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Abstract

We study the long-standing problem of the existence of non-Berwaldian Landsberg spaces from the
perspective of conformal transformations. We calculate the Berwald and Landsberg tensors in terms of
the T-tensor and show that there are Landsberg spaces with nonvanishing T-tensor. We give a necessary
condition for a Landsberg space to be Berwaldian. We find conditions under which the Landsberg spaces
cannot be Berwaldian and give examples of (y-local) non-Berwaldian Landsberg spaces.
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1. Introduction

In a Riemannian manifold M, each tangent space TxM, x ∈ M, is equipped with an
inner product. In a Finsler manifold each tangent space is equipped with a Minkowski
norm which is not necessarily induced by an inner product. A Finsler function
(structure) on a manifold M is a function from the tangent bundle TM =

⋃
x∈M TxM

to R, which is a norm on each tangent space. Finsler geometry involves the choice of a
norm on each tangent space and thus a Finsler function F : TM→ R satisfying certain
conditions. The usual convention is that x denotes the position in the manifold and y
denotes the direction in the tangent space. Finsler geometry arises naturally in various
settings as explained in Chern [6] and a remarkable number of features of Riemannian
geometry extend to the Finsler case (for more details, see [5]). In applications, for
example in relativistic physics, F may only be defined on an open subset of TM, the
so-called y-local spaces (see [1]).

Let M be an n-dimensional smooth manifold, (xi) the coordinate system on the base
manifold M and (xi, yi) the induced coordinate system on TM. For a Finsler metric
F = F(x, y) on M, the geodesic spray S = yi∂/∂xi − 2Gi∂/∂yi is a vector field on the
tangent bundle TM, where the functions Gi = Gi(x, y) are homogeneous of degree two
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in y and called geodesic coefficients. The Gi are given by

Gi =
1
4

gih(yr∂r∂̇hF2 − ∂hF2), where ∂i :=
∂

∂xi , ∂̇h :=
∂

∂yh . (1.1)

The nonlinear connection Gi
j and the coefficients of the Berwald connection Gi

jk are
defined respectively by

Gi
j = ∂̇ jGi, Gi

jk = ∂̇kGi
j.

The Berwald tensor Gi
jkh and the Landsberg tensor L jkh are given respectively by

Gi
jkh = ∂̇hGi

jk, L jkh = − 1
2 F`iGi

jkh, where `i := ∂̇iF. (1.2)

A Finsler manifold (M,F) is said be Berwaldian if the Berwald tensor Gh
i jk vanishes

identically. In Berwald manifolds, the coefficients of the Berwald connection Gi
jk(x)

are functions of x only and the spray coefficients Gi are quadratic in y. A Finsler
manifold (M, F) is said be Landsberg if the Landsberg tensor Li jk vanishes identically.

The regular Landsberg spaces are the most elusive. In 1907, Landsberg [8–10]
introduced the Landsberg spaces in a non-Finsler framework. Every Berwald space
is a Landsberg space. Whether there are regular Landsberg spaces which are not
Berwaldian is a long-standing open question in Finsler geometry.

Asanov [1] obtained examples, arising from Finslerian general relativity, of non-
Berwaldian Landsberg spaces of dimension at least three. In Asanov’s examples the
Finsler functions are not defined for all values of the fibre coordinates yi (that is,
they are y-local). Whether or not there are y-global non-Berwaldian Landsberg spaces
remains an open question. Shen [13] studied the class of (α, β) metrics of Landsberg
type, of which Asanov’s examples are particular cases, and found that there are
y-local non-Berwaldian Landsberg spaces with (α, β) metrics, but no y-global ones
[3, 13]. Bao [4] tried to construct non-Berwaldian Landsberg spaces by successive
approximation. The elusiveness of y-global non-Berwaldian Landsberg spaces led Bao
to describe them as the unicorns of Finsler geometry.

In this paper, we study the question of the existence of non-Berwaldian Landsberg
spaces from the perspective of conformal transformations. For a Finsler manifold
(M, F), a conformal transformation of F is defined by

F = eσ(x)F,

where σ(x) is a function on the manifold M. We describe the effect of a conformal
transformation on the Berwald and Landsberg tensors in terms of the T-tensor, which
plays an important role in Finsler geometry. For example, Szabo [14] proved that a
positive-definite Finsler metric with vanishing T-tensor is Riemannian.

