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Abstract

Let Mbe a random matrix chosen from Haar measure on the unitary group Un. Let Z = X + iYbe a
standard complex normal random variable with.X and Y independent, mean 0 and variance! normal
variables. We show that for j = 1, 2, ... , Tr(MJ) are independent and distributed as -J]Z asymptoti­
cally as n ---+ 00. This result is used to study the set of eigenvalues of M. Similar results are given for
the orthogonal and symplectic and symmetric groups.
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o. Introduction

The classical matching problem of elementary probability is elegantly surveyed
by Takacs (1980). In one incarnation it says that the number of fixed points in a
random permutation has an approximate Poisson(l) distribution. In other words,
the trace of a randomly chosen permutation matrix has an approximate
Poisson(l) distribution.

We study a continuous generalization to the classical compact groups: ortho­
gonal, unitary, and symplectic. Throughout, random means uniformly (Haar)
distributed. Our main results show that the trace of a randomly chosen matrix
has an approximate Gaussian distribution. We also derive Gaussian approxi­
mations for powers of random matrices and so results for the distribution of
their eigenvalues. Figure 1 shows the eigenvalues of a single realization on U;
when n = 100. The points appear to be very regularly spread out. This is a
consequence of the theory developed.

These continuous problems arise in applied work. Mehta (1991) is a book­
length survey showing how the eigenvalue distributions appear in a variety of
problems from particle physics. Mehta also reviews Odlyzko's remarkable work
connecting the eigenvalues with the distribution of the zeros of the zeta function.
Diaconis and Shahshahani (1986) show how the distribution of the trace of a
random orthogonal matrix occurs naturally in a standard telephone encryption
scheme. Larsen (1993) shows how this same distribution appears when studying
the error term for the number of solutions of equations over finite fields.

© Applied Probability Trust 1994

49

https://doi.org/10.1017/S0021900200106989 Published online by Cambridge University Press

https://doi.org/10.1017/S0021900200106989


50 PERSI DIACONIS AND MEHRDAD SHAHSHAHANI

...........,.
I.

I

•.,
\

.... ... .... ,
'.

,
;

..
'lit. .,.... . .

Figure 1. Eigenvalues of a random unitary matrix in U100

Our motivation for studying the present problems comes from another exten­
sion of the matching problem. Any permutation can be written as a product of
disjoint cycles (so

(
1 2 3 4 5 6 7 8 9)
2 1 3 9 548 7 6

is (12) (3) (496) (78) in cycle notation). Let ai(rr) be the number of cycles of length i
in the permutation 1r (so al = 1, a2 = 2, a3 = 1 in the example). Thus al is the
number of fixed points. Goncharov (1944) and Shepp and Lloyd (1966) showed
that if 1r is uniformly chosen in the permutation group Sn, then ai(1r) are asymp­
totically independent with limiting Poisson (1/ i) distributions. Goncharov (1944),
Shepp and Lloyd (1966), Erdos and Turan (1967a, b, 1968), Vershik and Kerov
(1981) and many others have studied a variety offunctionals of the cycle lengths.

The cycle lengths code the conjugacy class of a permutation. Here 1r and a are
conjugate if 1r = 1]-10'1] for some 1] E Sn. This is an equivalence relation partition­
ing S; into conjugacy classes. Two permutations are conjugate if and only if they
have the same cycle lengths. Two matrices in one of the classical groups are
conjugate if and only if they have the same eigenvalues. We hoped that some
of the richness and elegance of the study of cycles would carryover to eigenvalues.

Sections 1 and 2 present results for the unitary group. The calculations are
easiest here. They rely on classical results from symmetric function theory that
may be novel in a probability setting. Following this the orthogonal and sym­
plectic cases are studied. The main tool is the method of moments. We show that
the various traces have moments which equal the moments of the limiting
measures for all large values of n. This high-order contact surprised us, and in
the last section we show that it also holds for the matching problem: the first n
moments of the number of fixed points of a random permutation in Sn equal the
first n moments of Poisson(I).

