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Measures of Noncompactness in
Regular Spaces

Nina A. Erzakova

Abstract. Previous results by the author on the connection between three measures of noncompact-
ness obtained for Lp are extended to regular spaces of measurable functions. An example is given of
the advantages of some cases in comparison with others. Geometric characteristics of regular spaces
are determined. New theorems for (k, β)-boundedness of partially additive operators are proved.

1 Introduction

A condensing operator is a mapping under which the image of any set is, in a cer-
tain sense, more compact than the set itself. The degree of noncompactness of a set
is measured by means of functions called measures of noncompactness (MNCs for
brevity). Condensing operators have properties similar to compact ones. In par-
ticular, the theory of rotation of completely continuous vector fields, the Schauder–
Tikhonov fixed point principle, and the Fredholm–Riesz–Schauder theory of linear
equations with compact operators admit natural generalizations to condensing op-
erators. Therefore, the theory of MNCs and condensing operators has applications
in different areas of mathematics. For example, a technique connected with MNCs
and condensing operators is used in the study of differential equations in infinite di-
mensional spaces, function-differential equations of neutral type, integral equations,
as well as some types of partial differential equations (see, for example, [1, 3]).

In this paper we investigate the relationships among three different MNCs, and
we will illustrate with examples the advantages of some MNCs over the others.

2 Basic Notions

Let E be a Banach space. Given a bounded subset U of E, the Hausdorff measure of
noncompactness χE(U ) = χ(U ) is defined as the infimum of all ε > 0 such that there
exists a finite ε-net for U in E.

The measure of noncompactness βE(U ) = β(U ) of U ⊂ E is defined as the supre-
mum of all numbers r > 0 such that there exists an infinite sequence in U with
‖un − um‖ > r for every n 6= m.
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Measures of Noncompactness in Regular Spaces 781

We denote by B(u0, r) = {u ∈ E : ‖u − u0‖ 6 r} the closed ball in E of radius r
and with the center u0, and by B = B(θ, 1) the unit ball with the center θ where θ is
zero element.

The MNCs χ or β (denoted below by ϕ ) satisfy the following properties ([3,
3.1.2], [1, 1.1.4]):

• regularity: ϕE(U ) = 0 if and only U is a totally bounded (a relatively compact) set;
• nonsingularity: ϕE(U ) is equal to zero on every one-element set;
• semi-homogeneity: ϕE(tU ) = |t|ϕE(U ) for any number t ;
• semi-additivity: ϕE(U ∪V ) = max{ϕE(U ), ϕE(V )};
• monotonicity: ϕE(U ) 6 ϕE(V ), if U ⊆ V ;
• invariance under translations: ϕE(U + u) = ϕE(U ) (u ∈ E);
• Lipschitzianity: |ϕE(U ) − ϕE(V )| 6 2ρ(U ,V ), where ρ denotes the Hausdorff

metric
• (more precisely, semimetric): ρ(U ,V ) = inf{ε > 0 : V ⊂ U + εB,U ⊂ V + εB};
• algebraic semi-additivity: ϕE(U + V ) ≤ ϕE(U ) + ϕE(V ), where U + V = {u + v :

u ∈ U , v ∈ V};
• invariance under passage to the closure and to the convex hull: ϕE(U ) = ϕE(co U ).

Let Ω be some subset of Rn, and let µ(Ω) < ∞, µ be a continuous measure; i.e.,
each subset D ⊂ Ω, µ(D) > 0, can be split into two subsets of the same measure.

A Banach space E of real-valued measurable functions on Ω is an ideal space if
it satisfies the following condition: if a function v belongs to E, u is a measurable
function, and the inequality |u| 6 |v| is fulfilled almost everywhere, then u also
belongs to E, and ‖u‖E 6 ‖v‖E.

An ideal space E is a regular space (see [4, 12, 13]) if each function u ∈ E has an
absolutely continuous norm: limµ(D)→0 ‖PDu‖E = 0. In particular,

(2.1) lim
T→∞

‖PD(u,T,u0)u‖E = 0,

where u0 ∈ E is any fixed function with positive values, conventionally called the unit
of space E,

D(u,T, u0) = {s ∈ Ω : |u(s)| > Tu0(s)}

for an arbitrary number T > 0, and the symbol PDu denotes the multiplication
operator by characteristic function κD of any subset D ⊂ Ω.

Define L∞(u0) to be a Banach space of all real-valued measurable functions on
Ω, with the norm ‖u‖L∞(u0) = inf{λ : |u| ≤ λu0 a.e.} (L∞(1) = L∞). It is a
non-regular space.

