of pfp algebraic stacks that are not necessarily representable.

Definition 2.1.16. A morphism f : Y — Z of pfp algebraic stacks is called weakly perfectly smooth if
there is a perfectly smooth surjective morphism g : X — Y from a pfp algebraic space X, such that the
composition f o g is perfectly smooth.

As before, this property is preserved under base change and composition. If f : Y — Z is repre-
sentable, then this is (per definition) equivalent to asking that f : ¥ — Z is representable in weakly
perfectly smooth morphisms of perfect algebraic spaces.

Example 2.1.17. Let G be a pfp group scheme over Spec k, which is perfectly smooth over Spec k by
Example 2.1.4. This implies that the natural map Spec k — [Spec k/G] is perfectly smooth, and thus
[Spec k/G] — Spec k is weakly perfectly smooth.

Example 2.1.18. Recall that an étale G-gerbe over a pfp algebraic stack Y is a morphism f : X — Y of
pfp algebraic stacks that is étale locally (on Y) of the form ¥ x [Spec k/G] — Y. Since [Spec k/G] —
Spec k is weakly perfectly smooth, it follows that f : X — Y is weakly perfectly smooth because this
can be checked étale locally on Y.

Remark 2.1.19. In [XZ17, Definition A.1.13], amorphism of pfp algebraic stacks satisfying the property
in Definition 2.1.16 is called a perfectly smooth morphism. However, it is not clear to us why a morphism
f 1Y — Z of pfp algebraic spaces satisfying the property in Definition 2.1.16 is perfectly smooth (in the
sense defined in the beginning of Section 2.1), rather than just weakly perfectly smooth. (This result
should be true, but we were not able to find a proof.)

Lemma 2.1.20. Suppose that X is a pfp algebraic space that is equidimensional of dimension d with
an action of a pfp group scheme G, and let Y be a pfp algebraic space together with a weakly perfectly
smooth morphism

f:Y > [X/G].

Then Y is equidimensional if and only if f is weakly perfectly smooth of relative dimension n, where
DimY =d+n—-DimG.

6This means, per definition, that f is representable in perfectly smooth surjections of perfect algebraic spaces.
7We always take quotient stacks in the étale topology unless otherwise specified.
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Proof. Consider the fibre product diagram

T s x
i
y - 1x/G].

The lemma is now a straightforward consequence of Lemma 2.1.11. m}

2.2. Affine flag varieties, moduli stacks of shtukas and forgetful maps

2.2.1.

Let k = ﬁp, and let Z = W(k) and Qp = Z [1/p], which come equipped with an automorphism o
coming from the absolute Frobenius on k. Let G be a connected reductive group over Q,, and let B(G, Q p)
(respectively, B(G, Qp)) denote the (extended) Bruhat—Tits building of G over Q,, (respectively, (0] p)-
For a nonempty bounded subset 2 c B(G,Q),) which is contained in an apartment, we let G(Q,)=
(respectively, G(Q p)z) denote the subgroup of G(Q,) (respectively, G(Q )»)) which fixes E pointwise.
By the main result of [BT84], there exists a smooth affine group scheme Gz over Z,, with generic fibre
G which is uniquely characterised by the property G= (Z,,) = G(Q,,) We call such a group scheme
the Bruhat-Tits stabiliser group scheme associated to Z. If & = {x} is a point, we write G(Qp)x
(respectively, G,) for G(Qp){xy (respectively, G{x}).

For & c B(G,Q)) as above, we let Gz denote the ‘connected stabiliser’ (cf. [BT84, Section 4]). We
are mainly interested in the case that E is a point or an open facet f. In this case, G; (respectively, Gy) is
the parahoric group scheme associated to f (respectively, x).

We may also consider the corresponding objects over Qp, and we use the same notation in this case.
When it is understood which point of B(G, Q) or B(G, Q p) we are referring to, we simply write G and
G for the corresponding group schemes.

An important case that we need for applications is when G, = G, that is, when the parahoric is
equal to the Bruhat-Tits stabiliser. When this happens, we necessarily have Qf = G, where f is the facet
containing x, and x € fis a point ‘in general position’. A parahoric group scheme G over Z,, (respectively,
Z,,) is called a connected parahoric if there exists x € B(G,Q,) (respectively, x € B(G, Qp)), such
thatg:gx :g~x- — —

Let 711 (G) be the algebraic fundamental group of G ® Q,,, equipped with its action of Gal(Q,,/Q,)
(see the Introduction of [Bor98]), and let I C Gal(@p /Qp,) be the inertia group.

Lemma 2.2.2. If 7(G); is torsion free, then G, = G, for all x. In other words, all parahoric group
schemes are connected parahoric group schemes.

Proof. This follows from [PRO8, Remark 11 of the appendix]. O

2.2.3.
LetS € Gy beamaximal Q p-split torus defined over Q,, which exists by [KP23, Axiom 4.1.27.UR2],
and let T be its centraliser. Then T is a maximal torus of G because GQ is quasi-split by a theorem of

Steinberg (see [KP23, Theorem 2.3.3]). Choose a o-invariant alcove a in the apartment of B(G, Qp)
associated to S. Let N be the normaliser of 7 in G@p. We define the relative Weyl group as

Wo = N(Qp)/T(Q))

and the Iwahori—Weyl group (or extended affine Weyl group) as

W= N(Qp)/T(Zp),
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where T over Z,, is the connected Néron model of 7. There is a short exact sequence (see [PROS,
Definition 7 of the Appendix])

0— X.(T)y > W —> W, -0,

where [ is the inertia group and X, (T'); denotes the inertia coinvariants of the cocharacter lattice X, (T")
of T. The map X.(T); — W is denoted on elements by A > 1. Let S ¢ W denote the set of simple
reflections in the walls of a, and let W, be the subgroup of W generated by S, which we will call the
affine Weyl group.

Parahoric subgroups C of G(Qp) that contain the Iwahori subgroup corresponding to a are called
standard parahoric subgroups; they correspond to subsets K C S, such that the subgroup Wx generated
by K is finite; we will call such subsets types. This identification is Frobenius equivariant in the sense
that o-(K) corresponds to o (K). In particular, a subset K C S corresponds to a parahoric subgroup of G
if and only if o (K) = K; note that our fixed Iwahori subgroup corresponds to @ c S. There are parahoric
group schemes Gk over Zp associated to types K as above, and we have identifications 0*Gx ~ G5 (k).
In particular, if K is stable under o, then G is defined over Z,,. The maximal reductive quotient (EK yred
of the special fibre Gk of Gk isa split reductive group over the residue field k of Q p»and the image of Gy
in (Gx )™ is a Borel subgroup. The set of simple roots of (G )™ with respect to this Borel subgroup
can be identified with K. The following lemma should be compared with [KP18, Remark 4.2.14.b)].

Lemma 2.2.4. Let J C K C S, and suppose that Gk is a connected parahoric, then G is a connected
parahoric.

Proof. Let xg,x; € B(G,Q)p), such that Gk = Gy, and G; = G,,. We assume that x; and xg are in
general position in their respective facets. Then we have G, = ¢ «x since G is a connected parahoric,
and we have G, = Gs,, where f; is the facet corresponding to J.

Since xk lies in the closure of {; since K D J, it follows that Gx_, (Zp) C GXK (Zp) =Gxx (Zp). But
qu (;Zl’) is contained in the kernel of the Kottwitz map « : G(Qp) — 71(G);. Therefore, we have
Gy, (Zp) C ker(k), and hence, we deduce as in Lemma 2.2.2 that G, = G, . O

2.2.5.

A type K C S is called very special if Wx < W maps isomorphically onto W,. Very special types
correspond to very special vertices in a, see [KP23, Lemma 1.3.42, Proposition 1.3.43], where they are
called extra special vertices. If K is o-stable, then the parahoric subgroup Gk (Z,,) associated to a very
special type is called a very special parahoric subgroup. A fact that will be crucial for us is that there
exists a o-stable very special type K if G is quasi-split (see [KP23, Proposition 10.2.1]). Thus, if G is
quasi-split, then the standard Iwahori subgroup Gy(Z,,) contains a very special parahoric subgroup.

2.2.6.
There is a split short exact sequence (our choice of a provides a splitting, see [PR0O8, Lemma 14 of the
appendix])

0-W,—>W—-nm(G) —0. 2.2.1)

The affine Weyl group W,, has the structure of a Coxeter group, and we will use this to define a Bruhat
order (denoted by <) and a notion of length on W, by splitting (2.2.1) and regarding 7;(G); ¢ W as
the subset of length zero elements. We will write £(w) for the length of an element of W. Similarly, we
define a partial order < and a length function on Wx \W /W by taking minimal length representatives
of double cosets.

2.2.7.

In this section, we will recall some definitions from [Zhul7, XZ17, SYZ21] and state some results. Let
the notation be as in Sections 2.2.1 and 2.2.3, so, in particular, G denotes a connected reductive group
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over Q,,. Let Gk be a parahoric group scheme over Z p corresponding to a o-stable type K C S. For an
object R of Aﬂ'ierf, we set

Dr=SpecW(R), Dy =Spec W(R)[1/p],

where W(R) denotes the ring of p-typical Witt vectors of R. We define group-valued functors on Aﬂ'zerf
sending an object R to

LG(R) = G(D%)
L*Gk (R) := Gk (DR)
L"Gk (R) =Gk (W(R)/p"W(R)),

which we call the loop group, respectively, the positive loop group, respectively, the m-truncated
loop group. 1t follows from [Zhul7, Section 1.1] that L™Gg and L*Gg are representable in perfect
schemes over k and that L*Gg = 1<i£1m L™Gg . Moreover, [Zhul7, Proposition 1.1] tells us that LG is
representable by an ind-(perfect scheme), which means that it is isomorphic to an inductive limit of
perfect schemes along closed immersions. By [Zhul7, Lemma 1.2. (i)], the natural map L*Gx — LG
is a closed immersion.

2.2.8.

Fix an algebraic closure Fp of Fp, and set k = Fp. Let R be a perfect k-algebra, and let £ and F be
Gk -torsors on D g.® Recall from [ XZ17, Section 3.1.3] that a modification 8 : £ --> F is an isomorphism
of G-torsors

ﬁ:‘gil);{_"}-'D%‘

It follows from the proof of [Zhul7, Lemma 1.3] that there is an étale cover Spec R — Spec R, such
that £ is trivial after pullback along Spec Dg: — Spec Dg. Therefore, we can also think of Gk -torsors
over Dy as étale L*Gg -torsors over Spec R. .

We define the (partial) affine flag variety Grg to be the functor on Aﬂ'lzert sending R to the set of
isomorphism classes of modifications

a: € - &

where £ is a Gk -torsor over D g and where £ is the trivial Gx -torsor over Dg. There is a natural action
of LG, thought of as the functor

R~ Aut(€°| p:)

on Grg, by postcomposing @ with an automorphism of the restriction to D% of & 0 and the orbit of the
k-point of Grg given by the identity modification £ — £° induces a map O : LG — Grg. The map O
induces an identification (that we will implicitly use from now on)

Gri (k) = G(Q,)/Gk (Z,).

Itis aresult of [Zhul7, BS17] that Grg is representable by an inductive limit of perfections of projective
k-schemes, with closed immersions as transition maps. In short, Grg is ind-perfectly projective. We
also define the Hecke stack Hkk to be the presheaf in groupoids on Aﬂ’lzerf sending R to the groupoid
of modifications g : £ --» F. The natural map Grx — Hkg is an L*Gg -torsor for the étale topology,
where L*Gg acts on Grg via the closed immersion L*Gg C LG.

8Here, we mean torsor in the étale topology on Dr = Spec W (R) in the usual way.

https://doi.org/10.1017/fmp.2024.22 Published online by Cambridge University Press


https://doi.org/10.1017/fmp.2024.22

14 P. van Hoften

2.2.9.

Recall from [SYZ21, Definition 4.1.3] that a (local) G -shtuka over a perfect k-algebra R is a pair (&, ),
where £ is a Gk -torsor over Dg and where S is a modification 8 : o€ --» £. Here, o : Dr — Dpg
denotes the Frobenius morphism induced from the absolute Frobenius on R, and we consider the
restriction of 0*& to D} as a G-torsor via the isomorphism o : 0*G — G, coming from the fact that
G is defined over Q,. A morphism of shtukas (£,8) — (£, ') is an isomorphism f : £ — £’ of
Gk -torsors, such that the following diagram commutes

& -Loye
[
oe Py e

We will write Shtg k (R) for the groupoid of Gk -shtukas over R and Shtg g for the presheaf in groupoids
on Aﬂ‘z‘srf sending R to Shtg x (R).

Example 2.2.10. Our main examples of shtukas come from p-divisible groups. More precisely, for
Gk = GLy,z,, a Gk -shtuka over a perfect ring R is a projective module M of rank n over W(R) together
with an isomorphism

B:o"M[1/p] — M[1/p].

If the map B satisfies pM C B(oc*M) c M, then the pair (M, ) is a (contravariant) Dieudonné
module. By a result of Gabber, see [Lau 8], there is a p-divisible group over Spec R with contravariant
Dieudonné module (M, 8).

2.2.11.

For an inclusion of types J C K, there is a natural morphism of parahoric group schemes G; — Gk . The

induced morphism on loop groups L*G; c L*Gk is a closed immersion, since this induced morphism

commutes with the natural closed immersions of source and target to LG (see [Zhul7, Lemma 1.2. (i)]).°
If J and K are o-stable, then pushing out torsors along L*G; — L*Gg induces a forgetful map

ShtG’J - ShtG,K .

In this section, we will show that these forgetful maps are representable in perfectly proper algebraic
spaces, which is an analogue of [PROS8, Proposition 8.7]. _

Let (Gg )™ be the maximal reductive quotient of the 1-truncated loop group L'Gx = Gk, and let
H; be the image of G; in (Gx)™; it is a standard parabolic subgroup of type J C K (recall that K can
be identified with the set of simple roots of (Gx)™ with respect to the Borel B that is the image of
Go — (Gk)™). Recall that for a perfect group scheme H, we write BH for the classifying stack of H;
in other words, BH is the groupoid valued functor that sends an object R of Aﬂ?'zerf to the groupoid of H
torsors (in the étale topology) over Spec R. There is a natural morphism Spec k — BH corresponding
to the trivial H-torsor over Spec k, which induces an isomorphism [Spec k/H] — BH.

Lemma 2.2.12. The forgetful map BL*G; — BL*Gx isa (G )™/ H -fibration ' for the étale topology,
in particular, it is representable in perfectly proper algebraic spaces.

Proof. Let R be a perfect k-algebra, and let X be an L*Gg torsor over Spec R represented by a map
Spec R — BL*Gg. It follows from the definition of quotient stacks that both squares in the following
diagram of stacks are Cartesian

9Here, we are using the cancellation theorem for closed immersions (see, e.g. [Vak24, Theorem 11.1.1]).
10This means that the basechange along Spec R — BL*Gk forR € Al'fll';erf is étale locally isomorphic to Spec Rx (G )™4/H .
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X —— > Speck

l l

[X/L*G;] — BL*G,

l l

SpecR — BL*Gk.

By [Zhul7, Lemma 1.3], there is an étale cover T — Spec R, such that X7 is isomorphic to the trivial
L*Gk torsor over T, hence [ X/L*G,] is étale locally isomorphic to Spec R X [L*Gg /L*G;]. Therefore,
it suffices to show that [L*Gg /L*G,] is representable in a perfectly proper scheme.' We will argue as
in the proof of [PR0O8, Proposition 8.7] that there is an isomorphism

[L*Gk /L*Gy] = [(Gk)™/H, ),

and the latter is representable in a perfectly proper scheme because it is the perfection of a partial
flag variety for (Gx)™. By Lemma 2.3.5 below, the following commutative diagram of perfect group
schemes is Cartesian

L*G; —» H,

[ [

L*Gx —2% (Gr)™.

It now follows formally that [L*Gx /L*G,] =~ [(Gk)™/H,]. o

Corollary 2.2.13. The map Shtg,; — Shtg.x is a (Gk )™ /H -fibration for the étale topology, in
particular, it is representable in perfectly proper algebraic spaces.

Proof. This follows because the following diagram is Cartesian

Shtg,; —— Shtg x

l l (2.2.2)

BL*G; — BL"Gk.

Indeed, this is a straightforward consequence of the definitions (a G;-shtuka is the same thing as a Gk -
shtuka (&, B) together with an L*G,-torsor £’ and an isomorphism « : £" Xp+g, L*Gg =~ £, because
the natural map G; — Gk is an isomorphism over Q). O

2.2.14. Relative position
It follows from the discussion in [HZ20, Section 3.6] that there is an L*Gg -equivariant stratification

Grg = U Grg (w),

WEWK\W/WK

where each Grg (w) is a locally closed subscheme of Grg, such that on k-points, we recover the Bruhat—
Tits decomposition

Gr (k) = G(Qp)/Gk (Z,) = U Gk (Zp)WGx (Zp) |Gk (Zp)

WGWK\W/WK

1Note that the property of a morphism of pfp algebraic spaces being perfectly proper is étale local on the target. This follows
from the fact that properness is étale local on the target, see [Sta23, Lemma 02L1], in combination with the topological invariance
of the étale site and [Zhul7, Lemma A.19].
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(see [PROS8, Proposition 8 of the appendix]). We deduce from this that we get a decomposition

[L*Gk\ Grx | = Hkg = U Hkg (w),
WEWK\W/WK

where Hkg (w) = [L*Gk \ Grg (w)]. It follows, moreover, from [HZ20, Section 3.6] that the closure of
Grg (w) is equal to

Grg (sw) = U Grg (w’).

w’'<w

Furthermore, when K = ), the Schubert cell Grx (w) is equidimensional of dimension equal to the length
£(w) of w. This latter statement is proved for a certain Demazure resolution D,, — Grg (<w) in [HZ20,
Proposition 3.4], and follows for Grg (< w) (and hence Grg (w)) since the map D,, — Grg (< w) is
birational as explained in the proof of [HZ20, Proposition 3.7].

2.2.15.

Let {u} be a G(@p)—conjugacy class of cocharacters of G@ . Recall that we fixed a maximal torus T
p

of G in Section 2.2.3. Choose a Borel B of GQP containing T = and let i be the image in X, (T); of a

B-dominant representative of {u}. The set of {u}-admissible elements is defined as

Adm({u}) ={weW : w< ) for some x € Wol.

There is a unique element 7 = 7, € Adm({u}) of length zero and, in fact, Adm({u}) C W,t. For K
a o-stable type, we define Adm({,u})K as the image of Adm({u}) under W — Wi \W/Wk. We write
KAdm({u}) for Adm({u}) NKW, where KW < W denotes the subset of elements that are of minimal
length in their left Wx -coset.

If {u} is minuscule and K is a o--stable type, then we define the perfect local model attached to {u}
and K to be the perfectly projective closed subscheme of Grg given by

Ml;;c{ﬂ} : Grk (w).

weAdm({u})k

This definition is motivated by the discussion in [SYZ21, Section 2.1.7] and, in particular, [SYL2]
Corollary 2.1.11]. It follows from the discussion in [SYZ21, Section 2.1.7] that the scheme MII(;C 1
equidimensional of dimension d = (2p, ), which is precisely the dimension of the flag variety for G

associated to u.

