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Abstract

Contact tracing is an effective public health policy to put the fast-spreading epidemic under
control. The government tracks the contacts of confirmed SARS-CoV-2 cases, recommends
testing, encourages self-quarantine, andmonitors symptoms of contacts. In developing and less-
developed countries with limited resources for widespread SARS-CoV-2 testing, it remains
essential to identify and quarantine positive contacts to control outbreaks. Therefore, analysing
recall and precision when implementing testing policies for these contacts is necessary. We
analysed a contact tracing dataset from a cohort of 827 index patients infected with SARS-CoV-2
and their 14814 close contacts from Jan 2020 to July 2020 in a province in eastern China. We
constructed a network from the data and used a Graph Convolutional Network to predict each
contact’s infection status. To the best of our knowledge, this is the firstmethod to use population-
based contact tracing data for predicting the infection status using graph neural networks.
Despite limited information, our model achieves competitive Area Under the Receiver Oper-
ating Characteristic Curve (ROC AUC) compared to hospital-onset scenarios. Based on the risk
scores, we propose several contact testing policy adaptations that balance resource efficiency and
effective pandemic control.

Introduction

Contact tracing is an effective public health policy for controlling fast-spreading epidemics [1–3].
For example, during the COVID-19 pandemic, several governments implemented contact
tracing programs. In these cases, once an infectious patient is identified, the government
promptly tracks their contacts, refers them for SARS-CoV-2 testing, encourages self-quarantine,
and monitors their symptoms.

Figure 1 illustrates a typical contact tracing program. To break the transmission chain, contact
tracing aims to identify as many exposed individuals (infected but not yet infectious) and
infectious patients as possible during the quarantine period and then isolate them to contain
the outbreak. After conducting SARS-CoV-2 testing on all contacts of the index cases, the
government obtains the testing results for close contacts. Positive cases, referred to as additional
identified cases, require further tracking of their close contacts.

In some countries, legal restrictions make it challenging to enforce mandatory SARS-CoV-2
testing and quarantine for close contacts. Moreover, limited early-stage testing capacity and
human resources [4, 5] have resulted in a significant proportion of contacts’ test results remaining
elusive. Most contact tracing data is based on patients in hospitals or clinical settings [6–11].
Instead, we use population-cohort contact tracing data from one province in China. Most
methods use a logistic regression model to predict, which does not use network structure [7–9].
Some of the methods use the XGBoost model [5, 10] or Gradient Boosting [6] to predict risk
scores. Although Myall et al. [10] used some network-summarized statistics, they do not utilize
the local information in the graph and sometimes this leads to information loss in prediction.
Furthermore, we extend our results to suggest that public policymakers adapt contact tracing
policies, balancing resources and efficiency. As far as we know, there is no discussion yet
regarding public policies based on the prediction of risk scores, except for some interpreting
the model by finding the key clinical predictors of the severe syndrome of COVID-19 [11]. Most
existing studies have developed prediction models based on hospitalized patients, relying on
clinical information as predictors. These models have limited applicability to population-based
contact tracing cohorts. Few studies have used contact tracing data not limited to the clinical
settings [12]. Huang et al. have identified hidden spreaders bymodelling the disease transmission
probability using aMarkovian process [12]. The disease transmission probability is influenced by
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factors such as the nature of the contact, duration of exposure, and
the infectiousness of the disease, whereas the contacts’ demo-
graphic information is not considered. To surmount the challenges,
we aim to predict the infection risk scores of these untested close
contacts using population-based contact tracing data with limited
information.

Moreover, traditional prediction methods [13, 14] fail to lever-
age network structure information, leading to unsatisfactory pre-
diction outcomes. This limitation drives us to propose a more
accurate node classification model that predicts missing testing
results and assesses the risk of each contact. These improvements
could assist local governments in refining their contact tracing
programs [15].

Local governments’ contact tracing efforts are influenced by
numerous factors, making comprehensive tracing unrealistic. As
a result, it is essential to focus on testing only a subset of contacts
and quarantining those at highest risk to conserve resources and
effectively mitigate the outbreak [5]. To address this need, we
propose several adaptations to the current contact tracing surveil-
lance programme, prioritizing high-risk close contacts for testing
and quarantine.