We list the following examples of regular spaces for u0 ≡ 1:

• spaces Lp (1 6 p <∞) with the norm ‖u‖p =
(∫

Ω
|u(s)|pds

) 1/p
,

• the Lorentz spaces Λ1/p(Ω, µ) = Λ1/p(Ω) (1 ≤ p <∞) with the norm

‖u‖Λ1/p(Ω,µ) =

∫ ∞
0

µ1/p
(

D(u,T, 1)
)

dT,

• the Orlicz spaces.
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As in [5–10], for any regular space E the symbol νE(U ) denotes the measure of the
non-uniform absolute equicontinuity of norms U ⊂ E:

νE(U ) = lim
µ(D)→0

sup
u∈U
‖PDu‖E,

which is considered an MNC. In particular,

(2.2) νE(U ) = lim
T→∞

sup
u∈U
‖PD(u,T,u0)u‖E.

The measure νE(U ) has all properties of ϕ mentioned above, excluding the regu-
larity, since the equality νE(U ) = 0 is possible on noncompact sets.

Also it has been proved in [5] and [6] that if U is a bounded subset of a regular
space E, then νE(U ) ≤ χE(U ); if U is, in addition, compact in measure, then νE(U ) =
χE(U ) . Below we will prove similar properties for β.

Here compactness in measure [1, 4.9.1] means compactness in the normed space
S of all measurable, almost everywhere finite functions u, equipped with the norm
‖u‖ = in f {s + µ{t : |u(t)| > s}}.

The following two statements, which will be prove below, are general in nature,
i.e., valid for an arbitrary Banach space E.

Lemma 2.1 Let U be an arbitrary bounded infinite subset of a Banach space E. Then
for every ε > 0 there exists an element u ∈ U such that the ball B(u, βE(U )+ε) contains
an infinite subset of U .

Proof Let u1 ∈ U be an arbitrary element. Choose ε > 0. If the ball
B(u1, βE(U ) + ε) contains an infinite subset of U , then the proof of the lemma is
complete; otherwise, there exists an element u2 /∈ B(u1, βE(U ) + ε), u2 ∈ U .

Similarly, if the ball B(u2, βE(U ) + ε) does not contain an infinite subset of U ,
there exists an element u3 ∈ U such that

u3 /∈ B
(

u1, βE(U ) + ε
)
∪ B
(

u2, βE(U ) + ε
)
,

etc.
By the definition of βE(U ) this process terminates on some step n, since by the

construction, for any i 6= j (1 6 i, j 6 n),

‖ui − u j‖E > βE(U ) + ε.

Lemma 2.1 is proved.

Lemma 2.2 Let U be an arbitrary bounded infinite subset of a Banach space E. Then
for each ε > 0 a set U contains an infinite subset such that the distance between any two
elements is less than or equal to βE(U ) + ε.

Proof By Lemma 2.1, for an arbitrary ε > 0 in U there exists an element u1 such
that the ball B(u1, βE(U ) + ε) contains an infinite subset U1 ⊂ U .

Now we apply Lemma 2.1 to the set U1\{u1}. Taking into account the inequality
βE(U1) 6 βE(U ), we choose an element u2 6= u1, such that the ball B(u2, βE(U ) + ε)
contains an infinite set U2 ⊂ U1, etc.

https://doi.org/10.4153/CMB-2014-015-4 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2014-015-4


Measures of Noncompactness in Regular Spaces 783

Since on n-th step we obtain an infinite subset Un ⊂ Un−1, this process does not
stop and we build an infinite sequence {un}, the distance between any two members
of which is not greater than βE(U ) + ε.

Lemma 2.2 is proved.

3 Connection Between MNCs and Geometrical Characteristics of
Regular Spaces

Let E be a regular space.

Definition 3.1 Let S̃ be the set of all sequences {un} of elements from E satisfying
the following conditions:

(i) un, n ∈ N, have pairwise disjoint supports;
(ii) limn→∞ ‖un‖E = 1;
(iii) the measure of the support supp un tends to zero as n→∞;
(iv) there exists a strictly increasing sequence of positive numbers {Tn} with

limn→∞ Tn =∞ such that the inequality Tn−1u0(s) 6 |un(s)| < Tnu0(s) holds
for all n ∈ N and s ∈ supp un.

Let

cE = inf
{un}∈S̃

lim
m→∞

lim
n→∞

‖un − um‖E;(3.1)

cE = sup
{un}∈S̃

lim
m→∞

lim
n→∞

‖un − um‖E.(3.2)

Remark Note that 1 6 cE 6 cE 6 2. The upper bound follows from the triangle
inequality and Condition (ii). The lower bound is a consequence of Conditions (i)
and (ii), since E is an ideal space.