It is worth remarking here 'why' the results presented hold. Consider the trace of a
random unitary matrix. This is a sum of a lot of small, not particularly dependent,
random things. The central limit theorem suggests it is approximately normally
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distributed. It is not hard to construct a proof along these lines. Next consider

J (Tr(m))a(Tr(m))bdm.
u,

51

This has a group-theoretic interpretation: (Tr(m))a is the character of the ath
tensor power of the n-dimensional representation of Un. The integral is the sum
of the multiplicities of the common constituents of the ath and bth tensor powers.
In particular it is an integer. By the first remark it converges to E(ZaZb) with Z
complex normal. These last moments are integers as well. Since integers conver­
ging to integers must eventually be equal, we expect equality of moments in all the
cases of this paper. It is interesting how rapidly this takes hold.

Remark. The physics literature works with a unitary, orthogonal and symplectic
ensemble. While the unitary ensemble is the one considered here, the orthogonal
and symplectic ensembles differ. Their orthogonal ensemble consists of the
symmetric unitary matrices. This is Un/On. Their symplectic ensemble consists of
anti-symmetric unitary matrices. This is U2n/ SPn. We hope to carry through the
distribution of the eigenvalues on these ensembles along the lines of the present
paper.

1. The unitary group

A complex normal random variable Z can be represented as Z = X + iYwith X
and Y independent real normal random variables having mean 0 and variance !.
These variables can be used to represent Haar measure on the unitary group U; in
the following standard fashion. Form an n x n random matrix with independent
identically distributed complex normal coordinates Zij. Then perform the Gram­
Schmidt algorithm. This results in a random unitary matrix M which is Haar
distributed on Un. Invariance of M is easy to see from the invariance of the
complex normal vectors under Un.

This representation suggests that there is a close relationship between the
unitary group and the complex normal distribution. For example, Diaconis and
Mallows (1986) proved the following result.

Theorem O. Let M be Haar distributed on u; Let Z be complex normal. Then,
for any open ball B,

lim P{TrM E B} = P{Z E B}.
n-+oo

The following result generalizes Theorem O.

Theorem 1. Fix k in {I, 2,3, ...}. For every collection of open balls B, in the
complex plane,

k

lim P{Tr(M) E B1, Tr(M 2
) E B2 , .•• , Tr(Mk

) E Bk } = IIp(J]Z E Bj ) .
n-+oo

j=l
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Theorem 1 will be proved by the method of moments. To this end, note the
following result.

Lemma 1. Let Z be standard complex normal. Then, for each a, b E {O,1,2, ...}

E(ZaZb) = baba!

Proof By standard properties of normal variables Z = Rexp (i8), with R2 an
exponential random variable and 8 uniform on [0,27r) with 8 independent of R.
Now

E(ZaZb) = E(Ra+b)E(exp (i(a - b)8)).

This vanishes unless a = b. Then E(R2a) = a!

The main result of this section calculates the joint moments of Tr(M),
Tr(M 2

) , ... , Tr(Mk
) . The result shows these equal the joint moments of indepen­

dent complex normal variables.

Theorem 2. Let M be Haar distributed on Un' Let a = (aI, a2... , ak);
b=(b1,b2,···,bk) with a., bi E {O, I , ... }. Let ZI' Z2" .. ,Zk be independent
standard complex normal variables. Then, for all n ~ Ef=1 (ai + bi)'

Proof Recall the power sum functions: Pj(Xl, x2, ... , xn ) = E7=1 x{ and for
A = 1a12a2 ... kak, P).. = ID=1 p;j. Here A is a partition of al + 2a2 + ...+
kai. = K. As A ranges over all partitions of K, the P).. form a basis for the
homogeneous symmetric polynomials in n variables for all n ~ K.