Hashiguchi [7] showed that a Landsberg space remains Landsberg under every
conformal transformation if and only if the T-tensor vanishes identically. We show
that there are Landsberg spaces (with nonvanishing T-tensor) which remain Landsberg
under some conformal transformations. Matsumoto [12] showed that a Berwald space
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(M, F) remains Berwaldian under every conformal transformation if and only if
Bir

jkh := ∂3(F2gir)/∂y j∂yk∂yh = 0 (that is, the F2gir are quadratic in yi). We show that
there are Berwald spaces (with nonvanishing Bir

jkh) which remain Berwaldian under
some conformal transformations.

Starting with a Berwald space (M,F), if the transformed space (M,F) is Landsberg,
we give a necessary condition for (M, F) to be Berwaldian. We consider some special
cases, for example when (M, F) is S3-like or has vanishing T-tensor and vanishing
vertical curvature of the Cartan connection.

The condition for a Berwald space to transform to a Landsberg space is that
σrT r

jkh = 0. We show that a positive-definite C-reducible Finsler space does not admit
a function σ(x) such that σrT r

jkh = 0. Since Randers spaces are C-reducible, a regular
Randers space does not admit such a function.

Finally, we show that under a conformal transformation, a C2-like Berwald space
with vanishing T-tensor transforms to a non-Berwaldian Landsberg space and we
derive examples of (singular) non-Berwaldian Landsberg spaces.

2. Conformal transformation

Let M be an n-dimensional manifold and (T M, π, M) be its tangent bundle. We
denote by (xi) the local coordinates on the base manifold M and by (xi, yi) the induced
coordinates on TM, where yi is called the supporting element.

Definition 2.1. A Finsler function F : TM→ R on a manifold M is a continuous
function such that:

(i) F is smooth and strictly positive on the slit tangent bundle TM := TM\{0} and
F(x, y) = 0 if and only if y = 0;

(ii) F is positively homogeneous of degree one in the directional argument y;
(iii) the metric tensor gi j = 1

2∂
2F2/∂yi∂y j has maximal rank on TM.

The pair (M, F) is called a Finsler space and the symmetric bilinear form g given
by g = gi j(x, y) dxi ⊗ dx j is called the Finsler metric tensor of the Finsler space (M,F).
The function E := 1

2 F2 is called the energy function associated to F.
A conformal transformation of a Finsler structure F is given by

F = eσ(x)F, (2.1)

where σ(x) is a smooth function on M. All the geometric objects associated with the
transformed space (M, F) will be denoted by barred symbols. For example, the metric
tensor of (M, F) is denoted by gi j.

Lemma 2.2. Under the conformal transformation (2.1):

(a) `i = eσ`i;
(b) gi j = e2σgi j;
(c) gi j

= e−2σgi j,

where `i := ∂̇iF and gi j is the inverse metric tensor.
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The Cartan tensor Ci jk is defined by Ci jk := 1
2 ∂̇kgi j and Ch

i j := Ci jkgkh. The following
lemma gives the partial differentiations of Ch

i j and other tensors obtained from the
Cartan tensor with respect to yh.

Lemma 2.3. The following identities hold:

(a) ∂̇hCir
j = Cir

jh − 2Cr
s jC

is
h − 2Ci

s jC
rs
h ;

(b) ∂̇hCr
s j = Cr

s jh − 2C`s jCr`
h ;

(c) ∂̇hCir
jk = Cir

jkh − 2Cr
s jkC

is
h − 2Ci

s jkC
rs
h ;

(d) ∂̇hCr
i jk = Cr

i jkh − 2Crs
h Ci jkh,

where Ci jkh = ∂̇hCi jk, C`i jkh = ∂̇hC`i jk, Cr
i jk = C`i jkg`r and so on.

The following lemma obtained from [7] shows the transformations of the geodesic
coefficients Gi and the connections Gi

j and Gi
jk.