We suppose further that the norm in a regular space also satisfies the following
condition: for any sequences of subsets {Dn}, {D∗n} in Ω such that Dn ∩ D∗n = ∅ for
all n and limn→∞max{µ(Dn), µ(D∗n)} = 0, there is no bounded sequence {un} of
functions in E such that

(3.3) lim
n→∞

‖PDn un‖E = a, lim
n→∞

‖PD∗n un‖E = b, lim
n→∞

‖PDn∪D∗n un‖E = d,

where a > 0, b > 0, d = max{a, b}.

Remark Let {un} be a bounded sequence of functions in E such that there exist
Dn ⊂ Ω, n ∈ N, limn→∞ µ(Dn) = 0 such that

νE{un} = lim
n→∞

‖PDn un‖E = a > 0.

Then νE{vn} = 0 for vn = un − PDn un.

Proof Indeed, let νE{vn} = b > 0. Then there exist D∗nk
⊂ Ω such that

Dnk ∩ D∗nk
= ∅, lim

k→∞
µ(D∗nk

) = 0, lim
n→∞

‖PD∗nk
vnk‖E = b > 0.
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Since
PD∗nk

vnk = PD∗nk
(un − PDn un) = PD∗nk

un,

we have limn→∞ ‖PD∗nk
unk‖E = b > 0. Recall that E is an ideal space. Thus

‖PDnk
unk‖ 6 ‖PDnk

∪D∗nk
unk‖E. Since

lim
n→∞

‖PDn un‖E = a and lim
k→∞

‖PDnk
∪D∗nk

unk‖E 6 νE{un} = a,

lim
k→∞

‖PDnk
∪D∗nk

unk‖E = a = max{a, b},

and we get a contradiction to (3.3).

Lemma 3.2 Let U be an arbitrary bounded subset of a regular space E with
νE(U ) > 0. Then there exists a sequence {un} ⊆ U with

cEνE(U ) 6 lim
m→∞

lim
n→∞

‖un − um‖E.

If U is compact in measure, we can choose {un} to satisfy, in addition,

lim
m→∞

lim
n→∞

‖un − um‖E 6 cEνE(U ).

Proof Let U be an arbitrary bounded subset of a regular space E with νE(U ) > 0. By
(2.2), there exists a strictly increasing sequence of numbers {Tn}, limn→∞ Tn = ∞,
and a sequence of functions {un} ⊆ U , for which the equality

νE(U ) = lim
n→∞

‖PD(un,Tn,u0)un‖E

holds.
Note that (2.1) implies limn→∞ ‖PD(um,Tn,u0)u‖E = 0 for each fixed m.
Considering a subsequence (for our convenience, we do not change the notation),

we may assume that νE(U ) = limn→∞ ‖PD̃n
un‖E, where

D̃n = {s ∈ Ω : Tnu0(s) 6 |un(s)| < Tn+1u0(s)}.
It follows from the boundedness of U [13, Theorem 1], that

lim
n→∞

supp u ∈ Uµ
(

D(u,Tn, u0)
)

= 0.

Therefore, limn→∞ µ(D̃n) = 0. Extracting subsequences, we may assume that
µ
(⋃∞

k=n+1 D̃k

)
are small enough and the difference between ‖PD̃n

un‖E and ‖PDn un‖E

is slight for Dn = D̃n\
⋃∞

k=n+1 D̃k. Eventually, we get a sequence {un} such that

νE(U ) = lim
n→∞

‖PDn un‖E

and the sets Dn are pairwise disjoint.
Note that νE{un} = νE(U ) and by the remark before the lemma, νE{vn} = 0 for

vn = un − PDn un.
As consequence, we obtain

lim
k→∞

sup
m,n>k

‖PDm (un − PDn un)− PDn (um − PDm um)‖E = 0,

(3.4) lim
k→∞

sup
m,n>k

‖PDm un − PDn um‖E = 0.
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The constructed sequence of ũn = PDn un satisfies Conditions (i),(iii), and (iv)
from Definition 3.1. Condition (ii) is replaced by the condition limn→∞ ‖ũn‖E =
νE(U ).

Therefore

lim
m→∞

lim
n→∞

‖ũn − ũm‖E > cEνE(U ).

Since E is an ideal space, we have

‖un − um‖E > ‖PDn∪Dm (un − um)‖E >
∣∣‖ũn − ũm‖E − ‖PDm un − PDn um‖E

∣∣
for any m 6= n, and by (3.4),

lim
m→∞

lim
n→∞

‖un − um‖E > cEνE(U ).

