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Abstract

We examine the long-time behavior of forward rates in the framework of Heath–Jarrow–
Morton–Musiela models with infinite-dimensional Lévy noise. We give an explicit
condition under which the rates have a mean reversion property. In a special case we
show that this condition is fulfilled for any Lévy process with variance smaller than a
given constant, depending only on the state space and the volatility.
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1. Introduction

In this paper we investigate whether certain models of bond markets can reflect the following
property observed in the market: rates drop when they are high and rise when they are low.
This behavior is called mean reversion. Since the mean reversion property does not reveal itself
over a short horizon, we examine the long-time behavior. Whenever a process converges in law
as time tends to ∞, it also has a tendency to remain close, over a long horizon, to an average
value.

We give a sufficient condition for the mean reversion in Heath–Jarrow–Morton–Musiela
(HJMM) models with infinite-dimensional Lévy noise. This is an extension of the result of
Tehranchi [13], who considered models with Wiener noise on a weighted Sobolev space. In
order to present a volatility example given by a Nemycki operator, which is used in applications,
we present an analogous result on a weightedL2 space. We also look more closely at the Laplace
exponent of the driving process Z. In the case of one-dimensional Lévy noise with no negative
jumps we derive the following simple and meaningful sufficient condition for the mean reversion
in L2:

E |Z(1)|2 < K,

where K > 0 depends only on the weight function and the volatility, but does not depend
on the Lévy process Z. We also present a new proof of the Lipschitz property of the Heath–
Jarrow–Morton mapping. The obtained Lipschitz constant of the mapping is smaller than the
one obtained by Filipović and Tappe [6] or Peszat and Zabczyk [10]. Since these authors
considered only the existence of solutions, it does not matter how large the Lipschitz constant
is as long as it is finite. However, it is of importance for the mean reversion: the smaller
the Lipschitz constant, the weaker the condition to ensure mean reversion. The proofs of the
results regarding the mean reversion property are based on the general theorem, Theorem A.1,
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372 A. RUSINEK

in which we present a sufficient condition for the existence of a stationary distribution for a
general stochastic evolution equation driven by an infinite-dimensional Lévy process. This is
an extension of the result of Chojnowska–Michalik [3], who considered equations with constant
coefficients (see also [4, p. 105] for the Wiener case). Invariant distributions for the HJMM
models with constant coefficients are discussed in [7], [8], and [15].

In Section 2 we establish the notation and present the HJMM model of the forward rate. In
Section 3 our main results are stated. Section 4 contains some lemmas needed for the proofs
of the theorems. These proofs are then given in Section 5. Section 6 deals with mean reversion
under the objective measure.

2. The HJMM model

We start with the background necessary to present the model and state our results.
Let (U, 〈·, ·〉U), (H, 〈·, ·〉H ) be two separable Hilbert spaces. By L(U,H) we denote the

space of linear continuous operators fromU intoH . We abbreviateL(U,R) toU∗ andL(U,U)
to L(U).

Let Z(t)t≥0 be a U -valued Lévy martingale, i.e. a process with independent and stationary
increments with mean 0. Its Laplace exponent J : U → (−∞,+∞] is then given by

J (u) = ln E e−〈u,Z(1)〉U , (2.1)

and its covariance operator Q is given by

Qu = E[〈u,Z(1)〉UZ(1)], u ∈ U.
We will assume that Q ∈ L(U).
Definition 2.1. For a Lévy process Z with the Laplace exponent J : U → (−∞,+∞], we
define functions λ1, λ2, λ3 : [0,+∞) → [0,+∞] by

λ1(r) = sup
‖u‖U≤r

‖DJ(u)‖U∗ ,

λ2(r) = sup
‖u‖U≤r

‖D2J (u)‖L(U,U∗),

λ3(r) = sup
‖u‖U≤r

‖D3J (u)‖L(U,L(U,U∗)),

where DkJ denotes the kth derivative of J and D1J is abbreviated to DJ .

Before we can present the HJMM model of the forward rates, we need to recall some facts
and concepts from operator theory. First note that, for every ϕ ∈ H ∗ and T ∈ L(U,H), the
mapping ϕ ◦T belongs to U∗, so, from the Riesz theorem (see [16, p. 90]), it follows that there
exists a unique element of U , which we will denote by T ∗ϕ, such that, for every u ∈ U ,

〈T ∗ϕ, u〉U = ϕ(Tu).

An operator T ∈ L(U,H) is said to belong to the space of Hilbert–Schmidt operators, denoted
by L2(U,H), if

‖T ‖2
L2(U,H)

=
∞∑
i=1

‖Tei‖2
H < +∞,
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where {ei}i is an orthonormal basis in U . For ϕ ∈ H ∗ and T ∈ L2(U,H), we have

‖T ∗ϕ‖U = ‖ϕ ◦ T ‖U∗ ≤ ‖ϕ‖H ∗‖T ‖L(U,H) ≤ ‖ϕ‖H ∗‖T ‖L2(U,H).

We will denote by L1 the space of all functions f : R+ → R such that

‖f ‖1 =
∫ ∞

0
|f (x)| dx < ∞.

Note that if H is a separable Hilbert space of real functions defined on [0,+∞) such that

‖f ‖1 ≤ C‖f ‖H for all f ∈ H and some C > 0, (2.2)

then, for every ξ ≥ 0, the functional Iξ : H → R given by Iξf = ∫ ξ
0 f (x) dx is bounded and

sup
ξ≥0

‖T ∗Iξ‖U ≤ C‖T ‖L2(U,H) for all T ∈ L2(U,H).

We are now ready to present the model. Let H be a separable Hilbert space of real functions
defined on [0,+∞). Let σ be a mapping from H into L2(U,H), where H is a subspace of
H such that (2.2) holds. Let Z(t)t≥0 be a U -valued Lévy process. The HJMM model of the
forward rates on H driven by Z with volatility σ is given by the following Musiela equation:

ft = S(t)f0 +
∫ t

0
S(t − s)(FHJM ◦ σ)(fs) ds +

∫ t

0
S(t − s)σ (fs) dZ(s), (2.3)

where, for T ∈ L2(U,H), the function FHJM(T ) is given by

FHJM(T )(ξ) = ∂

∂ξ
J (T ∗Iξ ),

and S(t)t≥0 is the semigroup of shift operators, i.e. (S(t)f )(ξ) = f (ξ + t). It is worthwhile to
rewrite the equation as

dft = (Dft + (FHJM ◦ σ)(ft )) dt + σ(ft ) dZ(t), (2.4)

where D denotes the generator of S(t)t≥0, with (Df )(ξ) = ∂f (ξ)/∂ξ .

3. Statements of results

This section contains our main results. We present an already known theorem, and then we
give an extension of it. Later we present analogous results on a state space which has useful
properties and, finally, we consider models with one-dimensional noise.

