M. Yamazato
Nagoya Math. J.
Vol. 119 (1990), 143-172

HITTING TIME DISTRIBUTIONS OF SINGLE POINTS FOR
1-DIMENSIONAL GENERALIZED DIFFUSION PROCESSES

MAKOTO YAMAZATO

§1. Introduction

In this paper, we will characterize the class of (conditional) hitting
time distributions of single points of one dimensional generalized diffusion
processes and give their tail behaviors in terms of speed measures of the
generalized diffusion processes.

Kent [10] considered the characterization problem of the class of
hitting time distributions and he got some partial results. Our Theorem 1
completely solves the characterization problem. Birth and death processes
are regarded as a type of one dimensional generalized diffusions. The
author [16] succeeded in characterizing the class of first passage time
distributions of the processes. However, in [16], first passage times to
(reachable) boundaries at infinity are not considered. In this paper we
treat hitting times of single points including boundary points. So the
result in this paper is an extension of [16] in this sense too.

Has’minskii [4] got a condition on speed measures of null recurrent
diffusion processes for hitting time distributions of regular points to belong
to domains of attraction of one dimensional one sided stable distributions
and, under this condition, he obtained a limit theorem on occupation times
of one dimensional null recurrent diffusion processes. The condition that
he obtained is complicated. Theorem 4 of this paper simplifies his condition.
However, the limit theorem on occupation time, which Has’'minskii ob-
tained, had earlier been obtained by Stone [14] under the same condition
in Theorem 4, using another method.

Theorems 3-6 describe tail behaviors of hitting time distributions.
In detail, Theorem 3 is a result on the case of exponential order decay
and Theorems 4-6 are on the case of power order decay. Theorem 3(i)
and Theorem 5 treat transient generalized diffusions, Theorem 4 treats
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null recurrent ones and Theorem 3(ii)) and Theorem 6 treat positive re-
current ones. All cases, except the case that masses of the speed measures
near boundaries increase or decrease with integral power orders, are
covered by Theorems 3-6.

In Section 2, we define one dimensional generalized diffusion processes
and their (conditional) hitting time distributions of single points. Section
3 is devoted to the description of results on the characterization of the
class of hitting time distributions and notions necessary to describe the
results. Section 4 is devoted to the description of the tail behaviors of
hitting time distributions. In Section 5, we summarize the theory of strings
of Kac and Krein, which plays an essential role in proving our results.
In Sections 6 and 7, we prove the results in Sections 3 and 4, respectively.

Acknowledgment. The author would like to thank Shin’ichi Kotani
for useful discussion.

§ 2. Generalized diffusion processes

Let {B(¢)} be a one-dimensional Brownian motion and let (¢, x) be its
local time. We denote by .# the class of right continuous nondecreasing
function m on [— o0, 0] to [— o0, 0] with m(— ) = — oo, m(+0) = +
and m(0—) = 0. For me .#, we define [, = [,(m) and [, = L(m) by

(=1, = inf{(—1)x > 0; (—1)'m(x) = oo},
for i = 1,2, and we define a measure m(dx) on [—o0, oo] by

m(dx) = dm(x) on (I,1),
m([l, ,]) =0

and
m({l}) = oo for i=1,2.

Here, [I,, ,]° is the complement of [[,, ,]. Let
(t) = L I, )m(dx) .

Define a stochastic process {X(?), ¢} by X(t) = B(¢7(t)) and the life time
¢=1inf{t > 0; X(t) = [, or L} in the case { } # ¢,

= oo otherwise .

This process is strong Markov with state space E, = (supp m)|q,,., and is
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called the generalized diffusion process corresponding to the function m
(see [12] or [5]). In this paper, we abbreviate generalized diffusion process
as g.d.p. The measure m restricted to (I, [,) is called the speed measure
of the process {X(#)}. For ye E,, we define the hitting time of y by

t, = inf{t > 0; X(¢) = y}

if there is ¢t > 0 such that X(f) =y and set r, = oo if otherwise. If
|l;] < o and [, e E,, where E, is the closure of E,, in R, then we define
7, by lim,_,, z, for i = 1,2. We denote by E, the set with L, =12
adjoined to E, whenever |/,| < o and [, e E,. If P,(r, <o0)>0 for x in
E, and y in E,, we say that p,(df) = P,(r, € d)/P,(r, < o) is the con-
ditional hitting time distribution of y starting at x. We always assume
that x =y when we discuss conditional hitting time distributions. We
denote by

Hgd = {#a:y(dy)v X € Ewu Yy € Ema XFy, me t//{},

the class of conditional hitting time distributions of generalized diffusion
processes.

§ 3. Characterization of H,,

Let R, = [0, o) and let #(R,) be the class of probability distributions
on R,. We denote the Laplace transform of u € #Z(R,) by Zu(2) = J e % u(dx).
Let CE, be the smallest subclass of Z(R,), which contains all exponential
distributions and closed under convolution and weak convergence. A
probability measure ¢ on R, is a CE, distribution if x is concentrated at
a point in R,, or there are ¥ = 0 and a nondecreasing sequence {a,} of at
most countable positive numbers satisfying > ; a;* such that

3.1) Lp(2) =e " [[ a2+ a)™.

We call {a,} the parameter sequence of z. We denote by CE,, the class
of distributions p in CE, whose Laplace transform is represented as (3.1)
with 7 = 0. We say that a probability measure p is a ME, distribution
if there is a probability measure G on (0, o] such that

([0, x]) = f L Q=G for x>0.

We call G the mixing distribution of x. We denote by ME,, the class of

https://doi.org/10.1017/50027763000003172 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000003172

146 MAKOTO YAMAZATO

distributions g in ME, such that x({0}) = 0. For pe ME,, the condition
¢({0}) = 0 is equivalent to G({o}) = 0 for the mixing measure G of p.
Let CME,,, (CME, resp.) be the class of distributions p = p,* g, with
€ CE,, (CE, resp.) and yu, € ME,,(ME, resp.). Here x denotes convolution.
Let BO be the smallest class of distributions on R, which contains ME,
and closed under convolution and weak convergence. It is known that
a probability measure ¢ on R, belongs to the class BO if and only if

there are 7 >0 and a measure @ on (0, o) satisfying J #l_Q(du)
o~ u(u+ 1)
< oo such that
1 1
3.2 ) = — — 2\
(3.2) Ze@d exp{ 1A+ J(O-M)< u—+ 2 u)Q( u)}

([1]). We call the measure @ Q-measure of p€ BO. The Q-measure of a
gamma distribution with density

f(x) = ['(a)"'x*"le " for x>0,

=0 for x <0,
where « > 0, is absolutely continuous and the density g is given by the
following:
(3.3) q(u) =0 if 0<u<a,

= if u>a.