A second basis for these polynomials is the Schur functions sJ-L' These can be
defined by

with X).. (j1) the character of the symmetric group SK associated to the Xth irre­
ducible representation on the j1th conjugacy class. This and other properties of
Schur functions can be found in Macdonald (1979) or Sagan (1991).

A second crucial property of Schur functions is that they give the characters of
the unitary group. If m E U; has eigenvalues exp (iOj ) , 1 ~ j ~ n, define
sJ-L (m) = sJ-L (exp (iO I ) , ... , exp (iOn))' Here, sJ-L is defined as zero if j1 has more than
n parts. As j1 varies over partitions of any number with n or fewer parts the sJ-L give
all characters of Un' Then, the orthogonality for characters becomes

fun s>..(m)s,..{m)dm = 8>..,1-"
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Now Tr(m j)
= Pj(m), so

kIITr(mj)QjTr(mj)bj = P)..(m)P)..'(m),
j=1

where A = 1QI ••• kQk and A' = 1bI ••• k bk
• Expand P).. and P)..' in Schur functions

and integrate over Un. Using the orthonormality gives zero unless A and A' are
partitions of the same number K. If IAI = IA'I = K,

E{rr (Tr Mj)aj
• (Tr Mj)bj

} = E XA(/L)xA'(/L) = 8Ax rrrja)
j=1 ~rK j=1

This last equality follows from the second orthogonality relation for characters,
the right side being the size of the conjugacy class corresponding to A when A = A'.

The method of moments for complex-valued random variables now proves
Theorem 1 from Theorem 2.

Remarks
1. Let A~ be the homogeneous polynomials in n variables of degree k. Both the

Schur functions and the power sum symmetric functions form a basis for A~.

There is a well known inner product on this space; the Hall inner product
(Macdonald (1979), Section 1.4). Under this inner product, the Schur functions
are orthonormal and the power sum functions satisfy (P)..I P)..') = 8)..)..'z)... Thus the
inner product can be realized by (fig) = fUn f(m)g(m)dm.

2. Theorem 1 allows the determination of the limiting distribution of the trace
of a random unitary matrix in any representation. Recall that for any partition of
any integer k with at most n parts there is an irreducible representation of U; with
character the Schur function S)... With A fixed, one may inquire about the distribu­
tion of s)..(m) where m is chosen uniformly in Un. For fixed A and large n, the
limiting distribution of s)..(m) can be determined as follows. A classical formula in
the subject (see for example, Macdonald (1979» gives

SA = '" XJL(.X) P
L...J z ~
~ ~

with X~(A) the j.lth character of the symmetric group at the Xth conjugacy class
and z~ = TIi iQiai! if j.l has a, parts equal to i. Now P~(m) is a polynomial in Tr(m),
Tr(m 2) , ••.. In the large n limit, these traces are independent normally distributed
complex normal random variables by Theorem 1. It follows that SA has a known
limit law.

For example, S12 is the character of the symmetric tensor representation of Un. We
have S12 = !P2 + P12. From Theorem 1, the limiting distribution is the distribution
of

!(V2Z 1) + !Z~

with ZI, Z2 independent complex standard normal.
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(2.1)

We do not know how to elegantly extend these considerations to the orthogonal
or symplectic group. The formula for expanding the characters of these groups in
power sums is not known in as clean a way. Ram (1991) has given algorithms for
computing the coefficients in special cases.

2. Eigenvalues of M

For m E Un' let exp (i01) , ••• , exp (iOn) be the eigenvalues of m. Put these
together as a probability measure on the unit circle SI:

1 n
J-tm = - L 8exP(ioj ) .

n j=1

If M is Haar distributed, then J-tM is a random measure and one may inquire
about large n limits. One way to study the law of J-tM is through its Fourier
transform

Thus,

flM(a) = !Pa(M)
n

flM(a) = !P_a(M)
n

if a = 0, 1,2,3, ... ,

fora=-I,-2, ....