2.2.16.
Let {u} be a conjugacy class of cocharacters of G@ as above, and let Adm({u})x be the u-admissible

set. Recall that the stack Hkg is the moduli stack of modifications £ --» F of L*Gg -torsors. We define
amap Rel : Shtg x — Hkg sending (€,8) to 8 : 0*E > £. For w € Wi \W/Wk, we have the locally
closed substack Hkg (w) € Hkg from Section 2.2.14, and its pullback along Rel defines a locally closed
substack

Shtg x (w) C Shtg x -
Following [SYZ21, Definition 4.1.3], we define the stack of shtukas of level Gk and type u to be

Shtg..y = | )  Shtgx(w);
weAdm({u})x

it is a closed substack of Shtg x by the discussion in Section 2.2.14. If J C K is another o-stable type,
then the following diagram commutes by definition of Adm({u}); and Adm({u})x (but it is generally
not Cartesian)
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ShtG,J,{”} ——— Shtg,s

l l

ShtG’K,{#} —— Shtg x .

Proposition 2.2.17. The forgetful morphism Shtg j (.} — Shtg x (4} is representable in perfectly
proper algebraic spaces.

Proof. We know that Shtg ; () — Shtg s isrepresentable in perfectly proper algebraic spaces because
it is a closed immersion, and the map Shtg,; — Shtg k is representable in perfectly proper algebraic
spaces by Corollary 2.2.13. The composition is thus representable in perfectly proper algebraic spaces
and factors over Shtg g {,, Which proves the result. O

2.3. Restricted local shtukas and forgetful maps

We will recall some results from [SYZ21, Section 4.2]. Fix a geometric conjugacy class of minuscule

cocharacters {u} of G@ for the rest of this section, and let Adm({u})x be the u-admissible set. Recall
r

from [SYZ21, Lemma4.1.4] that Shtg_g has the following quotient description: Let o : L*Gx — L*Gg

be the relative Frobenius morphism, and let L*Gx act on LG via h - g = (h™'go(h)), we denote this

action by Ad,-. With this notation, there is an isomorphism'?

LG
Shtg x =~ [ ]

Ady LGk
The map A : LG — Shtg g constructed this way corresponds to a shtuka over LG: It is the modification
B €2G ~ O'*EQG > EgG given by the tautological element in LG. Moreover, the map LG — Shtg

is precisely the universal L*Gg -torsor over Shtg k.
Consider the following commutative diagram

LG —2 5 Grx
A

ShtG K ﬂ) Hkg .

There is a closed subscheme Mllgc {‘X’} C LG defined to be the inverse image of Mll‘éc )

O : LG — Grg. Since M10C y C Grg is stable under the action of L*Gg, it follows that Mloc {2 } C LG
is stable under the Ad, -actlon of L*Gk. The discussion in the previous paragraph, along with the
commutative diagram, tells us that there is a natural identification

C Grg under

Mloc,oo

K, {u}
Sht, > |7
G T A, LGk
For J C K a o-stable subset, there is a closed immersion MIJOC{“’} C MII?C ) which identifies
Mloc )
K, {u}
c Gr
L*Gy !

with the preimage of Mllgc () under Gry; — Grg.

12Here, we are taking quotient stacks in the étale topology. Note that this shows that ShtG g is a stack in the étale topology.
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2.3.1.
Let Bk : L*Gkx — (Gk)™ be the natural map, where (G )™ is the maximal reductive quotient of

Gk = L'Gk. Define Mllgc,’{lﬂ_}red = ker Bk \ Mllgf’{i}; itis a (Gx)"™d-torsor over Mllgc (u)- We then define
loc, 1—-red
Sht(oo,l) . MK,{#}

G, K., {u} "~ Ad, LGk

It follows from Lemma 2.1.1 that the twisted conjugation action of L*Gg on M;?C’{;;ed factors through

the action of LGk for m > 0. Indeed, this follows by applying the lemma to the inverse system
{L"MGx x Ml°&!redy - and the action map L*Gg x Mo 1-red gl l-red g0 the inverse limit

K. {u} K.{u} K. {u}
to the pfp algebraic space MII‘;Cj{IIL_}red. For such m, we define the stack of (m)-restricted shtukas of type
{u} by
loc,1-red
Spe™ D .o MK,{u}

GK.(u} | 'Ady LGy

Note that there are natural morphisms

Mloc, o Mloc, 1-red Mloc, 1-red
K, {u} K, {u} K, {u} (m,1)
Sht = = Sht 2.3.1
G,K.,{u} Ad, L*Gx - Ad, LGk - Ad, LGk G,K,{u} ( )

induced by the natural map Ml;éc’{i} — MII(;C’{I'J}red and the natural map L*Gx — L™Gy.

Remark 2.3.2. There is a ‘local model diagram’

loc,1-red
M.
K. {u}

<N

(m,1) loc
ShiG k1) M gy -

The left-hand map is an L™ G -torsor while the right-hand map is a (G x )™4-torsor. In particular, the stack

(m,1) . . 1. . . 1 . . 1 .
Sht G.K.{y} 1520 equidimensional pfp algebraic stack.'® Indeed, M I‘(’C () 18 pfp and equidimensional, and

since the right-hand map is perfectly smooth of relative dimension Dim(Gx )™, we find that M'%¢-!~red

K. {u}
is pfp and equidimensional by Lemma 2.1.10.
2.3.3. )
The goal of this section is to compare Sht(Gm};) () and Sht(Gmo’ 1{)”}. Unfortunately, there is no natural

map between them when K # (. However, we will be able to construct a correspondence between them
instead, and study its properties (see Proposition 2.3.4, Lemma 2.3.9 and Section 2.3.10).

Consider the closed immersion L*Gy C L*Gg, which induces a closed immersion B C (?K
where B is the image of L'Gg in (Gx)™9; lety : L*Gy — B be the natural surjection. By Lemma 2.1.1,
we can choose m > 0, such that the action Ad, L*Gk on kery\ MII‘;C’{% factors through LGk . As in
equation (2.3.1), the natural maps ’

)red

loc, o0 loc, o0
MK,{,;} — kervy\ MK’{#}

L*Gk — LGk

13A quotient stack [X /G|, where G is a pfp group scheme over k and X is a pfp algebraic space, is defined to be equidimensional
if X is equidimensional. The dimension of [ X /G| is defined to be Dim X — DimG; this is well-defined in view of Lemma 2.1.20.
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induce a natural map

loc, o0 loc, 00
My ) kery\Mg )

N
Ady L*Gk Ad, L"Gk

ShtG,K,{y} =

For m as above, let H,, be the image of L*Gy in LGk . Since M < M'°>™_ it follows that the

0, {u} K. {u}’
action of L*Gy c L*Gk on kery\ Mlgc{’;"} factors through H,,. Therefore, there is a natural map
Mloc,oo kery\ Mloc,oo
Shtg.o. () = 0. {u} 0.{u}

ﬁ
Ad, L*Gy Ady Ho

. loc,c0 loc, 00 +
induced by M@L{u} — kervy\ M(Z),{,u} and L*Gy — H,,.

Proposition 2.3.4. If m is an integer, such that the action Ad, L*Gg on ker y\ M
LGk, then the diagram

loc, o0

K. {u) Jactors through

Ker y\ M9 |
\ 0.{u}
Shtg, 0, () ? | TAdy Hon

.,

ker y\ M )
ShtG k., {u) ” [Ad(, L'"éi? ’

where the right vertical map is induced by the closed immersions Mg)c{’::’} — Mllgc‘{";} and H,, = LGk
is Cartesian.

We start by proving a lemma.

Lemma 2.3.5. Both squares in the following diagram of perfect group schemes are Cartesian.

L*Gy » Hp > B

L l l 2.32)

L*Gx — L"™Gx —— (Gg)™.

Proof. We first check that the outer square is Cartesian: It is enough to check this on k’-points for all
algebraically closed fields k” because L*Gy — L*Gg is a closed immersion by [Zhul7, Lemma 1.2.
(i)] and perfect schemes are reduced. The result on the level of k’-points is [BT84, Theorem 4.6.33].
The left square is Cartesian by definition of H,,, and it, therefore, follows from general properties of
Cartesian squares that the right square is also Cartesian. O

Lemma 2.3.6. The stacks

loc, o0 loc, o0
ker y\ M@,{”} kery\MK’{ﬂ}

Ad, H, | | Ad, LGk

are equidimensional of the same dimension.

Proof. To compute the dimensions, we note that it follows from the right Cartesian square in
Lemma 2.3.5 that

Dim H,, = Dim L"Gx — (Dim(Gg )™ — Dim B),
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and thus it suffices to show that

. loc,0 \ _ 1 loc,o0 Y = yred .
Dim (kery\ M@,{#}) = Dim (kery\ MK,{p}) Dim(Gg )™ + Dim B.

loc,c0 loc . . loc,c0 loc ;
The map kery\ Mm,{y} - M@,{y} is a B-torsor by construction and kery\ MK,{;;} - MK’{M} is a

(G )™4-torsor by construction (see (2.3.2)). Therefore, the equality above is equivalent to the equality

Dim M'%

— i 1
Ko} = Dim M

0,{u}’

which is true (see Section 2.2.15). O

Proof of Proposition 2.3.4. Consider the following diagram, where the maps are defined as in (2.3.1)

loc,c0 loc, 0 loc,c0
Sht | Mo o | ke AMyT, | Rer\ My,
G.0.{u} — |Ad, LG, 7 | Ads LGy - Ady Hp,
l loc, 00 loc, 00 loc,c0
Shi - MK,{;A) . kery\MKy{m . kery\MK’{m
G.K.{u} =™ |Ad, LGk 7 | TAd, LGk 7 | Ady LGk | -

It follows from Lemma 2.3.5 that P™ := Ker (L*Gx — L™Gk) is contained in L*Gy and that P™ is
also equal to the kernel of L*Gy — H,,.

We deduce that the right horizontal maps are both P gerbes. Therefore, the map from the top-left
term of the right-most square to the fibre product is a morphism of P"*-gerbes, and thus an isomorphism.
Similarly, the middle horizontal maps are both ker y-torsors. Therefore, the map from the top-left term
of the middle square to the fibre product is a morphism of ker y-torsors and thus an isomorphism. We
deduce that the outer square of the diagram is Cartesian. O

2.3.7.
In this section, we record two more lemmas.

Lemma 2.3.8. For each integer m’ > 1, there is an integer m > m’, such that there is an inclusion
ker (L*Gyp — H,,) C ker (L*Gy — Lmlg@) of closed subschemes of L*Gy.

Proof. Fix m’. Recall that

+ RT m
LgK—l(inL Gk
m
+ RT m
Lg@—l(LnL Go,

m

and the first of these equalities, moreover, implies that L*Gy ~ @ H,,,. The lemma now follows from
m
Lemma 2.1.1. ]

It follows from Lemma 2.3.8 that for each m’, there is an m > m’, such that the natural map
L*Gyp — L™ Gy factors through the natural map L*Gy — H,, via a surjection H,, — L™ Gy. Note,
moreover, that L*Gy — ng@ = 50 — (50)““1 factors through L*Gy — L'Gy — B because the
maximal reductive quotient of G is isomorphic to the maximal reductive quotient of B. Thus, there is a

natural map kery — ker(L*Gy — (Gy)™?) which induces a map kery\ ME’C{;} - Mlq;’cflll;red. Recall,

loc,1-red ¢ tors through an action of L™ Gy.

moreover, that for m > 0, the action Ad, L*Gp on M(o ()
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Lemma 2.3.9. Let m’ > 0 be a positive integer, and let m > m’ satisfy the conclusion of Lemma 2.3.8.
Then the map (induced by kery\ M — M17ed gua g — 1M Gy)

0,{u} 0,{u}
loc,c0 loc,1-red
ket MMy g | | Mot | _ g o
Ady Hp Ady L™ Gy G.0.{n}
is weakly perfectly smooth.
Proof. The natural map
loc,c0 loc,1-red
ket "\ Mo | [Moctir | _ g0
Ad, H,, Ad, H,, G.0.{u}

is a torsor for ker(B — (Ew)red), and hence weakly perfectly smooth. The natural map

loc,1—red loc,1-red
Mﬂ, {u} N M(D, {u}
Ad, H, Ad, L™ Gy

is a gerbe for ker(H,, — L™ Gp) and is thus weakly perfectly smooth. It follows that the composition

is weakly perfectly smooth, and the lemma is proved. O
2.3.10.

ker '\ Ml;c’(w} . . .
The stack ng‘l‘(‘ is not a stack of restricted shtukas in the sense of Shen—Yu—Zhang [SYZ21].

However, it is closely related to the more general stacks of restricted shtukas introduced in [XZ17,
Section 5.3]. We define for n > 2 the quotient

loc,n + loc, o0
M0, = ker (L*Gk — L"Gk) \ Mo, -

loc,n

Then, by Lemma 2.1.1, for m > n, the action Ad, L*Gg on My ()

define

will factor through LGk , and we

loc,n
Sht(m,n),loc o MK»{II}

G.K.{u} ™ Ada’ ngK

We have added the ‘loc’ in the superscript and the condition that n > 2 so that these are not confused
with the previously introduced stacks of restricted shtukas (since the notation is not compatible).

The proof of Lemma 2.3.8 shows that for n > 0, we have an inclusion ker (L*Gx — L"Gk) C kery
and thus a natural map

Mloc,n N kery\ Mloc,oo

K, {u} K, {u}"
This induces a morphism (for m > n as before)
Mloc,n Ker ’}’\ Mloc,oo

Sht(m,n),loc _ K. {u} K, {u} i
G.K.w} = | Ady LmGy | | Ady L™Gk

which is a torsor for the image of kery in L"Gg and thus perfectly smooth.
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2.3.11. The EKOR stratification
Recall that KAdm({u}) is the intersection of Adm({u}) with KW, where KW c W denotes the subset
of elements that are of minimal length in their left Wx -coset. By [SYZ21, Lemma 4.2.4], the underlying

topological space of Shtém}(l) () is isomorphic to KAdm({u}) equipped with the partial order topology

(for the partial order < on XKAdm({u}) introduced in [SYZ21, page 3123]). They use this to define

locally closed substacks Sht(Gm’l) {#}{w} for w € KAdm({u}), such that the locally closed substack

K,

(m,1) o (m,1) ’
Shig! (= w) = U Shgy) (')

w’w
is closed. This allows us to define the Ekedahl-Kottwitz—Oort—Rapoport (EKOR) stratification on any
stack mapping to Shtg'f};? (uy’ for example, on Shtg g (.} via (2.3.1) and later on Shimura varieties of
Hodge type. Note that if K = @, then the EKOR stratification agrees with the Kottwitz—Rapoport (KR)
stratification from Section 2.2.15 and < agrees with <. This follows from [SYZ21, Section 1.3.2] and
the discussion preceding [SYZ21, Proposition 4.2.5].

2.4. Affine Deligne—Lusztig varieties

Recall from [RR96, Section 2.3] that there is a partial order on the set B(G) of o-conjugacy classes in
G(Qp). Let {u} be a G(Q,)-conjugacy class of cocharacters of Gg , and let B(G,{u}) c B(G) be
r

the set of neutral acceptable o--conjugacy classes with respect to {u} (see [RV 14, Definition 2.5]).

24.1.
Let £ be an LG-torsor over k’, with k’ an algebraically closed field of characteristic p, and let
B : c*€ — &£ be an isomorphism, where o is the absolute Frobenius. After choosing a trivialisa-
tion of £, we see that 5 can be represented by an element bg € G(W(k’)[1/p]) well-defined up to
o -conjugacy. Since the set of o-conjugacy classes in G(W(k’)[1/p]) does not depend on the choice
of algebraically closed field k', it thus gives us an element [bg] € B(G).

Let R be a perfect k-algebra, let £ be an LG-torsor over R and let 8 : "€ — &£ be an isomorphism.
If x € Spec R and K is an algebraic closure of the residue field & (x), then we will write [bg(x)] € B(G)
for the o-conjugacy class of the pullback of (£, 8) along Spec K — Spec R. Then for [b] € B(G), the
subset (using the partial order introduced above)

(Spec R)<[p] := {x € SpecR : [bg(x)] < [b]}
is closed in Spec R by [RR96, Theorem 3.6.(ii)] and

(Spec R)[p] == {x € SpecR : [bg(x)] = [b]}
is locally closed.

24.2.

Given Spec R — Shtg g corresponding to a Gx-shtuka (€7, 8), we can set £ to be the pushout of £’
along L*Gx — LG to obtain a pair (£, B) as above. Then we may form the locally closed subsets
(Spec R)(»] C Spec R as above. This allows us to define a stratification

ShtG,K = U ShtG’K,[bJ,
[b]eB(G)

where Shtg g (5] denotes the locally closed substack of Shtg x whose R-points are given by the full
subgroupoid

ShtG,K, [b] (R) C ShtG’K (R)
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of maps Spec R — Shtg g, such that (Spec R)[5] = Spec R. We will write Shtg (4} (p] for the
intersection (fibre product over Shtg k) of Shtg g (.} and Shtg x 5]; we will see in Corollary 2.4.7
that this is nonempty if and only if [b] € B(G, {u}).

2.4.3.
Let K C S be a o-stable type, and let b € G(Qp). Then we define the affine Deligne—Lusztig set

X(u b ={8 € G(Qp)/9x (Zp) 1 g7 bor(@) e | ] Gr(@p)iGk (Z,)/9k (Zp)}.

weAdm({u})k

Let Jp be the algebraic group over Q,, whose R-points are given by
Jp(R) ={g € G(Q, ®, R) | g'bo(g) = b}.

Then J5(Qp) C G(Qp) acts on X(u, b)x via left multiplication. By [Hel6, Theorem 1.1], the set
X(u, b)x is nonempty if and only if [b] € B(G, {u}). Moreover, [Hel6, Theorem 1.1] says that for
J C K another o-stable type, the natural projection G(Qp)/g, (Zp) - G(Qp)/gK (Zp) induces a
J»(Qp)-equivariant surjection

X(#’b)] - X(/J’b)K

We will soon see that X (u, b)x can be identified with the set of k-points of a perfect scheme over k,
which we will also denote by X (u, b)k .

2.4.4.
Let K be a o-stable type, let b € G(Q,) and consider the functor Xy, b), on Aﬂ'l;;ert sending R to the
set of isomorphism classes of commutative diagrams of modifications of Gk -torsors on Dg

o0& --ﬁ-l-> &1
! oo | Bo (2.4.1)
v v

0_*50 __b__> 50’

such that B : *& --» &1, considered as an element of Hkg (R), lies in (UweAdm({u})K Hkg (W)) (R).

Here, b is the modification of the trivial G -torsor o0*£? ~ £° given by multiplication by b. We will
sometimes refer to By as a quasi-isogeny of shtukas from (&1, 81) — (£, b).

Lemma 2.4.5. The morphism X (u, b);, — Grg that sends a diagram, as in (2.4.1) to By : &€ - EV s
a closed immersion. Moreover, it identifies

X(p. b)g (k) < Gr (k) = G(Qp) /G (Z))
with the affine Deligne—Lusztig set X (u, b)k from Section 2.4.3.