Methods

Data design and setting

We obtained a population-based cohort of 827 index patients
infected with SARS-CoV-2 and their 14814 close contacts under
a contact tracing surveillance programme from January 2020 to July
2020 from a province in eastern China. The field workers docu-
mented their contact process information, demographics, SARS-
CoV-2 testing results, and severity levels if infected for each subject.
Using this dataset, we constructed a contact tracing network with
15641 nodes and 15246 edges, where each node represents either a
contact or a case, and each edge represents those two persons who
had contact before. Additionally, each edge is weighted using
contact time and contact type, and each node has an attribute
(feature) vector containing a person’s demographics, neighbour-
hood information about cases, contact types, SARS-CoV-2 test
results, and symptom severity levels. Among the 14814 contacts,
5946 did not take any SARS-CoV-2 test due to the lack of test kits in
the early stage of the pandemic [16].

As shown in Figure 2, the red nodes are positive subjects,
including the index cases and additional identified cases, and grey
nodes are negative subjects. Black nodes are subjects whose status is
unknown and about 6000 contacts’ PCR testing results are missing.
We define seed nodes by coupling index cases and additional
identified cases from the contact tracing programme. Next, we need
to train and evaluate our model for the remaining close contacts
based on their information. Here, we divide the contact nodes into
60% for the training dataset and 40% for the testing dataset as
shown in Figure 3.

Model variables

We classified the features into three sets. (i) Demographics of
subjects, including age and gender information. (ii) Neighbours’
information, including the number of affected cases among neigh-
bours, the maximum age of the cases among the neighbours, and
themost severe level of infection of the cases among the neighbours.
(iii) Contact type information, including the number of contacts
who are living together and the number of contacts who dine
together. More details are given in the section “Overview of the
Dataset” in the Supplementary Materials.

Figure 1. An illustration of a typical contact tracing program. Contacts were defined as
individuals who had direct or indirect interactions with confirmed COVID-19 cases.
Close contacts were quarantined for at least 14 days, either centrally or at home if
resources were limited. Health professionals monitored symptoms daily, and SARS-
CoV-2 tests were administered if respiratory symptoms arose or if a physician
suspected infection. If a contact tested positive, contact tracing was initiated for
their contacts.

Figure 2. A visualization of the largest component of the whole contact tracing
network. The grey nodes are negative subjects. The red nodes are positive subjects.
The black nodes are subjects whose status is unknown.

Figure 3.Dataset Composition. The seed nodes are defined by coupling the index cases
and additional identified cases from the contact tracing program. The contact nodes
are divided into 60% for the training dataset and 40% for testing.
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Risk score prediction framework

The contact tracing data is intrinsically network structured. After
obtaining the information collected by the field workers, we assign
to every node a feature vector listed in ‘ModelVariables’.We use the
framework shown in Figure 4 to analyse the contact tracing data to
achieve our goals. The input of the prediction model comprises all
combinations of the three feature sets. As we obtain PCR testing
results for only a fraction of the contacts, and the data is intrinsically
network structured, we will utilize the Graph Convolutional Net-
work (GCN) for predicting [17]. The GCN can exploit the network
structure given by the contact tracing network if the connected
nodes in the graphs are likely to share the same label. We also
construct prediction models using other traditional classification
models, such as the Logistic Regression Model (LR) [14] and the
Random Forest Model (RF) [13]. Then, we select the best model to
obtain the risk scores for each contact.

After the prediction for each contact, we can also get the
prediction scores for each contact. Based on the prediction score,
also called personalized risk scores, the government could apply
different policies after evaluating the local epidemiological condi-
tion and financial availabilities. Therefore, we suggest three sam-
pling testing policies for the contacts tracked to save resources
instead of comprehensively testing for all other close contacts.

Methods for prediction of node status

In this study,most nodes in the contact tracing network do not have
labels. To predict the personalized risk scores of a subject, we can
utilize the information of the subject’s neighbours and the contact
information other than relying on the information of the subject
alone. For example, if we ignore the network information, we can
use only the demographic data and the node features; subjects with
more similar demographics and node features tend to have the
same testing results and thus, more similar personalized risk scores.

However, this is not the case when two subjects have similar node
features but different neighbourhood information. For example, if
the subject is located in a neighbourhood with higher infection-
prevalence levels, the subject would have higher personalized risk
scores than the subject located in a lower infection-prevalent neigh-
bourhood. In addition to the contact type, the contact time also
impacts the personalized risk scores.We thenweight each edge in the

network by the contact time, wherein the longer the contact time, the
larger the edge weight is. We assume that when the contact event has
a longer contact time, the subjects are more susceptible to infection,
and thus the personalized risk score is higher.

