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1. Introduction

We consider a regression relation of the form

(1) y(t) = B'x(t) + e(t), t e ( - oo, T)

wherein y(t) and x(t) are real (column) vectors of q and p components and e(f)
is real and is generated by a stationary generalised vector process of q components
with zero mean and covariance function (a q rowed matrix) F(t — s) = E{x(s)x(t)'}.
(See Hannan (1970; pages 23-26, 91-94) and references therein for definitions
of terms used.) We assume e(t) to be independent of x(s) for all s, t. Thus we may
regard x(t) as a fixed time function and not stochastic and we shall henceforth
do that. We take F(t) to be continuous and to correspond to an absolutely con-
tinuous spectral function with spectral density which is uniformly bounded and
continuous. Then we have

[• 00= J e"
J — 00

r(t) = e'af(X)dX, - oo < i < oo .
J — 00

We do not exclude the possibility that for theyth diagonal element, fSi, o f / w e
have

j: fjj(X)dx = oo.
J — 00

We may write

e(t) = P e-'az(dX)
J — 00

where z(A) is a vector process of orthogonal increments with E{z(dX)z(dX)*}
— f{X)dX. Putting || A || = [tr(^*^4)}* for any matrix A we assume that

2dt < oo.r
We take te( — oo, T) for convenience of exposition but later shall show that we
have also covered the case t e [0, T), for example.
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[2] Linear regression in continuous time 147

We shall be substantially concerned with improving some results in Kholevo
(1969) and shall repeatedly refer to that work. In Kholevo (1969; Theorem 2) an
asymptotic (T-> oo) lower bound to the (normalised) covariance matrix of the best
linear unbiased estimate (BLUE) of B is obtained for the case q = 1. We here wish
to investigate conditions under which the lower bound becomes the asymptotic
value of the (normalised) covariance matrix. Kholevo uses his lower bound to
find sufficient conditions for the least squares estimate (LSE) to be asymptotically
efficient. Our improvement of his result will allow us to show that these conditions
are also necessary. We generalise to the vector case (for y(t)) partly because in
this case we can obtain an interesting characterisation of the nature of any x(i)
which makes LSE efficient for a sufficiently wide class, of/(A). Finally we shall
relate these results to the problem of smoothing a continuous time record dis-
cussed in Blackman (1965).

The results in Kholevo (1969) and in the present paper are extensions to
continuous time of results obtained for discrete time by Grenander (1964), Hannan
(1968). For further references see Kholevo (1969) and Hannan (1970). The first
attempt at a general solution of the continuous time problem is found in Heble
(1961). However, Theorem 2 is incorrect, as is pointed out in Kholevo (1969).
Heble's method of proof is based upon a discrete time approximation to the
continuous time phenomenon and differs from that in Kholevo (1969) and the
present paper. The key to this extension is the observation, first made in this
connection in Rozanov (1964), that x(t) must be of the special form if it is not
to be true that B, no matter what it may be, can almost surely be distinguished
from the null matrix from observations on ( —oo,T]. This special form is, in
case q = 1,

(2) x(t) = r eitX<t>(T\X)f{k)dX, t<T.
J - 0 0

wherein <j>^T\X) is of the form

f e-iaa(T\t)dt, f ||a(r)(0|2^<oo
J — 00 J — 00

or is the limit in mean square (with weight function /(A)) of a sequence of such
(vectors of) functions. For completeness a proof of these assertions relating to
(2), and its generalisation (2)', below, is given in an appendix to this paper. For
q > 1 it is convenient to introduce the notation /? = vec B for the column vector
which has ptj in row (j — l)q + 1 (i.e. which has the columns of B placed suc-
cessively down it). By A ® C we mean the Kronecker product of these matrices,
having auckl in row (i — l)p + k, column ( j — l)q + l, where C is a p x x matrix.
Then (1) may be rewritten as

(1)'
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148 E. J. Hannan [3]

The condition (2) now becomes

( 2 ) ' { / , ® * ( * ) ' } = f ° V ; / ( A ) < D ( T ) ( A > / A , t < T
J — 00

where <D(T) is a q x pq matrix of functions which is of the form

O(T'(A) = f e-itXA(t)dt, f \\A(t)\\2dt
J — oo J — oo

or is in the closure of this linear set with respect to the norm

<ao

= (tr[ r
As mentioned above we give a proof that (2)' must hold if the inference problem
is not to become, in a sense, trivial in the appendix to this paper. We henceforth
assume that (2)' holds.