Proof. Consider the functor X () sending R to the set of isomorphism classes of commutative diagrams
of modifications of Gk -torsors on D g

o*& ——lgl—) &l
:0'*,30 ::80 24.2)
+ v

o0 -y g0
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as before but now without the condition that 8; € (UWeAdm({H})K HkK(w)) (R). As before, [HZ20,

the discussion after Remark 3.5] tells us that X (u, b), is a closed subfunctor of X (), and the lemma
would follow if we could show that the map

f:X(b) - Grg

sending a diagram as in (2.4.2) to By : £ --» E° is an isomorphism. The map f is an isomorphism
because the map g : Grx — X (b) sending By : & > £° to the diagram

o*& --Bl-> &
I I
10" Bo 1 Bo
v v

0_*50 __b__> (c/‘()

with B = ﬁalba*ﬁo is an inverse to f. We see that X(u,b)i (k) is cut out from X(b)(k) =
G(Qp)/QK (Zp) by the condition that 81 € Uy eadm({u})x HKkk (W)(k), in other words, that

,361[90'*,3() € U Gk (Zp)wgk (Zp)/gk (Zp)
weAdm({u})

This is precisely the condition cutting out X (u, b)x C G(Qp)/QK (Zp), and so we are done. O

From now on, we will write X (u, b)x for X(p, D) by abuse of notation. It follows from [HV 18,
Lemma 1.1] and [ZZ20, Corollary 2.5.3] that X (u, b)k is actually a perfect scheme that is perfectly

locally of finite type.
If b’ is o-conjugate to b, that is, if b’ = g"'bo(g) with g € G(Qp), then X (u, b)x ~ X(u,b")k via
the map
& - g o& - g
| |
o*Bo 1By :0'(8)0*,30 :gﬁo
+ + + +

o0 _ by g0, o0 _ by g0,

We note that this map is nothing more than the action of g € LG (k) on X (u, b)x € Grg via the natural
left action of LG on Grg. For b’ = b, this induces an action of the closed subgroup F, € LG on
X (u, b)k, where Fy, is defined as the subfunctor of LG sending a perfect F,-algebra R to the group

Fy(R) ={g € LG(R) | g"'b(g) = b}.

The k-points of F;, are in bijection with J;(Q,), where Jj, is the algebraic group over Q,, introduced in
Section 2.4.3. Recall the notion of a pro-étale cover of a scheme (see [BS15, Definition 1.2]).

Lemma 2.4.6. Consider the morphism ©y, : X (u, b)x — Shtg g (u},|p], Which sends a diagram as in
(2.4.1) to (&1, B1). This morphism is Fp-invariant for the trivial action on the target and induces an
isomorphism of groupoids

Shtg x,(uy. 1] = [Fo\X (1, D)k ],

where the quotient stack is taken in the pro-étale topology. Moreover, Fy, is isomorphic to the locally
profinite group scheme Ji,(Q,) associated to the topological group Jp(Q)).*

“4For a topological group B, we define B as the functor on Affl,ierf sending R to the group of continuous functions | Spec R| — B,

where | Spec R| is the underlying topological space of Spec R. When B is profinite, this is representable in an affine group scheme,
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Proof. The morphism @, is Fp-invariant, since the action of F;, on X (u, b)kx does not change (€1, B81).
For a scheme T+ Shtg g (u},[p], the set X(u, b)x (T) is the set of quasi-isogenies from (&, B1) to
(Sg, br), which is either empty or has a simply transitive action of the group F(T) of self quasi-
isogenies of (50, br). In other words, we have shown that ®; is a pseudo-torsor for Fp. By [FS21,
Theorem 1.2.1], for any Gk -shtuka (€1, 81) € Shtg k [5](T), the pseudo-torsor of quasi-isogenies to
(52, br) has a section pro-étale locally on 7. Thus, we find that map ©, is a pro-étale torsor for Fj,. In
other words, there is an isomorphism

Shtg x (u), (] = [Fp\X (1, b)k] .

It also follows from [FS21, Theorem 1.2.1] that F}, is isomorphic to the locally profinite group scheme
J»(Q)p) associated to J, (Q)). |

Corollary 2.4.7. The stack Shtg i (u},[»] Is nonempty if and only if [b] € B(G, {u}).

Proof. This is a direct consequence of Lemma 2.4.6 in combination with the analogous result for
X(u, b)k (Fpp), which is [He16, Theorem 1.1]. |

3. Uniformisation of isogeny classes

In this section, we will recall the construction of the Kisin—Pappas integral models of Shimura varieties
of Hodge type with parahoric level structure and recall the construction of Hamacher—Kim [HK19]
of shtukas on the perfections of their special fibres. We also discuss the change-of-parahoric maps
constructed by Zhou in [Zho20], and show that the shtukas of Hamacher—Kim are compatible with these
maps using results of [PR21].

We then recall the results from Appendix A about the existence of CM lifts for Shimura varieties with
very special parahoric level and use that to deduce the existence of CM lifts for arbitrary parahorics.
Next, we study how uniformisation ‘lifts’ along the change-of-parahoric maps. Concretely, we will show
that uniformisation of isogeny classes at Iwahori level follows from uniformisation at a very special
level if a certain diagram of stacks on Aﬂ'iert is Cartesian.

3.1. Integral models of Shimura varieties

We recall the construction of the integral models of Shimura varieties of Hodge type in [KP18]. Let
(G, X) be a Shimura datum with reflex field E, and let {1, } be the G (C)-conjugacy class of cocharacters
of G¢ defined in [Zho20, Section 6]. Let A denote the ring of finite adeles and A? the subring of

Ay with trivial p-component. Let U, ¢ G(Q,) and U? C G(A?) be compact open subgroups, write
U =UPU,. Then for U? sufficiently small

GQ\X X G(Ap)/U

has the structure of an algebraic variety over C, which has a canonical model Shy; (G, X) over the reflex
field E of (G, X). We will also consider the projective limits (which exist by [Sta23, Tag 01YX] since
the transition maps are finite étale and the schemes are qcqs)

ShUp (G,X) = yEIShUDUp(G,X)
ur
Sh(G, X) := %nShU(G,X).

and thus when B is locally profinite, it is representable in a group scheme.
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3.1.1.

Let V be a vector space over Q of dimension 2g equipped with a perfect alternating bilinear form .
For a Q-algebra R, we write Vg = V ®q R. Let Gy denote the corresponding group of symplectic
similitudes, and let Hy denote the set of homomorphisms # : S — Gy gr corresponding to the Siegel
upper and lower half space, where S := Resc/r Gy, is the Deligne torus. For the rest of this section, we
fix an embedding of Shimura data ¢ : (G, X) — (Gv, Hy). We sometimes write G for Gg, when there
is no risk of confusion. We will also assume for the rest of this section that the following conditions hold

G splits over a tamely ramified extension of Q,, and p 1 |7} (G9N)].

Let G be a connected parahoric subgroup of G, thatis, G = G = G} for some x € B(G,Q,,) (see Section
2.2.1). We will follow the notation of Section 2 to write G = Gk for some o-stable type K C S. By
[KP18, Section 2.3.15], after replacing ¢ by another symplectic embedding, there is a closed immersion
Gk — P, where P is a parahoric group scheme of Gy corresponding to the stabiliser of a lattice
Vz, < V. Upon scaling Vz,, we may assume VZY,, cVz,. This induces a closed immersion (see [KP18,
Proposition 2.3.7]) of local models

loc loc
MgK,X - MP,?-LV ® Of.y

for every place v of E above p. Here, the local models are as introduced in [KP18, Section 2.1].

3.1.2.

Let U"; c Gy (A;) be a sufficiently small compact open subgroup. Let Vz,, = Vz, NV and write
Gz, for the Zariski closure of G in GL(VZ(p)), then Gz, ®z,, Zp = Gk . The choice of Vz,, gives
rise to a compact open subgroup Uy , C Gy (Q,) which gives the Shimura variety Shy,, (Gv, Hvy)
of level Uy = U“; Uv ,p an interpretation as a moduli space of (weakly polarised) abelian varieties up
to prime-to-p isogeny, and hence an integral model 8y, (Gv,Hy) over Z,), which is described in
[Zho20, Section 6.3].

3.1.3.
For the rest of this paper, we fix an algebraic closure Q of E, and for each place v of Q, an algebraic
closure Q, together with an embedding Q — Q, . Using these embeddings, we get a G(Q,,)-conjugacy
class of cocharacter {uy,} induced from the Hodge cocharacter associated to X.

By [Kis10, Lemma 2.1.2], we can choose U, such that ¢ induces a closed immersion

Shy (G, X) — Shy, (Gv,Hv)E

defined over E. The choice of embedding £ — @p determines a place v of E. Write Of () for the
localisation of Of at v, let E,, be the completion of E at v and OF ,, the ring of integers of E,. We
assume the residue field has g = p” elements and, as before, k will denote an algebraic closure of F,,.
We define Sy (G, X)™ to be the Zariski closure of Shy (G, X) inside Sy, (Gv, Hv) ®z,) OF (v, and
Sv (G, X) to be its normalisation. By construction, for U f C U; compact open subgroups of G(A? ),
there are finite étale transition maps ‘SUI”U,, (G, X) — SUZPUP(G,X), and we write Sy, (G, X) :=
l(iLnUp Suru, (G, X). Under these assumptions, we have the following result:

Theorem 3.1.4 ([KP18] Theorems 4.2.2, 4.2.7). The Og(y) scheme Sy, (G, X) is a flat G(A?)-
equivariant extension of Shy , (G, X). Moreover, Sy (G, X)o,.,, fits in a local model diagram

cg;U(G,X)OE,‘, ,
Ve
q
Su (G, X)og., MgS

where q is a G -torsor and t is smooth of relative dimension Dim G.
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Note that the main result of [Pap22] tells us that the integral model $y (G, X) does not depend on
the choice of Hodge embedding.

3.1.5.

By [Kis10, Proposition 1.3.2], the subgroup Gz, is the stabiliser of a collection of tensors s € Vzm for
aed. Leth: A— Sy(G,X) denote the pullback of the universal abelian variety on Sy, (Gy, Hy ),
and let Vg := R! han+Z(p), Where hy, is the map of complex analytic spaces associated to 4. We also let
VY = R'h,Q°* be the relative de Rham cohomology of A. Using the de Rham isomorphism, the tensors
s give rise to a collection of Hodge cycles s 4r € Vg’ , where V¢ is the complex analytic vector bundle
associated to V. By [Kis10, Section 2.2], these tensors are defined over E, and, in fact, over Og (,) by
[KP18, Proposition 4.2.6].

Similarly, for a finite prime ¢ # p, we let V; = R'h¢.Qp and V), = R'hy; 41,25, where h, is the
generic fibre of h. Using the étale-Betti comparison isomorphism, we obtain tensors s, ¢ € Vti@ and
Sa,p € fo’. For* = B,dR, tandx € Syry, (G, X)(T) for some O (,)-scheme T, we write s 4, for the
pullback of 54, to 7' via x. Similarly, the image of x under Syru, (G, X) — Su, (Gv, Hv) &z, OF (v
gives us a weakly polarised abelian variety up to prime-to-p isogeny (Ay, 1). Over Sy, (G, X), there is
a canonical isomorphism of pro-étale A? -local systems

NV S VAl (3.1.1)

which takes IQ,A; tot, ® 1 forall @ € & (see [KSZ21, Lemma 5.1.9]).

3.1.6.

Recall that Fp is an algebraic closure of F, and Qp = W(Fp)[l/p]. Let x € oS’U(G,X)(Fp) and
X € VOS)U (G, g( )(OL) apoint lifting x, where L/ Q p is a finite extension. Let us write ¢ for the Frobenius
onQp, and Z,,.

Let &, denote the p-divisible group associated to A, and &, o its special fibre. Then T,,?; is
identified with H;[(AX,ZP), and we obtain I'g-invariant tensors s, ¢« € T, %" ®, whose stabiliser
can be identified with Gg. Let D, := D(&y ) be the contravariant Dieudonné module associated to
the p-divisible group &, 0. We may apply the constructions of [Zho20, Section 3] to obtain ¢-invariant

tensors s4.0,x € Dy, whose stabiliser group can be identified with G ®z, Lp-

This means that we can upgrade the Dieudonné module of A, to a G -shtuka over Fp, and this gives
a map (see [Zho20, Proof of Axiom 4 in Section 8])

Su(G, X)(Fp) — Sht k. ) (Fp), (3.1.2)

where {u} = {o-(,u;ll)}. It is a result of Hamacher—Kim ([HK19, Proposition 1], see [SYZ21,

Proposition 4.4.1]) that there is a morphism Shg x y» — Shtg g, () inducing (3.1.2) on Fl,-points,
where Shg k ur is the perfection of the basechange to k of Sy (G, X)."> It follows from [PR21,
Theorem 1.3.4]'¢ that this morphism does not depend on the choice of Hodge embedding and, more-
over, can be upgraded to a G(A? )-equivariant morphism

Shg .k = yLnShG,K,U" — ShtG,K,{y},
up

where G(A?) acts trivially on Shtg k  (4}-

15The subscript K is used to signify the choice of o--stable type K C S corresponding to the parahoric subgroup U),.

16Pappas and Rapoport construct a local shtuka bounded by {u} over the diamond associated to the formal completion of
Su (G, X) and prove uniqueness and functoriality for this object. By [PR21, Example 2.4.9], this induces a Gk -shtuka over the
perfect special fibre of 8§t/ (G, X), which is of type {u} by the discussion in [PR21, Section 2.4.3] (cf. [DvHKZ24, Lemma
3.1.7]). The Gk -shtuka constructed this way, moreover, agrees with the one constructed by [SYZ21], this is spelled out in
[DvHKZ24, Section 5.3].
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It follows from [SYZ21, the discussion after Theorem 4.4.3] that the perfection of the special fibre of

M g’z « can be identified with the closed subscheme Mllgc ) of the affine flag variety for Gk introduced

in Section 2.2.15. Under this isomorphism, the right action of L*Gg on M

K. {u}
Gk, is identified with the Gx action'” on the perfection of MIC‘;’CK - Thus, the local model diagram of
Theorem 3.1.4 gives us a (perfectly smooth) morphism

which factors through

Ak : Shg.xk.ur — [MII(;C’{#}/EK]-

3.1.7.

Fix n > 2, and choose m > 0, such that the action Ad, L*Gx on Mllgc’{'jl}

and such that m satisfies the assumptions of Proposition 2.3.4. Let Shtg"kl) () be the stack of
(m,n),loc
t

(m)-restricted shtukas of type {u} from Section 2.3 and also consider the stack Sht; ()
Section 2.3.10. If we compose the morphism Shg x yr — Shtg k() constructed above with the
(m,1)
G.K.{u}’

factors through L™Gg

from

natural map Shtg x () — Sht we obtain a morphism

(m,1)

ShG,K,UP - ShtG,K,{y} .

By [SYZ21, Theorem 4.4.3], the perfectly smooth map Ak : Shg k,ur — [MllgC m /§K] induced from
the local model diagram fits in a commutative diagram

ShG,K,Up _ Shtg’?};?{”}

K

[Mﬁf{ﬂ}/gK],

where Shtg}l? w [MllgC () /Gk ] comes from the diagram in Remark 2.3.2. The map Shg.k.ur —

Sht(Gmkl) ) is perfectly smooth by [Hof23, Corollary 2.57]. Recall, moreover, that there is a natural map
(m,n),loc
t

Shtg,k,{u} — Sht; () which induces a map Shg x y» — Sht
by [Hof23, Corollary 2.57].

(m,n),loc

G.K {u)® this is also perfectly smooth

Remark 3.1.8. The perfect smoothness results discussed above are also claimed in [SYZ21, Theorem
4.4.3] and [XZ17, Proposition 7.2.4] (the latter in the hyperspecial case). It has been pointed out to
us by Hoff and Zhu that the proof of [XZ17, Proposition 7.2.4] is not correct as written; the square in

[XZ17, top of page 113] does not commute. The same error seems to be present in the proof of [SYZ21,
Theorem 4.4.3] (see also the erratum [SYZ24], where a different fix is presented).

We can use the perfectly smooth map Shg x yr — Shtgn}{l) o O define the EKOR stratification
on Shg x.u»r (see Section 2.3.11). In particular, for w € KAdm({u}), we will write Shg k ,ur{w} for
the locally closed EKOR stratum of Shg x vr. Since Shg k. yr — She(™:!

G.K () is perfectly smooth and
thus open, we find that the closure of Shg x yr{w} is given by

Shg k. ur{= w} = U Shg k. ur{w’}

w’w

(m.1)

because the closure relations hold on Sh G.K.(u}"

"Here, we are writing ?K for the perfection of the special fibre of Gk , by abuse of notation.
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3.1.9. Isogeny classes

Let x € Shg.k.ur (R,), then attached to x is an abelian variety 4, over F,,. We write D, for the
contravariant Dieudonné module associated to the p-divisible group &y of A,; then D, is equipped
with a corresponding set of tensors s4,0,x (see Section 3.1.6). Similarly, for £ # p, the rational £-adic
Tate module VA, is equipped with tensors sq ¢ x.

Two points x,x” € Shg k (Fl,) are said to lie in the same isogeny class if there exists a quasi-isogeny
A, — Ay, such that the induced maps D,[1/p] — Dy [1/p] and V. Ay — Vi A ® send 54,0, tO
Sa.0x and Sq ¢ x t0 Sq ¢y forall £ # p. We write 7, C Shg x (Fp) for the isogeny class of x.

For x € Shg k (Fp), we let 7, denote the reductive Q-group associated to x as in [Zho20, Section
9.2]; it is a subgroup of the algebraic group of self quasi-isogenies of the abelian variety A,. It comes
equipped with a natural map 7, Az = G A coming from the tautological basis of the prime-to-p adelic

Tate-module of A, given by (3.1.1). If we choose an isomorphism @ : D, ~ Vz, ®z, Zp sending s4.0.x

to so ® 1, under which the Frobenius of D, corresponds to b € G(Qp), then there is also an induced
map Iy g, — Jp- Note that an isomorphism « as above always exists, by [Zho20, Section 5.6].

3.1.10. Change of parahoric

Now let J C K be another o-stable type, let G;(Z),) =: U, ¢ U, and let U’ = UPU,. Note that G, is
a connected parahoric since Gk is (see Lemma 2.2.4). We will use Shg 7 yr to denote the perfection
of the special fibre of Sy (G, X). By [Zho20, Theorem 7.1], there is a (necessarily unique) proper
morphism 7 g : Sy (G, X) — Sy (G, X) which induces the obvious forgetful morphism on generic
fibres and induces a G(A? )-equivariant map

lim §y+(G, X) = lim 8y (G, X).
up ur

‘We now recall some aspects of the construction of the forgetful map from [Zho20, Section 7.2], which
we will need to compare isogeny classes in the source and target. There are facets {, f’ of the extended
Bruhat-Tits building B(G, Q),) of Gg,,, such that U, is the stabiliser of f and such that U}, is the stabiliser
of §’. Fix a choice of embedding 6 : B(G,Q,) — B(Gv,Q)) as in [KP18, Section 1.2], compatible
with G — Gy . Choose facets g, g’ containing 6(f) and 6(f’), respectively, and we let M, € Gy (Qp)
be the stabiliser of g and M|, € Gy (Q)) be the stabiliser of g’. As in [Zho20, Section 8.1], the facets
g, g’ correspond to lattice chains £ and £’ in Va,» respectively, with £ a refinement’® of £; note that
[Zho20] writes L’ for what we call £ and vice versa.

Then for sufficiently small MP < Gy (A? ), there are moduli-theoretic integral models
<§’MpM;) (Gy,Hy) and <§’M/>MP(GV,7-LV) over Zpy. The former is a moduli space of L’-chains of
(weakly polarised) abelian varieties up to prime-to-p isogeny with M? level structure, as explained
in [Zho20, Proof of Axiom 1 in Section 8], and the latter is a moduli space of L-chains of (weakly
polarised) abelian varieties up to prime-to-p isogeny with M? level structure. There is a natural proper
forgetful map

neet Smrmy, (Gv, Hy) = Surm, (Gv, Hy),

which sends an £’-chain of abelian varieties to the underlying £-chain of abelian varieties.

Taking the direct sum of the lattices in the lattice chain £ (respectively, L), we get a symplectic
space V (respectively, V) and a lattice Vez, (respectively, Vg,zp) inVeq, (respectively, Vg,Qp).
Let us denote the stabiliser of V. 7, (respectively, Vr z,) in Gy, (Q)) (respectively, Gy, (Qp)) by J),
(respectively, J,).