Graph convolutional neural network

The network data can be abstracted as a graph, G, where the
connectivity information can be formatted as an adjacency
matrix. Each row or column contains the connectivity informa-
tion of each node in the graph, and each entry in an adjacency
matrix is the weight of the edge that connects the two nodes. The
adjacency matrix can be denoted as A , and the node feature
matrix can be denoted as X, where each row corresponds to each
node’s feature vector. Our goal is to predict the labels of each
node, Y , and obtain the probability of the subject being tested
positive, that is, Y being 1.

The graph convolutional network (GCN) first learns the embed-
ding of each node and uses embedding for the downstream task,
e.g., semi-supervised node classification. The graph convolution
layer can pass messages from the neighbourhood information in
accordance with the following layer-wise propagation rule:

H lþ1ð Þ = σ ~D
�1

2 ~A ~D
�1

2H lð ÞW lð Þ
� �

,

where ~A =Aþ IN is the adjacencymatrix of Gwith self-loops. ~D is
the degree matrix where the diagonal values are the sum of neigh-
boring edge weights of each node, ~Dii =

P
j
~A ij ,W lð Þ is the weight

matrix to be trained in the l-th layer, σ �ð Þ denotes an activation
function, and H lð Þ ∈RN ×D is the embeddings learned after l
convolutions of dimension D. When l = 0, H 0ð Þ =X. For the nodes
that are not directly connected to each other but can be reached by
traversing two or more edges, we can call them multi-hop neigh-
bors. By applying several graph convolution layers, the model can
learn node embeddings by integrating features from neighbors
multiple hops away.

Semi-supervised node classification

One challenge in the personalized risk score prediction is that not
all the nodes in the graph have labels as not all the traced contacts

Figure 4. Framework of analysis.
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took the SARS-CoV-2 tests due to lack of test kits. However, each
subject in the contact tracing network has node features, including
the demographics, neighbours’ information, and contact type
information. This poses a challenge in leveraging all the feature
vectors of the subjects, when only a fraction of the subjects has the
PCR test results. We consider a two-layer GCN for the semi-
supervised node-classification task. The adjacency matrix A is

weighted. Let Â = ~D
�1

2 ~A ~D
�1

2 , and the model of predicting the
personalized risk score is:

Z = f X,Að Þ= sigmoid ÂReLU Â XW 0ð Þ
� �

W 1ð Þ
� �

,

where the sigmoid function is to predict the binary outcome,
defined as sigmoid xið Þ = exi

1þexi, and ReLU is the activation function
in the first convolution layer, defined as ReLU �ð Þ= max 0, �ð Þ. The
weightmatrices W 0ð Þ and W 1ð Þ are trainable. For the semi-supervised
binary classification task, the objective function is the cross-entropy
loss over all the labelled examples:

L= � 1
N

X
l∈0L

yl log zlð Þþ 1� yl
� �

log 1� zlð Þ,

Where 0L is the set of node indices that have labels. For training the
GCN, we use the full dataset for each training iteration.

We compared three different classification models: Logistic
Regression, Random Forest, and Graph Convolutional Neural Net-
work. Owing to information loss and data privacy issues, informa-
tion retrieved frommost of the contacts is only the age and gender.
Therefore, we would like to compare different models under dif-
ferent combinations of feature sets.

For the comparison, we used theAUC [18] score for the ROC for
evaluating; then we select the best model to obtain the prediction
score for each of the close contacts, that is, the personalized risk
scores. Given the risk score, we can then suggest adopting the
relevant contact tracing programs by local governments [15].

Risk score-based testing policies

Based on the personalized risk scores, we can obtain the risk of being
infected in the case of each contact and then we propose sampling
policies to test tracked contacts. (i) The first policy is to screen
contacts with the highest risk scores based on the budget allocation.
(ii) The second policy uses personalized risk scores to generate
probabilities to sample close contacts. (iii) The third policy con-
siders the local area’s prevalence level, generating probability com-
bining the prevalence level of components and risk scores.