The representation (3.2) for e ME, is characterized in the following. A

distribution g on R, belongs to ME, if and only if, in the representation

(3.2) of the Laplace transform of p, ¥ =0, @ satisfies J lQ(du) < oo,
u

0,1)

@ is absolutely continuous and its density is bounded by 1 a.e. By the
definitions of the classes CME, and BO, it is clear that CME, C BO.
Kent [10] showed that H,, & BO. On the other hand, Keilson [9] showed
that the first passage time distributions of birth and death processes are
contained in CME,. Moreover, he showed that the number of exponential
distributions arising in the convolution is finite. The author [16] refined
Keilson’s result and determined the class of first passage time distributions
of birth and death processes. The author also remarked that H,, € CME,
by approximating g.d.p. by birth and death processes.

We denote by C the plane of complex numbers and denote by C, (C.)
the open upper (lower) half plane in C. Let J#, be the class of nonnegative
valued functions A (2) on (0, o) which is extendable to holomorphic functions
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A(2) on C\(—oo,0] such that A(C,) c C.. Let # = #,U{h = oo}. The
following representation is well known.

LemMmA 3.1. In order that a function h on (0, o) belongs to #,, it is
necessary and sufficient that there are ¢ =0 and a nonnegative measure ¢

on [0, o) satisfying J o(d§) < oo such that
e 14 &

(3.4) RQ) = ¢ + Lw ‘2’(:35; .

The measure ¢ is called the spectral measure of h.

Remark 3.1. If pe ME,, then Zu(2) belongs to #, and is represented
as (3.4) with ¢ = G({=}) and o(d§) = £G(d€) on (0, ) by the mixing dis-
tribution G of . Conversely, h € #, with h(0) = 1 is the Laplace transform
of an ME, distribution.

Remark 3.2 ([2] p. 27). It is known that he s, if and only if there
are a real number « and a measurable function g(u) satisfying 0 < q(w) £ 1
such that

h(® = exp{a + Lo,w) < u —1}- A - u lj!— 1 )q(u)du}

for 2> 0. We also call the measure q(x)du Q-measure of A€ H#,.

Lemma 3.2. If he #, and h =0, then (Ah(Q) ' e #, The Q-measure
Q of (Ah(D)~' is represented as (1 — q(x))dx by the Q-measure q(x)dx of h.

Proof. 1t is easy to check that if A € #, and h = 0, then (Ah(2))"! € #,.
We easily confirm that

1 exp{j < 1 u )du} for 2>0.
p o) \ U+ A w41

By Remark 3.2, we obtain

Gh@)* = expla+ [ (o - )0 — a@ldu}

Now we can describe our main result on characterization problem.

THEOREM 1. In order that a probability measure p on R, belongs to H,,,
it is necessary and sufficient that there are a CE,, distribution p, and a
ME ., distribution u, such that
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g = ﬂl * He s
and the parameter sequence {a;} in the representation (3.1) of L u(2) is either

empty or strictly increasing and the spectral measure ¢ of (AL 1(2)™" has a
positive point mass at a, for each i.

COROLLARY 1. Let ne ME,. Then pc H,, if and only if p({0}) = 0.

This corollary is immediate from Theorem 1. The “only if” part is
also immediate from the fact that P {X(0+) =y} = 0 for x  y.

COROLLARY 2. Let p be a gamma distribution with exponent a > 0,
e, ZuQ) = (a/(2 + a))* where a>0. Then, a > 0. Then, pcH,, if and
only if a < 1.

Combining Theorem 1 with Corollary 1 or 2, we get the following.
CoroLrArY 3. H,, & CME,,,.

The condition in Theorem 1 is not easy to check. If we can prove
the following conjecture, then we can give another necessary and sufficient
condition which is easier to check.

CoNJECTURE. Let e ME, and let

Lu) = J & Ge).
©(2) 01 T (dé)
The mixing measure G has a point mass at a < oo if and only if @-measure
Q of p satisfies Qla — ¢, a]l = o(e) and Qla,a + el ~¢c as 0.

If the conjecture is true, then we have the following characterization
of H,: In order that ;e #(R,) belongs to H,, it is necessary and sufficient
that there are y, € CE,, and u, € ME,, such that p = p, * p,, the parameter
sequence {a,} of p, is either empty or strictly increasing and the Q-measure
Q of u satisfies Qa — ¢, a]l ~¢ and Qa,a + ¢] = 0(e) as ¢ |0 for each
a€{a}.

This can be shown as follows. Since @-measure Q of A% ()" is
given by Q(dx) = dx — Q(dx) (see Lemma 3.2), the condition that Qla — ¢, al
~c¢ and Qla,a + ¢] =o0(e) as ¢ 0 is equivalent to the condition that
Qla — ¢, a] = o(c) and Q[a,a + ¢] ~¢ as ¢ } 0. If the conjecture is true,
the last condition is equivalent to that the spectral measure of (1% u(2))!
has a point mass at a.
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We say that a measure on R, is discrete if its support is either a
finite set or a countable set having no accumulation point in R,. The
conjecture is true in the following cases.

Case 1. The mixing measure G is discrete.

Case 2. The mixing measure G is written as G = G, + G,, where G,
is discrete and G, is absolutely continuous with a density of C!-class.

We say that pe 2(R,) is a CME¢,, distribution (the superscript d
stands for discrete) if there are y, € CE,, and g, € ME,, such that p = p, * p,
the parameter sequence {a,} of y, is empty or strictly increasing, the mixing
distribution G of 4, is discrete and (supp G)N{a;} = ¢. The Laplace trans-
form Zp(2) is represented as follows:

(3.5) ZLp(s) = I (s + a) ™ [[ ei'(s + ) bi(s + by

for finite or infinite strictly increasing sequences {a,}, {b,} and {c,} ({a;}
may be empty) satisfying > a;' < oo in the case {a.} # ¢, {a.}N{b:} = ¢,
b, <c, <b,,, for each &,

1< e =#{b} — 1 in the case #{b,} < o0

and

1 b diverges to 0 in the case #{b,} = oo .
ko Cp

Here #{ } stands for the cardinality of a set { }.

Remark 3.3. The above representation (3.5) of #u(2) is not unique.
We call ({a,}, {b:}, {c}) a minimal representation of x if {a,}N{c;} = ¢, since
in this case {a;} is minimal in a component wise sense (see [16]).

THEOREM 2. (i) Assume that me #, xe E, and yeE,. If one of
the following three conditions is satisfied, then the conditional hitting time
distribution p,, of the g.d.p. corresponding to m belongs to CME<,,.