18This means that £ and £’ are chains of lattices in Vg » and that every lattice in £ is also contained in L.
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Then there are Hodge embeddings (Gv,Hy) — (Gv,,Hy,) and (Gv,Hyv) — (Gv,Hv,),
which take M), to J,, and M}, to J,, respectively. These induce finite maps

Surmy (Gv.Hv) = Sy (Gyys Hy,), Smrm,(Gv,Hy) = Siry, (G, Hy,)

for some J” C Gy, (A?) and J'P C Gv,, (A?) sufficiently small, which take an £’-set (respectively,
L-set) of abelian varieties to the product of all the abelian varieties in the £’-set (respectively, the L-set),
equipped with the product polarisation and level structure. It is explained in [Zho20, Equation 8.1 of
Section 8] that our forgetful maps fit in a commutative diagram where all the horizontal maps are finite

Su (G, X) —— Smrmy (G, Hv) ® O () —— Sypy (GvyHv,) © Ok ()

lm.K lnw (3.1.3)

Su(G,X) —— Smrm,(Gv,Hy) ® O vy —— Syry,(Gv., Hv,) ® O, (v)-

3.1.11. Change of parahoric and isogeny classes
We set Shg,; = liLnUp Shg.jur, and we let 7 : Shg,; — Shg k denote the G(A?)-equivariant

map induced by m; x. We now define'® isogeny classes in Shg s (Fp) using the Hodge embedding
(G,X) = (Gy, Hv,,), as in Section 3.1.9. Similarly, we define isogeny classes in Shg x (Fp) using
the Hodge embedding (G, X) — (Gy,,Hy,). For this, we choose tensors sg € V& » cutting out

g‘],Z(l)) and tensors s, € Vf » cutting out gK,z(,,)-
By [Zho20, Proposition 7.7], the forgetful map is compatible with isogeny classes in the sense that
forx € Shg s (Fp,), we have  (F) C Fr(x). We will need the following (straightforward) refinement.

Proposition 3.1.12. Let 7,y € Shg s (F,,) with the same image x € Shg k (ﬁp) Then z and y lie in the
same isogeny class. In particular, 5, = 171 (%).

Proof. The points z, y correspond to L’-sets of abelian varieties

((Alv/ll’ nl) - (A29/l2, 772) s (Ar’/lr»nr))
((Bh/ll,nl) - (BZ,/IZ,UZ) e (Br’/lranr))’

such that the induced chains

((Ai, A, miy) = (A, Ay, miy) — - = (A4, i, 1iy)
((Bil,/li19ni1) - (Bizs/lizs niz) — (Bl'.w/ll's’ nis))

are isomorphic. There are unique quasi-isogenies A; — B; for all i = 1,--- ,r that extend the given
isomorphisms Ay; ~ By, for j = 1,---, s, and we would like to argue that the resulting quasi-isogeny

g: ﬁAi - ]L[Bi
i=1 i=1

is tensor preserving. By the discussion in Section 5.6 of [Zho20], we can choose isomorphisms

D
i=1
D
i=1

9This definition depends on the choice of Hodge embedding, at least a priori.

®Z, = (PD(A(P™])
i=1

®Z, = (PDBip™)
i=1

https://doi.org/10.1017/fmp.2024.22 Published online by Cambridge University Press


https://doi.org/10.1017/fmp.2024.22

Forum of Mathematics, Pi 31

taking 73 ® 1 to 18,0, and g o, y, respectively. There are induced isomorphisms
S
D,
i=1
A
P As
i=1

taking s, ® 1 t0 54,0,x. The isomorphism f : Hle A, — Hle By, coming from the equality
n(z) = x = m(y) is clearly tensor preserving. If we use the bases from (3.1.4), then this means that the
induced automorphism

®Z, = @D(Ai[p”]) (3.1.4)
i=1

©%, =~ DB
i=1

D(f) € GL Asip

1

N

4

lies in Gz, (Zp). This observation in combination with the following commutative diagram

Gip — GL (@::1 Aip)

| l

Gz, — GL (EB;:I ASi,p)

shows that the automorphism induced by g lands in Gz, (Z,,). But this means that D(g) € G’Zp (Qp) =

Gz, (Qp), and, therefore, g is tensor preserving. A similar argument shows that g preserves the tensors

for £ # p. )
We will also need the following lemma.

Lemma 3.1.13. The following diagram commutes:

Shg.jur — ShtG"]’{ﬂ}

l l

Shg xk.ur — ShtG’K,{ﬂ}.

Proof. This is a consequence of [PR21, Corollary 4.3.2] (see Footnote 16). O

3.2. CM Lifts

In this section, we will prove a corollary of Theorem A.4.5, which is a slight generalisation of Theorem 1.

3.2.1.

Recall that a special point datum for (G, X) is a triple (T, h, i), where (T, h) is a Shimura datum with T a
torus, and where i : (T, h) — (G, X) is an embedding of Shimura data, such that i(T') is a maximal torus.
Associated to a special point datum s = (T, h,i) is a Q,,-point x5 of Sh(G, X) (see [KSZ21, Section
5.7.1]). Itis explained in loc. cit. that for any parahoric U, € G(Q)), its projection to Shy,, (G, X) (@p)
extends to a Zp point of Sy, (G, X). A special point of Sh(G, X) (@p) is a point that lies in the G (A s )-
orbit of x4 for some special point datum s. For any choice of parahoric U, ¢ G(Q),,), the projection of a
special point to Shy, (G, X) (Q ) extends (uniquely) to a Zp point of Sy, (G, X). The mod p reductions
of these extensions define points of Shg g (FP) that we call reductions of special points.
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3.2.2.
Recall the notion of a very special parahoric from Section 2.2.5.

Corollary 3.2.3. Let U}, ¢ G(Qp) be an arbitrary connected parahoric, and suppose that there is a
connected Iwahori subgroup U] contained in U, and a connected very special parahoric subgroup U,

containing Uy. Then each isogeny class of Su, (G, X) (Fp) contains a point x which is the reduction of
a special point.

Proof. Choose a connected Iwahori subgroup U, € U, and a connected very special parahoric sub-
group U, D U] as in the assumptions of the theorem. We first prove the theorem for Sy (G, X).

Let z € SU;;(G,X)(F,,), and let x be its image in Sy, (G,X)(Fp). Then the isogeny class .7
contains the reduction of a special point P € Sy, (G, X) (@p) by Theorem A.4.5. By definition, any lift
P” € Sy (G, X) (@p) is also special. Thus, we find that the inverse image of .7, under

Suy(G, X)(Fp) = Su, (G, X)(Ep)

contains the reduction of a special point. But by Proposition 3.1.12, this inverse image is equal to .%;, and
so every isogeny class in Sy (G, X)(Fp) contains the reduction of a special point. A similar argument

shows that every isogeny class in Sy, (G,X) (Fp) contains the reduction of a special point. O

3.3. Lifting uniformisation

From now on, we let K C S be a o-stable type corresponding to a connected very special parahoric. We
letUp = Gk (Z)) and U}, = Go(Z,); note that U, is a connected parahoric subgroup by Lemma 2.2.4.
In this case, the commutative diagram from Lemma 3.1.13 is

Shg,0.ur —— ShtG’@’{M}

l l (3.3.1)

Shg kur — ShtG’K,{’u} .

The goal of this section is to prove the following result. Let x € Shg ¢ (ﬁp), and choose an isomorphism
D, =~ Vz, ®z, Z,, sending sq,,0,x t0 5o ® 1. Let b € G(Qp) be the element corresponding to the
Frobenius of D, under this isomorphism.

Theorem 3.3.1. If for every sufficiently small compact open subgroup UP the diagram (3.3.1) is
Cartesian, then for z € Su, (G, X)(F,) with associated element b € G(Q)), there is a G(A?)-
equivariant bijection

L(Q\X (1, b)o(Fp) X G(AT) — 7.

3.3.2.
Let z € Sy, (G, X) (Fp) with image x € Sy, (G, X) (Fp), and let b € G(Qp) be as in the statement of
Theorem A.4.5. Then Theorem A.4.5 gives us a map of sets

G(AR) x X(u, b (Fy) = s,

and Lemma 2.4.6 gives us a map of stacks Oy, : X(u, b)x — Shtg g {u}.[5]-

Lemma 3.3.3. The following diagram of groupoids commutes

G(AD) X X (u, bk (Fp) —— X (. b) (F)

| b
Iy ——————— ShtG k. (u).16] (Fp).
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Proof. This follows from the compatibility of the uniformisation map with the ‘joint stratification’

Shg k,ur(Fp) — Shtg k (4} (F)) (as discussed in the proof of Axiom 4(b) in Section 8 of [Zho20]). O
We have the following corollary of Lemma 3.3.3.

Corollary 3.3.4. Let & be the inverse image in ShG,@(FP) of Fx C Shg .k (Fp). If the assumption of
Theorem 3.3.1 holds, then there is a G(A? )-equivariant bijection

Zy = L(Q\X (1, b)o(Fp) x G(AT).

Proof. Taking the inverse limit over U” of the Cartesian diagram of (3.3.1), we get the following
G(A? )-equivariant Cartesian diagram of groupoids

L — ShtG o, () (Fp)

l l (3.3.2)

T — Shtg k() (Fp).

Theorem A.4.5 gives us a bijection I, (Q)\X (u, b)x (Fp) X G(A?) — J,. Lemmas 2.4.6 and 3.3.3 tell
us that we can identify (3.3.2) with ‘

X (1,0 (F)
Zx ? [ 7@ ]

| |

L@\X (s, bk (Fp) x G(aT) —— [XueCal)

such that the bottom map is induced by the projection map X (u, b)x (Fp) X G(AJ’@) — X(u,b)x (Fp)

and the right vertical map is induced by the natural map X (u, b)@(Fp) — X(u,b)x (Fp). But now it is
clear that there is a G(A? )-equivariant bijection

P = 1(Q\X (1. b)o(Fy) X G(AD). 3

Proof of Theorem 3.3.1. The theorem is a direct consequence of Corollary 3.3.4, which proves uni-
formisation for &y, and Proposition 3.1.12, which proves that &, = .7,. O

3.4. Uniformisation and connected components

Define G(Q); = G(Q) N G(R),, with G(R), the inverse image of the identity component (in the real
topology) of G*(R) under the natural map G(R) — G*(R). Let p : G** — G be the simply
connected cover of the derived subgroup of G; we will sometimes conflate groups like G*°(Q) and
G*¢ (A?) with their images under p by abuse of notation. Consider the profinite topological space

7(G) = 1im G(QAG (Ay) [UPU.
ur

We have p(G*(Q)) c G(Q), since G*(R) is connected, and strong approximation for G away from
oo, see [PR94, Theorem 7.12], tells us that the closure of p(G*(Q)) in G(Af) contains p(G*(Ay)).
Moreover, the subset G(Q),p(G*(Ay)) is closed in G (A ) since (G, X) is of Hodge type (see [Del79,
Section 2.0.15]). This means that G(Q).\G(Ar)/p(G*(Ay)) is Hausdorff. Thus, the natural action
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of U}, on it has compact stabilisers and compact orbits, since U, is compact. We can therefore deduce
from [Mil05, Lemma 4.20] that the natural map

G(Ay)

G(Q)+\p(GSC—(Af))

/U, = n(G)

. . . . . G(Ayr) .
is a homeomorphism. We see that 7(G) is an abelian group, since (G (4,)) 18-

3.4.1.
By Lemma 3.4.2 below, we may make the identification

G(A;ﬁ)
7(G)=G 1 (G)] X —————1.
()= 6@ O * Sz
In particular, there is a natural surjective group homomorphism 71 (G);” x G(A?) — 1(G).

Lemma 3.4.2. Let G be a connected reductive group over Q, that splits over a tamely ramified extension,
and let G be a parahoric group scheme for G. Then there is a natural isomorphism

6@ o,
p(G(Q,) 6z, M@

Proof. Recall that we have the surjective Kottwitz homomorphism kg : G(Q p) — m1(G); with kernel
given by p(GSC(Qp)) . T(Zp) = p(GSC(Qp)) . Q(ZD) (see [PROS, Lemma 17 of the appendix]), where
T is the connected Néron model of a standard torus 7 of G. Recall, moreover, that IEG restricts to a
surjective map Kg,0 : G(Qp) — m1(G);” by [Kot97, Section 7.7]. Thus, when G = T is a torus, we have
a short exact sequence

0— T(Zp) — T(Qp) — m(G); — 0,

that remains exact upon taking o-invariants, proving the lemma for tori. If G%" is simply connected,
then there is a canonical identification 7; (G) = 7; (G®), where G® is the maximal abelian quotient of
G. We can consider the morphism of short exact sequences

1 — G*1(Q,) — G(Q,) — G*(Q,) —> 1

l l l

| ——— m(G)F — m(G®)7 — 1.

The lemma now follows from the well-known fact (see, e.g.[VanHX24, Proposition 2.6.2]) that the
image of G(Z,) in Gab(Qp) is equal to D(Z,,), where D is the connected Néron model of G=.

For general G, choose a z-extension | —» Z — G — G — 1 in the sense of [KP23, Section 11.4].
Then it follows from [KP23, Proposition 11.5.3] that ker Kg.0 — Ko,0 s surjective. Choosing a parahoric
model G of G together with a morphism G — G, see [KP18, Section 1.1.3], we see that it suffices to
show that G(Zp) — G(Zp) is surjective. For this, we note that by [KP18, Proposition 1.1.4], there is a
short exact sequence of group schemes over Z,, (here, we use the tameness assumption)

152565061,

where Z has smooth connected special fibre. The surjectivity of G (Zp) — G(Z,) now follows from
Lang’s lemma. O
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34.3.
Define (cf. [Del79, Section 2.1.3])

7(G, X) = lim70(Shy (G, X)z) = lim G(Q)\ (w0(X) X G(As)/UPU,).
upr upr

This is a quotient (Where now the inverse limit runs over all compact open subgroups U € G(Af))

lim G(Q)\ (mo(X) X G(A)/U),
U

on which G (A ) acts through the abelian group G(Ar)/p(G*(Ay)), again by strong approximation
for G away from infinity. By the discussion above, this induces an action of G(A?) x m1(G);” on
(G, X), which makes it into a torsor for 7(G) (see [KSZ21, Section 5.5.4]).

Recall that U, is a very special parahoric, which implies that the integral model Syry, (G, X) has
normal special fibre (see [KP18, Corollary 4.6.26]). Then [MP19, Corollary 4.1.11] tells us that for all
choices of U?, for each finite extension F of the reflex field E and any place w of F extending v, the
natural maps

no(Shyru, (G, X) ®¢ F) — no(Suru, (G, X) ®or ), OF.(w)) < m0o(Sh kx,ur ®k(w))

are isomorphisms. Thus, there is a natural G(Ai)-equivariant isomorphism 7o(Shg.x) — 7(G, X),
which turns 7o (Shg k) into a torsor for 7(G) and equips it with an action of G(A?) x 1 (G)[.

3.44.

As before Gk denotes a connected very special parahoric group scheme. Let x € Shg x (Fp) and
b € G(Qp) be the associated element that is well-defined up to Gk (Z,)-conjugacy. The Kottwitz
homomorphism induces a natural map of perfect schemes

k: X(u,b)k — Grg — no(Grg) = m1(G)y,

with image cp),, + 11(G); C 71(G); (see [HZ20, Lemma 6.1]). As in [Zho20, Section 6.7], we have

1€ X(u, bk (ﬁp), which implies that the coset ¢, , +71(G);” contains 1 and is thus equal to 711 (G);.
In particular, the map « takes values in 71 (G);”. Theorem A.4.5 gives us a G(A? )-equivariant map of
sets

ix o X(u, bk (Fp) X G(Af) — Shg k (Fp),

sending (1, 1) to x.

Proposition 3.4.5. Consider the composition X (u, b)k (Fp) X G(A?) — Shg x (Fp) — mo(Shg. k) =
(G, X), and let x be the image of x in n(G, X). Then the image of (y, g?) in n(G, X) is given by

(x(y).8") - x.
where - denotes the natural action of m1(G); X G(A?) on (G, X) constructed above.

Proof. By the G(A?)—equivariance of the map i,, it suffices to prove the theorem for g” = 1 or for

the map X (u, b)x (Fp) — ShG,K(FP). The map X (u, b)k (F,,) — Shg .k (ﬁp) upgrades to a map of
perfect schemes X (1, b)x — Shg k by the proof of [HZZ21, Proposition 5.2.2]. Therefore, the image
of y € X(u,b)x (Fp) in 7(G, X) only depends on the connected component that y lies in. Thus, the
result is true for a union of connected components X (u, b)g- of X (u, b)kx . Moreover, the result is clearly
true for y = 1.
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Now we follow the proof of Proposition A.4.3 and freely use the notation from that proof: Let
M c Ggq, be the standard Levi subgroup given by the centraliser of the Newton cocharacter vj. By
Theorem A.1.3, there exists A € I, ;, a7 and an element

g€ X(u,b)g N XM(A,b)y.

We may then replace x by i,(g) to assume that b € M (QP) and, furthermore, that b = 7,, where
Ty € Qyy corresponds to kps (b) € m (M);.

Arguing as in the proof of A 4.3, we can find a finite extension L of Q p and choose an (M, u)-adapted
lifting €/Or of €, (cf. [Zho20, Definition 4.6]), which corresponds to a point X € Sy, (G, X)(OL).
The construction in [Zho20, Proposition 5.14] gives us a map

L M(Qp)/M(Zp) - XM(/L b)KM’

whose composition with XM (1, b)k,, — X (u, b)k fits into the following commutative diagram

M(Q,) > X(u,b)k (F))

o~

m(G)7,

where the left diagonal map is the composition M (Q,) — G(Qp,) — 71(G); . Choose a lift of X to
a point z € Sh(G, X)(C), where C is an algebraic closure of Qp. Then, by construction, the map ¢ fits
into the following diagram (compare with the diagram in [Kis17, Corollary 1.4.12])

M(Qp) — Su, (G, X)(Oc)

l !

X(u, bk (Fp) — Shg .k (Fp)

Here, the top horizontal map is given by the (Hecke) action of M(Q,) € G(Q,) on z € Sh(G, X)(C)
followed by projection back to Sy, (C), extending to Sy, (G, X)(Oc) and reducing mod p. We see
that elements g € X(u, b)x (Fp) in the image of M(Qp,) — X(u,b)x (Fp) satisfy the conclusion of
the proposition. Moreover, this means that the result holds for all points g € X (u, b)x (F,,) lying in a
connected component of X (u, b)x intersecting the image of the map M(Q,) — X(u, b)x (Fp). But
the map

M(Qp)/M(Zp) — mo(X™ (A, b)k,,)
is surjective by [Zho20, Proposition 5.19], and, moreover
mo(XM (A, b)k,,) — mo(X (1, b))

is surjective by Theorem A.1.3. Thus, every connected component of X (u, b)k contains a point in the
image of M(Q,) — X(u, b)k (Fp,), and so we are done. O

Corollary 3.4.6. Let 1 € Adm({u}) be the unique element of length zero. Then

Shg,o,ur (1) = 7o(She,x,ur)

is surjective.
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Proof. 1t suffices to prove this for the analogous map Shg ¢(7) — 7m9(Shg k). Since Shg ¢(7) is
contained in the basic locus, we can use [Zho20, Proposition 6.5(i)] to produce for x € Shg ¢(7) a
uniformisation map

X (1, b)o(Fp) X G(AR) — Shg,o,
which, as in [Zho20, proof of Axiom 5], restricts to a map
it X (1, bYo(7)(Fp) X G(AR) = Sha o (1) (Fp).