In the discrete time case the analogous theorems are proved under the, not
unreasonable, condition that / ( / l )>0, Ae(—n,n~\. (Here and below we mean
the notation /(A) > 0 to mean that /(A) is positive definite.) In the continuous
time situation the following condition must be imposed, namely,

(3) inf tr{/(A)(l + A2)"} > 0, some n ^ 0.

There is no intrinsic reason why the function (1 + A2)" should be used and it
could be replaced, under suitable conditions, by other functions corresponding
to a filter having response (namely (1 + iX)n in the present case) with all of its
zeros in one half plane (so that it is one-sided and invertible). However the fact
that iX is the response function of the operator djdt makes (3) a natural chioce.

The theorem we prove below expresses the covariance matrix of the BLUE,
B, of B and the LSE, B, of B in terms of a generalised spectrum for x(i). As in
Kholevo (1969) we henceforth assume that x{t) has n derivatives (where n is deter-
mined by (3)) that are square integrable on ( — oo, T] . We introduce a polynomial
P{z) of degree n, with all of its zeros in the left half plane (which, as in Kholevo
(1969), we call a stable polynomial), and put

We put

qk(T)= {J ^ 0 2

and shall call Q{T) the diagonal matrix with gk(t) in the kth place in the main
diagonal. We assume that the following limits exist and have the values shown

(4) lim xk(T)lq,(T) = 0
r-»oo
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U] Linear regression in continuous time 149

(5) lim f

We call ^ ( 0 the matrix with entries pkl{t) and assume that R\i) is continous at
t = 0 and that R(0) is nonsingular. Then since a.'R\t)oi is a non-negative definite
function for all a it follows from Bochner's Theorem that

/•o

= I
J-

where M(X) is an Hermitian matrix which is nondecreasing as a function of X.
When all of this is true we say that x(t) has a spectral measure.

In Kholevo (1969; page 91) the condition (4) is omitted. However some such
condition is necessary as the example x(t) = exp t shows, for it satisfies (5), with
R(t) = exp t, which is continuous and nonzero, but evidently is not non-negative
definite. In Kholevo (1969) R(t) is defined differently but this has the effect, in
the present example, only of changing R(t) to exp —t. If we use (2)' we see that

J - O
(6) {

wherein f(X) = \P(iX)\2f(X), $(r)(A) = PQXyW^iX). The fact that $(T)(A) is
of the required form follows from the location of the zeros of P(z).

Finally we assume

rT

(7) lim xk{tfdt = oo
r->«> J — oo

for without this condition the LSE cannot be consistent. This is easily seen to
imply

lim
r-><» J -oo

r
(7)' lim xk{tfdt = oo.

r-><» J -oo
We henceforth assume all of the conditions of this section to hold and refer

to them collectively as Conditions A.

2. The Asymptotic Variance of the BLUE

The LSE is, by definition

= (J {Iq®x(t)}y(t)dt
q

i.e. vec & = ft where

B = ( J x(t)x(t)'dtJ "l- J x(t)y(t)'dt.
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Let £1(T) be the covariance matrix of ft. Then if x{i) has a spectral measure it
is not difficult to show that

lim{Iq®Q(T)}Q(T){Iq®Q(T)}
r-»oo

f
*/ —

M'idk) {/, (8)

We omit the proof, which is of the same nature as that given in Hannan (1970;
pages 216-219).