To formulate our results, we use the following notation. For a positive increasing function
w : R+ → R+, write

Cw = ‖w−1/3‖3/2
1 , C̃w = ‖w−1‖1/2

1 , αw = inf
x≥0

w′(x)
w(x)

,

and let Gw denote the Hilbert space of all functions f : R+ → R such that∫ ∞

0
|f (x)|2w(x) dx < ∞,

with inner product

〈f, g〉Gw =
∫ ∞

0
f (x)g(x)w(x) dx.
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3.1. Results in Sobolev space

Tehranchi [13] considered HJMM models on the Sobolev space Hw (under the assumption
that, for w, we have C̃w < +∞), defined as the space of absolutely continuous functions
f : R+ → R for which the weak derivative f ′ belongs to Gw, with inner product

〈f, g〉Hw = f (∞)g(∞)+ 〈f ′, g′〉Gw.

The existence of f (∞) = limx→∞ f (x) follows from the assumption that C̃w < +∞ (see [13]
for details). We distinguish the subspace H 0

w = {f ∈ Hw : f (∞) = 0}.
Theorem 3.1. ([13].) Assume that Z in (2.3) is a standard Wiener process, and let L,M ≥ 0
be such that, for every f, g ∈ Hw, we have

‖σ(f )− σ(g)‖L2(U,H 0
w)

≤ L‖f − g‖Hw, ‖σ(f )‖L2(U,H 0
w)

≤ M.

If

L2 + 8CwML < αw

then, for every c ∈ R, there exists a unique measure µc such that µc is the law limit of (ft )t≥0,

lim
t→∞ L(ft ) = µc,

if f0(∞) = c, where (ft )t≥0 denotes the solution to (2.3).

Before we give an extension of the above theorem, we state our first existence result for
models with infinite-dimensional Lévy noise.

Theorem 3.2. Suppose that σ : Hw → L2(U,H 0
w) is Lipschitz and bounded, i.e. there exist

L,M ≥ 0 such that, for every f, g ∈ Hw, we have

‖σ(f )− σ(g)‖L2(U,H 0
w)

≤ L‖f − g‖Hw, (3.1)

‖σ(f )‖L2(U,H 0
w)

≤ M. (3.2)

If Cw < +∞ and λ3(CwM) < +∞, then, for every h ∈ Hw, there exists a unique solution
(ft )t≥0 ⊂ Hw to the Musiela equation (2.3) with f0 = h.

Given the existence of the solution, we now present a sufficient condition for the solution
to have the mean reversion property. Note that, for the Wiener process, we have Qu = u,
λ1(r) = r , λ2(r) ≡ 1, and λ3(r) ≡ 0; thus, the following result is a generalization of
Theorem 3.1.

Theorem 3.3. Let L,M ≥ 0 be given by (3.1) and (3.2). Write rw = CwM . If

L2‖Q‖L(U) + 2[λ1(rw)+ 3λ2(rw)rw + λ3(rw)rw
2]L < αw (3.3)

then, for every c ∈ R, there exists a unique measure µc such that limt→∞ L(ft ) = µc, if
f0(∞) = c.
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3.2. Results in the extended L2 space

We start with presenting a space of functions which can also be chosen as a state space for
the HJMM model. The advantage of using this space lies in the fact that it allows us to present
a volatility example given by a Nemycki operator, which is used in applications. Therefore, we
propose to consider the HJMM model on a Hilbert space obtained by extending Gw in such a
way that it contains constant functions.

Definition 3.1. Let 1 stand for the function 1(x) = 1, x ≥ 0. If, for c ∈ R, the set of all
functions f : R+ → R for which f − c1 ∈ Gw is denoted by Gcw , then Ĝw is defined by

Ĝw =
⋃
c∈R

Gcw.

The space Ĝw is endowed with the following inner product: if f ∈ Gcw ⊂ Ĝw and g ∈ Gdw ⊂
Ĝw, then

〈f, g〉Ĝw = cd + 〈f − c1, g − d1〉Gw.
Remark 3.1. Both spaces Hw, Ĝw � R ×Gw. The space Hw treats the pair (c, f ) as a
functionh(ξ) = c − ∫ ∞

ξ
f (x) dx, while Ĝw treats the pair (c, f ) as a function g(ξ) = c+f (ξ).

Remark 3.2. The concept of the so-called short rate, defined as rt = ft (0), plays an important
role in financial applications, such as discounting and present values, and in turn in proofs
regarding the absence of arbitrage in the market where we show that the process of discounted
bond prices

exp

[
−

∫ t

0
rv dv

]
P(t, θ),

is a local martingale, where P(t, θ) denotes the price at time t of a bond maturing at time θ > t .
If ft ∈ Hw then ft (0) is well defined, but ft (0) may not exist if ft ∈ Ĝw. If there exists a
strong solution to (2.4) then there exists a continuous version of ft and the short rate can be
defined as

rt = lim
x→0

1

x

∫ x

0
ft (ξ) dξ.

If there is no noise in (2.3), i.e. ft = S(t)f0, then ft (0) = f0(t) and the short rate given by
rt = f0(t) is well defined for almost every t ≥ 0 and

∫ t
0 rv dv is well defined for every t ≥ 0.

Whether this approach works for the general equation (2.3) is the subject of ongoing research
(see also [7]).

Analogously to the analysis of the stochastic differential equation forHw, we now present an
existence result as well as a sufficient condition for the mean reversion property of the stochastic
differential equation for Ĝw.

Theorem 3.4. Suppose that σ : Ĝw → L2(U,Gw) is Lipschitz and bounded, i.e. there exist
L,M ≥ 0 such that, for every f, g ∈ Ĝw, we have

‖σ(f )− σ(g)‖L2(U,Gw)
≤ L‖f − g‖Ĝw , (3.4)

‖σ(f )‖L2(U,Gw)
≤ M. (3.5)

If C̃w < +∞ and λ2(C̃wM) < +∞, then, for every h ∈ Ĝw, there exists a unique solution
(ft )t≥0 ⊂ Ĝw to the Musiela equation (2.3) with f0 = h.
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Theorem 3.5. Let L,M ≥ 0 be given by (3.4) and (3.5). If

L2‖Q‖L(U) + 2[λ1(C̃wM)+ λ2(C̃wM)C̃wM]L < αw (3.6)

then, for every c ∈ R, there exists a unique measure µc such that limt→∞ L(ft ) = µc, if
f0 ∈ Gcw.

3.3. Models with one factor

In this section we look more closely at HJMM models with one-dimensional noise. We start
with the result regarding HJMM models on Hw.

Theorem 3.6. Consider an HJMM model on Hw, driven by a Lévy martingale taking values
in R with σ : Hw → H 0

w given by

σ(f )(ξ) =
∫ ∞

ξ

min{ψ(x), |f ′(x)|} dx (3.7)

for some positive real function ψ . Assume that rw = Cw‖ψ‖Gw < +∞. If J (3)(0) < +∞
and J (3)(rw) < +∞, then, for every h ∈ Hw, there exists a unique solution (ft )t≥0 ⊂ Hw to
the Musiela equation (2.3) with f0 = h. If, additionally,

E |Z(1)|2 + 2[J ′(rw)+ 3 max{E |Z(1)|2, J ′′(rw)}rw
+ max{|J (3)(0)|, |J (3)(rw)|}rw2 ] < αw (3.8)

then, for every c ∈ R, there exists a unique measure µc such that limt→∞ L(ft ) → µc, if
f0(∞) = c.