Moreover, the following diagram commutes (by construction, see [Zho20, Proposition 7.8])

X (i, b)o(7)(Fp) x G(AR) —5 She o(7) (F,)

l l

X (1, b (Fp) X G(A7) —=— She k (Fy),

where z is the image in Shg g of x. Since X (u, b)q)(T)(E,) C X(u, b)@(Fp) is Jp, (Qp)-stable, it follows
that its image in X (u, b)x (Fp) is J5(Qp)-stable. Thus, its image via « in 71(G); is J»(Q))-stable.
Now since b is basic, there is a J, (Q))-equivariant isomorphism 71 (G);” = 71 (Jp);”, and, therefore,
by Lemma 3.4.2, we see that X (u, b)y(7) (FP) surjects onto 71 (G);”. The result now follows from
Proposition 3.4.5 and the fact that 711 (G);” X G(A?) acts transitively on 7o (Shg k). O

Corollary 3.4.7. For w € Adm({u}), the map

Shg,9,ur (W) — m(Shg x,ur)

is surjective.

Proof. By [HR17, Theorem 4.1], this follows from Corollary 3.4.6. ml

4. The Cartesian diagram

Let the notation be as in Section 3, in particular, Gk is a connected very special parahoric group scheme.
Define a sheaf Shg g, y» via the following fibre product diagram

SAhG,(Z),UP — Shtg ¢, {u}

l l (4.0.1)

Shg x,ur — Shtg k., (u) -

In particular, ﬁg,@,yp is Shg y/, « from the Introduction. Proposition 2.2.17 tells us that ﬁg,@,yp is
(representable by) a perfect algebraic space which is perfectly proper over Shg g ur. The universal
property of the fibre product gives us a morphism¢ : Shg g vr — §1\1G,@,Up, and the goal of this section
is to show that ¢ is an isomorphism, under some hypotheses.

In Section 4.1, we will show that ¢ is a closed immersion. In Section 4.2, we will show that §BG,@,U1: is
equidimensional of the same dimension as Shg x ». In Section 4.3, we will show that each irreducible
component of ﬁc,@,up can be moved into Shg 9.iy» using prime-to-p Hecke operators. We prove this
by degenerating to the zero-dimensional KR stratum, which we describe explicitly using Rapoport—Zink
uniformisation of the basic locus.

https://doi.org/10.1017/fmp.2024.22 Published online by Cambridge University Press


https://doi.org/10.1017/fmp.2024.22

38 P. van Hoften

4.1. The natural map is a closed immersion

Because the morphism Shg xk — Shtg g () is G(A?)-equivariant, see [PR21, Theorem 1.3.4], we
can form §EG,0’UP for every choice of prime-to-p level subgroup U”. Then there is an induced action of
G(A?) on ﬁc,m = liLnUp ﬁg,@,up, such that the natural maps Shg g — ﬁc,@ and ﬁc,@ — Shg x
are G(A? )-equivariant.

4.1.1.

Let P, P’ be the parahoric group schemes with P(Z,) = M), and P’(Z;,) = M}, (see Section 3.1.10).
Let Shg, ,p,mr and Shg,, » mr be the perfections of the geometric special fibres of the schemes
(introduced in Section 3.1.10)

Smrm, (Gv,Hv) ®z,, Op,v and Surm,(Gv,Hv) ®z,, OF,v,

respectively. Now consider the following commutative diagram deduced from (3.1.3) (which is com-
mutative by [PR21, Theorem 4.3.1], see Footnote 16)

Shg.o.ur — Shgo.u» > Shtg, o, (4}
Shg,, ,p/,mp > Shtgy 77 (u)
l “4.1.1)
ShG,K,UI’ > ShtG,K,{,u}
Shg,, ,p,mr > Shtg,, P, (u} -

Lemma 4.1.2. The front face of the cube, that is, the square involving Shg,, p' pmr, Shtg, P ()
Shg,, ,p,mr and Shtg,, p (.} is Cartesian.

Proof. The stack Shtg,, p (4 is>° a moduli stack of £’-chains of (polarised) p-divisible groups, and
the stack Shtg,, p (4} is a moduli stack of L-chains of polarised p-divisible groups. The natural map
Shg,, ,p,.mr — Shtg,, pr (4} sends an L'-chain of abelian varieties to the corresponding £’-chain of
p-divisible groups. The map Shg,, »,m» — Shtg, P (4} has a similar description. Moreover, the map
Shtg,, 7/ (uy — Shtg, p (4} sends an L’-chain of (polarised) p-divisible groups to the underlying
L-chain of (polarised) p-divisible groups.

The statement of the lemma now comes down to the following claim: Given an £-chain A~ of (weakly
polarised) abelian varieties, an £’-chain X of (polarised) p-divisible groups and an isomorphism from
A[p®], to the underlying L-chain of X, then there is a unique £’-chain of abelian varieties A
with underlying £-chain given by A, and with p-divisible group A[p™]. = X. This claim follows
from the following simpler claim: Given an abelian variety A and a quasi-isogeny of p-divisible groups
[ A[p™] - X, there is a unique triple (B, @, g) where B is an abelian variety, where  : B[p®] — X
is an isomorphism and g : A --» B is a p-power quasi-isogeny, such that & o g = f. The proof of this
simpler claim is explained in [RZ96, Section 6.13]. O

20To be precise, the stack Shtg,, pr () is a stack of £'-chains of polarised Dieudonné modules. By [Laul8, Theorem 1.2],
for a perfect ring R, there is an equivalence of categories between £’-chains of polarised Dieudonné modules over W (R) and
L’-chains of polarised p-divisible groups over Spec R, which gives the desired description of Shtg,, pr (.} (R).

https://doi.org/10.1017/fmp.2024.22 Published online by Cambridge University Press


https://doi.org/10.1017/fmp.2024.22

Forum of Mathematics, Pi 39

Lemma 4.1.3. The dotted arrow in (4.1.1) exists.

Proof. This is an immediate consequence of Lemma 4.1.2 and the universal property of the fibre
product. O

Proposition 4.1.4. The morphism ¢ : Shg o ur — §EG’@’UF induced by the universal property of
Shg p.ur is a closed immersion.

We start by recalling a lemma.

Lemma 4.1.5. If f : X — Y is a perfectly proper morphism between pfp algebraic spaces over Fp that
is injective on Fp -points, then fis a closed immersion.

Proof. The proof immediately reduces to the case that X and Y are pfp schemes over F p- Then the image
f(X) C Y is closed, and we can consider it as a subscheme with the reduced induced structure. The
natural map f : X — f(X) is a bijection on Fp—points and thus an isomorphism by [BS17, Corollary
6.10]; the result follows. ]

Proof of Proposition 4.1.4. The map ¢ is a morphism of perfect algebraic spaces that are perfectly proper
over Shg k ur, and ¢ is, therefore, perfectly proper.”’ By Lemma 4.1.5, it thus suffices to prove that ¢
induces an injective map on F,-points.

Now [Zho20, Corollary 6.3] tells us that a point x € Shg g.yr (FP) is determined by its image
in Shg, .p/ . m» (Fp) and the tensors in the Dieudonné module of its p-divisible group. The tensors
are determined by the image of x in ShtG,@,{#}(FP). By Lemma 4.1.3, the morphism Shg g.yr —
Shg,, pr.mr factors through §F1G’0’UP and so the image of x in §EG,@,UP (Fp) remembers both the
image of x in Shg,, p/ pmr (Fp) and the image of x in ShtG,@,{M}(F,,); the lemma is proved. O

Lemma 4.1.6. The morphism f : ﬁc,w,up — Shg,, ,p/, mp constructed in Lemma 4.1.3 is finite.

Proof. By the proof of Proposition 4.1.4, there is a commutative diagram

o f
Shg,o,ur —— Shg, P, mr

l‘f l" 4.1.2)

f’
Shg.x,ur — Shg,, ,p.Mmp

with f’ finite. It suffices to show that f is quasi-finite, since its source and target are perfectly proper
over Shg, ,p mr.?? It suffices, moreover, to prove that f has finite fibres on R,-points, by choosing a
finite type deperfection using [XZ17, Proposition A.1.8.(3)] and applying the usual argument to the
deperfection.

Claim 4.1.7. For x € Shg k. ur (F,,) with image y = f”(x), the map

fE ) =X
is injective.
Granting the claim for now, we will finish the proof: To show that f” has finite fibres, we choose

y' € Shg,, pr.Mmp (E,) and set y (y’) = y with inverse images xy, - - - ,x,, € Shg k. u»r (F,,) under f. Then
each element of f~!(y’) maps to x; for some 7, which gives

o= o
i=1

21Here, we are using the cancellation theorem for proper morphisms (see, e.g. [Vak24, Theorem 11.1.1].)
22Indeed, take a deperfection h : Z; — Z, of f with Z; finite type algebraic spaces, which exists by [XZ17, Proposition
A.1.8.(3)]. Then & is proper and quasi-finite, and hence finite, which implies that f is finite.
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But the natural maps f~!(y"); — x~'(») are injective by Claim 4.1.7, and so each f~!(y’); contains at
most one element. This implies that the cardinality of £~'(y’) is bounded by . O

Proof of Claim 4.1.7. To prove this injectivity on fibres, we return to the commutative cube from
Section 4.1.1 (see equation 4.1.1). The square involving the four objects with subscript G is Cartesian by
construction, and the square involving the four objects with subscript Gy is Cartesian by Lemma 4.1.2.
To prove the claim, we will make use of the following fact: Given a Cartesian diagram (of presheaves
of groupoids on any category)

AL)A'

Lo

AN } Al//’

then for any map x : B — A"/, the natural map B X4~ A’ — B X4~ A is an equivalence. In other words,
Cartesian squares induce isomorphisms on fibres of maps. Using this fact, the injectivity of the map on
fibres in (4.1.2) can instead be proved for the square

ShtG,@,{y} —_— ShtGV,P',{,u}

l l

ShtG,K,{y} —_— ShtGV,P,{y} .

Moreover, since the spaces of shtukas of type {u} sit inside the spaces of all shtukas, we can reduce to
showing the injectivity of the map on fibres for

ShtG,q) e d ShtGV P

| l

Shtg.x — Shth,p.

Recall from the proof of Corollary 2.2.13 the Cartesian diagrams (equation (2.2.2))

ShtG,@ — ShtG,K ShtGV’"p/ — ShtGV,P
BL*Gy —— BL*Gk, BL*P’ —— BL*P

that fit into a commutative cube that we will not draw. This reduces the problem to showing the injectivity
statement for the map on fibres in the diagram

BL*Gy — BL*P’

l l

BL*Gx —— BL*P,

which comes down to showing injectivity of the map of partial flag varieties
L*Gk L*P
i .
L*G 0 L+Pp’

This last statement follows from the fact that the intersection of L*P’ with L*Gg is equal to L*Gg. This
is true by construction of P, P’ and the fact that Gk and G are connected parahoric subgroups (the first
by assumption, the second by Lemma 2.2.4). O
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4.2. A perfect local model diagram

Consider the composition A (the last arrow comes from the diagram in Remark 2.3.2)

Sho.o.0m = Shigo, () = St = [ME<,,, /Gl

We will think of this as a local model diagram for ﬁG,Q,Up.
Proposition 4.2.1. The morphism ﬁG’o’U p — [Mlgc{” ) /5@] is weakly perfectly smooth and éTlG,@’Up
is equidimensional of the same dimension as Shg g, ur.

Proof. We will use the results of Section 2.3. Fix n > 2, and choose m > 0, such that the action
Ad, L*Gg on Mllgc’{“ factors through LGk and such that m satisfies the assumption of Proposi-
tion 2.3.4. As explained in Section 3.1.7, the natural morphism

Shg.x.ur — Sht(c"j;;’f{’ij;

is perfectly smooth. Combining this with the discussion in Section 2.3.10, we find that (after possibly
increasing n) the composition with the natural map

loc, o0
(m,n),loc kery\ Mgy
Sht - |
G.K,{u} Ady, LGk

is weakly perfectly smooth. Proposition 2.3.4 implies that the right square in the following diagram is
Cartesian

— . ker y\ Mgm{:;
Shg,0,ur — Shtg, o, (1) 7 | TAd, H,,

l l l 7 4.2.1)

| ker "\ Moy
Shg.xk.ur — ShtG k (u} ? | Ad, Imox |-

Since the left square is Cartesian by construction, it follows that the outer square is also Cartesian.
Moreover, Lemma 2.3.6 tells us that the stack in the bottom right corner of (4.2.1) is equidimensional.
We know that Shg k yr is also equidimensional and that the map

loc,c0
kery\ MK’{#}

Sh

CRUP T TAd, LGk
is weakly perfectly smooth. Thus, by Lemma 2.1.20, this map must be weakly perfectly smooth of
constant relative dimension M. Because the diagram in (4.2.1) is Cartesian, it follows that the natural
map

0,{u}
Ad, H,,

. ker y\ Moe
ShG,Q)’UP - | —

is also weakly perfectly smooth of constant relative dimension M. By Lemma 2.3.6, both stacks in the
rightmost column of (4.2.1) are equidimensional of the same dimension. We deduce from Lemma 2.1.20
that ﬁg,@,up is equidimensional of the same dimension as Shg, x y» and thus equidimensional of the
same dimension as Shg ¢, u».
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After possibly increasing m, we may choose 0 < m’ < m and invoke Lemma 2.3.9, which tells us
that the natural map

loc, o0
ker y\ My gD
Ady H,, G.0. 1}

is weakly perfectly smooth. It follows from [SYZ21, Proposition 4.2.5] that the natural map
(m’,1) loc Yel
ShiG o ) [Mm,{u}/g“’]

is weakly perfectly smooth. Therefore, the map A : ﬁc,@,up — [Mlg"{#} /6@] is a composition of

weakly perfectly smooth maps, and hence weakly perfectly smooth. O
4.2.2. N

For w € Adm({u}), we define the KR stratum Sh¢ ¢ y» (w) to be the inverse image of the locally closed
substack

M5y 00)/Go] < M, /G0

under the weakly perfectly smooth map A : SAhG,@,Up - [Mlé)c{ﬂ} / 6@]. Similarly, we define

Shg o,ur (sw) = U Sha, 0,00 (W), 4.2.2)

w’<w

which is the same as the closure of @G,@,UP (w) because Ais open and since the closure relations hold
on Mg¢,,, (see Section 2.2.14).

Corollary 4.2.3. For w € Adm({u}), the closure ﬁc,@,up (£w) has dimension €(w) and is normal.

- Di - D 1 1
Proof. Letd = Dim Shg p,yr = Dim Mé’f{ﬂ}. Then the local model M&C{”}

for w € Adm({u}) of length d, and for such w, the KR stratum Mlqj’c{#}(s w) is equidimensional of

. . 1
is the union of Mé’f{#} (2w)

dimension d and stable under the action of G. Using A, we see that

She.o.ur = U She.o.ur (<w),

weAdm({u})
£(w)=d

and since §BG’0,UP is equidimensional of dimension d, it follows that for w with £(w) = d, we have that
ﬁg,@,up (<w) is equidimensional of dimension d = £(w). We can now apply Lemma 2.1.20 to deduce
that A is weakly perfectly smooth of relative dimension 0. We can apply Lemma 2.1.20 again to deduce
the dimension results for ﬁc,o,uv (< w) for arbitrary w, from the dimension results for le"f{ﬂ}(s w)
from Section 2.2.14. .

The morphism Shg g.yr — [M](D"f{u ) /G 0] is (by definition) the same as a diagram

Shg e,ur

Sha.o.ur MG
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where s : ﬁg,@,up - ﬁg,@,up is a Gy = L'Gy-torsor. Since both s and 7 are surjective and weakly

perfectly smooth, the normality of ﬁg,@,yp(s w) follows from the normality of Mg’c{”}(ﬁ w) by
Lemma 2.1.14. O

We now give a corollary of Lemma 4.1.6.

Corollary 4.2.4. For w € Adm({u}), the KR stratum §1\1G,0,Up (w) is quasi-affine.

Proof. Section 3.1.10 and, in particular, equation (3.1.3) shows that there is a commutative diagram
where all the horizontal maps are finite

Su (G, X) —— Surmy, (Gv, Hy) ® Op (v) — Sypyy (Gv Hy,) ® Ok ()

[ |

Su(G,X) — Smrm,(Gv,Hv) ® O, vy —> Syry,(Gv,, Hy,) ® OF (v)-

Using Zarhin’s trick as in [SYZ21, Remark 2.1.4] or [Kis17, Section 1.3.3]), there is, moreover, a finite
map 5)1%11; (Gv,Hv,) — Soro,(Gyr,Hy»), where V" = V24 @ VZ’,®4 and where /"’ is given by a
certain explicit matrix. Here, O, corresponds to the self dual lattice Vgﬁ"‘p @ VZ’,’G;; and QP c Gy~ (A?)
is sufficiently small. By Lemma 4.1.6, the pullback £ of the (ample) Hodge bundle from the perfection
of cS’QpQP’Fp (Gy»,Hy») to ﬁc,@,up is ample.

By construction, see Lemma 4.1.2, the left square in the following diagram commutes

Shg.0.ur — Shay.pur — Sppg, 7, (Gvr, Hy)P!

! ! !

Shtg,o,{uy — Shtgy P/, (uy ———— ShtG,..0,.(u} -

The right square, moreover, commutes because Zarhin’s trick is given by a morphism of Shimura data,
and then we can use [PR21, Corollary 4.3.2] as in Lemma 3.1.13.

The arguments in the proof of [SYZ21, Theorem 3.5.9] now show that the restriction of £ to
the KR stratum ﬁg’@,up(w) for w € Adm({u}) is a torsion ample line bundle from which it fol-
lows that @G,@,Up (w) is quasi-affine. To elaborate, their arguments show that the Hodge bundle on
Sorg, 5, GV, Hy )P comes via pullback from a line bundle F on Shtg,,,..g,,, (,}- They then show
that if we pull back F to Shtg g (4} and restrict to a KR stratum, that the resulting line bundle is
torsion. O

4.3. Connected components of closures of KR strata

The goal of this section is to understand, for w € Adm({u}), the fibres of
70(Sha,0,uv (W) — mo(Sha k ur).-

Here, ﬁG,@,Up (< w) is the closure of the KR stratum ﬁc,@,up(w) (see equation (4.2.2)). We will
eventually reduce this to understanding the fibres of

She.0.ur (t) = 70(She & ur),

where 7 € Adm({u}) is the unique element of length zero. To make this reduction, we will show
that each connected component of Shg ¢.yr (< w) intersects Shg g, yr (7). This will require us to
assume that either Shy (G, X) is proper or that Gg,, is unramified. More generally, we require that
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Conjecture 4.3.1 below holds. Recall that there are EKOR strata Shg x .y {w} for w € KAdm({u}),
see Sections 2.3.11 and 3.1.7, with closures Shg ke {= w}.

Conjecture 4.3.1. If V is an irreducible component of Shg x yr {<w} for some w € KAdm({u}), then
Vintersects the unique O-dimensional EKOR stratum Shg x ur {7}

Remark 4.3.2. When Gk is hyperspecial, then Conjecture 4.3.1 is [WZ18, Proposition 6.20]; the
assumption made in the statement of this proposition is proved in [And21]. When G is Q-simple, a
proof of the conjecture will appear in the forthcoming doctoral thesis of Mao (see [Mao024]). When
Shy (G, X) is proper, we will circumvent the conjecture using Lemma 4.3.4 below. This is where the
‘either unramified or proper’ assumption in Theorems 2, 3 and 4 comes from.

4.3.3.
We start by proving a lemma, where we recall that 7 € Adm({u}) is the unique element of length zero.

Lemma 4.3.4. Let Z be a connected d_component of ShG o.ur (S w). Suppose that there exists a KR
stratum ShG o.ur (x), such that Z N ShG o.ur (x) is nonempty and such that ShG o.ur (£x) is perfectly
proper over Spec k. Then Z intersects ShG’O,Up (1).