Lemma 2.4. Under the conformal transformation (2.1):

(a) G
i
= Gi + Bi;

(b) G
i
j = Gi

j + Bi
j;

(c) G
i
jk = Gi

jk + Bi
jk,

where the Gi are the geodesic coefficients in (1.1) and
Bi = σ0yi − 1

2 L2σi, σ0 := σiyi,

Bi
j = σ jyi + σ0δ

i
j − Fσi` j + F2σrCir

j ,

Bi
jk = σ jδ

i
k + σkδ

i
j − σ

ig jk + 2FσrCir
k ` j

+ 2FσrCir
j `k + F2σr(Cir

jk − 2Cr
s jC

is
k − 2Ci

s jC
rs
k ).

Hashiguchi [7] showed that a Landsberg space remains Landsberg under any
conformal transformation if and only if the T-tensor vanishes identically. Following
[11], the T-tensor is defined by

Tri jk = FCri jk − F(Csi jC s
rk + Cs jrC s

ik + CsirC s
jk) + Cri j`k + Crik` j + Cr jk`i + Ci jk`r.

(2.2)
The T-tensor is totally symmetric in all of its indices. Let us write

Ti j := Ti jhkghk, T := Ti jgi j.

Lemma 2.5. The tensor Cir
jkh can be rewritten in the following form:

Cir
jkh =

1
F
∂̇hT ri

jk +
2
F

(T r
s jkC

is
h + T i

s jkC
sr
h ) −

1
F

(Cri
j `kh + Cri

k ` jh + Cr
jk`

i
h + Ci

jk`
r
h)

+
1
F

(Ci
s jC

r
`k + Cr

s jC
i
`k + Cri

s C` jk)`h − 2(Ci
s jC

r
`kC

s`
h + Cr

s jC
i
`kC

s`
h + Cri

s C` jkC s`
h )

+ Ci
s jhC sr

k + Ci
s jC

sr
kh + Cr

s jhC si
k + Cr

s jC
si
kh + Cir

shC s
jk + Cri

s C jkh

−
1
F

(Cir
jh`k + Cir

kh` j + Cir
jk`h + Cr

jkh`
i + Ci

jkh`
r).
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Proof. Differentiating (2.2) with respect to yh, raising the indices i and r and then using
Lemma 2.3 gives the required formula for Cir

jkh. �

For a Berwald manifold (M,F), all tangent spaces TxM with the induced Minkowski
norm Fx are linearly isometric. There are many characterisations of Berwald spaces.
We give one of them in terms of the Berwald tensor Gi

jkh defined in (1.2).

Definition 2.6. A Finsler manifold (M, F) is said to be Berwaldian if the Berwald
tensor Gi

jkh vanishes identically.

It is known that on a Landsberg manifold M, all tangent spaces TxM with
the induced Riemannian metric gx = gi j(x, y) dyi ⊗ dy j are isometric. We give a
characterisation of a Landsberg space in terms of the Landsberg tensor L jkh defined
in (1.2).

Definition 2.7. A Finsler manifold (M, F) is said to be Landsberg if the Landsberg
tensor Li jk vanishes identically.

Straightforward but long calculations using Lemmas 2.3, 2.4 and 2.5 give the
following proposition.

Proposition 2.8. Under the conformal transformation (2.1), the Berwald tensor
(defined in (1.2)) transforms by

G
i
jkh = Gi

jkh + Bi
jkh,

where

Bi
jkh = F2σrCir

jkh + 2σr(Cir
j gkh + Cir

h g jk + Cir
k g jh) + 2Fσr(Cir

jk`h + Cir
h j`k + Cir

kh` j)

− 4Fσr((Cr
s jC

si
k + Ci

s jC
sr
k )`h + (Cr

s jC
si
h + Ci

s jC
sr
h )`k + (Cr

skC
si
h + Ci

skC
sr
h )` j)

− 2F2σr((Cr
s jkC

si
h + Ci

s jkC
sr
h ) + (Cr

s jhC si
k + Ci

s jhC sr
k ) + (Cr

skhC si
j + Ci

skhC sr
j ))

+ 4F2σr((Cst jCti
k + CstkCti

j )C sr
h + (Cst jCit

h + CsthCit
j )C sr

k

+ (CstkCit
h + CsthCit

k )C sr
j ).