Also, we evaluate the performance of the proposed policies
under different simulated settings, including different prevalence
levels and available budget allocations to perform testing. There are
653 components associated with the contacts in the whole contact
tracing network. Each component has a prevalence level (low,
medium, and high) according to its proportion of positive subjects.
We then bootstrap [19] the components and obtain the simulated
low-prevalence network, medium-prevalence network, and high-
prevalence network. We design three SARS-CoV-2 testing policies
for the contacts under varying budget proportions for each preva-
lence level network. More details about the generation of the
simulated data and policy information is provided in the Algorithm
section in the Supplementary Materials.

We expect the selected close contacts to be more likely to be
positive and more infective. Thus, the quarantine and the contact

tracing afterwards would be more effective during the entire trans-
mission process. Here, we used pseudo-precision and pseudo-recall
to evaluate our SARS-CoV-2 testing policies. To better comprehend
how we calculate the evaluationmetrics of different testing policies,
we show a small example in Figure 5.

Figure 5 shows an illustration of one connected component.
The red node is the index case in the component; the two orange
nodes are positive contacts; the rest are negative contacts; the
two circled nodes are suspected (predicted positive) contacts
selected or sampled by a given testing strategy. The prevalence
level in this example is 3/9 = 1/3, which is medium. The number
of positive contacts of suspicious nodes (the number of true
positive) is 1; and the number of positive contacts in this com-
ponent is 2. The ratio of positive contacts we screened out is
calculated by PseudoRecall= the number of  true positive contacts

the number of  positive contacts ,
which is 50%; the positive predictive value is calculated by
PseudoPrecision= the number of  true positive contacts

the number of  predicted positive contacts , which
is 50%.

Results

We compared different models’ prediction accuracies, given the
different combinations of feature sets [20]. The goal of comparing
themodels (GCN, LR, RF) and feature sets is to identify the optimal
combination of the model and the feature set that delivers the best
performance. This will guide us in the development of screening
policies based on the predicted personalized risk scores. Based on
the results given in Table 1, we can also assess the contribution of
various types of information (feature sets 1 to 3 and network
structure) to the prediction task.

Using all the features, two traditional classificationmodels neglect
network information resides in contact tracing data and have lower

Figure 5. An illustration of a component in medium prevalence. The red nodes are
index cases, the orange nodes are positive contacts, and the grey nodes are negative
contacts. The two circled nodes are the suspected nodes that we selected by our
proposed policy.

Table 1. The AUC scores of different prediction models with different feature
sets

AUC-ROC GCN LR RF

Feature Set 1 0.74(0.71–0.77) 0.59(0.56–0.62) 0.56(0.53–0.59)

Feature Set 1&2 0.74(0.70–0.78) 0.65(0.61–0.69) 0.71(0.68–0.74)

Feature Set 1&3 0.845(0.82–0.87) 0.75(0.72–0.78) 0.81(0.83–0.78)

All Feature Sets 0.84(0.80–0.88) 0.73(0.69–0.76) 0.82(0.78–0.84)

Note: The numbers in the brackets are the range of AUC scores for 30 times of splitting the
dataset.
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AUC scores (Logistic Regression has mean AUC 0.73 with CI [0.69,
0.77] and Random Forest achieves mean AUC 0.82 with CI [0.78,
0.86]) than GCN. Instead, the GCN model utilizing the network
structure has the best performance (AUC: 0.84; CI: 0.80 ~ 0.88). The
performance improvement of GCN after adding ‘Feature Set 2’ to
‘Feature Set 1’ is negligible. This suggests that GCN effectively
utilized the network structure information contained in ‘Feature
Set 1’, thus the additional information from ‘Feature Set 2’ is not
significant. GCN inherently incorporates network structure infor-
mation, while LR and RF do not directly utilize this information
unless it is explicitly included in the feature sets 2 and 3 (e.g., the
number of cases amongneighbours is similar to node degree).Details
of model parameters and training details of the three models are
presented in the Supplementary Materials. For each contact in the
contact tracing network, GCN can leverage the feature information
of all neighbours, including those connected by an edge and those
connected through two edges, by utilizing two graph convolution
layers. This capability allows GCN to use not only direct neighbours’
information but also information from neighbours of neighbours.
Although Feature Set 2 and Feature Set 3 provide summarized
neighbourhood information – such as the number of cases among
neighbours, themaximum age of cases, themost severe level of cases,
the number of contacts due to living together, and the number of
contacts due to dining together – GCN can directly incorporate this
information through its graph convolution mechanism. Conse-
quently, the performance improvement ofGCN is the best compared
to other models, even when all feature sets are utilized.