Proof. Let ﬁg,o,yp (x) be as in the statement of the lemma. Then there is an x” < x of minimal length,

such that ﬁg,@,up (x")NZ # 0, and it suffices to prove that this length is equal to zero. The minimality
tells us that

Shg.o.ur (x') N Z =Shg.our(<x’) N Z, 4.3.1)

since ﬁG,@,Up (=x)\ ﬁG’Q),UP (x") is a union of KR strata associated to x” € Adm({u}) of length
strictly smaller than x’. Next, we note that Z N §EG,@,UP (x”) is a union of connected components of
ﬁc,@,up (x’) because ﬁc,@,up x") c ﬁc,@,up (< w) and so connected components of @G,@,Up (x")
are either disjoint from Z or contained in Z.

Since ShG p.ur(x’)is qua51 affine by Corollary 4.2.4, we find that ShG o.ur (x”) N Z is quasi-affine.
Moreover, (4.3.1) 1mpl1es that ShG our(x)NZ C ShG o.ur (£x) is closed, hence perfectly proper over
Spec k. Therefore, Shc,ogup (x”) N Z is perfectly proper and quasi-affine, and thus zero-dimensional.
Since it is a union of connected components of @G’Q,Up (x"), it follows from Corollary 4.2.3 that x” has
length zero and must, therefore, be equal to 7. m]

We will deduce the same result from Conjecture 4.3.1 when the Shimura variety is not proper.

Proposition 4.3.5. If Conjecture 4.3.1 holds, then for w € Adm({u}), every connected component Z of
Shg.p.ur (S w) intersects Shg.p.ur (7).

First, we prove two lemmas. Recall from [HZ20, Section 1.3] that an element w € W is said to be
o -straight if

nt(w) = L(wo(w)...o" 1 (w))
for all positive integers n.

Lemma 4.3.6. Let Z C ﬁg,o,yl;(s w) be a connected component. If x € Adm({u}) is of minimal
length with the property that Z N Shg p,ur (x) # 0, then x is o-straight.

Proof. Arguing as in the proof of Lemma 4.3.4 above, we see that the intersection Z N ﬁG’Q,Up (x) is
a union of connected components of Shg ¢.i7r (x). Let V be one of these components, then V is closed
in Shg ¢,ur (< x) as in the proof of Lemma 4.3.4. Moreover, V is actually a connected component of
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ﬁg,o,up (<x); it is an irreducible component for dimension reasons and thus a connected component
since Shg_ g yr (<x) is normal (see Corollary 4.2.3).
Let z € V(F,) with image 7(z) € Shg k ur (Fp), and consider the uniformisation map

in(z) : X(1, D)k (Fp) — Shg k.ur (Fp),

centred at 7(z), where b corresponds to 7(z). By the proof of [HZZ21, Proposition 5.2.2], we can
upgrade this to a morphism of perfect schemes i,y : X(u,b)x — Shg k yr. As in the proof of
Theorem 3.3.1, see the discussion in Section 4.3.8 below, it follows that there is an induced map

i.: X (1, b)g = Shg o.ur

whose image contains z. Indeed, this follows from the construction of i, below and the surjectivity of
Shg.o,ur — Shg,k,ur. Since the uniformisation map is compatible with the KR stratification, this
restricts to a map

X (1, b)o(<x) — Shg,0,ur (<)

whose image contains z. This means that there is a connected component Y of X (u, b)g(<x) that maps
to V. Now, [HZ20, Theorem 4.1] tells us that there is a o-straight element x” < x in Adm({u}), such
that Y N X (u, b)g(x”) # O. In particular, ﬁg,@,yp (x")NV # 0, and so ﬁg,@,yp (x"YNZ # 0. Since x
has been chosen to be minimal with the property that §BG,@,UP (x") N Z # 0, we see that x = x’ and so
X is o-straight. o

Lemma 4.3.7. Let x € Adm({u}) be o-straight. Then there is y € KAdm({u}), such that the natural
map ShG o.ur(x) = Shg.x ur factors via a finite étale map Shg.p.ur(x) — Shg k ur{y} and such
that €(y) = €(x).

Proof. By the proof of [HR17, Theorem 6.17], there is an element v € Wx, such that y := vxo(v)~!
lies in XAdm({x}) and such that £(y) = £(x). It follows from [HR 17, the discussion prior to Theorem
6.10] that the image of Shtg g .} (x) (F,,) in ShtG,K(FP) is equal to ShtG’K,{M}{y}(F,,).23 Since KR
strata and EKOR strata on ﬁG’(Z)’UP and Shg g pr respectively, are defined as the inverse images of
KR strata and EKOR strata in Shtg g (,) and Shtg x (4}, and because these strata are determined by
their Fp-points, we deduce that the image of §1\1G,@,Up (x) = Shg k.ur is equal to Shg x ur{y}-

To prove that the induced map is finite étale, we may use diagram (4.0.1) to reduce to checking
finite étale-ness of Shtg ¢ (41(x) — Shtg g (u1{y}, and then Lemma 2.4.6 to reduce to checking
this for X (u, b)g(x) — X(u, b)x{y}. By [HZ20, Proposition 4.6], the locally perfectly of finite type
perfect schemes X (u, b)p(x) and X(u, b)x{y} are zero-dimensional. Thus, they have an affine open
cover by zero-dimensional perfectly of finite type affine perfect schemes, which must be finite disjoint
unions of Spec Fp (since zero-dimensional reduced finite type affine schemes over Spec Fp are). This
implies that both X (u, b)p(x) and X(u, b)x{y} are disjoint unions of Spec FP, which, in particular,
implies that they are étale over Spec Fp. Thus, the map X (u, b)o(x) — X(u, b)x {y} is étale, and it
suffices to show that it is finite étale, which comes down to showing it is quasi-finite. For thus, we note
that J;(Q),) acts transitively on X (u, b)g(x) (Fp) by [HZ20, Theorem 5.1], with stabiliser a compact
open subgroup, cf. [Z720, Proposition 3.1.4], and the same holds for X (u, b)x {y}(Fp). Thus, we may
identify X (u, b)g(x) — X(u, b)x {y} with

U SpecF, — U SpecF,,

Jb(Qp)/N Jp(Qp) /N’

23Recall that for y € KAdm({u}), we use {y} to denote the corresponding EKOR stratum (see Section 2.3.11).
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where N C N’ are compact open subgroups of J5(Q,). Since N has finite index in N’, it follows that
X(u,b)g(x) = X(u, b)g {y} is finite étale. O

Proof of Proposition 4.3.5. Let x € Adm({u}) be of minimal length with the property that
ZNn ﬁg,@,yp (x) # 0, we would like to show that £(x) = 0. Arguing as in the proof of Lemma 4.3.4
above, we see that the intersection Z N ﬁG,@,Up (x) is a union of connected components of §1G,@,Up (x)
and that Z N §1G,@,Up (x) is closed in ﬁg,@,ulv (< x). Let V be one of these components, then V has
dimension ¢(x) and V is closed inside §I\1G,@,Up (< x). Thus, V must be an irreducible component of
Sha,0,ur (<x).

By Lemma 4.3.6, we see that x is o-straight. By Lemma 4.3.7, there exists y € KAdm({u}),
such that the natural map ShG o.ur(w) — Shg k. yr factors via a finite étale map ShG o.ur(w) —
Shg.x ur{y} and such that €(x) = €(y). We conclude that the image of V in Shg x ur{y} is an
irreducible component of Shg k. yr{y}. Since V is closed in ﬁc,@,up (<x) and thus in @G,O,UP» and
since the map ﬁc,o,up — Shg k ur is perfectly proper, it follows that (V) is closed in Shg k. ur.
Therefore, (V) is closed inside Shg x yr{< y}, the closure of Shg x yr{y}, and, therefore, an
irreducible component of Shg x ur{=< y}.

Conjecture 4.3.1 tells us that (V) intersects the zero-dimensional EKOR stratum Shg x.ir {7}, and
since (V) € Shg k.ur{y}, it follows that T = y and so that 0 = £(y) = €(x). It follows that x = 7, and
so we are done. O

4.3.8.

We will explicitly analyse the basic KR stratum ﬁg’ o.ur(7),where t € Adm({u}) is the unique element
of length zero. Let x € ﬁG,@(‘r)(Fl,) with image n(x) € Shg k. vur (Fp), and choose an isomorphism
Dy = Vz,®z, Zp sending sq4.0,xtos,®1.Letb € G(Q ) be the element corresponding to the Frobenius
of Dy under this isomorphism. Let I be the algebraic group I () introduced in Section 3.1.9, and let

jf: : IX’AI{ — Gyr
f f
jX,P : vaQp - Jb

be the maps induced by the choices made above. Then, by [HZZ21, Proposition 5.2.2], there is an iso-
morphism of perfect schemes (where Shg x [5],ur C Shg, kx,ur denotes the Newton stratum associated
to [b])

ixco L@\ (X (D) X G(AR) /U = Sha k fo.00 )

where 1,,(Q) acts on G(A?) via j¥ and on X(u, b)k via jxp : 1(Q) — J»(Q,,) and then the natural
action of J,, (Qp,) on X (u, b)k . Here, we consider the discrete topological space G (A’; )/UP as adiscrete
scheme, and we are taking the quotient of X (u, b)x X G(A? )/UP by I,,(Q) in the pro-étale topology.

Moreover, it follows from [HZZ21, Proposition 5.2.6] that j{ and j ,, are isomorphisms and that I(R)
is compact mod centre.

4.3.9.
Consider the Cartesian diagram

Shg ¢, (b, ur —— Shtg 0,4, [b]

l l 43.2)

Shg k. [p),ur — ShtG K (u}.[b]-
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Applying Lemma 2.4.6 to Shtg ¢ ., [»] and Shtg x (4},[»] and using i,, we can identify (4.3.2) with

She.o.i1.07 » | 7,@,)
L(Q\X (u, b)x x G(AD) /UP —— [Xj%p)f] -

. X(;z,bm}

By Lemma 3.3.3, the map (induced by the bottom horizontal map)

X(u, b)Kl

X(u, bk XG(A?) - NAGHY
biep’

is the natural projection map onto the first factor followed by the natural map to the quotient. As in the
proof of Theorem 3.3.1, it follows that there is an isomorphism

ix s L(Q\X (1, b)o X G(AR)/UP — Sha o, p1,ur»
such that the map (coming from the left vertical map in (4.3.2))
L(Q\X (u, b)o x G(AT) JUP — I(Q\X (. b)x x G(AT)/UP

is induced by the natural projection X (u, b)g — X (u, b)x and the identity of G(A’; ).

4.3.10.
To analyse the fibres of Shg 9. yr (T) — 70(Shg x.ur), we will first analyse the fibres of X (u, b)p(7) —
m(G); . Let J;¢ — Jger be the simply connected cover of the derived group Jger of Jp.

Lemma 4.3.11. The group J;*(Q),) acts transitively on the fibres of
X(p,b)o(t) = 1 (G)[.

Proof. The element 7 is o-straight, and so J;, (Q),) acts transitively on X (u, b)g(7) by [Hel4, Theorem
4.8]. The stabiliser of a point is a parahoric subgroup N, C J5(Q,) by [ZZ20, Proposition 3.1.4].
Therefore, our map can be identified with the natural map

Jb(Qp)_) ]b(Qp) _
Ny, N,J*(Qp)

X(p, b)o(7) = m(Jp)f =m(G),

using Lemma 3.4.2 and the fact that b is basic in the last step, and the result follows. O

4.3.12.
The goal of this subsection is to prove an auxiliary result. Let G and H be connected reductive groups
over Q that are inner forms of each other, and such that they are isomorphic over A? . Fix an identification

G AP ~H® A” and an inner twisting ¥ : Gg — Hg, which induces an isomorphism of centres
Z(G) — Z(H) and 7 (G);” = m (H);”. Recall the notation G(R), and G(Q), from Section 3.4.
Proposition 4.3.13 (Borovoi). The images of G(Q), and H(Q) in
G(A? ) -
p@eam) <"

are equal (after applying our fixed identifications).
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The following arguments have been reproduced and adapted with permission from Borovoi’s Math-
Overflow answer [Bor20]; we will use [Bor98, Section 3]. We consider the crossed module (G — G)
and the hypercohomology

HY(Q,0) == H(Q,G* — G),

where G is in degree 0 (see [Bor98]). The cohomology set H »(Q. G) is naturally an abelian group that
does not change under inner twisting of G. The short exact sequence

1> (1->G) > (G*¥>G) - (G*—->1)—1
induces a hypercohomology exact sequence
G*(Q) — G(Q) — Hy,(Q,G) — H'(Q,G%),
where
ab”: G(Q) — Hy,(Q.C)

is the abelianisation map. Let Z be the centre of G, then it follows from the definition of G(R), and the
connectedness of G*°(R) that

GR)s = Z(R) - p(G*(R)),
and hence
G(R):/p(G*(R)) = ab(Z(R)) C ker[H, (R, G) — H' (R,G*)].

We see that the image of G(Q); in H b(Q G) can be identified with the preimage of ab’(Z(R)) c
H0 L, (R, G) in ker[H (Q,G) — H'(Q,G*)] under the natural map

f i ker[HS (Q,G) —» H'(Q,G%)] — ker[HY (R,G) — H'(R,G*)].

Lemma 4.3.14. The preimage of ab®(Z(R)) C H (R, G) in ker[ ;?b(Q’ G) — H'(Q,G*)] under f
coincides with the preimage of ab®(Z(R)) in H' b(Q G).

Proof. Leté € H b(Q G) lie in the preimage of
ab’(Z(R)) c ker[H (R, G) — H' (R, G*)].

Then the image of £ in H' (R, G*) is trivial, and, therefore, the image of & in H'(Q, G*) lies in the
kernel of the localisation map

Hl (Q, GSC) N Hl (R, GSC).

By the Hasse principle for simply connected groups ([PR94, Theorem 6.6]), this kernel is trivial.
Thus, the image of & in H'(Q,G*) is trivial, and hence & lies in the preimage of ab’(Z(R)) in
ker[HY (Q,G) — H'(Q, G*)], as required. O
Corollary 4.3.15. The image of the abelianisation map G(Q), — H' b(Q G) is the preimage of
ab”(Z(R)) ¢ H (R, G) in H% (Q,G).

Proof of Proposition 4.3.13. 1t is clear from Corollary 4.3.15 and the discussion above that the image
of G(Q); — H b(Q G) is the same for all inner forms. Thus, the images of H(Q); and G(Q), in

ab(Q, G)=H,, (Q, H) are equal.
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To prove the proposition, we simply note that the following diagram commutes

G(Q)+ c 0
G(Ar)

0
petiy T Tloee Hy (@0, G)

and that 71 (G);” is a quotient of G(Q,)/p(G*(Q))) by Lemma 3.4.2. O

Proposition 4.3.16. Let X be a finite set of primes with p € X. Then G* (AJEC) acts transitively on the
fibres of

Shg (1) — 70(She &)

Proof. Let z € ﬁc,@(r)(ﬁp), where @G,@(T) = liLnUP §}\16,@,Up (1), with image x € Shc,K(Fp).

Choose an isomorphism Dy = Vz , ®z, ZF sending s4,0.x t0 5o ® 1,and let b € G(Qp) be the element
corresponding to the Frobenius of D, under this isomorphism. Then as explained in Section 4.3.8, we
get an isomorphism

iz 1im L (Q\X (1, D)o x G(AT)/UP — &lﬂgﬁc,m,[b],uv =: ShG,0,(p1-
ur ur

Since the uniformisation is compatible with the Kottwitz—Rapoport (KR) stratifications on both sides,
see Lemma 3.3.3, this induces an isomorphism

lim 7, (Q)\X (1, b)o(7) X G (A}) /UP — 1imShg, 0,0 (7) = She,o(7).
ur ur

We also note that the natural map I,(Q)\X(u, b)p(7) X G(A?) — lim L, (Q\X(u, b)e(r) X

—ur

G(A? )/UP is a bijection by [Mil05, Lemma 4.20], as in the second paragraph of Section 3.4.

Using the base point x € Shg k (ﬁp) to trivialise the m(G)-torsor mo(Shg, k), see the beginning of
Section 3.4, we get an isomorphism of profinite sets

n(G) — mo(Shg k)
g8 Zx,

where Z, is the connected component containing x. By the discussion in Section 3.4.1, there is an
isomorphism of topological groups

. G(AT)
n(G) = G(Q:\11(G);” m~

By Proposition 3.4.5, the map
ax : L(Q\mo(X (1, b)) X G(AT) — mo(Shg,k)

induced by iy, satisfies ax(y,g?) = («(¥),gP) - Zx, where x(y) € m1(G); is the image of y and
gP e G(A’; ). Hence, our identifications fit in a commutative diagram

70(Sh,0(7)) 4—=— L(Q\mo(X (4, b)o(7)) X G (AL)

l l 433)

. G(AI;)
no(Shg k) <—=— G(Q)+/m1(Gg, )] X

P(G=(aT))”

https://doi.org/10.1017/fmp.2024.22 Published online by Cambridge University Press


https://doi.org/10.1017/fmp.2024.22

50 P. van Hoften

where the map
X(p, 0)o(1) X G(AT) = m1(Gg,)f x G(A})

is the product of the natural map « of Section 3.4 and the identity map on G(A? ). By [PR94, Theorem

7.8], which is a strong approximation result, the group I*°(Q) is dense in (using j, , and j§ from
Section 4.3.8 to make the identification)

[[re@)=s@)x [] o=@

tex tex\{p}

Recall that we sometimes write G°(A”) ¢ G(A’;) for p(G*° (A’;.)) C G(A?). Using the discussion
above, we can identify the right Vertica{map in (4.3.3) with the natural map2*

G(AP)
GSC(A;)

70(X (11, b)o (1)) G(AT)

MOV, * reng) 67(Q0)

- G(Q)+/

m1(Gg,); X

Lemma 4.3.11 tells us that « induces an isomorphism m&X(bl()) _, n1(Gg,); , and thus we get
Jp (Qp) p’1

G(Ah)
[Tres\(py G*(Qo)

L(Q\mi(Gg,)f X — G(Q):/|m(Gg,)[ x (4.3.4)

G(A?) )
—— |-
G (Af)
The fibres of the natural map
p
G(Af)
[Tees\(py G*(Qp)

. G
— ﬂl(GQp)I X m
f

ﬂl(GQp)Ia X

clearly have a transitive action of G°(A%). To show that the same is true for the fibres of (4.3.4), we
need to show that the images of the two natural maps

G(ah)

1:(Q), G(Q) — m(Gg, )] X

are equal. Now note that I, (Q) = I,(Q), because I2¢(R) is compact and thus connected (see [PR94,
Corollary 1 on page 121]). Then the required identification of the images of (4.3.5) is exactly what is
proved in Proposition 4.3.13. O

Proposition 4.3.17. Let ¥ be a finite set of primes with p € Z. If either Shy (G, X) is proper or
Conjecture 4.3.1 holds, then G*¢ (A]E() acts transitively on the fibres of

ﬂo(gﬁc,@(ﬁ W)) - FO(ShG,K)-

Proof. There is a G(A? )-equivariant commutative diagram

Shg.o(7) > 70(Shg,o(<w))
4.3.6)

mo(Shg k).

24Note that 71 (G) is Hausdorff, which follows from the discussion in the second paragraph of Section 3.4. Therefore, the kernel
of G(A’;.) x Jp(Qp) — G(A?.) x 111(Gq,){ — 7(G) is closed and thus contains the closure of I (Q).