1. , > —o and m{+)> — .

2. [[> —oo, m(li+)= — o0 and lim(@u — [)m(@u) =0.

u—ly

8. L= —oc,m((—c)+)> —co and lim ufm(u) — m((—o)+)} =0.

(ii) For pe CME?,, there is me # satisfying one of the conditions
1, 2 and 3 (i) such that 0cE,, 1e¢E, and p is the conditional hitting
time distribution of 1 starting at 0 of the g.d.p. corresponding to m.

https://doi.org/10.1017/5S0027763000003172 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000003172

150 MAKOTO YAMAZATO

§4. Tail behaviors
LEMMA 4.1. Let me #,0¢eE, and beE,. Then, P,(z, < ) > 0 for
the g.d.p. corresponding to m if and only if r— m(x)dx < oo,
0

The proof of this lemma will be given in Section 6. In this section,
we assume that me .#, 0e E,, and p is the conditional hitting time distri-
bution of be E,, b> 0, of the g.d.p. corresponding to m, starting at 0.

Since r— m(x)dx < co and (b — x)m(x) < Ib_ m(y)dy, (b — x)m(x) is bounded

0

in x € [0, b).

THEOREM 3. Let A = Sup,cp,y (b — X)m(x). (1) If l, > — oo and there
is B> 0 such that

[(x — I)m(x)| < B for all xe(,0),
then for every a satisfying 0 < a < %-min {1/A, 1/B},
u([t, ) = o(e™)  as t— oo.
() If ], = —o0, m((—o0)+) > — oo and there is C > 0 such that
[x{m(x) — m((—o0)—)}| < C  for all xe(—o0,0],
then there is B in (0, min {1/A, 1/C}) and M > 0 such that
1([t, ) ~ Me~# as t— oo,

THEOREM 4. Let 0 < a < 1. Let K(x) be a positive function slowly
varying at infinity. If I, = — oo and

[m(— x)| ~ x*7 ' K(x) as x — oo,
then
(¢, ) ~ b{a(l — a)}t~*/I'(1 + a)L,(t) as t— oo,

where t°L(t) is an asymptotic inverse function ([13]) of x* 'K(x).
THEOREM 5. If I, > — oo and if, for a non-integral a > 0.
Im(—x)| ~ (4] — ) 'K — x) as x 1],
where K(x) is a function slowly varying at 0, then
Ht, 00)) ~ t°L(t)  as t— oo,

with a function L(t) slowly varying at infinity.
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THEOREM 6. If [, = —oo, m((—o0)+) > —co and if, for a non-integral
a > 0,
[m((—o0)+) — m(— x)| ~ x@* D7 -1K(x) as X —>» o0,
where K(x) is a function slowly varying at infinity, then
[t ) ~t7='L(f)  as t—> o0,

with a function L(t) slowly varying at infinity.

§5. Krein’s correspondence and generalized diffusion processes

Let A4, be the class of [0, co]-valued nondecreasing right continuous
functions on [0, oo] satisfying m(co) = oo. Let I(m) = min {x = 0; m(x) = oo}.
Let ¢(x, 2) and (x, 2) be the continuous solutions of

(.1) oz, ) =1+ 2 j @ = e(y, dm(y)  for x>0
and
(5.2) W, ) =x+ 2 j &= (. Adm(y)  for x>0

respectively. Here m({0}) is defined by m(0). Since
dr ( Y(x, 2) ) _ 1
dx \ ¢(x, 2) o(x, *

lim,_, y(x, Dfe(x, ) exists and we denote this limit by A(1). Here we
denoted right derivative by d*/dx. It is known that A e . Define a map
on .#, to s by the above correspondence and denote it by @. This is

called Krein’s correspondence. It is known that this map is onto and
one-to-one ([3], [6]).

Remark 5.1. h= oo and h=0 correspond to m=0 and m = oo,
respectively.

Remark 5.2. Let me . #, and h = @®(m). Let ¢ be the spectral measure
of h and let ¢ be the number appearing in the representation (3.4) of h.
Then ¢ = A(o0) = inf{x = 0; m(x) > 0} and

Im) = ¢ + f "(‘;‘E) — h(0+).

Lemma 5.1 ([7]). If hes# corresponds to me #,, then (Ah(QQ)' =
O(m=")(2) where m=(x) = inf{y > 0; m(y) > x}e 4.
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For me #,, let ¢ be the spectral measure of @(m). Set A(m) =
inf (suppo). If 2(m) = 0, then we define 4(m) by A,(m) = inf{(supp o)|w,}-
Let

C(m) = Sup Um) — x)m(x)  if I(m) < oo,
= o0 if I(m) = oo.
In the case I(m) = o, let
D(m) = ,Sup x(m(co—) — m(x))  if m(o0o—) < o0,
= oo if m(co—) = oo.
LemmA 5.2 ([7]). Let me #. Then
C(m) < 2(m)~' < 4C(m).

LeEmma 5.3 ([7]). Let me 4, and let ¢ be the spectral measure of ®(m).
Then the following (i) and (i) hold.

(1) o({0]) = lim 2A(R) = 1m(ec—)  if Um) = oo,
= Ol if (m) < 0.
@) If l(m) = oo and m(co—) < oo, then
D(m) < 2(m)™* < 4D(m).

LEmMma 5.4 ([11]). Suppose that me . #. such that l(m) = oo and
m(oo—) < oo. Put h = @®(m) and let

h*(2) = h(2) — o({0})/2

where ¢ is the spectral measure of h. Then m* = @-Y(h*) and I* = [(m*)
are of the form

mf 0o —)m(#(x))
m(co —) — m(#(x))

m*(x) =

and

o _ [* {mlco—) — m@F g,
0 m(oo)?

where t(x) is the inverse function of

0= [ e o,
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Lemma 5.5 ([7]). Let me #,. The spectral measure ¢ of ®(m) is dis-
crete if and only if one of the following holds.

1. I=1Ilm) < oo and m(l—) < oo.
2. 1< oo, mM{l—) = o0 and lim (I — x)m(x) = 0.
-1l

3. [ = o0, m(co—) < o0 and lim x(m(co—) — m(x)) = 0.

T—+00

LemMma 5.6 ([7]). Let me # .. The spectral measure ¢ of ®(m) is dis-
crete and its support {1,} satisfies >, 1[4, < oo if and only if one of the
following holds:

1. I=1Im) < oo and m(l—) < oo.
9. 1< oo, mil—) = oo and f" m(x)dx < oo.

3. = oo and r xdm(x) < oo .
0

Lemma 5.7 ([10]). Let me#,. If 0<x< oo and j m(x)dx < oo,

then the solutions ¢(x, 2) and (x, 2) if (5.1) and (5.2) are constant functions
or entire functions of 2 such that their zero points {—a,} and {—b,} are
negative, simple (a, #+ a; and b, + b, if i + j) and satisfy >, a;' < oo and
2. b7t < oo. Moreover, ¢ and - are represented as

o(x, 2) = [] (1 + %)

and
W ) =2 ] (1+7’;‘:).