It is straightforward to show that for a, b as in Theorem 2, the functions

k

Ta,b(J-t) = II [L(ai)[L( -bi)
i=1

determine weak star convergence of random probabilities on SI. Theorem 2 above
shows the following.

Corollary 1. If M is uniform on Un' and J-tM is defined in (2.1), then, for all
n ~ E~=1 (ai + bi),

1 k
E{Ta,b(J-tM)} = 2f8abIIjaj aj!.

n j=1

The uniform distribution v on SI has Fourier transform v(O) = 1, v(a) = 0 for
a =1= 0 in 7L. The above calculations allow us to reach the following conclusion.

Theorem 3. Let M be uniformly chosen in Un. Let v be the uniform distribution on
SI. Then, as n tends to 00,

in probability, weak star.
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Proof For any a =1= 0 and n > 2a, Corollary 1 implies

E(flM(a)) = 0, E(lflM(a)1 2
) = ~.

n

Thus the Fourier transform at a tends to zero in probability. This easily implies
the claim.

Remarks
1. Theorem 3 shows that the pattern of eigenvalues on SI becomes uniformly

distributed while Theorems 0 and 1 show that the sum of the eigenvalues has a
standard complex normal distribution with no further norming. This shows that
the eigenvalue distribution must be highly regular so a fair amount of cancellation
takes place. For contrast, if n points are chosen at random on SI the associated
empirical measure converges to the uniform measure but their sum converges to
complex normal after being divided by yin.

Eric Rains (personal communication) has observed that the nth power of the
eigenvalues of a random unitary matrix are exactly distributed as n uniform and
independent points on the unit circle. This follows easily from Equation (2.2)
below. Rains has used this, together with Corollary 1 and Fourier analysis, to
show that the number of eigenvalues falling in an interval is n times the interval's
length up to an error of order log n. Thus, the eigenvalues are very regularly
distributed.

There has been detailed study of the distribution of spacings (difference
between consecutive eigenvalues) in the mathematical physics literature. An
elegant, readable summary of this work is given by Tracy and Widom (1992).
Mehta (1991) is a book-length treatment.

2. The joint density of the eigenvalues of a random unitary matrix is due to
Weyl. It has the form

(2.2) (n!)-1 IT Iexp (iOj ) - exp (iOk)12.

15:.j<k5:.n

Of course, this contains all the eigenvalue information, but unraveling the
information needs some work.

3. In a different direction, consider M randomly chosen in Un' The arguments
of Diaconis and Freedman (1987) generalize in a straightforward way to show
that ylnM11has a limiting standard complex normal distribution. Presumably, the
arguments of Diaconis et al. (1992) generalize to show that the joint distribution
of a block ylnMjk, 1 ~ i, k ~ N converge to independent standard complex nor­
mal variables in variation distance provided N « n1/ 3 .

4. The remarks in 3 suggest that the variables ylnM1b ylnM22 , •.. ,ylnMnn can
be strung together to a complex Brownian motion in the large n limit. This meshes
with the claims of Theorem O. Perhaps the same is true of ylnM{k' 1 ~ k ~ nand
perhaps, in the limit, all of these Brownian motions are independent.
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5. The Gram-Schmidt algorithms described in the opening paragraph of this
paper are not the fastest way to generate a random element of Un. Diaconis and
Shahshahani (1987) describe a 'subgroup' algorithm which represents a random
element of U; as a product of random complex reflections. Both algorithms use
order n3 operations, but the subgroup algorithm runs considerably faster.

3. The orthogonal group

In this section we derive the analogs of Theorems 1 and 2 for the group of n x n

orthogonal matrices with real entries. Haar measure on On can be represented by
forming an n x n random matrix with independent identically distributed stan­
dard normal coordinates and then performing the Gram-Schmidt algorithms.
This suggests a close relationship between the orthogonal group and the standard
normal distribution. The main result of this section calculates the joint moments
of Tr(M), Tr(M2), ... ,Tr(Mk). These are equal to the joint moments of inde­
pendent normal variables for n sufficiently large. This extends a result of Diaconis
and Mallows (1986).