Example 3.1. Let σ be given by (3.7), and let Z(t) = Nλ(t)− Ñλ(t), where Nλ and Ñλ are
two independent Poisson processes with intensity λ. We have

E |Z(1)|2 = 2λ, J (3)(u) = J ′(u) = λ(eu − e−u), J ′′(u) = λ(eu + e−u);
thus, condition (3.8) takes the form

E |Z(1)|2 < αw[1 + (erw − e−rw )(1 + rw
2)+ 3(erw + e−rw )rw]−1.

The remainder of this section will be devoted to HJMM models on Ĝw, with volatility given
by a Nemycki operator.

Theorem 3.7. Consider an HJMM model on Ĝw, driven by a square-integrable Lévy martin-
gale taking values in R with σ : Ĝw → Gw given by

σ(f )(ξ) = min{ψ(ξ), |f (ξ)|} (3.9)

for some positive ψ ∈ Gw. If C̃w < +∞ and J ′′(‖ψ‖1) < +∞, then, for every h ∈ Ĝw,
there exists a unique solution (ft )t≥0 ⊂ Ĝw to the Musiela equation (2.3) with f0 = h. If,
additionally,

E |Z(1)|2 + 2[J ′(‖ψ‖1)+ max{E |Z(1)|2, J ′′(‖ψ‖1)}C̃w‖ψ‖Gw ] < αw (3.10)

then, for every c ∈ R, there exists a unique measure µc such that limt→∞ L(ft ) → µc, if
f0 ∈ Gcw.
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Example 3.2. Let σ be given by (3.9), and letZ(t) = Nλ(t)− Ñλ(t), whereNλ and Ñλ are two
independent Poisson processes with intensity λ. We have E |Z(1)|2 = 2λ, J ′(u) = λ(eu−e−u),
and J ′′(u) = λ(eu + e−u); thus, condition (3.10) takes the form

E |Z(1)|2 < αw[1 + e‖ψ‖1 − e−‖ψ‖1 + C̃w‖ψ‖Gw(e‖ψ‖1 + e−‖ψ‖1)]−1.

In the next example we show that, for a given w and σ , the solution has the mean reversion
property for any Lévy process with no negative jumps and variance sufficiently small. We
emphasize that the function J does not appear in the condition presented in the example.

Example 3.3. Suppose that w(x) = eαx for some α > 0. Let Z be a Lévy process with no
negative jumps, and let σ be given by (3.9). Then, for every initial condition, (2.3) has a unique
solution and condition (3.10) is fulfilled if

E |Z(1)|2 < α[1 + 2‖ψ‖1 + 2α−1/2‖ψ‖Gw ]−1. (3.11)

We have αw = α and C̃w = α−1/2. Therefore, to see that (3.11) implies (3.10), it is enough
to apply (4.1) and (4.6), below, and the Lagrange theorem, since

J ′(‖ψ‖1) = J ′(‖ψ‖1)− J ′(0) ≤ ‖ψ‖1 sup
u≥0

|J ′′(u)|.

4. Lipschitz property of the HJM mapping

First we show some facts about the function J defined by (2.1). We see that

DJ(u)p = −e−J (u) E[e−〈u,Z(1)〉U 〈p,Z(1)〉U ],
DJ(0)p = −〈p,EZ(1)〉U ,

(D2J (u)p)q = e−J (u) E[e−〈u,Z(1)〉U 〈p,Z(1)〉U 〈q, Z(1)〉U ] − DJ(u)pDJ(u)q,

(D2J (0)p)q = 〈Qp, q〉U .

It follows that

λ1(0) = 0, (4.1)

λ2(0) = ‖Q‖L(U).

Since (D2J (u)p)q = (D2J (u)q)p, we obtain

(D2J (u)p)p − (D2J (u)q)q = (D2J (u)(p + q))(p − q). (4.2)

Moreover, with the notation

X = e−〈u,Z(1)〉U/2, Y = e−〈u,Z(1)〉U/2〈p,Z(1)〉U ,

we have (D2J (u)p)p = e−2J (u)[EX2 E Y 2 − (EXY)2], so

(D2J (u)p)p ≥ 0 for all u, p ∈ U.

Now we will consider properties of the Laplace exponent of a one-dimensional Lévy process.
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Proposition 4.1. ([12, Proposition 2.1].) Let J be a Laplace exponent of a Lévy process taking
values in R. For every k ≥ 1, we have

sup
u∈[a,b]

|J (k)(u)| = max{|J (k)(a)|, |J (k)(b)|}, (4.3)

where J (k) denotes the kth derivative of J . If Z does not have negative jumps then, for every
k ≥ 2, we have supu∈[a,b] |J (k)(u)| = |J (k)(a)|, and if Z does not have positive jumps then, for
every k ≥ 2, we have supu∈[a,b] |J (k)(u)| = J (k)(b).

Note that, for a one-dimensional Lévy process,

|J ′′(0)| = λ2(0) = ‖Q‖L(U) = E |Z(1)|2.
Therefore, since J ′(0) = 0 and J ′′ is always positive, as a corollary of the above proposition,
we obtain

sup
u∈[0,b]

|J ′(u)| = J ′(b), (4.4)

sup
u∈[0,b]

|J ′′(u)| = max{E |Z(1)|2, J ′′(b)}. (4.5)

Furthermore, if Z does not have negative jumps then

sup
u≥0

|J ′′(u)| = E |Z(1)|2. (4.6)

The next lemma plays a crucial role in the proof of Theorem 3.2.

Lemma 4.1. Assume that ‖A‖L2(U,H 0
w)

and ‖B‖L2(U,H 0
w)

≤ M , and let rw = CwM . Then

‖FHJM(A)− FHJM(B)‖H 0
w

≤ (λ1(rw)+ 3λ2(rw)rw + λ3(rw)rw
2)‖A− B‖L2(U,H 0

w)
.

Proof. From Hölder’s inequality, we obtain ‖f ′‖1 ≤ C̃w‖f ‖H 0
w

. Furthermore, since
f (ξ) = − ∫ ∞

ξ
f ′(x) dx, it follows that, for every ξ ≥ 0, the functional δξ : H 0

w → R, given by
δξf = f (ξ), is bounded. So if T ∈ L2(U,H 0

w) then ∂T ∗Iξ /∂ξ = T ∗δξ , and

∂

∂ξ
FHJM(T )(ξ) = ∂

∂ξ
DJ(T ∗Iξ )(T ∗δξ )

= DJ(T ∗Iξ )
(
∂

∂ξ
T ∗δξ

)
+ (D2J (T ∗Iξ )T ∗δξ )T ∗δξ .