Table 1 shows the results for different models under different
input features. GCN could utilize the network structure informa-
tion, which is helpful in the community transmission scenario, and
the performance is the most robust across different feature sets as
input.

We then use the risk scores retrieved by the GCNmodel to select
the contacts. We further evaluate the precision and recall of differ-
ent screening policies based on personalized risk scores under
different scenarios of budget proportions and prevalence levels.
The budget proportion is defined as the ratio of the number of
traced contacts who were tested to the total number of traced
contacts. PseudoPrecision shows how reliable a positive result of
the screening policy is, while PseudoRecall indicates how effectively
the testing policy identifies true positives. We find out that the
larger the budget proportion is, the higher the Pseudo-Recall and
the lower the Pseudo-Precision is. As shown in Figure 6, different
testing policies have relatively similar performance for contacts in a
high-prevalence level district (the infected proportion is from
0.75 to 1.0). As for the medium-prevalence level (the infected

proportion is from 0.25 to 0.75) and the low-prevalence level
district (the infected proportion is from 0.00 to 0.25), the testing
policy of selecting contacts with the highest personalized risk scores
(Policy 1) is best in terms of Pseudo-Precision and Pseudo-Recall.

Validation of the current model

In real applications, we obtain the data sequentially. Thus, we split
the contact nodes into training, validation, and testing according to
the contacts’ quarantine date. Contacts quarantined between 2020-
01-02 and 2020-02-04 are used for training; contacts quarantined
between 2020-02-05 and 2020-02-10 are used for validation, and
contacts quarantined between 2020-02-10 and 2020-07-29 are used
for testing.We use the stepwisemethod [21] to select a combination
of features that has the best performance for each model. Then, we
train each model by those selected features on the data in the early
stage, validate the model in the mid stage, and test the model in the
late stage. In Table 2, we list the performance of the three methods.
We can see that the GCN still performs the best in validation. More
results about the validation of our personalized risk scores are given
in the Supplementary Materials.

Discussion

Based on the network structure, we originally analyse the contact
tracing network data by a deep learning method, GCN, to predict
the personalized risk scores. The GCN model assumes that two
contacts who have had contact before could have similar testing
results [17]. In addition, the attribute of each contact in the network
also provides some information for predicting the testing results.
For example, if we only predict the results using network structure
and demographic information, the prediction results are still good.
This coincides with prior knowledge: age is highly correlated with
testing results [22]. Our model does not give a hard classification.
Instead, each person has a personalized risk score of being positive.
Based on the risk scores, the government could consider adopting
local contact tracing policies to save resources and suppress the
spread of pandemic effectively [6]. Thus, we propose several adap-
tations of policies based on the personalized risk scores. The first
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Figure 6. This shows the performance of three policies in Pseudo-Recall and Pseudo-Precision under different prevalence levels.

Table 2. The mean AUC scores using the different prediction models

GCN LR RF

AUC-ROC 0.88(0.86 ~ 0.90) 0.77(0.74 ~ 0.80) 0.83(0.80 ~ 0.86)
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two policies are based on risk scores only. The third policy borrows
information on the local prevalence level.We apply these policies to
screening positive cases, like testing selected contacts, tracing their
contacts, or even isolating them. We further evaluate the policies
regarding the cost (Pseudo-Precision) and the gains (Pseudo-
Recall). The higher the Pseudo-Recall is, the fewer positive cases
escape from the screening. The higher the Pseudo-Precision is, the
fewer resources are wasted in screening.

To fully consider all the scenarios the governments might have,
we observe how our policies perform under varying prevalence
levels in the district. Under the three prevalence levels, the first
policy outperforms the other two policies in terms of both Pseudo-
Recall and Pseudo-Precision. The second policy samples the points
based on risk scores, and some more-risky samples might be left
out, and some less-risky ones might be included. The third policy
estimates the prevalence level locally, which is retrieved from the
proportion of cases in the component and is biased. In addition, the
estimated prevalence level is no better than the personalized risk
score we predicted in distinguishing the two kinds of testing results.
Thus, directly selecting the highest risky persons by screening
policies is the best solution in terms of both resources and effi-
ciency. However, the difference between the three policies is shrink-
ing as the prevalence increases.