The BLUE is, assuming/(I) to be known,

(8) J?=

with covariance matrix fio(T) which is the first factor. (See Kholevo (1969; page
82). Of course we also have

We now establish the following theorem, assuming also

(9) sup( l+A 2 r t r{ / (A)}<oo.
x

THEOREM 1. Let Conditions A and (9) be satisfied. Then

lim {/, ® Q(T)}Q0(T) {/, ® Q(T)} =

We may of course compute $ in terms of x{i) (i.e. putting hats on $ ( n ,
/ and z).

We observe first that we may find matrices of rational functions of z, R}(z),
j = 1,2, whose determinants have all zeros and poles located inside the left
half plane, for which

sup Rj{iX) < oo, miRj{iX) > 0,
x x

and which are such that (in the usual partial ordering of Hermitian matrices)

X)*}-1 ^ Mr1 ^ {R2(mR2(w*}-1

and

(10) {R2(a)R2(a)*}-1 - {R^ityR^iX)*}-1 ^ si, e > 0.

This may be established by mapping the closed left half plane onto the closed
unit disc by means of z = (1 + w)/(l — w), which maps z = ;A onto w = tan£0,
approximating to /(tan^fl)"1 uniformly above and below by positive definite
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[6] Linear regression in continuous iime 151

matrices of trigonometric polynomials and reversing the transformation. If we
can establish the theorem with Rj(iX)Rj(iX)* replacing/(A) we shall evidently have
proved what we wish in virtue of (10). Thus we now take /(A) to be a "rational
spectrum" of this form. Of course a representation (6) still holds since this is now
true for any x(t) which is square integrable on ( —oo,T] because of the fact
that / is bounded and bounded away from zero. We shall call the expression on
the right of (6) ^ ( T ) (0 it being understood that this is lq®x(t)' for t ^ T.
We first establish the following result.

LEMMA.

f" m i T \ & i} = 0.lim {/, ® Q(T)-1} f" Xm{i)*XiT\t)dt{Iq

We prove the lemma in case p = q = 1, for simplicity, but the general case is
only notationaly more complicated. We first consider f(X)~lQ(X) where

2n J_c
Of course

•i0(A)}dA = x(t), t<T

= 0 , t ^ T.
J-"

However, 6(1) //(A) is not of the required form, namely such that it is the Fourier
transform which is zero for t ^ T. We may decompose /(A)~1 into partial frac-
tions as

/(A)"1 = a0 + £ ak{bk-ik)~l + 2 dk(bk + iX)-\ @(bk) < 0.
i o

(It is possible that terms involving (bk + iX)~2, and so on, might occur but it
will be seen that the proof is not materially altered. In any case since our /,(A)
are, to an extent, arbitrary we may make a small modification of/(A) which will
avoid this situation.) Now {a0 + X ak(bk + iA)~i}0(A) is of the required form.
Also

= I flil jT e-ia f J°Vx0-s)dSJ dt

The first term on the right is again of the required form but the second is not.
Rearranging that second term we get

r

E£ [ak r' ebkSx(T-s)ds
1 I Jo - bk)
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Let £k(X) be of the form

- ^ J e~Ma^ds' J I a*̂  \
t<0-

(It is not difficult to see that £*(!) may be choosen to be a linear combination
of the (iX+ bj)). Now we have shown that we may choose

= !
J -

and have reduced the synthesis of X(T\t), i.e. of O(T)(A), to that of Ct(A), in the
case of rational /(A). Moreover it is now evident that

f °° | X(T\t) 12dt ^ c o n s t a n t l £ \ a k f d**MT-s)ds |J ,

where the constant is independent of x(t) and of T, since the only component
contributing to Xm{t) for f ^ T is

J-oo

However it is easily seen that, because of (4),

lim |
r-»oo Jo

r e b k S x ( T - s ) d s \ 2 l [ \x(t)\2dt = 0, k = \ , - , r
Jo /J-oo

and the lemma is proved.
The remainder of the proof of the theorem is now easily accomplished.