Theorem 4. Let M be Haar distributed on On. Let aI, a2,... ,ak be a vector of
non-negative integers. Let Zl' Z2, ... ,Zk be independent standard normal variables.
Let TJj be 1 ifj is even and 0 otherwise. Then, for all n 2:: E~=l a.,

E{U Tr(MJ)aj
} = UgJ(aJ) = UE(JJ ZJ+ 17J)aj

•

Here,

{
o ifa~oM

ifj is odd gj(a) = .G 2
} / (a - 1)(a - 3) ... 1 if a is even,

ifj is even gj(a) = L ( a )jk(2k - 1)(2k - 3)···1.
k 2k

Proof Let exp (iOj) denote the eigenvalues of M, 1 ::;j ::; n. As with Theorem 1
k

IITr(Mj)Gj = P,\(exp (iOI),···, exp (iOn))
j=l

with A = 1G12G2 ... kGk and P,\ the power sum symmetric function. To continue, we
must express these power sums in terms of the characters of On' For this, let V be
the n-dimensional defining representation and V 0 k the kth tensor power. The
algebra of all linear transformations of V0 k which commute with the action of
On is Bkn - the Brauer algebra. Brauer (1937) studied these algebras, giving a
remarkable basis for them. This work has been developed by Hanlon and Wales
(1989a, b) and Wenzl (1988). The part of this theory needed here was developed
by Ram (1991).
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Brauer (1937) showed that
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for a well-specified set of partitions where F" is an irreducible representation of
On and M).. is an irreducible Bkn module. Ram (1991) showed

(3.1 ) P)..(X) = LX(k,n)(W)t/-l(x)
J.t

with tJ.t(x) the character of On corresponding to FJ.t and X(k,n) the character of Bkn
corresponding to M)... Here w may be taken as a permutation with cycle type A.
Integrating over On amounts to taking the inner product with the trivial char­
acter. This corresponds to the partition J-l = (0). Thus

Ion P),(M)dM = Xi~~n)(W)'

Now, Ram (1991) has given a combinatorial rule for evaluating the characters of
Bkn much like the Murnahan-Nakayama rule for the characters of the symmetric
group. He has kindly massaged his rule to produce the formula

(3.2)
k

xi~~n)(w) = IIgj(aj)
j=l

and gj(a) given in the statement of Theorem 3.

Remarks
1. At least for n odd, M 2

j E On must have at least one eigenvalue equal to 1.
This accounts for the "lj in the formula. It also appears that with probability 1,
M 2

j has only one eigenvalue equal to 1. For even n, On is the disjoint union of
matrices with determinant +1 and -1. On the first part, a generic matrix has no
real eigenvalue. On the second part, a generic matrix has one eigenvalue 1 and one
eigenvalue -1. Thus even powers have two +1 terms in their trace and the second
part has total mass 1/2. So E(Tr(M2j)) = 1.

2. Diaconis and Mallows (1986) showed that the moments of the trace of M
equal the moments of a standard normal variable for all sufficiently large n. This
proves the limiting normality by the method of moments. A similar limiting
normality follows from Theorem 3: Tr(M), Tr(M2

) , ••• , Tr(Mj) are asymp­
totically independent normals. When j is odd, the limit of Tr(Mj) has mean 0
and variance j. When j is even, the limits have mean 1 and variance j + 1.

3. Weyl (1946), p. 224, gives the joint density of the eigenvalues on On' Let
c(O) = exp (iO) + exp (-iO), let s(O) = exp (iO) - exp (-iO). On 02n let the eigen­
values be 0., O2, ... , On and their conjugates. On 02n+l let the eigenvalues be
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°1, ••• ,On' their conjugates, and ±1. Let
n

~+ = II s(Oj/2)II(c(Oj) - C(Ok))'
j=l j<k

The joint density of°1, ••• , On is proportional to ~+~+ on SOn and to ~- ~- on
SO;.