In terms of the T-tensor, Bi
jkh is given by

Bi
jkh = Fσr∂̇hT ri

jk − σr(T ri
jh`k + T ri

kh` j − T ri
jk`h − T r

jkh`
i − T i

jkh`
r)

− Fσr(T i
s jhC sr

k + T r
skhC si

j + T r
s jhC si

k + T i
skhC sr

j − T ri
shC s

jk − T s
jkhCri

s )

+σr(Cri
j hkh + Cri

k h jh + 2Cir
h h jk −Cr

jkhi
h −Ci

jkhr
h − 2C jkhhir)

+ F2σr[Ct
h jS

ir
t k + Ct

hkS ri
t j −Cti

h S r
t jk −Ctr

h S i
tk j −Cti

j S r
thk −Ctr

k S i
th j ],

(2.3)

where S h
i jk = Cr

ikC
h
r j −Cr

i jC
h
rk is the v-curvature of the Cartan connection.

Corollary 2.9. Under the conformal transformation (2.1), the Landsberg tensor
(defined in (1.2)) transforms by

L jkh = eσL jkh + e2σFσrT r
jkh.
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3. Necessary condition

Making use of Corollary 2.9, one can see easily that under the conformal
transformation (2.1), a Landsberg space remains Landsberg if and only if

σrT r
jkh = 0.

Hashiguchi [7] showed that a Landsberg space remains Landsberg under every
conformal transformation if and only if the T-tensor vanishes identically. However,
there are Landsberg spaces (with nonvanishing T-tensor) which remain Landsberg
under some (but not all) conformal transformations. This is shown by the following
example.

Example 3.1. Let M = R3. Let F = σ(x2)F with F defined by

F(x, y) =

((
y1y3 + y3

√
(y1)2 + (y3)2

)
(y2)2

)1/4
.

For the space (M,F), we haveσrT r
i jk = σ2T 2

i jk = 0 but, generally, T h
i jk , 0. For example,

T 1
111 , 0.

When a Landsberg space remains Landsberg under every conformal transformation,
by a result of Szabo [14], the space is Riemannian. So, Hashiguchi’s result on the
vanishing of the T-tensor gives no hope of finding a regular Landsberg space by means
of conformal transformations. However, if only some conformal transformations of
a Landsberg space preserve the Landsberg property, it may be possible to find a
conformal transformation which produces a regular Landsberg space which is not
Berwaldian. This prompts the following question.

Question 3.2. Is there a regular Berwald space admitting a function σ(x) such that
σrT r

i jk = 0?

Matsumoto [12, Corollary 4.1.2.1, page 786] showed that a Berwald space (M, F)
remains Berwaldian under every conformal transformation if and only if the tensor
Bir

jkh = ∂̇ j∂̇k∂̇h(F2gir) = 0 (that is, the F2gir are quadratic in yi). Asanov and Kirnasov
[2] calculated the tensor Bir

jkh, which is related to the tensor Bi
jkh by

Bi
jkh = − 1

2 Bir
jkhσr.

On the other hand, there are Berwald spaces (with nonvanishing Bir
jkh) which remain

Berwaldian under some (but not all) conformal transformations. This is shown by the
following example.

Example 3.3. Let M = R4. Let F = σ(x1, x3)F with F defined by

F(x, y) =

(√
y1y2y3y4(y2 + y4)

)1/4
.
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For the space (M,F), we have σrT r
i jk = σ1T 1

i jk = σ3T 3
i jk = 0 but, generally, T h

i jk , 0; for
example,

T 4
444 =

3y1(y2)3y3y4(3y2 + y4)

F3
√

y1y2(3(y2)2 + 2y2y4 + 2(y4)2)2
.

Also, Bi
jkh = 0, σrBir

jkh = σ1Bi1
jkh = σ3Bi3

jkh = 0, but, generally, Bir
jkh , 0; for example,

B44
444 =

768y2(y4)3((y2)3 + (y2)2y4 − 3y2(y4)2 − 2(y4)3)
(3(y2)2 + 2y2y4 + 2(y4)2)4 .

Remark 3.4. Most of the calculations in the examples are done by using the Maple
program and the Finsler package [15]. For simplicity, many of the examples we give
are not necessarily regular Finsler spaces but they are at least non-Riemannian.