With the notation h = FHJM(A)− FHJM(B), we have

‖h‖2
H 0
w

= 〈FHJM(A)− FHJM(B), h〉H 0
w

= I + II + III + IV ,

where

I =
∫ ∞

0
DJ(A∗Iξ )

(
∂

∂ξ
A∗δξ − ∂

∂ξ
B∗δξ

)
h′(ξ)w(ξ) dξ,

II =
∫ ∞

0
(DJ(A∗Iξ )− DJ(B∗Iξ ))

∂

∂ξ
B∗δξh′(ξ)w(ξ) dξ,

III =
∫ ∞

0
((D2J (A∗Iξ )A∗δξ )A∗δξ − (D2J (A∗Iξ )B∗δξ )B∗δξ )h′(ξ)w(ξ) dξ,

IV =
∫ ∞

0
((D2J (A∗Iξ )−D2J (B∗Iξ ))B∗δξ )B∗δξh′(ξ)w(ξ) dξ.
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Applying (4.2) with u = A∗Iξ , p = A∗δξ , and q = B∗δξ , we conclude that

III =
∫ ∞

0
(D2J (A∗Iξ )(A+ B)∗δξ )(A− B)∗δξh′(ξ)w(ξ) dξ.

The following inequalities can be found in Filipović [5] (see inequality (3.7) and the proof of
inequality (3.8) therein):

‖f ‖1 ≤ Cw‖f ‖H 0
w
, (4.7)(∫ ∞

0
‖u(ξ)‖4

Uw(ξ) dξ

)1/2

≤ Ĉw

∫ ∞

0

∥∥∥∥ ∂∂ξ u(ξ)
∥∥∥∥2

U

w(ξ) dξ, (4.8)

with Cw ≤ Cw and Ĉw ≤ Cw. Furthermore, since

∫ ∞

0

∥∥∥∥ ∂∂ξ T ∗δξ
∥∥∥∥2

U

w(ξ) dξ =
∫ ∞

0

∞∑
i=1

∣∣∣∣〈 ∂∂ξ T ∗δξ , ei
〉
U

∣∣∣∣2

w(ξ) dξ

=
∞∑
i=1

∫ ∞

0

∣∣∣∣ ∂∂ξ 〈T ∗δξ , ei〉U
∣∣∣∣2

w(ξ) dξ

=
∞∑
i=1

∫ ∞

0

∣∣∣∣ ∂∂ξ (Tei )(ξ)

∣∣∣∣2

w(ξ) dξ,

we obtain (∫ ∞

0

∥∥∥∥ ∂∂ξ T ∗δξ
∥∥∥∥2

U

w(ξ) dξ

)1/2

= ‖T ‖L2(U,H 0
w)
, (4.9)(∫ ∞

0
‖T ∗δξ‖4

Uw(ξ) dξ

)1/4

≤ Cw
1/2‖T ‖L2(U,H 0

w)
. (4.10)

By (4.7) we obtain ‖A∗Iξ‖U , ‖B∗Iξ‖U ≤ rw for every ξ ≥ 0, and, from the Lagrange theorem,

‖DJ(A∗Iξ )− DJ(B∗Iξ )‖U∗ ≤ λ2(rw)Cw‖A− B‖L2(U,H 0
w)
,

‖D2J (A∗Iξ )−D2J (B∗Iξ )‖L(U,U∗) ≤ λ3(rw)Cw‖A− B‖L2(U,H 0
w)
.

Therefore,

|I | ≤ λ1(rw)

∫ ∞

0

∥∥∥∥ ∂∂ξ (A− B)∗δξ
∥∥∥∥
U

|h′(ξ)|w(ξ) dξ,

|II| ≤ λ2(rw)Cw‖A− B‖L2(U,H 0
w)

∫ ∞

0

∥∥∥∥ ∂∂ξ B∗δξ
∥∥∥∥
U

|h′(ξ)|w(ξ) dξ,

|III| ≤ λ2(rw)

∫ ∞

0
‖(A+ B)∗δξ‖U‖(A− B)∗δξ‖U |h′(ξ)|w(ξ) dξ,

|IV | ≤ λ3(rw)Cw‖A− B‖L2(U,H 0
w)

∫ ∞

0
‖B∗δξ‖2

U |h′(ξ)|w(ξ) dξ.
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Now, applying (4.9), (4.10), and Hölder’s inequality, we obtain

|I | ≤ λ1(rw)‖A− B‖L2(U,H 0
w)

‖h‖H 0
w
,

|II| ≤ λ2(rw)Cw‖A− B‖L2(U,H 0
w)

‖B‖L2(U,H 0
w)

‖h‖H 0
w

≤ λ2(rw)CwM‖A− B‖L2(U,H 0
w)

‖h‖H 0
w
,

|III| ≤ λ2(rw)Cw‖A− B‖L2(U,H 0
w)

‖A+ B‖L2(U,H 0
w)

‖h‖H 0
w

≤ 2λ2(rw)CwM‖A− B‖L2(U,H 0
w)

‖h‖H 0
w
,

|IV | ≤ λ3(rw)Cw
2‖A− B‖L2(U,H 0

w)
‖B‖2

L2(U,H 0
w)

‖h‖H 0
w

≤ λ3(rw)Cw
2M2‖A− B‖L2(U,H 0

w)
‖h‖H 0

w
.

Remark 4.1. For a weight function of the form w(x) = eαx with α > 0, we have Cw =
33/2α−3/2. Furthermore, (4.7) and (4.8) hold with Cw = 2α−3/2 and Ĉw = α−3/2. Therefore,
for w(x) = eαx , we can obtain a smaller Lipschitz constant of FHJM : L2(U,H 0

w) → H 0
w,

namely
LFHJM = λ1(rα)+ 2λ2(rα)rα + 1

2λ3(rα)rα
2,

where rα = 2α−3/2M .

The following lemma is used in the proof of Theorem 3.6.

Lemma 4.2. Assume that f, g ∈ H 0
w are positive functions and that ‖f ‖H 0

w
, ‖g‖H 0

w
≤ M , and

let rw = CwM . Then

‖FHJM(f )− FHJM(g)‖H 0
w

≤ K‖f − g‖H 0
w
,

with

K = J ′(rw)+ 3 max{E |Z(1)|2, J ′′(rw)}rw + max{|J (3)(0)|, |J (3)(rw)|}rw2.

Proof. Clearly, for a positive function f , we have

f ∗Iξ =
∫ ξ

0
f (x) dx ∈ [0, ‖f ‖1] ⊂ [0, Cw‖f ‖H 0

w
],

so λ1(rw), λ2(rw), and λ3(rw) in the proof of Lemma 4.1 can be replaced by supu∈[0,rw] |J ′(u)|,
supu∈[0,rw] |J ′′(u)|, and supu∈[0,rw] |J (3)(u)|, respectively, to which we apply (4.4), (4.5), and
(4.3).

The following lemma is used in the proofs of Theorem 3.4 and Theorem 3.5.

Lemma 4.3. If ‖A‖L2(U,Gw)
, ‖B‖L2(U,Gw)

≤ M then

‖FHJM(A)− FHJM(B)‖Gw ≤ (λ1(C̃wM)+ λ2(C̃wM)C̃wM)‖A− B‖L2(U,Gw)
.