LemMma 5.8 ([8)). If, for me A,
m(x) ~ x* 1K (x) as X — oo,
where 0 < « <1 and K(x) is a function slowly varying at oo, then
O(m)(2) ~ D, A eL(A™Y) as 2 —0

where D, = {a(l1 — )} *I'1 + o)'1 — a)™' and x°L,(x) is the asymptotic
inverse at oo of x*'K(x).

All these facts except Lemmas 5.5-7 are found in Kotani-Watanabe
[12].
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§6. The proofs of Theorems 1 and 2

Let me.# and let {X(¢), {} be a g.d.p. on E, corresponding to m.
Let & > 0 belong to Em. Let ¢(x, ) and +(x, 1) be the continuous solu-

tions of

©6.1) o, ) =1+ 2 Lm) (x — Yply, Hdm(y)  for x>0
—1-2 jw) (x — oly, Ddm(y)  for x <0

and

6.2) W, D) = x + 2 j o @ = D Ddm(y)  for x>0

=x — ZLx ) (x — Y (y, Hdm(y) for x <0,
respectively. Let
(6.3) hQQ) = "}}f}} (2, Dfe(x, 2) and
ho(@®) = Lim y(ix, Dfelx, ).
Moreover, let

my(x) = —m((—x)—)
and
my(x) = m(x) for x > 0.

Then h,(2) = ®(m,) and 52(2) = @(m,). Define u(x, 1) by
w(x, ) = ¢(x, 2) + ()" Y(x, 2).

Then, for 2> 0, v is a positive increasing function of x, satisfying either
w(li+,2) =0 or (d*/dx)u((— o)+, 2) = 0 according as [, = l(m) > — o or
l, = —o. So, by the general theory on diffusion processes, the Laplace
transform of 7, is given by the following:
(6.4)  Ey(e*) = w(0, 2)/u(db, ) = u(b, ) if b<IL=1lL(m and

= lim u(x, 2)~! fo=10<o.

z—0

See Tto-McKean [4] p. 128-129.
Proof of Lemma 4.1. Note that since ¢(x,2) =1 for 1> 0,

ox, ) =1+ ZL m(y)dy for 2> 0.
0,x)
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If b = I(m) < oo and Jb_ m(x)dx = oo, then ¢(b—, ) = oo. This means

that Ee*) = 0 for 2> 0 and thus Py(c, < o0) = 0. If j " m(x)dx < oo,
then, by Lemma 5.7, ¢(b, 2) and (b, 1) are finite. Letting A — 0 in (6.4),
we have
Pz, < o0) = |L]/(L]| + b) in case I, = [,(m) > — oo,
=1 in case [, = —oo.
Note that /, <0 since m(0—) = 0 for me .#. Thus Py, < o0) > 0. This

completes the proof.
Since the conditional hitting time distribution p(df) = pu,,(d?) is defined

for 0eE, and bekE, satisfying Pfr, < o} > 0, _[b_ m(x)dx < oo always

holds. Let

(6.5) ho(2) = (b, D]eo(b, )
and

(6.6) M) = (D)™ + By

Then we have
Eye~**) = h(A)/y(b, 2) .

Proof of the necessity part of Theorem 1. Let me.#. Let 0eE,,
beE, b>0 and let 1= p, be the conditional hitting time distribution
of b starting at 0 of the g.d.p. corresponding to .#. Then, by the above
argument, we can represent Zu(1) using + and A defined by (6.2) and
(6.6), respectively, as

Lu(2) = HDNb, 2.
Let

L) = bw(b, D)
and

L) = rA(L] + b)(blLD  if L > —eo,
= h(2)/b if [, = —co.

Since 0 < b < oo and Ib— m(x)dx < oo, by Lemma 5.7 and (3.1), we see

that u, € CE,,. Noting that #u(0) = 1, we have that y, € ME, by Lemma
3.1 and Remark 3.1. Let {a,} be the parameter sequence of y,. We see
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that the support of the spectral measure of 1/(ih,(2)) € #, coincides with
the set {a,}U{0}. It is clear by the definition of A(1) that the spectral
measure of 1/(Ah(2)) has a point mass on each a,. Since 0e¢E,, h(cc—)
or hy(co—) = 0 holds by Remark 5.2. This is equivalent to that A(co—) = 0.
This means that 4({0}) = 0. This proves the necessity of the condition.

Proof of the sufficiency part of Theorem 1. Let u satisfy the condition
of Theorem 1 and let ;= p % be the decomposition of x given in Theorem
1. Let {a,};<, be the parameter sequence of Zu,(2). That is, {a,} = ¢ or
{a;} is an at most countable increasing sequence of positive numbers
satisfying > a;! < oo such that

6.7 L) =1 in the case {a;} = ¢ and
=[] a,(2 + a;,)* in the case {a,} #* ¢.

By the assumption of Theorem 1, there are ¢ >0 and a nonnegative

measure § satisfying J. 1 d(d&) < oo such that
e 14 &
L))" = ¢ + f L 5(de)
e A+ &

and ¢ has a point mass on each @, in the case {a,} #+ ¢. Note that
{0} =1 since Z;(0) =1. Since ({0} =0, Lu(co—) =0 and thus
¢ >0 or ([0, 0)) = 0. Decompose ¢ as ¢ = 4, + 4, so that supp é =
{a;} U {0} and 4,({0}) = 1. Note that ¢,({0}) = 0. By Lemma 3.1 and Lemma

3.2, there are measures g, and g, on [0, c0o) such that

and
6.9) [cz + jw . i : a,(dé)]_l —e+ LW : Jlr o)

where d = [4,[(0, ))]-*. Denote the functions in (6.8) and (6.9) by A,(2)
and %,(2), respectively. We have

(6.10) L2 = (D)™ + hy(D)™)7*.