~p
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If Conjecture 4.3.1 holds, then, by Proposition 4.3.5, every connected component of ﬁG,(]),UP (Sw)
intersects ﬁg,@,yp (7). If Shy (G, X) is proper, then &y (G, X) is proper by the main result of
[MP19]. Therefore, Shg k ur is perfectly proper and, moreover, ﬁg,@,yp is perfectly proper since
ﬁG’o,Up — Shg.k vr is perfectly proper. Now, Lemma 4.3.4 tells us that every connected compo-
nent of ﬁc,@,yp (< w) intersects ﬁc,@,yp (7). Thus, under the assumptions of the proposition, the
horizontal arrow in (4.3.6) is surjective. Indeed, it is a continuous morphism of profinite sets that is a
countable inverse limit of surjective maps between finite sets.

We see that the fibres of the left diagonal map surject onto the fibres of the right diagonal map. Now
G*(A%) acts transitively on the fibres of the left diagonal map by Proposition 4.3.16, and, therefore,
also on the fibres of the right diagonal map. O

4.4. Proof of the main theorems

Theorem 4.4.1. If either Shy (G, X) is proper or Conjecture 4.3.1 holds, then the natural map
t: Shg,p,ur — Shg o,ur is an isomorphism.

Proof. We know that ¢ is a closed immersion by Proposition 4.1.4, whose source and target are equidi-
mensional of the same dimension by Proposition 4.2.1. To prove that this closed immersion is an
isomorphism, it suffices to show that for each w € Adm({u}) of maximal length, the closed immersion

She.o.ur (<w) = She.o.ur(<w)

is an isomorphism. Now source and target are normal by Corollary 4.2.3, and so the source is a union
of connected components of the target. To show that the inclusion

70(Shg.0.ur (W) —= 7o(She.o.ur (W)

is an isomorphism, we will use the G (A? )-equivariance of the map 7o (Shg ¢ (<w)) — 7 (§1@, o(<w)).
We know by Corollary 3.4.7 that

Shg o,ur (£w) — mo(Shg x,ur)

is surjective for all UP, and, therefore, it is enough to show that G* (A?) acts transitively on the fibres

of ﬁg,@(s w) — mo(Shg k). Under our assumptions, this follows from Proposition 4.3.17. O

4.4.2. Proofs of the main theorems
In this section, we deduce the main theorems of the Introduction.

Proof of Theorem 2. Recall that we assumed in Theorem 2 that 7r; (G); is torsion free, which implies that
all parahoric subgroups of G(Q),,) are connected by Lemma 2.2.2. Part 1 of Theorem 2 is Theorem A.4.5.

To prove part 2 of the theorem, we let U}, be an arbitrary parahoric subgroup. We choose an Iwahori
subgroup U;, ¢ U}, and a very special parahoric U, D U,,, this is possible as explained in Section 2.2.5.
The result for §- (G, X) now follows from Theorem 3.3.1 in combination with Theorem 4.4.1. Here, to
apply Theorem 4.4.1, we need to verify that either Shy (G, X) is proper or Conjecture 4.3.1 holds. In the
statement of Theorem 2, we are assuming that either Shy (G, X) is proper or that Gg,, is unramified.
Now, we recall that Conjecture 4.3.1 holds if Gg,, is unramified by [WZ18, Proposition 6.20] and
the main result of [And21] (see Remark 4.3.2). The result for Sy~ (G, X) follows from the result for
Sy (G, X) in combination with [Zho20, Proposition 7.7]. m]

Proof of Theorem 1. Recall that we assumed in Theorem 2 that 71 (G); is torsion free, which implies
that all parahoric subgroups of G(Q,,) are connected by Lemma 2.2.2. Theorem 1 is, therefore, a direct
consequence of Corollary 3.2.3. O
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Proof of Theorem 3. By [Zho20, Theorem 8.1.(ii)], uniformisation of isogeny classes, as proved in
Theorem 2, implies that the He—Rapoport axioms hold. O

Proof of Theorem 4. This follows from Theorem 4.5.2 below by noting that when G*¢ is Q-simple as
in the assumptions of Theorem 4.5.2, then Q-nonbasic just means nonbasic. Note that Theorem 4.5.2
has the assumption that either Shy, (G, X) is proper or Conjecture 4.3.1 holds, which is true if either
Shy (G, X) is proper or if Gg,, is unramified (see the proof of Theorem 2 above). O

4.5. Consequences for irreducible components

In this section, we prove a generalisation of Theorem 4. Before we can state it, we need to introduce
some notation. Let G* = []; G; be the decomposition of G into simple groups over Q, and consider
the induced maps of Kottwitz sets

B(Gg,) — B(GY ) — 1_[ B(Gig,)

Definition 4.5.1 (Definition 5.3.2 of [KS21]). Anelement [b] € B(G) is called Q-nonbasic if the image
of [b] in B(G;,g,) is nonbasic for all i. A Newton stratum Shg g [»),u» is called Q-nonbasic if [b] is
Q-nonbasic.

Recall that K C S corresponds to a very special parahoric.

Theorem 4.5.2. Let w € KAdm({u}), such that the EKOR stratum Shg k. uyr{w} intersects a
Q-nonbasic Newton stratum. If either Shy (G, X) is proper or Conjecture 4.3.1 holds, then

Shg k,ur{w} — Shg k ur

induces a bijection on my.
We start by proving a lemma.

Lemma 4.5.3. Forw € KAdm({u}), viewed as an element of Adm({u}) via KAdm({u}) ¢ Adm({u}),
the forgetful map Shg pur (W) — Shg k. ur factors through Shg x yr{w}, via a surjective map
Shg,0,ur (W) = Shg x,ur{w}.

Proof. The factorisation is [SYZ21, Theorem 5.4.5.(3)], and the surjectivity is proved there under the
assumption that Axiom 4(c) of [HR17] holds, which is true by Theorem 3. O

Proof of Theorem 4.5.2. We will prove that if w € Adm({u}), such that Shg ¢ yr(w) intersects a
Q-nonbasic Newton stratum, then the natural map 7mo(Shg,p,ur (W)) — mo(Shg,x ur) is a bijection.
By Lemma 4.5.3, this will imply Theorem 4.5.2.

Step 1: We first deal with the case of o--straight w € Adm({u}). Then Shg ¢, u» (W) is contained in a
unique Newton stratum Shg ¢, [5),ur, see [SYZ21, Theorem 1.3.5], which by assumption is Q-nonbasic.
We deduce from Theorem 4.4.1, Corollary 4.2.3 and Proposition 4.3.17 that for any finite set of primes
¥ with p € X, the group G*° (A?) acts transitively on the fibres of

70(Shg,¢(w)) — mo(Shg, k).

By Lemma 4.3.7, there exists y € KAdm({u}), such that the natural map §I\1G,@,Up (w) — Shg .k ur

factors via a finite étale map Shg ¢, uyr (W) — Shg ke {y}. We want to apply [vH24, Theorem 3.4.1]
to the G(A? )-equivariant finite étale cover Shg ¢ (w) — Shg, x {y}. Note that [vH24, Hypothesis 2.3.1]
follows from Theorem | (see [vH24, Remark 2.3.3]). Moreover, [vH24, Hypothesis 3.4.1] is satisfied
since Shg k pr is normal because Gk is very special (see [KP18, Corollary 4.6.26]). The assumption
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that every connected component of Shg x yr{y} intersects a Q-nonbasic Newton stratum holds since
Shg.o.ur{y} is contained in a single Q-nonbasic Newton stratum, since Shg ¢ y» (W) is.

Therefore, the assumptions of [vH24, Theorem 3.4.1] are satisfied, and we conclude that if X
contains all the primes ¢ where G?Qf'p has a compact factor, then GSC(A?) acts trivially on the fibres
of mp(Shg,p(w)) — mo(Shg k). Since it also acts transitively on these fibres by Proposition 4.3.17
and since the map mo(Shg ¢(w)) — 7mo(Shg k) is surjective by Corollary 3.4.7, we deduce that
7o(Shg,o(w)) — mo(Shg k) is a bijection.

Step 2: For general w € Adm({u}) intersecting a Q-nonbasic Newton stratum Shg ¢ [p],U7,
there is a o-straight element w’ < w with Shg ¢,ur (W’) N Shg g [5),ur nonempty; this follows
from [HZ20, Theorem 4.1] as in the proof of Lemma 4.3.6. It follows from our assumptions that
every connected component V of Shg gyr(< w) intersects Shg g yr(7).?° Thus, the intersec-
tion V N Shg.p.ur (< w’) is nonempty, and it is, therefore, a union of connected components of
Shg.o.ur (€w’). Hence, V N Shg p.ur (Sw’) is equidimensional of dimension £(w’) and must, there-
fore, intersect Shg g,ur (W’). We see that the natural map Shg ¢,ur (Ww') — Shg,p,ur (< w) induces a
surjective map on my. Consider the commutative diagram

mo(Shg,e(w")) > mo(Shg,0(<w)

mo(Shg k).

The right diagonal map is surjective by Corollary 3.4.7, the horizontal map is surjective by the discussion
above and the left diagonal arrow is a bijection by step 1. It follows that 7o (Shg o (<w)) — 70(Shg k)
is a bijection and since mo(Shg,p(w)) — mo(Shg,0(< w)) is a bijection by the normality of
7o(Shg,p(<w)), see Corollary 4.2.3, we are done. O
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A. Connected components of affine Deligne—Lusztig varieties with very special level structure,
by Rong Zhou

As explained in the Introduction, proving uniformisation of isogeny classes in Shimura varieties of Hodge
type with parahoric level is closely related to the problem of understanding connected components
of affine Deligne—Lusztig varieties with parahoric level. In this Appendix, we study the connected
components of affine Deligne—Lusztig varieties with very special level structure and prove, for instance,
that J; (Q,) acts transitively on these connected components. These results will be used in Section A.4
to prove uniformisation of isogeny classes in Shimura varieties of Hodge type with very special level.

A.l. The main result
We follow the notation of Section 2. Thus, G is a reductive group over Q, and {u} is a geometric
conjugacy class of cocharacters of G@ . We assume that G is quasi-split, and we let Z be the Iwahori

P

25Recall that 7 is the unique element of length zero of Adm({u}).
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group scheme corresponding to a o--stable alcove a in the building for G. We fix G a very special standard
parahoric group scheme for G. Then G corresponds to a o-stable special point s lying in the closure
of a, and we write K C S for the subset of simple affine reflections which preserve s. The projection
W — W, induces an isomorphism Wx = W,.

As explained in [Zho20, Section 9], we have an identification

Wi \W/Wi = X.(T);.
By [HR17], there exists a reduced root system Z (the échelonnage root system), such that
Wa = W(Z) < 0¥(),

where W(Z) (respectively, Q¥ (X)) is the Weyl group (respectively, coroot lattice) of X. We define a
partial order < on X.(T); by setting 2 < A" if A — A" can be written as a sum of positive coroots in
QY (%) with positive integral coefficients. Then, by [Lus83, p. 210], the Bruhat order on Wx \W/Wx
agrees with the partial order <. It follows that for u € X.(T);, we have

Adm(p)x = (1 € X.(T)f1A < ).

Letb € G(Q,,), such that [b] € B(G, {u}). We have the affine Deligne-Lusztig variety X (u, b)k
defined in Section 2.4.3. We also set

Adm(p)X = W Adm(u)Wx ¢ W
and define

X(wb)* = ) Xu(b),

weAdm(u)K
which is a locally closed subscheme of the Witt vector affine flag variety Grz. Then there is a natural map

X(u, b))% = X(u, b)x (A.1.1)

which is equivariant for the action of the o--centraliser group J;, (Qp). In fact, (A.1.1) is an étale locally
trivial fibration with connected fibres, and hence induces a J;, (Q,,)-equivariant bijection

70(X (1, b)%) = mo(X (1, b)k). (A.12)

A.l.l.

Recall from, for example, [KMPS22, Section 1.1.2] that associated to [»] € B(G) there is a dominant
Newton cocharacter vip) € (X, (T);’Q)(r. By definition, this is the dominant representative of the
Newton cocharacter v, for any choice of b € [b]. Let M denote the centraliser of V|5, and we fix a
representative b of [b], such that v;, = V[,]. The existence of such a representative follows from the
same argument as in [CKV 15, Lemma 2.5.2], which also shows that b € M(Qp). Then b is a basic
element of M, in other words, V|p] is central in M.

We use a subscript M to denote the corresponding objects for M. Thus, W), (respectively, W, pr)
denotes the Iwahori—Weyl group (respectively, affine Weyl group) for M. The intersection M (Qp) N
G(Z p) arises as the Z p-points of a very special parahoric group scheme M for M, which is standard for
the alcove aps for M determined by a. We write Z,, for the Iwahori group scheme of M determined by
ays, and we let Ky € Sy denote the subset of simple affine reflections for M corresponding to M. We
let Xp; denote the échelonnage root system for M so that

Wam = W(Em) <0 (Em).
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For x € m1(M);, we write T, € Q) for the corresponding length 0 element, and we write 7, = t*xw
for a unique w, € Wg. Then the map x — u, induces a bijection

m(M); = {4 € X,(T);|A is M-dominant and M-minuscule}, (A.1.3)
here, M-minuscule means minuscule with respect to the root system X,,. We define the set

Lipy ={x € mi(M)r|kpar(b) = x, ux < p}.

Via the bijection (A.1.3), we also consider I, 5 as as a subset of the set of M-minuscule and
M-dominant elements in X.(T);. For each 1 € I, 5 p, we have the affine Deligne-Lusztig variety
XM (A, b)g,, for the group M. It is a closed subscheme of the partial affine flag variety for M with
respect to the parahoric subgroup M, and its Fp—points are given by

{m € M(Qp)/ M(Zp)Im " bo(m) € M(Z)i¥ M(Zp), X’ <pm A}
It is equipped with a natural map
XM (A, b)k,, — X(u, b)g, (A.1.4)
which is equivariant for the action of the o-centraliser group J,(Q),).

A2,
Our main theorem on the connected components of affine Deligne—Lusztig varieties is the following.

Theorem A.1.3. J;,(Q,) acts transitively on mo(X(u, b)x ). In particular, for any A € 1, p pr, the map
(A.1.4) induces a surjection

7o(XM (A, b)) = 7o (X (1, b))

Remark A.1.4. The theorem is stated for G a quasi-split reductive group over Q,. However, the result
makes sense for general quasi-split groups over any local field F and can be proved in exactly the same
way.

A.15.
We follow the strategy of [CKV 15] and [Niel8], where this result was proved for unramified groups G.
The result follows from the following two propositions.

Proposition A.1.6. The natural map

[] x™@ by, = X(ub)k

/IGI”‘I,’M

induces a surjection

[T 7o blky) = mo(X (u, b))

AEIu,b,M

Proposition A.1.7. Let A € 1, , pr. The image of the natural map

mo(XM (A, b)k,,) — mo(X(u, b))

does not depend on the choice of 1 € I, p p.
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Proof of Theorem A.1.3. Fix A € I,  m. By Propositions A.1.6 and A.1.7, the map
7o(XM (4, b)ky,) = 7o (X (1, b)k)

is surjective. By [HZ20, Theorems 4.1 and 5.1], J5(Q,,) acts transitively on mo(X* (2, b)x,,), and
hence on 7o (X (u, b)k). O

A.1.8.

We now proceed to prove the two propositions. Note that by a standard reduction (see [HZ20, Section 6]),
it suffices to prove the propositions when G is adjoint and Q,,-simple. We may and do assume this from
now on.

A.2. Proof of Proposition A.1.6

A2.1.

In the case of unramified groups, Proposition A.1.6 is [CKV 15, Proposition 3.4.1]. Here, we prove
the general case using a different method based on the Deligne-Lusztig reduction method for affine
Deligne—Lusztig varieties in the affine flag variety.

We begin with some preliminaries regarding o-conjugacy classes in Iwahori-Weyl groups. For any
element w € W, we let n be a sufficiently divisible integer, such that o”* acts trivially on W and
wo(w)...o" 1(w) =t for some 1 € X.(T);. We set v, := % € X.(T)r,0 and v,, € X, (T);’Q for
the dominant representative of v,,. We let k(w) € 71 (G)r denote the image of w under the projéction
W — m1(G); — n1(G)r. We write B(W, o) for the set of o-conjugacy classes in W. Then w > [w]
induces a well-defined map ¥ : B(W,0) — B(G), and we have a commutative diagram (see [Hel4,
Section 3.3, Theorem 3.5]):

B(W,5)

B(G)

(V,k) (V,k)

(X.(T); )7 X1 (G)r

A2.2.
We will need the following lemma. We write / C K for the subset corresponding to M. Recall that an
element w € W is said to be o -straight, if

nl(w) = L(wo(w)...o" 1 (w))

for all n.

Lemma A.2.3. Lerw € W be o -straight, such that w € [b]; in particular, v, =V,,. Let u € TWo, such
that u(vy,) = vp, and set wy := uwo (1)~ Then wy € Q.

Proof. 1t suffices to show that wy € Wy, and
wyIy (Zp)wgl =TZn(Zp).

The first statement follows since wy(vy,) = v,,. By [HZ20, Theorem 5.2], the element w is (v,,, 0)-
fundamental. Thus

WO—(IMVW (Zp))w_1 = IMVW (Zp),
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where M, is the centraliser of v,, and Ty, (Zp) = I(Zp) nM,, (Qp). Since u € Y W,, we have
ulpy,, (Zp)u—1 =Tm(Zp). It follows that

wyly (Zp)wgl =wyo (Iu (Zp))wg1

=uwo (Iy,, (Zp))w_lu_l

=1Iym (Zp)
as desired. O

Proof of Proposition A.1.6. By (A.1.2), it suffices to show the natural map

]_[ XM (A, b)5M = X (u, b)K

/lEIu,b,M

induces a surjection

[T moxX™ @5y m) - xo(X (. bY%).

/IEI,u,b,M

Let Y be a connected component of X (u, b)K . Then, by [HZ20, Theorem 4.1], there exists a o -straight
elementw € Adm(u)X, suchthatYNX,, (b) # 0.Let wy denote the element constructed in Lemma A.2.3
and u € /Wy, such that uwo (1) = wy. Then we claim that [b]y = [Wyly € B(M). Indeed, we have
Vi, = Vw = V. Therefore, the image of [b] and [Wy]as in 1 (M), coincide up to torsion. Note that
ker(m1 (M) — m1(G)) is freely generated by the subset of simple roots contained in M but not in G, and
hence is an induced module for the action of 1. Thus, ker(7; (M); — m1(G);) is torsion free. Moreover,
the images of [b]p and [Vy]as in 71 (G); coincide. It follows that s ([£]ar) = kar ([Wy]ar), and hence
[b]m = Diglar. Thus, we may replace b by wy.

We will show that ¥ n XM (wﬁ) # (. Since wy € AdmM (1)Km | where A € 1,.p,m corresponds to
the image of wy in 71 (M);, it follows that X, (Wy) C XM (Q, Wﬁ)KM this implies the proposition.