Proof. With the notation h = FHJM(A)− FHJM(B), we have

‖h‖2
Gw

= 〈FHJM(A)− FHJM(B), h〉Gw = I + II,
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where

I =
∫ ∞

0
DJ(A∗Iξ )

(
∂

∂ξ
A∗Iξ − ∂

∂ξ
B∗Iξ

)
h(ξ)w(ξ) dξ,

II =
∫ ∞

0
(DJ(A∗Iξ )− DJ(B∗Iξ ))

(
∂

∂ξ
B∗Iξ

)
h(ξ)w(ξ) dξ.

From Hölder’s inequality, we have ‖f ‖1 ≤ C̃w‖f ‖Gw ; hence,

‖T ∗Iξ‖U ≤ C̃w‖T ‖L2(U,Gw)
.

So ‖A∗Iξ‖U , ‖B∗Iξ‖U ≤ C̃wM for every ξ ≥ 0, and, from the Lagrange theorem,

‖DJ(A∗Iξ )− DJ(B∗Iξ )‖U∗ ≤ λ2(C̃wM)C̃w‖A− B‖L2(U,Gw)
.

Therefore,

|I | ≤ λ1(C̃wM)

∫ ∞

0

∥∥∥∥ ∂∂ξ (A− B)∗Iξ
∥∥∥∥
U

|h(ξ)|w(ξ) dξ,

|II| ≤ λ2(C̃wM)C̃w‖A− B‖L2(U,Gw)

∫ ∞

0

∥∥∥∥ ∂∂ξ B∗Iξ
∥∥∥∥
U

|h(ξ)|w(ξ) dξ.

We claim that if T ∈ L2(U,Gw) then(∫ ∞

0

∥∥∥∥ ∂∂ξ T ∗Iξ
∥∥∥∥2

U

w(ξ) dξ

)1/2

= ‖T ‖L2(U,Gw)
. (4.11)

Indeed, we have∫ ∞

0

∥∥∥∥ ∂∂ξ T ∗Iξ
∥∥∥∥2

U

w(ξ) dξ =
∫ ∞

0

∞∑
i=1

∣∣∣∣〈 ∂∂ξ T ∗Iξ , ei
〉
U

∣∣∣∣2

w(ξ) dξ

=
∞∑
i=1

∫ ∞

0

∣∣∣∣ ∂∂ξ 〈T ∗Iξ , ei〉U
∣∣∣∣2

w(ξ) dξ

=
∞∑
i=1

∫ ∞

0

∣∣∣∣ ∂∂ξ
∫ ξ

0
(Tei )(x) dx

∣∣∣∣2

w(ξ) dξ

=
∞∑
i=1

∫ ∞

0
|(Tei )(ξ)|2w(ξ) dξ.

Applying (4.11) and Hölder’s inequality, we obtain

|I | ≤ λ1(C̃wM)‖A− B‖L2(U,Gw)
‖h‖Gw,

|II| ≤ λ2(C̃wM)C̃w‖A− B‖L2(U,Gw)
‖B‖L2(U,Gw)

‖h‖Gw.
In the next lemma we consider the mapping FHJM : Gw → Gw connected to a one-

dimensional Lévy process.

Lemma 4.4. Assume that f, g ∈ Gw are positive functions, and that ‖f ‖Gw, ‖g‖Gw ≤ M and
‖f ‖1, ‖g‖1 ≤ R. Then

‖FHJM(f )− FHJM(g)‖Gw ≤ K̃‖f − g‖Gw,
with K̃ = J ′(R)+ max{E |Z(1)|2, J ′′(R)}C̃wM .
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Proof. Note that f ∗Iξ = ∫ ξ
0 f (x) dx ∈ [0, R] and g∗Iξ = ∫ ξ

0 g(x) dx ∈ [0, R]; therefore,
λ1(C̃wM) and λ2(C̃wM) in the proof of Lemma 4.3 can be replaced by supu∈[0,R] |J ′(u)| and
supu∈[0,R] |J ′′(u)|, respectively. It remains to apply (4.4) and (4.5).

We end this section with a short study of the properties of the shift semigroup. We claim
that

‖S(t)f ‖Gw ≤ e−αwt/2‖f ‖Gw for all f ∈ Gw. (4.12)

Indeed, note that the function w(x) = e−αwxw(x) is nondecreasing, since

w′(x) = e−αwxw(x)
[
w′(x)
w(x)

− αw

]
≥ 0.

Hence,

‖S(t)f ‖2
Gw

=
∫ ∞

0
|f (x + t)|2w(x) dx

≤
∫ ∞

0
|f (x + t)|2e−αwtw(x + t) dx

= e−αwt
∫ ∞

t

|f (ξ)|2w(ξ) dξ

≤ e−αwt‖f ‖2
Gw
.

Since (S(t)f )′ = S(t)(f ′), inequality (4.12) is equivalent to

‖S(t)f ‖H 0
w

≤ e−αwt/2‖f ‖H 0
w

for all f ∈ H 0
w. (4.13)

5. Proofs

This section contains the proofs of the theorems. First we prove the existence results, and
then we proceed with the results regarding the mean reversion property.

Proof of Theorem 3.2. By Theorem 9.29 of [11], a unique solution exists ifFHJM◦σ : Hw →
Hw is a Lipschitz mapping. From Lemma 4.1,

‖(FHJM ◦ σ)(f )− (FHJM ◦ σ)(g)‖H 0
w

≤ K(CwM)L‖f − g‖Hw,
whereK(r) = λ1(r)+3λ2(r)r+λ3(r)r

2. Furthermore, it follows from the Lagrange theorem
that

K(r) ≤ λ1(0)+ 4λ2(0)r + 5λ3(r)r
2 = 4‖Q‖L(U)r + 5λ3(r)r

2.

Proof of Theorem 3.4. We mimic the proof of Theorem 3.2 with appropriate adjustments.
By Theorem 9.29 of [11], a unique solution exists if FHJM ◦ σ : Ĝw → Ĝw is a Lipschitz
mapping. From Lemma 4.3,

‖(FHJM ◦ σ)(f )− (FHJM ◦ σ)(g)‖Gw ≤ K̃(C̃wM)L‖f − g‖Ĝw ,
where K̃(r) = λ1(r)+ λ2(r)r . Furthermore, it follows from the Lagrange theorem that

K̃(r) ≤ λ1(0)+ 2λ2(r)r = 2λ2(r)r.

Proofs of Theorem 3.3 and Theorem 3.5 will be based on Theorem A.1, which we formulate
and prove in Appendix A.
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Proof of Theorem 3.3. For h ∈ Hw, let c = h(∞), so hc = h− c1 ∈ H 0
w. Define the

mapping σc : H 0
w → L(U,H 0

w) by σc(f ) = σ(f + c1) and the mapping Fc : H 0
w → H 0

w by
Fc = FHJM ◦ σc. Consider the following equation on H 0

w:

dgt = (Dgt + Fc(gt )) dt + σc(gt ) dZ(t), (5.1)

g0 = hc.

Let us apply condition (A.4) from Theorem A.1. We have Lσc = L, so, from Lemma 4.1,

LFc = (λ1(rw)+ 3λ2(rw)rw + λ3(rw)rw
2)L.