Start with a Berwald space (M, F) admitting a nonconstant function σ(x) such
that σrT r

i jk = 0. Under the conformal transformation F = eσ(x)F, the space (M, F) is
Landsberg. But in order to be Berwaldian it has to satisfy some necessary conditions.
We try next to determine what kind of conditions the space should satisfy.

Theorem 3.5. Let (M, F) be a Berwald space admitting a nonconstant function σ(x)
such that σrT r

i jk = 0. Under the conformal transformation (2.1), a necessary condition

for the Landsberg space (M, F) to be Berwaldian is

((n − 2)Cr + F2CuS r
u − FTuvCuvr − T`r)σr = 0,

where Sik := Si jk`g j` = S ji`kg j` is the Ricci tensor of the vertical curvature.

Proof. Let (M, F) be a Berwald space; then the Berwald tensor Gi
jkh vanishes and, so,

by (1.2), the Landsberg tensor L jkh is zero. Contracting (2.3) by gkh,

0 = −σrT i
j`

r − Fσr(T i
s jhC srh + T i

sC
sr
j − T s

j C
ri
s ) + nσrCir

j − 2σrC jhir

+ F2σr
[
Ctu

j S ir
t u + CtS ri

t j −CtiuS r
t ju −CturS i

tu j −Cti
j S r

t −CturS i
tu j

]
.

Contracting this equation by gi j and using the facts that Chi jSi jk` = 0 and S i
tui = 0

(which follow because Si jkh is antisymmetric in the first two indices and the last two
indices),

0 = −σrT`r − FσrTshC srh + σr(n − 2)Cr + F2σrCtS r
t .

This completes the proof. �

Definition 3.6. A Finsler space (M, F) is said to be S3-like if the vertical curvature of
the Cartan connection can be written in the form

Si jkh = ρ(hikh jh − hihh jk), (3.1)

where ρ := S/(n − 1)(n − 2) and S = Si jkhg jhgik is the vertical scalar curvature.

From (3.1) and Theorem 3.5, we have the following corollary.
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Corollary 3.7. Let (M, F) be an S3-like Berwald space admitting a nonconstant
function σ(x) such that σrT r

i jk = 0. Under the conformal transformation (2.1), a

necessary condition for the Landsberg space (M, F) to be Berwaldian is

((n − 2)(1 + F2ρ)Cr − FTshC srh − T`r)σr = 0. (3.2)

The following result is a direct consequence of Theorem 3.5.

Theorem 3.8. Let (M, F) be a Berwald space with vanishing T-tensor and vanishing
v-curvature. If the Landsberg space (M, F) is Berwaldian, then either n = 2 or
σrCr = 0.

4. The condition σrTr
i jk
= 0

In the previous section, we showed that a Berwald space transforms to a Landsberg
space if the T-tensor vanishes or σrT r

jkh = 0. We now focus on the latter condition. The
condition σrT r

jkh = 0 can be satisfied in regular Finsler spaces and it is clearly weaker
than the vanishing of the T-tensor.

Theorem 4.1. A positive-definite C-reducible Finsler space does not admit a function
σ(x) such that σrT r

jkh = 0.

Proof. If (M, F) is C-reducible, then the T-tensor is given by

Thi jk =
T

(n2 − 1)
(hhih jk + hi jhhk + h jhhik).

Contracting the above equation by σh gives

T
(n2 − 1)

σh(hhih jk + hi jhhk + h jhhik) = 0.

Again, contracting by g jk,

σh T
(n2 − 1)

((n − 1)hhi + 2hih) = 0.

Since the metric is positive definite, T , 0 and so

σhhhi = 0,

which gives σi − (σ0/F)`i = 0. But, then, differentiating with respect to y j gives
(σ0/F2)`i j = 0, which is a contradiction. In other words, σi cannot be proportional
to the supporting element yi. �

Since the metrics of Randers type are C-reducible, we have the following corollary.

Corollary 4.2. A regular Randers space does not admit a function σ(x) such that
σrT r

jkh = 0.

https://doi.org/10.1017/S000497271900128X Published online by Cambridge University Press

https://doi.org/10.1017/S000497271900128X


[9] Non-Berwaldian Landsberg spaces 339

Proposition 4.3. Let (M, F) be a non-Riemannian space admitting a function σ(x)
such that σrT r

jkh = 0. If σrCr
jk = 0, then σ is constant.