For any affine root @, we let U, denote the affine root subgroup corresponding to « over Zp. By
[BT84, Sections 4.3.2, 4.3.5 and 4.3.7], U, is the group scheme associated to a finite free Zp—module.
For any € > 0, we let Uy ¢ (Zp) be the subgroup of UQ(ZP) corresponding to the affine function a + €.
Similarly, we write L{a+(Z,,) for the union of Uy (Zp) over all € > 0. As the notation suggests, these
arise as the Z -points of group schemes U4+ and UME over Zp, and the quotient U, (ZP) Uy (Z ) is
al- dlmenswnal vector space over k. We choose a Z -module morphism Z - L{(y (Zp) which lifts the
map k = U, (Zp)/L{(HE (Zp) This induces a morphlsm of group schemes over Z

fa Gy = U,.
For R a perfect k-algebra and a € R, the map

e : R — Ul (W(R))

aw fa(la]),
where [a] € W(R) is the Teichmiiller lift of a, induces a k-scheme morphism

ho : AMPT— LU,

where AP denotes the perfection of A over k. The induced morphism APt — Gr; extends to a
morphism PP — Gry also denoted /.
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Now let a be a simple affine root. Then a computation in SL; or SU3 shows that
J-a(x) € fa(x_l)jaz-

For example, if Z is the Iwahori in SL; corresponding to the upper triangular matrices mod p, then we
compute that

10) _ (1x\{0-1)(x 1

x1)7lo 1)\t ofloxt)

h_o(c0) = 54T € Grz. (A2.1)

It follows that we have

Let goZ € Y N X,, (y) with go € G(Q,). By [HZ20, Theorem. 5.2], we may choose g, such that
- lwﬁgo =w. Let s, ...s; be areduced word decomposition for u (note that s; € K), and we write u;
for the element s; ...s; € W and ug = e. We write g; € G(Qp) for the element goit;. We will prove by

induction that g;Z € Y fori =0, 1, .. ., n; clearly this is true for i = 0.
Assume g; € Y, and we let @;4; denote the positive affine root corresponding to s;.;. We consider
the map

g = gih_q;, : PP — Grz.
Since U_,,, € L$i41Z, for any s € Al’perf(k), we have

g(5) "y (g(5)) = oy, ()" g7 Voo (810 (h-ay,, (5))
€ LS., Wi L0 (S0, )T

c U TiZ,

xX€eA
where w; := ui‘lwu(r(ui) € Adm(u)X and A ¢ W is the subset
A =A{wi, simiwi, wio (six1), Sintwio (Siv1) }-

Since Adm(u)X is closed under left and right multiplication by Wx , we have A ¢ Adm(u)¥, and hence

s togsne ) TT
veAdm(u)K

for any s € P'"P(k). Moreover, we have g(0) = g, Z and g(c0) = g;+1Z, where the latter equality
follows from (A.2.1). Thus, the image of g is a curve in X (u, b)X which connects g;7 and g;,1Z, and
hence g;+1Z € Y. Then, by definition g,, g,Z lies in the image of X{‘V’g (Wy) as desired. O

A.3. Proof of Proposition A.1.7

A3.1.

When G is unramified, this proposition follows from the proof of [CKV 15, Proposition 4.1.12] when u
is minuscule; the general case is proved in [Nie 18, Proposition 5.1]. The main input is the construction of
explicit curves in X (u, b)x which connect points in XM (2, b)k,, and X™ (A’, b)k,, forA # A’ € I, p.m-
The construction of these curves relied on certain combinatorial results concerning the root system for
G. The exact same method of proof works in our setting; however, there are a few subtleties which we
now explain.
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Firstly, the explicit curves were constructed in [CKV15] and [Niel8] using root subgroups of GQP
which are all isomorphic to G, when the group is unramified. In general, the root subgroups are more
complicated, and thus one needs to be more careful. However, we are still able to give a uniform
construction of the curves that we need.

Secondly, we need to generalise the combinatorial results to general quasi-split groups G. It turns
out there is a systematic way to deduce these combinatorial results for quasi-split G from the case of
unramified groups, which we now explain.

A3.2.

Recall we have assumed G is adjoint and simple. As in [He 14, Section 7.2], see [ZZ20, Proof of Theorem
A.3.1] for an explicit construction, there is an unramified adjoint group H over Q,,, such that the pair
(W’, o) consisting of the Iwahori—Weyl group for G’ and the action of Frobenius is identified with the
pair (W, o). Moreover, the échelonnage root system X is identified with the absolute root system X’ for
G’, and we have an isomorphism

1 (G)r = 11 (G')
X.(T); = X.(T"),

where T is a suitable maximal Q p-split torus of G'.

We use a superscript ’ to denote the corresponding objects for G’. Then G determines a hyperspecial
subgroup G’ for G’, and we write K’ C S’ for the corresponding subset of simple reflections. Then M
determines a Levi subgroup M’ of G, and hence a subset J’ C K. It follows that the combinatorial data

(2, X (D), 0, J, i, kpr (b)) (A3.1)

is identified with the corresponding data for G’. Thus, any result, which only depends on the data
((A.3.1)), can be reduced to the case of unramified groups. The combinatorial results that we need
are already proved in the case of unramified groups in [Niel8] and [CKV 15]. We, therefore, take the
convention that whenever we need certain results which depend on the data ((A.3.1)), we will refer to
the relevant result in [CKV15] or [Niel8].

A3.3.

We now proceed with the proof of Proposition A.1.7. Let x,x” € 1 (M);. We write x ([if) x" for some
a€Xandr e Nifx —x'=a"¥ - " (a¥) and

Hxs Hx+aVs Hx—or(a¥)> Hx' < M.

. (ar) , . (ar) .
We write x > x"if x —  x’ and neither

(a,i) (o' (@), r=i)

x =5 x+a’ -coi@V) 5 !
nor
i 7 A -
(T s o'(@") —o" (") (e x’

foranyi e [1,r —1].
We let

(,):(QE)®zR) x (Xu(T); @ R) - R
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be the natural pairing, where Q(Z) is the root lattice of Z. For any element @ € X, we write O, for the
o-orbit of . We let & denote the number of connected components of the Dynkin diagram of G over
Qp; then we have #O, € {h,2h,3h}.

Lemma A.3.4 [Niel8, Lemma 7.7]. Let x # x’ € I, p_m. Then there exists x; € ny (M), aj € £ — Xy
andr; €N for j € [0,m — 1], such that
1. &V is M-dominant and M-minuscule.
2. rj € [1,h] if#Oq; € {h,2h}, andrj € [1,2h — 1] if #O,,; = 3h.
(aj,rj)
3. X0 =X, Xy = x’, and we have x o Xjs1 for j € [0,m —1].

Proof. This follows from [Niel8, Lemma 7.7] by discussion in Section A.3.2 above. Note that in loc.
cit., the result is stated for M a Levi subgroup, such that b is superbasic in M. However, one checks that
the same proof works for any M as long as I, ,, as contains a weakly dominant element. Here, A € X..(T);
is weakly dominant if (@, 1) > —1 for any positive root @ € X. But as in [Niel8, Lemma 4.1], any
element A € I, 5, 3s is weakly dominant, so the result applies to our M. O

A3.5.

We now construct certain curves inside LG which we will use to connect points in X (u, b)x. Leta €
be a root. Then a determines a relative root @ of G over Q,,, which we always take to be the short root.
We let G, denote the simply connected cover of the (semi-simple) group generated by Uz and U_g,
and we write

ia:Ga—G
for the natural map. We let G, denote the very special parahoric of G, such that G(Z p) = G.(Q p) N
.1 =
iq (G(Zp)).

If @ is not divisible, then we have an isomorphism

Go = RCSK/QPSLz,

where K /Q p is a finite extension. Then up to conjugacy G, is identified with the very special parahoric
SLy(Og) € G¢(Qp), and there is an isomorphism

fa: RCSIg/QPGa 5 Ug.
If @ is divisible, then there is an isomorphism
G(, = ReSI?/QPSU3’
where SUj is the special unitary group over K associated to a quadratic extension K’/K.

A.3.6.
We recall the presentation of the K-group SUs in [Tit79, Example 1.15].

We let 7 € Gal(K’/K) denote the nontrivial element, and we consider the Hermitian form on K’
given by

((x-1,x0,x1), (y-1, Y0, y1)) = T(x=1)y1 + 7(x0)yo + 7(x1)y-1.

The group SUs is the special unitary group attached to this form. Fori = —1, 1 and ¢, d € K’, such that
7(c)c +d+71(d) =0, we define

ui(c,d) = I+ (grs),
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where I3 is the identity matrix and (g, ) is the matrix with entries g_; o = —7(c), go.; = ¢, g-i.; = d and
grs = 0 otherwise. The root subgroups are then given by

U,5(K) = {usi(c,d)|c,d € K',7(c)e +7(d) +d = 0}
Usra(K) = {u41(0,d)|c,d € K',7(d) +d = 0}.

We consider the very special parahoric G o(F) N GL3(Og,) of G o(F); we call this the standard
parahoric. Let 7 € K’ be a uniformiser, such that 7(r) = —x, and let s € GL3(K’) denote the element
diag(r, 1, 1). Then the subgroup of G, (Q,) defined by

Ga(Qp) NsGL3(Og)s™

is a very special parahoric subgroup of GQ(QP), which we shall call the nonstandard parahoric. Up to
conjugacy, these are the only very special parahorics of SU3.

A3.7.
Fora € X, wedefineamapu, : AP — LU5 c LG as follows. Let R be a perfect ring of characteristic
p, and a € R will denote an arbitrary element. We consider the following three separate cases.

1. Go = Resg 5 SLy and Ga(Z,) = SLy(Og).
We define u,, to be the map induced by

aiq(fa(x™" - [a])).

2. Go = Resy /8, SU; and G,, is the standard parahoric subgroup.
We define u,, to be the map

avig(u (0,771 - [a])).

3. Go = Resg /9, SU; and G,, is the nonstandard parahoric subgroup.
We define u, to be the map

2
a > ia(ur(al, 95)).

A3.8.
A calculation using the presentations of SL, or SU; above gives the following lemma (cf. [Niel8,
Lemma 7.14]).

Lemma A.3.9.
1. Let A,6 € X.(T); and a, B € X, such that Q(X)N(Za+7Zp) is of type Ay, A X A or A| and such that
5, 0+a’,6-p",6+a" -B" <A

Then, for all y, z € k, we have

ua(Di%ug(y) € | L*GiVL*G.

r<a

2. Let a,8 € £ and A € X.(T);, such that {a,B") = (B,a") = -1 and {a, 1) > 2. Then, for any
v,z € k, we have

up(2)(Ituq ()i ug(-z) € L*G.
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A.3.10.
The following lemma is the analogue of [Niel8, Lemma 7.8].

Lemma A.3.11. Let x,x’ € ni(M);, @« € £ — Xy and r € N, such that

1. @ is M-dominant and M-minuscule.

2. re[1,h] if#Oq € {h,2h}, and r € [1,2h — 1] if #O, = 3.

3. x ((i:) x’.

Then, for any P € xM (tx, D)k, there exists P’ € xM (pxr» D)y, > Such that P and P’ lie in the
same connected component of X (u, b)g, and we have

r—1

km (P) = kp (P') = ) o' (a") € m (M)
i=0

Proof. As in [Niel8, Lemma 7.5], we may assume that x (f’;f) x’. Moreover, arguing as in [Niel8,
Lemma 7.15], it suffices to show that there exists P € XM (uy, b)k,, and P’ € XM (u,s, b)x,,, such
that P and P’ lie in the same connected component of X(u, b)k, and we have kps (P) — kps (P’) =
Ty ot(@Y) e m(M);.

Let b, = i**v,; then b, is basic in M, and since kp;(b) = kp(byx) € m(M)r, there exists
gx € M(F), such that g;'bo(gy) = b,. We define P := g, L* M so that P € XM (u,, b),, .

We first consider the case € [1,h]. For an element g € LG, we write 7 g for the element
byo(g)by'. We define a map u : A'"P*T — Grg given by

U(z) = gutta (D) Tug(2) ... Uy (2)LHG.

Then, by ind-projectivity of Grg, u extends to a map g : PP — Grg. As in [Niel8, Lemma 7.8], for
any z € k, we have

2(2)'bo(g(2)) € L*Gua(=2)byo P Uy (2)L7G
= L+g“n(_z)iﬂxuwxo-’(a) (co"(2))L*G

for some ¢ € k*. Here, we use [Niel8, Corollary 7.12], which shows that w,o? (@) = o’(a) and
(o0 (@), ux) = 0fori € [1,r — 1]. By [CKV 15, Lemma 4.4.5], we have

Ux + @V, —wi(o" (@), ux +a” —wi(c" (")) < p.

Thus, by Lemma A.3.9 (1), we have
2()bo(g(2) € | ) L*Gi* LG,
W<
and hence g factors through X (u, )k . Moreover, one computes that
r—1

’ . ’ S ) v
P’ :=g(c0) = lim g, [ |4 i @hHi7 L7
i=0

= g T 7@ Lrg,

which lies in the image of X™ (u,, b)x,, . Here, for an affine root 3, up Alperf LUy is the map
a B uﬁ(a)i_ﬁv (cf. [Niel8, Proof of Proposition 7.8]).
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We now consider the case r € [h+ 1,2k —1]. In this case, #O, = 3h and each connected component
of the Dynkin diagram of G over Q,, is of type Dy4. Then either J = 0 or J = Og, where § is the unique
root in X with o"(3) and such that 8, @ lie in the same connected component of X. We consider the
following two cases.

Case (i): Either (B, ux) = 0 or {8,a") = 0. Then, as in [Niel8, Lemma 7.15, Case 2.2], we have
(o7 (), uyy =0and w, (07 (a)) = o/ (a) for j € [1,r — 1]. Then we may define u : AP — Grg by

U(2) = gxta (D) Tua(2) ... O Uy (D) LFG

as above. Then u extends to g : PP — Grg, and the same computation shows that g is a curve
connecting P = g(0) € XM (uy, b) and P’ := g(o0) = gyi~Zico © (@) [*G € XM (uy, b).

Case (ii): {8, a") = —1 and (B, ux) = 1. Then, by [Nlcl& Lemma 7.15, Case 2], upon switching the
roles of x and x’ if necessary, we may assume that

(0" (B): px) = (0" (@), i) = (0" (@), pix) = 0
We define u : AP — Grg by
u(2) = g " e () U (2) - ua (LG
Then u extends to g : PP — Grg, and we have
8(2)7'b0(8(2)) € LGt yr-n (o) (—€22) (Mt or (v (8) (€12 Dt gt () (C22) 10 (~2) D1 L*G,
where A € X, (T); satisfies (" (@) + 0" (B), 1) = 2. By Lemma A.3.9 (1), we have

uo(-2)by € | L7G#'L7G,
H=p
and by Lemma A.3.9 (2), we have
U gri (o) (=C22) (FU o (@)rar (8) (12T DVt e () (€22).
It follows that
2() b (g(2) € | ) L7 L7G,
H<p
and hence g factors through X (u, b)k . A similar calculation to the above shows that g is a curve connect-

ing P = g(0) € XM (uy,b) and P’ := g(o0) € XM (s, b) with kpg (P) — kps (P) = Zr_o o). o

Proof of Proposition A.1.7. This follows by combining Lemmas A.3.4 and A.3.11. m]

A.4. Uniformisation in the case of very special level structure

Ad.l.

We will use Theorem A.1.3 to give a description of the isogeny classes in Sk(G, X). We assume
that p > 2, p { |m1(Gaer)| and that Gg,, is quasi-split and splits over a tamely ramified extension of
Qp. We now follow the notation in Section 3.1, so (G, X) is a Shimura datum of Hodge type. We let
U = UPU,, where U, C G(AP ) is a compact open subgroup and U, is a very special connected
parahoric subgroup of G(Q,,); we write G for the corresponding parahoric group scheme.
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A.4.2.

Recall that for x € Shg k .vr (E,), there is an attached abelian variety A, with contravariant Dieudonné
module D, equipped with tensors 5,0 . Moreover, for all £ # p, the £-adic Tate module T, A, is
equipped with tensors s ¢ » € T A2. By [Zh020, Section 5.6], there is an isomorphism

VZ([)) ®Z(P) Zp = Dx,
taking s, to sq.0,x. Under this identification, the Frobenius on D, is of the form ¢ = bo for some
b € G(Qp); then b is well-defined up to o-conjugation by G (Z),).

We let u” € X.(T); denote the image of a dominant representative of the conjugacy class { /,tﬁl }, and
we define 4 = o-(u’) as in Section 3.1.6. Then, by the argument in [Zho20, Section 5.6], we have

begk (Zp)WgK (zp)

for some w € Adm(u)k; it follows that 1 € X (u, b)x (Fp). As in [Zho20, Section 6.7], there is a natural
map

i’ X (1, D)k (Fp) — Suy (Gy, Hy)(Fp)

defined using Dieudonné theory, which sends 1 to the image of x under Shg k ur (Fp) =
Su(G. X)(Fp) = Su, (Gv. Hy)(F)p).

Let r be the residue degree of the extension E, /Q,. Then X (u, b)k is equipped with an action ®
given by ®(g) = (bo)"(g).
Proposition A.4.3 (cf. [Zho20, Proposition 6.5]). Suppose U, is a very special connected? parahoric
subgroup of G(Qp). Then there exists a unique map

iv: X(u,b)x (Fp) = Su (G, X)(Fp)

lifting i, such that 540 (g) = Sa,0,x and ® o iy = iy o ®, where ® acts on SU(G,X)(F,,) via the
geometric r-Frobenius.

Proof. For notational simplicity, we write X (u, b)x for X(u, b)k (Fp). The uniqueness and com-
patibility with @ is proved in the same way as [Zho20, Proposition 6.5]. We may thus define
X(u, b)I“{ C X(u, b)k as the maximal subset which admits such a lifting. We, therefore, need to show
that X (u, b)g = X(u, b)x . To do this, we follow the strategy of [Zho20, Proposition 6.5].

Arguing as in [Zho20, Lemma 6.10], we have that X (u, b)y is (the set of Fp-points of) a union of
connected components. Note that the key input [Zho20, Proposition 6.9] needed for this can be proved
verbatim in our setting.

It, therefore, suffices to show that the map

X(u,b)g — mo(X(u, b)k)

is a surjection. Let M C Ggq,, be the standard Levi subgroup given by the centraliser of the Newton
cocharacter vj,. By Theorem A.1.3, there exists A € I, , s and an element

g€ X(u,b)g N XM(A,b)y.

Upon replacing x by i (g) and using the diagram [Zho20, Equation (6.7)], we may assume b € M Q@ p)-
Since b is basic in M and using [HZ20, Theorem 4.1], we may further assume that b = 7,, where
Ty € Q) corresponds to kps (b) € m (M);.

Arguing as in [Zho20, Lemma 6.11], we find that [Zho20, Assumption 5.12] is satisfied, in other
words, the Hodge filtration on D, ® Fp lifts to a filtration on D, ® Ok for some K/ Qp finite which is

26See Section 2.2.1 for the definition of connected parahoric.
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induced by an M-valued cocharacter u,. We may, therefore, let 2/ O be an (M, py)-adapted lifting
of &, cf. [Zho20, Definition 4.6], which corresponds to a point ¥ € 87 (G, X)(Op.,). The construction
in [Zho20, Proposition 6.5] gives us a map

L M(Qp)/M(Zp) = XM (L D)K. 8 80
which induces a surjection
M(Qp)/M(Z) — 7o(XM (A, b))

by [Zho20, Proposition 5.19]. Moreover, the image of ¢ lands in X (y, b);’(. Therefore, by Theorem A.1.3,
X (u, b)y, intersects every connected component of XM (2, b)k,,,and hence X (u, b)g — mo(X(u, b)k)

is a surjection as desired. )
A.4.4.
Proposition A.4.3 implies that [Zho20, Assumption 6.17] is satisfied, hence, we obtain Theorem A.4.5
below.

Theorem A.4.5. Let p > 2 and (G, X) a Shimura datum of Hodge type with Gq,, tamely ramified and
quasi split. We assume that p ¥ |n1(Gger)| and that U, is a very special connected parahoric subgroup

of G(Qp).

L. Letx € Sy, (G, X) (F,,) and b € G(Qp) the associated element. Then there is a G(A; )-equivariant
bijection (where 7y C Sy, (G, X) (Fp) is the isogeny class of x)

L(Q\X (1, D)k (Fp) X G(AF) — .

2. Each isogeny class of Sy, (G, X) (Fp) contains a point x which is the reduction of a special point on
Shy, (G, X). This confirms [KMPS22, Conjecture 1].
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