Hence, condition (3.3) states that 2LFc + Lσc
2‖Q‖L(U) < 2ωD, since from (4.13) we get

ωD = 1
2αw. It follows that L(gt ) converges to L(Xc) for a random variable Xc such that

E Xc
2 < +∞. If (gt )t≥0 is a solution to (5.1) then (ft )t≥0 given by ft = gt + c1 is a

solution to

dft = (Dft + (FHJM ◦ σ)(ft )) dt + σ(ft ) dZ(t), f0 = h.

So L(ft ) converges to L(Xc + c1).

Proof of Theorem 3.5. The proof follows similar lines to that of Theorem 3.3. For h ∈ Gcw,
let hc = h− c1 ∈ Gw. Define σc : Gw → L(U,Gw) by σc(f ) = σ(f + c1) and Fc : Gw →
Gw by Fc = FHJM ◦ σc. Consider the following equation on Gw:

dgt = (Dgt + Fc(gt )) dt + σc(gt ) dZ(t), (5.2)

g0 = hc.

We apply condition (A.4) from Theorem A.1. We have Lσc = L, so, from Lemma 4.3,

LFc = (λ1(C̃wM)+ λ2(C̃wM)C̃wM)L.

From (4.12), we get ωD = 1
2αw; thus, condition (3.6) states that

2LFc + Lσc
2‖Q‖L(U) < 2ωD.

As in the proof of Theorem 3.3, we conclude that L(gt ) converges to L(Xc) for a random
variable Xc such that E Xc

2 < +∞, and if (gt )t≥0 is a solution to (5.2) then (ft )t≥0 given by
ft = gt + c1 is a solution to

dft = (Dft + (FHJM ◦ σ)(ft )) dt + σ(ft ) dZ(t), f0 = h.

So L(ft ) converges to L(Xc + c1).

Proof of Theorem 3.6. It is enough to follow the proof of Theorem 3.3, applying Lemma 4.2
with M = ‖ψ‖Gw , since, for σc : H 0

w → H 0
w given by

σc(f )(ξ) =
∫ ∞

ξ

min{ψ(x), |f ′(x)|} dx,

we have
‖σc(f )− σc(g)‖H 0

w
≤ ‖f − g‖H 0

w
, ‖σc(f )‖H 0

w
≤ ‖ψ‖Gw.
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Proof of Theorem 3.7. For the mapping σc : Gw → Gw given by

σc(f )(ξ) = min{ψ(ξ), |f (ξ)+ c|},

we have

‖σc(f )− σc(g)‖Gw ≤ ‖f − g‖Gw, ‖σc(f )‖Gw ≤ ‖ψ‖Gw, ‖σc(f )‖1 ≤ ‖ψ‖1.

Therefore, it is enough to follow the proof of Theorem 3.5, applying Lemma 4.4 withR = ‖ψ‖1
and M = ‖ψ‖Gw .

Remark 5.1. The same proof works for all Nemycki-type volatilities of the form

σ(f )(ξ) = v(ξ, f (ξ)),

where v : R+ × R → R satisfies

|v(ξ, x)− v(ξ, y)| ≤ |x − y|, 0 ≤ v(ξ, x) ≤ ψ(ξ).

6. Mean reversion under the objective measure

In this section we discuss the case in which the HJMM dynamics correspond to the objective
measure and, therefore, the mean reverting behavior of interest rates has an economic meaning.
We will touch upon only a few aspects of the theory (see [2, pp. 194–200] and [13], where
models with infinite Wiener noise are considered). We will assume that the Gaussian part of Z
is a standard Wiener process W with covariance operator Id. Let ν be the Lévy measure of Z,
i.e. ν({0}) = 0, and, for a Borel subset of U such that � ⊂ U \ {0}, we have

ν(�) = E

[ ∑
0<t≤1

1�(Z(t)− Z(t−))
]
,

where Z(t−) = lims→t− Z(s). By Jν we will denote the Laplace exponent of the jump part of
Z, i.e.

Jν(u) =
∫
U

(e−〈u,z〉U − 1 + 〈u, z〉U)ν(dz),

and λ(ν)k will denote the function λk connected to Jν , i.e.

λ
(ν)
k (r) = sup

‖u‖U≤r
‖DkJν(u)‖Xk ,

where X0 = R and Xk = L(U,Xk−1), k ≥ 1. As in [1], we consider the following dynamics
of the forward rates on H :

ft = S(t)f0 +
∫ t

0
S(t − s)̃as ds +

∫ t

0
S(t − s)̃σs dZ(t),

where f0 ∈ H , the process (̃at )t≥0 takes values in H , and the process (̃σt )t≥0 takes values
in L2(U,H). If Z in the above equation is a Lévy process with respect to a measure locally
equivalent to the martingale measure (see [1, Proposition 5.6]), then there exist a predictable
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process (ϕt )t≥0 with values inU and a measurable positive function (ψ(t, z))t≥0, z∈U such that
the process (̃at )t≥0 satisfies the following relation (see [1, Equation (5.36)]):∫ ξ

0
ãt (x) dx = 1

2

∞∑
i=1

(∫ ξ

0
(̃σt ei)(x) dx

)2

−
∫ ξ

0
(̃σtϕt )(x) dx +

∫
U

∫ ξ

0
(̃σt z)(x) dxν(dz)

+
∫
U

(
exp

[
−

∫ ξ

0
(̃σt z)(x) dx

]
− 1

)
ψ(t, z)ν(dz).

We will assume that there exist a mapping σ from H into L2(U,H) and mappings φ1 and φ2
fromH intoU such that σ̃t = σ(ft ), ϕt = φ1(ft ), and ψ(t, z) = 〈φ2(ft ), z〉U for every z from
the support of ν. This is a rather restrictive assumption, since positivity of ψ implies that if z
belongs to the support of ν then −z does not. For an R-valued Lévy process with no negative
jumps however, ν satisfies this constraint. With the above assumptions about the coefficients,
ft becomes a solution to the following equation on H :

ft = S(t)f0 +
∫ t

0
S(t − s)a(fs) ds +

∫ t

0
S(t − s)σ (fs) dZ(t), (6.1)

where a : H → H is given by

a(f ) = FWHJM(σ (f ))− σ(f )φ1(f )+ σ(f )

∫
U

zν(dz)− T (σ (f ))φ2(f ).

HereFWHJM is the HJM mapping connected to the Wiener processW and T denotes the following
mapping from L2(U,H) into L(U,H):

(T (A)p)(ξ) =
(
D2Jν(A

∗Iξ )
(
∂

∂ξ
A∗Iξ

))
p, p ∈ U, ξ ≥ 0.

Following the proof of Lemma 4.1 with DJ replaced by D2Jν we find that if ‖A‖L2(U,H 0
w)

,
‖B‖L2(U,H 0

w)
≤ M , and rw = CwM , then

‖T (A)p − T (B)q‖H 0
w

≤ (λ
(ν)
2 (rw)+ λ

(ν)
3 (rw)rw)M‖p − q‖U

+ (λ
(ν)
2 (rw)+ 3λ(ν)3 (rw)rw + λ

(ν)
4 (rw)rw

2)‖q‖U‖A− B‖L2(U,H 0
w)
.