Proof. Let (M, F) be a non-Riemannian space admitting a function σ(x) such that
σrT r

jkh = 0 and σrCr
jk = 0. From the second condition, σr is a function of x only, that

is, ∂̇ jσ
r = −2σhChr

j = 0. Contracting (2.2) by σr,

F2σrCri jk + σ0Ci jk = 0,

which can be written in the form

F2σr∂̇kCri j + σ0Ci jk = 0.

Since σr(x) is a function of x only, σ0Ci jk = 0. Since the space is non-Riemannian,
σ0 , 0, which yields Ci jk = 0 and hence ∂̇ jσ0 = σ j = 0. Consequently, σ is constant. �

Definition 4.4. A Finsler space (M, F) of dimension n ≥ 2 is said to be C2-like if the
Cartan tensor Ci jk satisfies

Ci jk =
1

C2 CiC jCk, (4.1)

where Ck := Ci jkgi j and C2 := CiCi.

The following theorem gives a condition under which a Landsberg space cannot be
Berwaldian.

Theorem 4.5. Under the conformal transformation (2.1), a C2-like Berwald space
admitting a nonconstant function σ(x) such that

σrT r
i jk = 0 and F2TuvCuvrσr + Tσ0 = 0

transforms to a non-Berwaldian Landsberg space.

Proof. Since σrT r
i jk = 0, the space (M, F) is Landsberg. For a C2-like space the

v-curvature vanishes and, from Theorem 3.5 and the condition (FTuvCuvr + T`r)σr = 0,

Crσr = 0.

Now, from (4.1),
σiCi jk = 0.

By Proposition 4.3, the space is Riemannian or σ is constant, which is a
contradiction. �

Since the vanishing of the T-tensor means that the space is not a regular Finsler
space, the following corollary gives a condition under which a singular Landsberg
space cannot be Berwaldian.

Corollary 4.6. Under the conformal transformation (2.1), a C2-like Berwald space
with vanishing T-tensor transforms to a non-Berwaldian Landsberg space.
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5. Examples

Shen [13] obtained a general formula for a class of (y-local) Landsberg spaces
which are not Berwaldian. In this class, the Riemannian metric α and the 1-form β
must satisfy certain conditions and it is not obvious that there are concrete examples in
which α and β satisfy these conditions. Using our results, we will give simple examples
of Landsberg spaces which are not Berwaldian. These examples can be seen as special
cases of Shen’s class [13]. The calculations are done with the Finsler package [15] in
Maple.

Example 5.1. Let M = R3. Let F = σ(x3)F, where F is defined by

F(x, y) =

√
(y3)2 + y1y2 + y3

√
y1y2 exp

( 1
√

3
arctan

( 2y3√
3y1y2

+
1
√

3

))
.

For (M, F), we have σrT r
i jk = σ3T 3

i jk = 0, σrCr = σ3C3 , 0, but, generally, T h
i jk , 0;

for example, T 1
111 , 0. Moreover, the space (M, F) does not satisfy the condition (3.2).

Example 5.2. Let M = R3. Take F = σ(x2)F, where F is defined by

F(x, y) = σ(x2)

√
(y1)2 + (y2)2 + (y2)3 + y2

√
(y1)2 + (y3)2

× exp
( 1
√

3
arctan

( 2y2√
3((y1)2 + (y3)2)

+
1
√

3

))
.

For (M, F), we have σrT r
i jk = σ2T 2

i jk = 0, σrCr = σ2C2 , 0, but, generally, T h
i jk , 0;

for example, T 1
111 , 0. Moreover, the space (M, F) does not satisfy the condition (3.2).

The following example shows that the conformal transformation of a non-Berwald
space can produce a Berwald space.

Example 5.3. Let M = R3. Take F = eσ(x1,x2)F, where F is defined by

F(x, y) :=
4
√

((y1)2 + (y2)2)2 + e−2σ(x1,x2)(y3)4.

In this example, G
i
jkh = 0, Gi

jkh = −Bi
jkh, L jkh = 0 and L jkh = −eσ(x1,x2)FσrT r

jkh.
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