The first part of Lemma 3.2 is proved.
Note that by (iii) the sequence {ũn} tends by measure to zero. Let U be compact

in measure. Then {un} is compact in measure too. Therefore, the sequence {un− ũn}
is compact in measure too.

As it was proved in [5], [6], in this case χE{un−ũn} = νE{un−ũn}. By the remark
before the lemma, νE{un− ũn} = 0. Hence χE{un− ũn} = 0. By the definition of the
Hausdorff MNC, for every ε > 0 there exists a finite ε-net C = {c1, c2, . . . , cN} ⊂ E
such that {un−ũn} ⊂ C +εB. Since C is finite, we can choose an infinite subsequence
(with the same notation as before) that satisfies {un− ũn} ⊂ c∗+εB for some c∗ ∈ C .
As a result, we have |‖un−um‖E−‖ũn− ũm‖E| 6 2ε. Now we decrease ε and extract
a subsequence (which we denote again by {un}) such that

lim
m→∞

lim
n→∞

∣∣‖un − um‖E − ‖ũn − ũm‖E

∣∣ = 0.

The second part of Lemma 3.2 is proved, since limm→∞ limn→∞ ‖ũn − ũm‖E 6
cEνE(U ).

Theorem 3.3 In a regular space E the MNCs ν and β are related by the inequality
βE(U ) > cEνE(U ) for every bounded U ; moreover, if U is compact in measure, then
cEνE(U ) 6 βE(U ) 6 cEνE(U ).

Proof If νE(U ) = 0, then the inequality cEνE(U ) 6 βE(U ) is satisfied. If U is
compact in measure and νE(U ) = 0, then by the compactness criterion in regular
spaces ([11–13]) U is relatively compact and βE(U ) = 0. Thus the assertion for the
case νE(U ) = 0 holds. Therefore, we assume that νE(U ) > 0.

Let a sequence {un} be as in Lemma 3.2. Choose ε > 0. By Lemma 2.2 we can
assume without loss of generality that ‖um − un‖E 6 βE{un} + ε for all n and m.

Thus by virtue of the monotonicity of β, we obtain

‖um − un‖E 6 βE{un} + ε 6 βE(U ) + ε

for all n and m.
Since we can take ε arbitrarily small and cEνE(U ) 6 limm→∞ limn→∞ ‖un−um‖E

by Lemma 3.2, we get the assertion of the first part of Theorem 3.3.
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Let U be compact in measure. By the definition of β, for given ε > 0, there exists
a sequence {wn} such that ‖wn −wm‖ > βE(U )− ε for all n 6= m. Hence by Lemma
3.2, we can extract a subsequence {un} of {wn} such that

βE(U )− ε 6 lim
m→∞

lim
n→∞

‖un − um‖E 6 cEνE({wn}) 6 cEνE(U ),

which finishes the proof of Theorem 3.3, since ε can be arbitrarily small.

Below we shall consider examples of calculation of the constants (3.1) and (3.2).

Example 3.4 cLp
= cLp = 21/p for 1 6 p <∞.

Proof Recall that by Definition 3.1(i) functions un have disjoint supports and by
Definition 3.1(ii) their norms tend to 1. Hence,

lim
m→∞

lim
n→∞

‖un − um‖E = lim
m→∞

lim
n→∞

(
‖un‖p

Lp
+ ‖um‖p

Lp

) 1/p
= 21/p

and

lim
m→∞

lim
n→∞

‖un − um‖E = lim
m→∞

lim
n→∞

(‖un‖p
Lp

+ ‖um‖p
Lp

)1/p = 21/p

for every {un} ∈ S̃. Therefore, cLp
= cLp = 21/p.

Example 3.5 cΛ1/p
= cΛ1/p

= 2 for 1 6 p <∞.

Proof Since by [11, 15.1] the set of all finite-valued functions is dense in Λ1/p, 1 6
p < ∞, without loss of generality, we may assume that S̃ consists of sequences of
finite-valued functions.

By Definition 3.1, {un} is a sequence of functions with disjoint supports such that
there exists strictly increasing sequence of positive numbers {Tn}, such that Tn−1 6
|un(s)| < Tn for all s ∈ supp un.

Since ‖| f |‖ = ‖ f ‖, we can consider functions of the form: un =
∑`n

i=1 ciκDi ,

um =
∑`n+`m

i=`n+1 ciκDi , where

c1 > c2 > · · · > c`n > c`n+1 > · · · > c`n+`m > c`n+`m+1 = 0, n > m.