Following the proof of Lemma 4.3 with DJ replaced by D2Jν we find that if ‖A‖L2(U,Gw)
,

‖B‖L2(U,Gw)
≤ M then

‖T (A)p − T (B)q‖Gw ≤ λ
(ν)
2 (C̃wM)M‖p − q‖U

+ (λ
(ν)
2 (C̃wM)+ λ

(ν)
3 (C̃wM)C̃wM)‖q‖U‖A− B‖L2(U,Gw)

.

To simplify the presentation, we restrict our attention to models on H = H 0
w or H = Gw, and

we assume that there exist L,M ≥ 0 such that, for every f, g ∈ H , i = 1, 2, we have

‖φi(f )− φi(g)‖U ≤ L‖f − g‖H , ‖φi(f )‖U ≤ M,

‖σ(f )− σ(g)‖L2(U,H) ≤ L‖f − g‖H , ‖σ(f )‖L2(U,H) ≤ M.

Applying Theorem A.1 to (6.1) we obtain the following result.
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Proposition 6.1. Let

K̄ν = 2λ(ν)2 (rw)+ 4λ(ν)3 (rw)rw + λ
(ν)
4 (rw)rw

2,

where rw = CwM . If

‖Q‖L(U)L2 + 8rwL+ 4ML + 2L

∥∥∥∥∫
U

zν(dz)

∥∥∥∥
U

+ 2K̄νML < αw

then there exists a unique stationary distribution for (6.1) on H 0
w. Let

K̃ν = 2λ(ν)2 (C̃wM)+ λ
(ν)
3 (C̃wM)C̃wM.

If

‖Q‖L(U)L2 + 4C̃wML + 4ML + 2L

∥∥∥∥∫
U

zν(dz)

∥∥∥∥
U

+ 2K̃νML < αw

then there exists a unique stationary distribution for (6.1) on Gw.

Appendix A

We will consider processes on a complete probability space (�,F ,P). Let (U, ‖ · ‖U) and
(H, ‖ · ‖H ) be two separable Hilbert spaces, and letZ(t)t≥0 be a Lévy martingale taking values
in U with covariance operatorQ ∈ L(U). We consider a stochastic equation onH of the form

dX = (AX + F(X)) dt + B(X) dZ(t), (A.1)

X(0) = η,

where η ∈ H , the linear operator A has dense domain and in general may be unbounded, F is
a mapping from H into H , and B is a mapping from H into L(U,H).

The following theorem gives a sufficient condition for the above equation to have a stationary
distribution.

Theorem A.1. Let SA(t)t≥0 be the semigroup generated by A, and let ωA,LF ,LB > 0 be
such that

‖SA(t)x‖H ≤ e−ωAt‖x‖H ,
‖F(x)− F(y)‖H ≤ LF ‖x − y‖H , (A.2)

‖B(x)− B(y)‖L2(U,H) ≤ LB‖x − y‖H . (A.3)

Let (Xηt )t≥0 denote the solution of (A.1). If

−2ωA + 2LF + LB
2‖Q‖L(U) < 0 (A.4)

then there exists a unique random variable X ∈ L2(�) such that, for every η ∈ H ,

L(X
η
t ) → L(X).

Furthermore, if Z is square integrable then condition (A.3) can be replaced by the following
weaker condition:

‖B(x)− B(y)‖L(U,H) ≤ KB‖x − y‖H ,
and condition (A.4) can be replaced by

−2ωA + 2LF + E ‖Z(1)‖2
UKB

2 < 0. (A.5)
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Remark A.1. Van Gaans [14] presented a similar result under a less restrictive condition for the
semigroup. He assumed that only ‖S(t)‖L(H) ≤ Ce−ωAt for some C,ωA > 0. His sufficient
condition for the existence of a stationary distribution is

6C2
(
LF

2

ωA
+ E ‖Z(1)‖2

UKB
2
)
< ωA.

In the case in which C = 1, the above condition is equivalent to

LF
2

ωA
− ωA

6
+ E ‖Z(1)‖2

UKB
2 < 0.

This condition is stronger than ours since

LF
2

ωA
− ωA

6
+ 2ωA − 2LF = 5ω2

A + 6(ωA − LF )
2

6ωA
> 0.

In order to prove Theorem A.1, we present the following extension of Theorem 6.3.2 of [4].

Theorem A.2. Assume that F satisfies condition (A.2) and that there exists CQB > 0 such that

‖B(x)Q1/2 − B(y)Q1/2‖L2(U,H) ≤ C
Q
B ‖x − y‖H .

LetAn = nA(n− A)−1, n ∈ N, be the sequence ofYosida approximations of A, and let (Xηt )t≥0
denote the solution of (A.1). If there exist N, ε > 0 such that, for every x, y in H and n > N ,

2〈An(x − y)+ F(x)− F(y), x − y〉H + ‖B(x)Q1/2 − B(y)Q1/2‖2
L2(U,H)

≤ −ε‖x − y‖2
H (A.6)

then there exists a unique random variable X ∈ L2(�) such that, for every η ∈ H ,

L(X
η
t ) → L(X).

Before we prove Theorem A.2 we define the double-sided Lévy process and formulate two
lemmas.

For the process Z(t)t≥0, let Z(t)t∈R denote the process defined by

Z(t) =
{
Z(t), t ≥ 0,

Z2(−t), t < 0,
(A.7)

where Z2(t)t≥0 is a Lévy process with the same distribution as Z(t)t≥0 and independent of
Z(t)t≥0.

Lemma A.1. ([11, Lemma D.3].) Let α(t)t≥0 be a predictable H -valued process, and let
β(t)t≥0 be a predictable L(U,H)-valued process such that

E
∫ T

t0

(‖α(t)‖2
H + ‖β(t)Q1/2‖2

L2(U,H)
) dt < ∞ for all T > t0.

Then, for any h ∈ H , the process

Y (t) = h+
∫ t

t0

α(s) ds +
∫ t

t0

β(s) dZ(s)
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is square integrable and

d

dt
E ‖Y (t)‖2

H = E[2〈Y (t), α(t)〉H + ‖β(t)Q1/2‖2
L2(U,H)

].

Lemma A.2. Condition (A.6) implies that, for some C1 > 0,

2〈Anx + F(x), x〉H + ‖B(x)Q1/2‖2
L2(U,H)

≤ −ε
2
‖x‖2

H + C1

for every x in H and n > N .

Proof. Letting y = 0 in (A.6), we obtain

I ≤ −ε‖x‖2
H + 2〈F(0), x〉H + II,

where
I = 2〈Anx + F(x), x〉H + ‖B(x)Q1/2‖2

L2(U,H)

and
II = ‖B(x)Q1/2‖2

L2(U,H)
− ‖B(x)Q1/2 − B(0)Q1/2‖2

L2(U,H)

≤ ‖B(x)Q1/2‖2
L2(U,H)

− (‖B(x)Q1/2‖L2(U,H) − ‖B(0)Q1/2‖L2(U,H))
2

= ‖B(0)Q1/2‖2
L2(U,H)

+ 2‖B(0)Q1/2‖L2(U,H)(‖B(x)Q1/2‖L2(U,H) − ‖B(0)Q1/2‖L2(U,H))

≤ ‖B(0)Q1/2‖2
L2(U,H)

+ 2‖B(0)Q1/2‖L2(U,H)C
Q
B ‖x‖H .