Our study was conducted under conditions where comprehen-
sive contact tracingwas still feasible. However, we acknowledge that
during periods of medium-to-high prevalence, healthcare systems
often face significant resource constraints that can lead to both
reduced testing coverage and delayed testing results. This could
impact the real-world performance of our risk prediction model
in several ways: (1) missing contacts due to incomplete tracing
could introduce selection bias, (2) delayed testing results could
reduce the model’s utility for timely interventions, and (3) the
proportion of undetected cases might increase substantially dur-
ing high-prevalence periods. To address these limitations, we
recommend future research to (1) evaluate model performance
under various levels of contact tracing coverage using simulation
studies, (2) assess the impact of reporting delays on prediction
accuracy, and (3) develop methods to adjust for missing data in
high-prevalence scenarios. While these limitations affect the
generalizability of our findings to high-prevalence periods, the
risk prediction framework we developed remains valuable for
early outbreak phases and for regions maintaining robust sur-
veillance systems.

For validation, as the field study of population-based contact
tracing is time-consuming and resource-consuming, we could
hardly get external datasets to evaluate our policies. Thus, we divide
the original dataset sequentially and use the data in the early stage to
train, in themiddle stage to validate, and in the late stage to test. As a
result, GCN still outperforms othermethods in the validation stage.

However, our research still has some limitations. One potential
limitation of our contact tracing data is the use of symptom onset
date metric to classify cases and contacts [23]. The available clas-
sification of cases and contacts may not always align with the
ground truth due to the possibility of an asymptomatic stage
following infection. In addition, some risk score prediction
methods use the external dataset to validate [24]. Our model used
internal validation instead. Currently, our algorithm is based on
contact tracing data collected within only six months. Thus, in the
future, our method could be validated on a broader dataset, both in
time and in location. Furthermore, if we regard the data as stream-
ing, we could develop a dynamic model framework to update the
model based on incoming data and make predictions under the

framework of Graph Attention Networks [25]. In addition, our
model is a deep learning model, and we could not explain each
feature’s contribution as statistics-based models. In the future, we
could use some explainable deep learning methods to improve the
prediction results and interpret each predictor. In this way, our
method could be more transparent and explainable.

Our findings demonstrate that contact tracing data can signifi-
cantly enhance our understanding of personalized risk prediction.
While widespread COVID-19 contact tracing has largely been
discontinued, the analytical framework we developed has broad
applications for future outbreak response. Specifically, our risk
scoring model achieved 84% accuracy in identifying high-risk
contacts, suggesting that targeted contact tracing – even with
limited resources – can effectively guide public health interventions.
For emerging respiratory infectious diseases, we recommend a
hybrid approach: combining focused contact tracing in high-risk
settings (such as healthcare facilities and congregate living spaces)
with complementary data sources like anonymized mobility pat-
terns and social network analyses. This adaptive strategy would
enable public health agencies to maximize surveillance impact
while operating within resource constraints. Furthermore, our
machine learning methodology for risk prediction and screening
can be readily adapted to incorporate new data streams and respira-
tory infectious disease, providing a flexible framework for future
outbreak investigations.

Our study period spans from January 2020 to July 2020, during
which rapid antigen tests (RATs) were not yet widely available.
RATs began to be integrated into public health measures around
mid-2020 as a convenient and rapid diagnostic tool, particularly for
early screening of asymptomatic cases or during mass testing
initiatives. After our study period, RATs became widely available
and provided an alternative for screening close contacts. There was
a notable change in social distancing policies in April 2020 due to a
decline in the number of COVID-19 cases. The government
reopened many public venues. Notably, the ratio of untested con-
tacts dropped significantly – from 38% before April 1 to 4% after –
likely reflecting reduced tracing during lockdown when fewer
positive cases led to fewer contacts being traced. Despite this
significant policy change, contact tracing patterns remained largely
unchanged, as detailed in the “More Results” section of the
Supplementary Materials. In our data pre-processing, we removed
several records where the contacts’ age was erroneously recorded
above 169. Apart from these few age-related errors, there was no
missing data on contact time and type, demographics, neighbour-
hood information, SARS-CoV-2 test results, or symptom severity
levels.We acknowledge that this level of data completenessmay not
be representative of all settings and datasets, and we encourage
researchers working with different data sources to consider the
potential effects of missing information in their analyses.
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