Then by [11, Formula (15.3)],

‖un − um‖Λ1/p
=

`m+`n∑
i=1

(ci − ci+1)µ
( i⋃

k=1
Dk

) 1/p
.

Hence,

‖un−um‖Λ1/p
= ‖un‖Λ1/p

− c`n+1 µ
( `n⋃

k=1
Dk

) 1/p
+

`m+`n∑
i=`n+1

(ci− ci+1)µ
( i⋃

k=1
Dk

) 1/p
.

By Definition 3.1(iii),

lim
n→∞

µ
( `n⋃

k=1
Dk

)
= lim

n→∞
µ(supp un) = 0.
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Hence,

lim
n→∞

‖un − um‖Λ1/p

= lim
n→∞

(
‖un‖Λ1/p

− c`n+1(µ(supp un))1/p

+
`m+`n∑

i=`n+1
(ci − ci+1)

(
µ
( i⋃

k=`n+1
Dk

)
+ µ(supp un)

) 1/p)
= 1 + ‖um‖Λ1/p

since if m is fixed, the numbers c`n+1, . . . , c`n+`m do not change.
Therefore,

lim
m→∞

lim
n→∞

‖un − um‖Λ1/p
= lim

m→∞
(1 + ‖um‖Λ1/p

) = 2

and cΛ1/p
= cΛ1/p

= 2.

Example 3.6 Let E be a regular space consisting of all functions on Ω, where Ω =
G1 ∪ G2, G1 ∩ G2 = ∅, µ(Gi) > 0 (i = 1, 2), with the norm defined by ‖u‖E =
‖PG1 u‖Λ1/p

+ ‖PG2 u‖Lp for 1 6 p <∞. For this space, cE < cE.

Corollary If E = Lp or Λ1/p, then for any bounded subset U ⊆ E inequalities

βLp (U ) > 21/pνLp (U ), βΛ1/p
(U ) > 2νΛ1/p

(U ) hold. In particular, βΛ1/p
(B) = 2.

If U is compact in measure, then βLp (U ) = 21/pνLp (U ) = 21/pχLp (U ), βΛ1/p
(U ) =

2νΛ1/p
(U ) = 2χΛ1/p

(U ).

4 MNC β of Bounded Subsets in L∞

The aim of this section is to show that βL1 (V ) 6 (2 − r/(aµ(Ω))r follows from the
inclusion V ⊂ BL∞(θ, a) ∩ BL1 (θ, r). We start with some particular cases.

Throughout this section Ũ denotes the set of all measurable functions on Ω with
values in the set {−1, 0, 1}.

Below we use the proportionality β and χ in the separable Hilbert space:

(4.1) β =
√

2χ.

Lemma 4.1 Let U be the set of all functions u ∈ Ũ satisfying the following condition:
there exists ω ∈ R+ such that µ(supp u) = ω. Then βL1 (U ) 6 2ω − ω2/µ(Ω).

Proof By the definition of β, for any ε > 0, the set U contains an infinite
(βL1 (U )− ε)-lattice U0, i.e., ‖u− v‖L1 > βL1 (U )− ε for all u 6= v, u, v ∈ U0.

First, we show that for the chosen ε we can find an infinite subset U1 ⊂ U0, such
that for any u, v ∈ U1 we have

(4.2) ξuv := µ(supp u4 supp v) 6 2
(
ω − ω2/µ(Ω)

)
+ ε,

where A4 B := (A ∪ B)\(A ∩ B) for sets A and B.
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Let Û := {u ∈ Ũ | u(s) ∈ {0, 1} for all s ∈ Ω}. Denote by (ω/µ(Ω))e the
constant function with value ω/µ(Ω). Then(
χL2 (Û )

) 2
6 sup

u∈Û

∥∥u−
(
ω/µ(Ω)

)
e
∥∥ 2

L2
=
(

1−ω/µ(Ω)
) 2
ω+
(
ω/µ(Ω)

) 2(
µ(Ω)−ω

)
by the definition of Ũ .

Hence (χL2 (Û ))2 6 ω−ω2/µ(Ω), and (4.1) implies βL2 (Û ) 6
√

2(ω − ω2/µ(Ω)).
Now by Lemma 2.2 we can extract from U0 for the chosen ε an infinite subset U1

such that ∥∥ |u| − |v|∥∥ 2

L2
6 2(ω − ω2/µ(Ω)) + ε

for any two elements u, v ∈ U1. Since |u(s)| − |v(s)| = 0 for all s ∈ supp u ∩ supp v,
we get ξuv = ξ|u|,|v| = ‖|u| − |v|‖2

L2
6 2(ω − ω2/µ(Ω)) + ε, which completes the

proof of (4.2).
Next we prove that for the given ε, there exists an infinite subset U2 ⊂ U1 such

that for any two elements u, v ∈ U2 we have

(4.3) ωuv := µ
{

t ∈ Ω | |u(t)− v(t)| = 2
}
6 µ(supp u ∩ supp v)/2 + ε.