It follows as a corollary to Theorem 4 that the eigenvalue distribution on the
unit circle tends to the uniform distribution.

Theorem 5. Let M be uniformly chosen in On' Let
1 n

J-tM = - L 8exp(ioj)
n j=l

be the empirical measure of the eigenvalues of M. Let v be the uniform distribution
on SI. Then, as n tends to infinity

J-tM ===> 81/ in probability, weak star.

Proof Let a be a fixed integer. The Fourier transform of J-tM at a satisfies

{J,M(a) = !t exp (iaOj) = {J,m( -a) = ! Pa(exp(i0l ) ... exp (iOn))'
n j =l n

Thus, for a =1= 0,

if a is odd

{

0 if a is odd
E(J-tM(a)) = ;;1

if a is even

{~
E(I{J,M(a)1

2
) = a + 1

if a is even.
n2

Thus, MM(a) tends to zero in probability. This easily
result.

implies the claimed

4. The symplectic group

Let J be the 2n x 2n matrix of form (0 I) with all blocks n x n. Let SPn be
-I 0

the 2n x 2n unitary matrices m with complex entries such that mlm' = J.
SPn consists of the matrices preserving an alternating form. It comes up in
mechanics and elsewhere. SPn is a compact group with eigenvalues occurring in
complex conjugate pairs so Tr(mk

) is real for all k. The following theorem shows
that under Haar measure, Tr(m), Tr(m2

) , ... , Tr(m k
) are asymptotically indepen­

dent normal random variables.
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Proof The left side of (4.1) is the expected value of P.x (M) with A = 1at 2a2
••• kak

•

Brauer showed that P.x can be expressed as a finite sum of characters sPJ.L of SPn:

k

P.x(XI,···,X2n) = II(-I)U- I
)aj L X(.t:_2n)(w)SPJ.L(XI, ... ,X2n).

j=I J.Lrf-2i

The sum is over O:S;i:S; Lfl2J and partitions J-tn withf=IAI, the size of A.
Further, X(.t:-2n) is the character of the Brauer group, and w is a permutation of
cycle type A.

Integrating over SPn, the only non-zero term in the sum comes from J-t = O.
Thus

E{UTr(Mj)Qj} = U(-1)(j-l)OjX~f,-2n)(W)'

Now Ram (1991) shows X~.t:-2n)(W) is given by (3.2) for all n ~ D=I a.. So the
results follow from the symmetry of the normal distribution.

Remarks
1. The uniform distribution of the eigenvalues follows as in Sections 2 and 3.
2. With the notation of Remark 4 of Section 3, Weyl (1946) showed that

the joint density of the eigenvalues of a random matrix is proportional to d~
where

d(O}, O2, ••• , On) = IIs(Oj) II(c(Oj) - C(Ok))·
j j<k

5. The symmetric and other groups

For A> 0, the Poisson(A) distribution puts mass e-.xAkIi! on i = 0, 1,2, ....
If X has a Poisson(A) distribution and X(k) = x(x - 1) ... (x - k + 1),
E(X(k)) = Ak. The following computation shows that if ai(1r) is the number of
i-cycles in the permutation 1r, then the joint moments of aI, a2, ... , ak equal the
joint moments of Poisson variables with parameter 1, !, ... ,1Ik. Since the
Poisson is determined by its moments, this proves that the ai(1r) are asymp­
totically independent with Poisson (Iii) distributions. For the moments of aI,
see Irwin (1955). Arratia and Tavare (1992) give bounds for total variation
convergence. The corresponding limit theorem was known to Goncharov.
Watterson (1974) also studied the moments.
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Theorem 7. Let 1r be uniformly distributed on the symmetric group Sn. Let
bl, ,bk E {O, 1, ... , }. Let Zl, Z2, ... ,Zk be independent Poisson with parameters
I,!, , 11k. Then, for all n ~ E~=l ia.,

E(g a;(1r)b) = gE(~i).