Note that either e = [3;[(0, 00))]™* or e = 0 according as ¢ = 0 or ¢ > 0.
We show that either d =0 or e =0. In the case ¢ = 0, since §([0, o))
= oo and since ¢ = G, + §,, either ,([0, o0)) or 6,([0, o)) = oo. This yields

https://doi.org/10.1017/5S0027763000003172 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000003172

HITTING TIME DISTRIBUTIONS 157

that d or e = 0. Note that A,(0) = 6,({0})~! = oo, ~A,(0) = ,({0)"' =1 and
hy(2) is meromorphic and its zero points {—a,} satisfy . a;' < co. Thus,
hy(2) is written as

hy@) = 1 a7'@ + a)/]] 7' + b))

with 0 < b, <a, <b, <a, <---. Here {b,} may be empty. See [16]. By
the surjectivity of Krein’s correspondence, there are m, and m, e .#, cor-
responding to A, and h,, respectively. Since h,(0) = 1, [, = I(m,) = 1. The
function m, satisfies either 1 or 2 of Lemma 5.6. If m, satisfies 2, then
1=1 eEmg. If m, satisfies 1, then we can extend m, so that 1¢ E,, and
1 <l(m,) < oo without changing h,(1). We use the same symbol m, to
represent the extended one. Since we have chosen G, so that inf{x > 0;
my(x) > 0} = 0 for a function m, € #, corresponding to 4, and since m,
is the inverse m;! of m,;, m,(0) = 0. Let

m(x) = —my((—x)—) for x <0 and
= my(x) for x > 0.

Then, me #. Let ¢ and + be the continuous solutions of (6.1) and (6.2),
respectively, with the above m. Then h,(1) and h,(1) are represented by
¢ and + as

h(Q2) = —lijln W(x, D)/, 2)
and

@) = lim 45, Do, 2) = (L, DL, 2.
Since ¥(1,0) = 1 and since the set of zero points of (1, 1) coincides with
{_ai},
(6.11) L) = 1/4(1, )
by Lemma 5.7 and (6.7). Thus, we have, by (6.10) and (6.11),

L) = LmDL (2 = (W1, D(hAD)* + k(D).

Since d =0 or e =0, 0e E,. Therefore, x is the hitting time distribution
of 1 starting at 0 of the generalized diffusion process corresponding to m.
The proof is complete.

Remark 6.1. Let p be a gamma distribution with Laplace transform
L) = (af(a + ), 0 <a <1, a > 0. Then the following hold:
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(i) The spectral measure ¢ of £ u(2) is absolutely continuous and its
density s(x) is given by
s(x) =0 for 0 <x <a,

si «
:ﬂ.(#) for x > a.
T X —a

(i1)) The spectral measure of (1Zu(2)"' has a point mass 1 at the
origin and absolutely continuous on (0, o).

Proof of Remark 6.1. (i) Since

r ( a )ae””‘du = I'(1 — a)a“x="'e~*"

e \U — @

and since I'(a)I'(1 — a) = n/sin ar, we have

r s(we **du = I'(a)'a"x*"'e ",
0
This means that s(u) is the density of ¢.

(i) Let  be the spectral measure of h(2) = (A¥u(2))"'. By Fatou’s
lemma [3], § is obtained by

olu, vl = —lim L. j "Im h(x + iy)dx
yi0 T -
at continuity points # and v of §. Let us calculate Im A(1). Note that

() is real on R,. We have

Im A(2) = (-lﬂ:—xl—)aﬁl‘1 sin <a Arccot & Tx Arccot ﬁ) .
a Y Y

Since
[Im A(2)] < {(x + a)*}*?a~*|x|™, A=x+ 1y,

we have, by Lebesgue’s dominated convergence theorem,

@

dx

olu, v] = Sn(d — ) j"“”“‘“’lx’-l}l X

T (=)A(-a)

for 0 <u <v. Here, a A b denotes min {a, b}. Thus ¢ is absolutely con-
tinuous on (0, o0) and its density is given by

s(x) =0 for 0 <x <a,
_ sin(l —a)r (x-—a)“

X a

for x > a.
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The point mass G({0}) is obtained by

N . . a “
340)) = lim 2h(D) = lim ( -2 x> —1
Proof of Corollary 2. Since every gamma distribution p with exponent

a < 1 belongs to ME, and does not have a point mass at 0, (i) is imme-
diate from Corollary 1. Let us prove (ii). Let p be a gamma distribution
with Laplace transform Zu(2) = (a¢/(a + 2))*, « > 1, a > 0. Keeping (3.2)
and (3.3) in mind, we see that in the case a > 2, it is impossible to
decompose Lu(2) as Ly (AL p(2) with p, € CE,, and g, e ME, and in the
case 1 <a < 2 only way is as follows:

) = (aik)(aiz)m'

If 1 <a <2, then, by Remark 6.1, the spectral measure of (A(a/(a + 2))*~!)*
is absolutely countinuous on (0, o). If @ = 2, then the spectral measure
is concentrated at 0. So in both cases, the spectral measure does not

have a point mass at a. We conclude that pe H,,.

Lemma 6.1. (i) H,, D CME4,.

(i) Let ueH,, and let p, and yu, be the CE,., part and the ME,,
part of p, respectively, in the representation in Theorem 1. If the spectral
measure of Lu(2) is discrete, then pe CME?,,.

Proof. (i) Let pe CMEZ, and let ({a;}, {b:}, {c;}) be the minimal
representation of pu. For each i, choose a] so that o, <a; < a,,, and the
interval (a,, @) contains no point of {b,} U{c,}. Then the Laplace trans-
form Zu(2) of u is represented as

- a; (c; + 2)b;
20 =7 M e
where {b;} = {b;} U{a;}, {c;} = {c;} U{ai}. By the choice of {a}, T[] bj/c;
diverges to 0 in the case #{b,} = co. This representation shows that £Zu(1)
€ H,,. Also we have that the spectral measure of [] ((c/ + )b)/(b] + A)c})
is discrete. (ii) By representing #p(1) in the reduced form, we imme-
diately get the conclusion.

Proof of Theorem 2. (i) Let me # satisfying 1, 2 or 3. In order to
prove the assertion, we may assume that 0e E,, 0 < be E, and p is the
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conditional hitting time distribution of b starting at 0. As in the proof
of Theorem 1, decompose Zu(2) as Lu(d) = Lu()Lm(2) where

L) = (b, D
and
LA = k(L] + b)(®|L) if ;> —oc and
= h(A)/b if ,=—c0.

Here 4 and A are defined by (6.2) and (6.6) from m. It is clear that the
spectral measure of (1h,(2))~! is discrete by Lemma 5.6. By the assumption
and Lemma 5.5, we have that the spectral measure of (1h,(2))! is discrete.
Therefore the spectral measure of (1h(2))~! is discrete. This means that
the spectral measure of A(1) is discrete. By Lemma (6) (ii), we get the
conclusion ue CME?,. (i) Let pe CME%,. Then, as in the proof of
Lemma 6.1 (i), we can decompose Zu(3) as Lu(d) = L ()L 1(2) where

Lu) = T 7% 2u® = 828 () cle)

and [] % diverges to 0 in the case #{b,} = oo and #{c,} = #{b,} — 1 in the

i
case #{b;} < . According to the method used in proving Theorem 1,
we can construct h,(2) and h,(2) so that

L) = (b~ + h(D)™) 7.