Indeed, by (4.1),

βL2 (U1) =
√

2χL2 (U1) 6
√

2 sup
u∈U1

‖u‖L2 =
√

2ω.

Therefore, by Lemma 2.2, the set U1 includes an infinite subset U2 such that
‖u− v‖2

L2
6 2ω + ε for all u, v ∈ U2. Hence

‖u− v‖2
L2

= 4ωuv + 2(ω − µ(supp u ∩ supp v)) 6 2ω + ε,

which completes the proof of (4.3).
Note that (4.3) implies ωuv 6 (ω− ξuv/2)/2 + ε. Thus for every u, v ∈ U2, u 6= v,

βL1 (U )− ε 6 2ωuv + ξuv 6 (ω − ξuv/2) + ξuv + 2ε 6 2ω − ω2/µ(Ω) + 2ε,

whence we obtain the assertion of Lemma 4.1, since ε can be arbitrarily small.

Lemma 4.2 Letα1, α2, . . . , αn andω1, ω2, . . . , ωn be two collections of positive num-
bers

(∑n
i=1 ωi 6 µ(Ω)

)
. Consider the set V of elements

∑n
i=1 αiui , where ui ∈ Ũ ,

µ(supp ui) = ωi , and supp ui ∩ supp u j = ∅, for 1 6 i, j 6 n. Then βL1 (V ) 6
2r − r2/(aµ(Ω)), where r =

∑n
i=1 αiωi and a = max16i6n αi .

Proof If n = 1, the assertion follows from Lemma 4.1, the semi-homogeneity of
β, and the inequality α1 > 0. Therefore, we assume the validity of the assertion for
some n > 1 and prove that it remains true when we replace n with n+1. Without loss
of generality, we may assume that α1 < α2 < · · · < αn < αn+1. Then the algebraic
additivity of β and the equality

∑n
i=1 αiui =

∑n
i=1 αiui + αnun+1 + (αn+1 − αn)un+1
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implies

βL1 (V ) 6 βL1

{ n∑
i=1
αi ũi

∣∣∣ ui ∈ Ũ , µ(supp ũi) = ωi for 1 6 i 6 n− 1,

µ(supp ũn) = ωn + ωn+1, supp ui ∩ supp u j = ∅, 1 6 i, j 6 n
}

+ βL1{(αn+1 − αn)un+1 | un+1 ∈ Ũ , µ(supp un+1) = ωn+1}.
Using the inductive assumption, we get

βL1 (V ) 6 2r̃ − r̃2/
(
αnµ(Ω)

)
+ 2(αn+1 − αn)ωn+1

−
(

(αn+1 − αn)ωn+1

) 2
/
(

(αn+1 − αn)µ(Ω)
)
,

where r̃ =
∑n

i=1 αiωi + αnωn+1.
Now {∑n

i=1 αiωi + αnωn+1

} 2

αn
+ (αn+1 − αn)ω2

n+1 >

{∑n+1
i=1 αiωi

} 2

αn+1

implies Lemma 4.2.

Now we are ready to prove the main result of the section.

Theorem 4.3 Let U ⊂ BL∞(θ, a) ∩ BL1 (θ, r), r 6 aµ(Ω). Then

βL1 (U ) 6 (2− r/(aµ(Ω))r.

Proof By the definition of β, for every ε > 0, the set U contains an infinite sequence
{uk}, satisfying the inequality ‖uk − um‖L1 > βL1 (U )− ε for all k 6= m.

Note that {uk} is bounded in L∞. Therefore, considering a subsequence, we may
assume that there exists limk→∞ ‖uk‖ = r1 6 r. Now we consider approximations of
{uk} by functions satisfying the assumptions of Lemma 4.2. Considering limit points
of sets of values of every ωk for a fixed k, taking subsequences once again, and using
the continuity of the measure µ, we may assume that there exists a sequence {ũk} of
elements satisfying the assumptions of Lemma 4.2 with the same αi and ω j , such that
‖uk− ũk‖L1 < ε for all k ∈ N. Thus, βL1 (U )−ε 6 ‖ũk− ũm‖L1 +2ε for any k 6= m. By
Lemma 2.2, without loss of generality we may assume that ‖ũk−ũm‖L1 6 βL1{ũk}+ε.