Proof Introduce generating functions:

(5.1)
00 00

g(t; x) = L tngn = II exp (tixili).
n=O n=l

The last equality is a classical result of Polya theory, see for example Polya and
Read (1987). The result now follows by differentiating. For notational simplicity
let us carry this out for E(al(1r)(b)). In (5.1), set X2 = X3 = ... = 1 and Xl = x.
Thus

and

( )
_ exp(t(x-1))

gt,x- (l-t) .

Differentiate b times in X and set X = 1. This becomes

00 tb
~tnE(al(1r)(b)) = (1- t)·

Thus Eta, (1r)(b)) = 1 = E(ZI)(b)) for n ~ b. This implies that the first n moments
of al(1r) under the uniform distribution on Sn equal the first n moments of Zl.
Computation of joint moments is easy and entirely similar due to the product
form of (5.1).

A permutation matrix has all eigenvalues on the unit circle. We are thus faced
with cancellation similar to that of previous sections. On the one hand, the trace
tends to be a small random number. On the other hand, it is the sum of n points
on the unit circle which must somehow cancel. Here, it is easy to make sense of
things. Suppose 1r has aj i-cycles. The matrix of 1r is similar to a direct sum of
circulants with aj copies of a i-cycle. Such a i-cycle has eigenvalues exp (21rikli) ,°~ k < i. These are perfectly regularly distributed so their sum cancels exactly in
the trace leaving only the a, fixed points.

From these considerations it is straightforward to derive the limiting law of
the eigenvalues. For 1r E S; let p(1r) be the associated permutation matrix with
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eigenvalues exp (iOj ) , 1 ~} ~ n. Let

61

(5.2)
n

J.L1r = L 8exp(iOj )

j=l

be the associated counting measure. For} = 1,2, ... let J.Lj be the uniform (count­
ing) measure on the }th roots of unity. Then

(5.3)
00

J.L1r = LajJ.Lj
j=l

with aj(1r) the number of cycles of length} in 1r. Now, the extensive work on the
distribution of cycle lengths can be brought to bear. For example, the multiplicity
of 1 as an eigenvalue is the number of cycles. This is approximately normal with
mean and variance logn. The root of unity closest to this is about (0.63) · 21r/n,
etc. As before, J.L1r/n converges to a point mass at the uniform distribution, in
probability weak star.

Remark. One can study the distribution of the conjugacy classes on any
compact group. It is straightfoward to carry out the results for wreath products
(such as the group of symmetries of the cube). Indeed, Polya theory, as in Polya
and Read (1987), gives a formula like (5.1) and from this the rest follows. There is
much interesting work to be done on the classical groups mod p. Stong (1992)
followed by Goh and Schmutz (1992) and Hansen and Schmutz (1992) derive
results for GLn(lFq ) . Rudvalis and Shinoda (1991) study the analog of the
matching problem for all of the classical finite groups (distribution of number of
fixed vectors). The present paper aims to show there are lovely results to be
discovered in the continuous setting as well.

The eigenvalues of complex representations of general groups can also be
studied. Let G be a compact group (perhaps finite) and p a representation of G.
The character Xp = Tr(p(s)) can be averaged over G. Standard character theory
shows that:
E(Xp(s)) is the number of times the trivial representation appears in p,
E(lxp (s)12) is the number of irreducibles in p counted with multiplicity.
In particular, if p is irreducible (as for the n-dimensional representation of the
orthogonal, unitary and symplectic groups considered above) the mean is 0 and
the variance is 1. This holds for all groups and any-dimensional representation.
For large dimension it shows that there must be a fair amount of cancellation in
the eigenvalues. Further, it shows that the empirical distribution of the eigen­
values is approximately uniform as in Section 2.
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