Since the support of the sepctral measure of (4A,(2))~! is contained in {c,},
the specral measure of A1) is discrete. By Lemma 5.5, the measure
m, € M, corresponding to h, satisfies one of the conditions (1)-(3). The
proof is complete.

§7. Proof of Theorems 3-6

In the proofs of Theorems 3 and 4 we use the notations ¢, ¥, h, A,
h, defined in Section 6.

Proof of Theorem 3. Since 0 < b < o and .[:_ m(x)dx < oo, the sup-
port of the spectral measure o, of h, is discrete by Lemma 5.6. Let
ay = inf supp g,. Since b < oo, @, > 0 by Lemma 5.3. The function 4, is
meromorphic in C and, its zero points are negative and interlace the
points in —suppe;, = {—a; aesuppa,}. Let —by be the largest zero of
hy(2). Then —b, < —a, <0 and hy(2) > 0 on (—ay,0). Let o, be the
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spectral measure of A,. (i) Let a, = infsuppe,. Since [, > —oo, by
Lemma 5.2, we have a,, > 1/4B > 0. Hence, A,(3) is continued analytically
to the interval (—ay, 0) and strictly decreasing in the interval. Now we
see that A7* and A;! are positive and analytic in the interval (—(a,/\a,), 0).
Hence, the infimum of the support of the spectral measure ¢ of A is not
less than a,; Aay. Since the largest zero of (b, 2) is — by, AR)/(b, 2) is
analytic in (—(a;Aay),0). In the case + = const.,, we directly obtain

that, for each 0 < c¢ < a,;Aay,,
e’ u([t, 0)) —> 0 as t— oo.

In the case y # const., applying Cauchy’s theorem to the inversion formula
for Laplace transforms ([15], we get the same asymptotics. On the other
hand, by Lemma 5.2, we have

a, =1/4B and a, = 1/4A.

We get the conclusion.

(i) By Lemma 5.3, ¢,({0}) > 0 and inf [(supp ¢,)|p,.] = 1/4C > 0. Set
a,, = inf [(supp 6))|e,.,)- Hence h,(2) is continued analytically to (—ay, 0)
and strictly decreasing in (—ay,, 0). Since the origin is a pole of 7,(2),
there is unique zero —b,; of A, in (—ay,, 0). A, maps [—b,;, 0) onto (— oo, 0].
Hence there is only one zero —a of A, + h, in (—(a,Aby), 0). Although
the origin is a pole of A,, it is cancelled with the numerator of

RQ2) = h(Dhe(D[(R(2) + ho(2))

and thus, —a is unique pole of A(1) in (—(ay; Aby;), 0]. The zeros of (b, )
are less than —a since h, € #,, Hence —« is the largest pole of Zu(2).
Note that —b,, is the largest pole of 1/2Ah,(2). Set

D= sup (m(c0)—x)mi(x),

0<r<my(eo—)

where m,(x) = m((—x)—) for x > 0. Then C = D. By Lemma 5.2, we have
1/4C £ b, £ 1/C.

Hence

a < (1/C)N@A/A).

In the case + = const., applying the residue theorem to the inversion
formula for Laplace transforms, we see that there is M > 0 such that

w([t, 0)) ~ Me ™ as t— 0.
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In the case 4 = const., we directly get the same asymptotics. The proof
is complete.

Proof of Theorem 4. By Lemma 5.8, we have

(7.1) h(2) ~ D,27*L, (1) as A —0.
Note that

since h,(1) is analytic near A = 0. By (7.1) and (7.2), we have
h(0) — A(2) ~ b*2*/{D,L (A"} as 1—0.
This yields

Z0) — Lp(2) = h(0)/y(b, 0) — h(A)/ (b, ) ~ ba*{D,L(27"}.
By the Tauberian theorem, we have

[ty 00)) ~ bt*[{I'(1 — a)D,L.(1)}
= bla(l — )} [{I'A + a)t*L(t)} as t— oo.

The proof is complete.
In order to prove Theorems 5 and 6, we can not apply Lemma 5.8
directly. We prepare some lemmas.

LEMMA 7.1. Let g and h be functions in #, which are n (= 0) times
differential in a right neighborhood of the origin such that g(0) + 0.
Assume that there are a function L slowly varying at 0, real numbers a,
b and 0 < a <1 such that

(1.3) g(x) = ;} é’.‘Zf_O)xk + (@ + o(L)xL(x)
and
(7.4) h(x) = i} h‘:fO) x* + (b + o(1))x"*=L(x)

as x| 0. Then f(x) = h(x)/g(x) is n times differentiable and

(1.5) f@ = 50O 2 4 0+ oy oL

as x | 0 where M = (bg(0) — ah(0))/g(0).
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Proof. It is easy to get in the case n = 0. Let n = 1. Since g, h € J#,,

the derivatives of g(x) — i} g (k)fo) x* and A(x) — an h"‘)SO) x* are mono-
k=0 H .

k =« k
tone in x > 0. Then formulas (7.3) and (7.4) imply that g, h e C*[0, o0) and
(7.6) g"M(x) — g™(0) ~ c(n + «, n)ax"I(x) ,

h™(x) — h™(0) ~ c(n + «, n)bx*L(x)

as x| 0, respectively, where c(n + a,n) =(n+ a)(n — 1+ @) --- (1 + a).
Since g(0) # 0, it is obvious that f is n times continuously differentiable
on [0, o). Differentiating A(x) = f(x)g(x) n times, we have by Leibniz’s
formula that

) =A@ — 3 O Mg ().
We have
F9@) — £0) = p®) + q(@)

where

P) = 2@ [(A9@) — K@) — 5 .C g1 — [0
and
q(x) = f™(0){(g(0) — g(x)}/g(x).
By (7.6) we have

p(x) = g(0)'[A™(x) — h™(0) — f(0){g™(x) — g™ (O)}] + Ox)
= c(n + a, n)g0){b — ah(0)/g(0) + o(D}x"L(x) + O(x)

and
q(x) = O(x)
as x| 0. Hence we have that
(7.7 f™(x) — f™(0) ~ e(n + o, n)Mx*L(x) as x )0

with M in the lemma. This shows that f™(x) varies regularly at the
origin. Integrating (7.7) n times, we get (7.5). The proof is complete.