By Lemma 4.2, βL1 (U ) 6 ‖ũk−ũm‖L1 +3ε 6 βL1{ũk}+4ε 6 (2−r1/(aµ(Ω))r1+4ε.
This completes the proof of Theorem 4.3, since ε > 0 can be arbitrarily small, the
function f (x) = (2− x/(aµ(Ω)))x is increasing on [0; aµ(Ω)], and r 6 aµ(Ω).

5 (k, β)-boundedness of Partially Additive Operators

Let E and E1 be Banach spaces. We recall from [1, 1.5.1] that a continuous operator
A : G ⊆ E → E1 (not necessarily linear) is said to be condensing with respect to
MNC ϕ, if for any bounded subset U ⊂ G with noncompact closure, the inequality
ϕE1 (AU ) < ϕE(U ) holds.

A continuous operator A : G ⊆ E → E1 is called (k, ϕ)-bounded with respect
to MNC ϕ, if there exists a constant k > 0 such that ϕE1 (AU ) 6 kϕE(U ) for any
bounded subset U ⊂ G.
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If k < 1 then (k, ϕ)-bounded operator A is condensing with respect to MNC ϕ.
The converse, in general, is not true.

Let E be a regular space. We consider partially additive operators A : E → E1

[11, 17.4]. In particular, partially additive operators satisfy the condition

(5.1) A(PD(u,T,u0)u + PA(u,T,u0)u) = APD(u,T,u0)u + APA(u,T,u0)u− Aθ

for any function u ∈ E.
Let U be any bounded subset from E. We denote the following as in [7–9]:

k(U ,A, E, E1) = lim
T→∞

sup
‖PD(u,T,u0)u‖E 6=0,u∈U

‖APD(u,T,u0)u‖E1

‖PD(u,T,u0)u‖E
.

Evidently, in the case of a linear bounded operator the constant k(U ,A, E, E1) does
not exceed the norm of the operator. For a nonlinear operator, even if it is partially
additive and bounded, this constant is either finite or infinite.

Lemma 5.1 Let A : E → E1 be a continuous partially additive operator, where E is a
regular space. In addition, let A be compact as an operator from L∞(u0) to E1. Let U be
an arbitrary bounded subset in E for which the constant k is finite. Then for any V ⊆ U
we have βE1 (AV ) 6 βE1 (B(θ, k(U ,A, E, E1)νE(V ))).

Proof By (5.1), the assumption of partially additivity of A, and the algebraic addi-
tivity of β, we obtain for any V ⊆ U ,

βE1 (AV ) 6 βE1

(
A{PD(u,T,u0) : u ∈ V}

)
+ βE1

(
A{PA(u,T,u0) : u ∈ V}

)
+ βE1

(
A(θ)

)
.

We have βE1 (A{PA(u,T,u0) : u ∈ V}) = 0, since the restriction of A on L∞(u0) is
compact. Furthermore, the nonsingularity of β implies βE1 (A(θ)) = 0.

Therefore, βE1 (AV ) 6 βE1 (A{PD(u,T,u0) : u ∈ V}). Note that we have the inclusion
of A{PD(u,T,u0) : u ∈ V} into

B
(
θ, sup
‖PD(u,T,u0)u‖E 6=0,u∈V

‖APD(u,T,u0)u‖E1

‖PD(u,T,u0)u‖E
sup
u∈V
‖PD(u,T,u0)u‖E

)
for any T > 0. From here, taking into account the monotonicity of β and the in-
equality k(V,A, E, E1) 6 k(U ,A, E, E1) for every V ⊆ U , we obtain the assertion of
Lemma 5.1.

Theorem 5.2 Suppose that A satisfies the conditions of Lemma 5.1. Then the operator
A is ((k(U ,A, E, E1)βE1 (B))/cE, β)-bounded on U .

Proof Applying Lemma 5.1, Theorem 3.3, and the semi-homogeneity of β, we ob-
tain

βE1 (AV ) 6 k(U ,A, E, E1)νE(V )βE1 (B) = k(U ,A, E, E1)νE(V )βE1 (B)

6
k(U ,A, E, E1)βE1 (B)

cE

cEνE(V ) 6 k(U ,A, E, E1)
βE1 (B)

cE

βE(V ).

Theorem 5.2 is proved.
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Corollary (i) As was proved in [10], βLp (B) = max{21/p, 21−1/p} for 1 6 p <
∞. Thus a continuous partially additive operator A : Lp → Lq compact as an operator
A : L∞ → Lq, is (k, β)-bounded on any set U with

k = (k(U ,A, Lp, Lq) max{21/q, 21−1/q})/21/p.