Therefore,
I ≤ −ε

2
‖x‖2

H + a‖x‖2
H + b‖x‖H + c,

where

a = −ε
2
< 0,

b = 2(‖F(0)‖H + ‖B(0)Q1/2‖L2(U,H)C
Q
B ),

c = ‖B(0)Q1/2‖2
L2(U,H)

.

Hence,

I ≤ −ε
2
‖x‖2

H + C1, with C1 = −b
2 − 4ac

4a
.

Proof of Theorem A.2. Let Z be defined by (A.7), and let An = nA(n− A)−1, n ∈ N, be
the sequence ofYosida approximations ofA. Denote byXn(t, s, η) the solution to the equation

dXn = (AnXn + F(Xn)) dt + B(Xn) dZ(t), Xn(s) = η,

and by X(t, s, η) the solution to the equation

dX = (AX + F(X)) dt + B(X) dZ(t), X(s) = η.

ThenXn(t, s, η) converges inL2(�) toX(t, s, η). Fix η ∈ H and s ∈ R. Applying LemmaA.1
with

Y (t) = Xn(t, s, η), α(t) = AnXn(t, s, η)+ F(Xn(t, s, η)), β(t) = B(Xn(t, s, η)),
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and Lemma A.2, we obtain

d

dt
E ‖Y (t)‖2

H ≤ −ε
2

E ‖Y (t)‖2
H + C1.

By Gronwall’s lemma for every t ≥ s, we have E ‖Y (t)‖2
H ≤ 2C1ε

−1 + E ‖Y (s)‖2
H . Since

Xn(t, s, η) converges in L2(�) to X(t, s, η), we also have

E ‖X(t, s, η)‖2
H ≤ 2C1ε

−1 + ‖η‖2
H for all η ∈ H and t ≥ s. (A.8)

Once the boundedness of the solutions has been obtained, we prove the existence of a unique
stationary distribution. The first step will be to prove that there exists a law limit of (X(γ, 0, η))γ
for some η (to specify, we take η = 0), and the second step will be to prove that, for any η, the
law limit of (X(γ, 0, η))γ is the same.

Fix η ∈ H and δ ≥ γ > 0, and let Un(t) = Xn(t,−γ, 0) and Vn(t) = Xn(t,−δ, η). Then

d(Un − Vn) = (A(Un − Vn)+ F(Un)− F(Vn)) dt + (B(Un)− B(Vn)) dZ(t).

Applying Lemma A.1 with

Ỹ (t) = Un(t)− Vn(t),

α̃(t) = An(Un(t)− Vn(t))+ F(Un(t))− F(Vn(t)),

β̃(t) = B(Un(t))− B(Vn(t)),

and condition (A.6), we conclude that

d

dt
E ‖Ỹ (t)‖2

H ≤ −ε E ‖Ỹ (t)‖2
H .

By Gronwall’s lemma, for every s ∈ R and every t ≥ s,

E ‖Ỹ (t)‖2
H ≤ e−ε(t−s) E ‖Ỹ (s)‖2

H .

Letting t = 0 and s = −γ , we obtain

E ‖Xn(0,−γ, 0)−Xn(0,−δ, η)‖2
H ≤ e−εγ E ‖Xn(−γ,−δ, η)‖2

H .

Since Xn(t, s, η) converges in L2(�) to X(t, s, η),

E ‖X(0,−γ, 0)−X(0,−δ, η)‖2
H ≤ e−εγ E ‖X(−γ,−δ, η)‖2

H . (A.9)

Letting η = 0, we obtain

E ‖X(0,−γ, 0)−X(0,−δ, 0)‖2
H ≤ e−εγ E ‖X(−γ,−δ, 0)‖2

H .

Now, recalling (A.8),

E ‖X(0,−γ, 0)−X(0,−δ, 0)‖2
H ≤ e−εγ 2C1ε

−1.

It follows that (X(0,−γ, 0))γ is a Cauchy sequence inL2(�), so there exists a random variable
X ∈ L2(�) such that X(0,−γ, 0) converges to X in L2(�), which implies that X(0,−γ, 0)
converges to X also in law. Since L(X(0,−γ, 0)) = L(X(γ, 0, 0)), we also have

L(X(γ, 0, 0)) → L(X) as γ → ∞.

https://doi.org/10.1239/aap/1275055234 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1275055234


390 A. RUSINEK

To prove uniqueness of the stationary distribution, let δ = γ in (A.9). We obtain

E ‖X(0,−γ, 0)−X(0,−γ, η)‖2
H ≤ e−εγ ‖η‖2

H .

So the L2(�) limit, and then also the law limit, of (X(0,−γ, η))γ is X as well. Furthermore,
since L(X(0,−γ, η)) = L(X(γ, 0, η)), we also have

L(X(γ, 0, η)) → L(X) as γ → ∞.

Proof of Theorem A.1. It is sufficient to prove that condition (A.4), as well as condition
(A.5), implies condition (A.6). This idea is due to Tehranchi [13]. First note that

‖Q1/2‖2
L2(U,H)

= E ‖Z(1)‖2
U ;

hence,
(C

Q
B )

2 ≤ min{LB2‖Q‖L(U),E ‖Z(1)‖2
UKB

2}.
Therefore, if (A.4) or (A.5) holds, then there exist ε,N > 0 such that, for n ≥ N , we have

− 2ωAn

n+ ωA
+ 2LF + (C

Q
B )

2 < −ε,

since ωAn/(n+ ωA) → ωA as n → ∞. For the Yosida approximations, An, we have

〈Anh, h〉H ≤ − ωAn

n+ ωA
‖h‖2

H ,

since ‖SA(t)‖L(H) ≤ e−ωAt (see the proof of Theorem 7 in [13]).

Acknowledgements

The author is greatly indebted to Professor Jerzy Zabczyk for drawing the author’s attention
to the L2 space as a state space and for many stimulating conversations.

The author acknowledges the support of the EC FP6 MC-ToK programme SPADE2, MTKD-
CT-2004-014508 and the support of the Polish Ministry of Science and Education project 1PO
3A 034 29, Stochastic Evolution Equations with Lévy noise.

References

[1] Björk, T., Di Masi, G., Kabanov, Y. and Runggaldier, W. (1997). Towards a general theory of bond markets.
Finance Stoch. 1, 141–174.

[2] Carmona, R. and Tehranchi, M. R. (2006). Interest Rate Models: An Infinite Dimensional Stochastic Analysis
Perspective. Springer, Berlin.

[3] Chojnowska-Michalik, A. (1987). On processes of Ornstein Uhlenbeck type in Hilbert space. Stochastics 21,
251–286.

[4] Da Prato, G. and Zabczyk, J. (1996). Ergodicity for Infinite-Dimensional Systems. Cambridge University
Press.
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