LEMMA 7.2. For he #, with 0 < h(0) < oo, define h*te s#, by h*Qd) =
1/{4h(2)} — 1/{2n(0)}. Let 0 < a <1 and let L be a function slowly varying
at 0.
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1) I
h¥2) = 2*7'L(2) as 2,0,
then
(7.8) h(2) = h(0) — (A(0)* + o(1))2*L(2) as 2}0.

(i) If h* is n (n = 0) times differentiable in a right neighborhood of
0 and satisfies

(7.9) wy = 35 O8O e 4 eeny
=0 !
as 20, then h(2) is n + 1 times differentiable in a neighborhood of 0 and
satisfies
n+l h(k)(O)
(7.10) h() = > Tﬂ" — (R(0)* 4 o(1))A"*1+=L(R) as 1,0.
=0 !

Proof. (i) By the definition of A*Q), we have

1 1 ey e
W " R = MO =TI@ s 2o,

Thus, we have the conclusion.
(ii) Set g(1) = Ah*Q). Then, since
&™) = AR Q) + n(h) "),
we have
{g™@) — g™(O)}2 —> (n + D(AH)™(O0)  as 2]0.

Thus g(4) is n + 1 times differentiable at 1 = 0. Set g(2) = g(1) + A(0)".
By (7.9), the definition of g and the uniqueness of Taylor’s formula, we
have

n+l

(7.11) () = Zg_(:—f(lzk S L) as 200,

k=0 .
Applying Lemma 7.1 to A(2) = 1/g(4), we have (7.10) by (7.11). The proof
is complete.

LemMa 7.3. Let me A4, satisfying l(m) = oo and m(co—) < co. Set
h*(2) = h(2) — o({0})/2 where ¢ is the spectral measure of h. Assume that
for >0 (¢ # 1)
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m(oo —) — m(x) ~ x~*/*9L(x) as x — oo

with a function L slowly varying at co. Then we have the following for
m* = @~Y(h*):
(1) In the case 0 < a <1, it holds that I* = I(m*) = oo and

m*(x) ~ x4 -1M (x) as x — oo,

where x*/A-a{ M (x)}® (x — o0) is an asymptotic inverse of Ct¢-=/+a{[(t)}.
Here

(7.12) C = mloo )01 + (1 — w)e/+=),
(i1) In the case aa > 1, it holds that I* < oo and
m*(x) ~ (I¥ — x)~@« DM (¥ — x) as x11I*,

where x* /- M (x)} (x| 0) is an asymptotic inverse of Ct¢-=/%*a{L()}.
Here C is the constant defined by (7.12).

Proof. Note that ¢({0}) > 0 by Lemma 5.3. (i) Let 0 <a <1. In
this case, by Lemma 5.4 we have [* = x(c0o—) = oo and

x(t) ~ ~1 & (oo —)Hu-ar(LHF  as t— oo
— &

Setting C’ = Cm(o0 —)¥(1 — &)/(1 + @), we have, by the definition of M,,
t(x) ~ (C/x)(“‘a)/(l—a){Ma(x)}Z as x — oo .
We have, by Lemma 5.4, that

m*(x) ~ m(co — )=+ [L(t)

(7.13) ~ m(o0 —Y(C"x)*/ =0 M. ()} | L(¥(x))

as x — oo. By the definition of M, (x), we have

(7.14) L(t(x)) ~ C~*{ M (x)}=-D/+D

as x — co. Hence, substitutig (7.14) into (7.13), we have
m*(x) ~ x4 (x).

(i) Let o> 1. In this case, by Lemma 5.4 we have [* = x(c0—) < o0
and

I* — x(2) ~m(oo—)‘2<—i—ﬂt)“‘“’/“*"’{L(t)}z as {— oo
— @
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We have, by the definition of M,
Ux) ~ (C'(I* — x))trar/a-{ M (I* — x))* as x — I*.

As in the proof of (i), use Lemma 5.4 and the definition of M,. We get
the conclusion of (ii). The proof is complete.

LevMmMAa 7.4. Letm e #,. Assume thatl = l(m) < oo and m(l—) = .
If there are a« > 0 (a # 1) and a function L(x) slowly varying at 0 such that

m(x) ~ (I—x)* " L(l—x) as x — 1,

then the following hold:
@) Ifo<a<1, then I*=K(m )*) = oo and

(m~Y)*(x) ~ x4 M(x) as x — o©

with a function M slowly varying at oo.
G) If « > 1, then I' < o and

(m=*(x) ~(* — x) Ve MI—x)  asx tl

with a function M slowly varying at 0. Here x stands for the operation
defined in Lemma 17.3.

Proof. We have
m oo —) — m~(x) ~ x~*/4*0M (x) as x — oo,

where x~*/“*9 M (x) is an asymptotic inverse of ¢t-*7'~'L({)(t — 0). The con-
clusions in (i) and (ii) are direct from Lemma 7.3 (i) and (ii), respectively.
The proof is complete.

LemMmA 7.5. Let m e A, satisfying [ = I(m) < oo and m(l—) = oo.
Let o be a non-integral positive number and n be an integer satisfying
n<a<n-++1 If there is a function L slowly varying at 0 such that

m(x) ~ (I—x)~* " L(l—x) as x —1

then Q) = ®(m)(A) is n times differentiable in a right neighborhood of 0
and satisfies

hQR) = 3% h(]’:'(O) A4+ (= D2 M(2) as 2} 0

with a function M slowly varying at 0.

https://doi.org/10.1017/5S0027763000003172 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000003172

HITTING TIME DISTRIBUTIONS 167

Proof. Let m be a function defined by the n 4+ 1 times iteration of
¥: m— (m*)* to m. Then, by Lemma 7.4, we have

m(x) ~ x®H1-97-1K(x) as x — oo

where K is a function slowly varying at co. By Lemma 5.8, there is a
function N slowly varying at 0 such that

AQ) = O(R)(A) ~ 2~ ®*1-2N(2) as 21— 0.

By Lemmas 5.1, 3 and 4, we see that the function A is obtained from &
iterating the operation # defined in Lemma 7.2 n 4+ 1 times. Taking Lemma
7.2 into consideration, we have the conclusion by (7.8) and (7.10). The
proof is complete.

LemmaA 7.6. Let pe Z(R,) and let h(2) = Lu(R) be the Laplace trans-
form of p. If n-th right derivative h'(0) exists, then the following hold:
(1) u has k-th moments for k < n.

(i) Fyt) = ﬂ“’ : j u(dtydt,- - -dt,,

1< k< n+1, is well defined and has (n — k)-th moment r t"*F,(t)dt.
0

(iif) r e MF(fydt = (— m-k{h(z) _ ‘zo h‘;)fo) zf} .