(ii) Let A be a linear operator, acting from Lp in L∞ (1 6 p < ∞). Then A as an
operator from Lp in Lq is a (2(p−q)/pq‖A‖, β)-bounded operator for 1 6 q 6 2, and a
(21−1/p−1/q‖A‖, β)-bounded operator for 2 < q <∞ [10, Theorem 2].

Theorem 5.3 Let A : L1(Ω)→ L1(Ω) be continuous partially additive operator with
the compact restriction on L∞(Ω). Then A is((

1− k(U ,A, L1(Ω), L1(Ω))

2k(U ,A, L1(Ω), L∞(Ω))µ(Ω)

)
k(U ,A, L1(Ω), L1(Ω)), β

)
-bounded

as an operator from L1(Ω) in L1(Ω).

Proof Let V ⊆ U . By the proof of Lemma 5.1,

βL1 (AV ) 6 βL1

(
A{PD(u,T,u0) : u ∈ V}

)
.

Furthermore, we have inclusions

A{PD(u,T,u0) : u ∈ V} ⊂ BL∞

(
θ, k(U ,A, L∞(Ω), L1(Ω))νL1 (V )

)
and

A{PD(u,T,u0) : u ∈ V} ⊂ BL1

(
θ, k(U ,A, L1(Ω), L1(Ω))νL1 (V )

)
for any T > 0. Thus, by Theorem 4.3, we have the inequality

βL1 (AV ) 6
(

2− r/(aµ(Ω)
)

r, r = k
(

U ,A, L1(Ω), L1(Ω)
)
νL1 (V ),

a = k
(

U ,A, L1(Ω), L∞(Ω)
)
νL1 (V ).

Hence,

βL1 (AV ) 6

(
2− k(U ,A, L1(Ω), L1(Ω))

k(U ,A, L1(Ω), L∞(Ω))µ(Ω)

)
k(U ,A, L1(Ω), L1(Ω))νL1 (V ).

By Theorem 3.3, 2νL1 (V ) 6 βL1 (V ). This finishes the proof of Theorem 5.3.

Note that [11, Lemma 5.3] implies that any linear integral operator is compact as
an operator L∞ → L1.

Example 5.4 Let un(t), n = 1, 2, . . . , be the sequence of Rademacher functions in
L1 := L1(0, 1). Let ∆1,∆2, . . . be a sequence of disjoint intervals in [0, 1]. Denote
by κn(s) the characteristic function of ∆n. Let

K(t, s) =
∞∑

n=1
un(t)κn(s).

https://doi.org/10.4153/CMB-2014-015-4 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2014-015-4


792 N. A. Erzakova

Clearly, the function K(t, s) is measurable with respect to s and t . Let t ∈ [0, 1] and
u ∈ L1. Then∣∣∣∣∫ 1

0
K(t, s)u(s)ds

∣∣∣∣ =

∣∣∣∣ ∞∑
n=1

∫
∆n

un(t)u(s)ds

∣∣∣∣
6
∞∑

n=1

∣∣∣∣∫
∆n

u(s)ds

∣∣∣∣ 6 ∞∑
n=1

∫
∆n

|u(s)|ds 6 ‖u‖L1 .

Note that

(Ku)(t) =

∫ 1

0
K(t, s)u(s)ds

is measurable for every u ∈ L1, and its norm L1 is less than or equal to ‖u‖L1 . There-
fore, the operator K satisfies all conditions of Theorem 5.3 (see also the remark before
the example) and, in addition, ‖K‖L1→L∞ = ‖K‖L1→L1 = 1. Thus by Theorem 5.3,
K is (1/2, β)-bounded and, therefore, β-condensing.

Since ‖K‖L1→L1 = 1, the operator K is (1, χ)-bounded. On the other hand, if
vn(s) = κn(s)/µ(∆n), then (Kvn)(t) = un(t). In particular,

χL1{vn} = χL1{κn/µ(∆n)} = 1, χL1{Kvn} = χL1{un} = 1.

Thus, the operator K is condensing with respect to β, but not χ-condensing.

Remark MNCs χ and β were cosidered in the works of L. S. Gol’denshtein, I. Goh-
berg, A. S. Markus, V. Istrǎtescu, J. Daneš, and others. Detailed description of biblio-
graphic information is given in [1]. In particular, the author has proved the algebraic
semi-additivity, the invariance under passage to the convex hull of β and proportion-
ality formula (4.1) (see the references in [1, 1.8.3, 4.9.9]).

The formula (4.1) and the algebraic semi-additivity of β were also obtained inde-
pendently by the authors of [2].
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