Proof. (i) Clearly, p has k-th moment (k < n) and
(7.15) j " tu(dt) = (— 1)*R(0) .
0

(ii) Note that Fy(f) = j " F,_(®dt for 2< k<n. In order to prove that
t
F,(t), 1< k< n, is well defined and has (n — k)-th moment, it is enough
to show that j t4(df) < oo if and only if j £-1u[t, 00)dt < co. More-
0 0

over, we see that

(7.16) r -1yt o0)dt = k*lj: £ (dt) .

Let us show the above fact. Let M > 0. Integrating by parts we have
v
j: £ 8, co)dt = k“[M"p[M, o) + Lm t",u(dt)] .

Thus, if r £-14[t, 00)dt < oo, then j " u(dt) < 0. Conversely, if f " ¢ u(di)
0 0 0
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< oo, then since t*ult, ) <I s*u(ds), we have t*ult, ©) -0 as t — oo.
Hence J. t*-1ult, o0)dt is finite and equals £! J t“u(dt). Thus (7.16) holds.
By (7.16), we have

(7.17) Fy.i(0) = % j : £ u(d) .

(iil)) We represent ZF,(2) by h and its derivatives by induction in k.
For %k = 1, integrating by parts, we have

f:’ e F(t)dt — Z'l[/z[O, o) — r e‘“y(dt)] — 2-{R(0) — h(D)} .

Assume that (iii) is true for k < [. Integrating by parts and using (7.17),
we have

f:e"‘Fm(t)dt:R [FM(O) j ‘“F(t)dt]

(1.18)
_zx[zt) j t‘p(dt)—j '“F,(t)dt]

We have, by (7.15), (7.18) and the assumption of induction,

r e *F,, ()dt = (— 1)“‘2““{h(z)~ fﬁ})!@lp}.

j=0
This completes the proof.

Lemma 7.7. Let pe #(R,). If the Laplace transform Lp(2) of p is n
times differentiable in a right neighborhood of 0 and saitsfies

LuQ) = }; g%k‘@lzk F (= 1K)

as 2,0 with n<a <n+ 1 and a function K slowly varying at 0, then
plt, 00) ~ At~<K(1/t) as t— oo
where A = {I'(a + 1)sin n(a — n)}/x.
Proof. By Lemma 7.6,

Fos) =[] wawae---at,

is well defined and its Laplace transform satisfies
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j”r“ La(dt = 2" K@) as 1)0.

0

By the Tauberian theorem,

1
Fos) ~— L _pemgq e
() F(n+1——a) (/) as —> OO

Note that F,(t) 1< k< n+ 1) are monotone functions. Differentiating
F,..(t) n times, we have

nlt, ©) = Fi(t) ~ At—*K(1/t) as t— o

The proof is complete.

Proof of Theorem 5. Let n be a nonnegative integer satisfying n < «
<n+ 1. Letm, = m((— x)—) for x> 0. Let, A, h, and A be functions
defined by (6.2), (6.3), (6.5) and (6.6), respectively. By Lemma 7.5, h, = @ (m,)
is n times differentiable in a right neighborhood of 0 and satisfies

MW=§%@P4—WWMD as 210

with a function M slowly varying at 0. Write the function A as h(Q) =
h,(2)/g(2) where g(2) = 1 + h(Q)/hy(2). Noting that A, is analytic near the
origin, we have that g(1) is n times differentiable in a right neighborhood
of 0 and satisfies

1
h:(0)

g = 5 8O0 2 4 (- Dol 4 o) M)

as 2] 0. Since g(0) > 0, we can apply Lemma 7.1 to A. We have that A
is n times differentiable in a right neighborhood of 0 and satisfies

h = 3 220 2 4 (- A + oyam)

as 1|0 where A = [A(0)/(h,(0) + hx(0))]* > 0. Since (b, 2) is an entire
function of 2 and (b, 0) = b,

gmo=§g§%ﬁﬁﬂ+(—wmmw+omnwm)

as 1 0. By Lemma 7.7, we get the conclusion. The proof is complete.

Proof of Theorem 6. Let my(x) = m((— x)—) for x> 0. Let +, Ay, A,
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and & be functions defined by (6.2), (6.3), (6.5) and (6.6), respectively. Then
h, = ®(m,). Define A} as in Lemma 7.3 for h,. Set f(2) = 2h,(2). Let n
be an integer such that n <a <n+ 1. Let us show that the function f
is n times differentiable in a right neighborhood of 0 and satisfies

(7.19) F@ = 5 120 2 4 (— 17 + 0N
as 1} 0. Let 0<a<1. Then, by Lemma 7.3(i),
m¥(x) = O Y(h¥F)(x) ~ x40 -1 M(x) as x — o
with a function M slowly varying at c. By Lemma 5.8,
h¥QQ) ~ 2*'N(2) as 2)0

with a function N slowly varying at 0. This implies (7.19). Now let
a>1. Then by Lemma 7.3 (i), I* = I(m}) < oo and

mi(x) ~ (I* — x)~C@ D=1 M(1* — x) as x — ¥

with a function M slowly varying at 0. By Lemma 7.5, we have

m@ = 5O 2 4 (- 9+ o)V

sa 1)0 with a function N slowly varying at 0. We have (7.19) in a
similar way for g(2) in the proof of Lemma 7.2. Note that, by Lemma 5.3,

f(0) = 121‘1? Ah,(2) = 1/my(c0—) > 0.

The function A(R) is written as follows:

h(2) = fQ)hy(D/{f(A) + 2hy(2)} = h(0) + 29(2)/p(2)
where

P = fQ) + 2hy(2)

and

q(D) = f(D){ho(2) — ho(0)}/2 — ho(0) ha(2) .

By (7.19), the functions, p and ¢ are n times differentiable in a right
neighborhood of 0 and satisfy

pQ) = éff};@lzk + (= D™1 + 0(1)22N(2)
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as 41} 0 and
a@ = 5 L0 2 4 (- 1°050) + 02N

as 1) 0. Let us apply Lemma 7.1 to r(2) = q(2)/p(2). Note that p(0) = f(0)
and q(0) = f(0)h;(0) — hy(0)®. Thus the constant M appearing in Lemma 7.1
for r(2) is given by M = (— 1)"M’ where M’ = {hy(0)/f(0)}* > 0. Hence we
have, by Lemma 7.1.

n (k) 0
R = h(0) + z{;o ’kf )

P (= DM+ o(1))z«N(z)}
as 2} 0. Since (b, 2) is an entire function of 2,
LuQ) = :Z:ié’i%@lzk F (= DM b + o(1)2N(D)

as 1} 0. By Lemma 7.7, we have
u1lt, 00) ~ t==1L(2) as t—>

where L is a function slowly varying at infinity. This completes the proof.
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