Again we give the preof for q = 1 for notational convenience. Put

-1 f "
J —

J -

Now

lim
T-

im f * e
-* oo J — oo

= Hm-L f
T-oo27c J -
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and because of the lemma this is

Hm 1 f
T-, oo m j _ „

Since /(A) ~i is a bounded continuous function the result now follows for q = 1. (For
q = 1 we may replace M'(dX) by M (dA) since /(A)=/( — A) otherwise it is neces-
sary to prime, or conjugate M(A) with the definitions which we have adopted.)

The following is an almost immediate corollary. It constitutes Kholevo
(1969; Theorem 2). The proof given there is probably more direct but our Theorem
enables other results to be proved later.

COROLLARY 1. Under Conditions A we have

lim (/, ® Q(T))no(T)(Iq®Q(T)) > I [™2nf{X))-l®M\dX)\ \

PROOF. Though now /(A) is not bounded we may still bound it below by a
rational spectrum, R(iX)R(iX)* of the required kind and so that

0 g {K(iA)KOA)*}-1 - / (A)"1 ^slq, e > 0.

Allowing e to tend to zero the corollary follows.
As Kholevo (1969; Lemma 3) shows, provided

(11) lim xil\T)/qk(D = 0; k = l , - , p ; / = 0,1, - , ( n - l ) ,
r-*oo

then the existence of a spectral measure, A/(A), for x(t) implies the existence
of a spectral measure, M{X), for x(t). Moreover if we put

and define Q(T) in terms of the qk(T) then

A = lim<2-i(T)e(T)

exists and for any Borel set E

M(E) = A I \P(iX)\-2Af(dX)A.
JE

Now we have the following corollary.

COROLLARY 2. Under conditions A and (11)

lim (Jf®G(r))Qo(T)(/,®Q(T))= ( P j
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PROOF. Using (11) the result of Corollary 1 may be written as

f f _t ) ~ l

lim (I ® Q(TT))fin(T1) (/„ ® Q(Ty) = I I (27r/YA)) ® A/'(ffA)}
T-*oo ' •/ — oo /

However consider also the spectrum /(A) + elq, E > 0. Since this satisfies the con-
ditions of the theorem with n = 0 in (3) and (9) we have

~K™~(Iq ® Q(T))Clo(T) (/, ®P(T)) ^ ( f °° O ( / ( A ) + s/,)] " l ® M'{dX)\"
T->oo [J -co I

Allowing e to tend to zero the corollary is obtained.
The example in Kholevo (1969; pape 99) shows that some such condition as

(11) is needed if Corollary 2 is to hold. However the result still appears to be
a very general one.

3. The Asymptotic Efficiency of the LSE

Precisely as in Grenander( 1954) and following Kholevo (1969) we may intro-
duce a unique (maximal) decomposition of (— oo, oo) into sets Sj, j = 1, •••, r ^ p
so that, assuming x(t) to have a spectral measure, then

j = i?(0)-* f
JSj

M(dX)R(0) -*

are a set of mutually annihilating idempotents summing to Ip. We call the Sj
the elements of the spectrum (of z(t)). For a physical interpretation of the Nj
see Hannan (1970; page 432).

We say that the LSE is efficient if (Iq®Q(T))(n(T)-n0(T))(Iq®Q(T))
converges to zero. The proof of the following theorem is now of exactly the same
form as in Hannan (1970; Theorem VII, 8, page 433].

THEOREM 2. Let Conditions A and (11) hold. Then the necessary and suf-
ficient condition that the LSE be efficient is the condition that f(X) be constant
on the elements of the spectrum.

This theorem improves Theorem 4 in Kholevo (1969) by adding the necessity of
the condition. Kholevo also compares the BLUE (for q = 1) with the LSE got from
P^djd^x^t), P^d/dtyyit) when Pt(z) is a stable polynomial of degree m,
0 ^ m ^ n and sup/(2)(l +I2)m < oo. This result of Kholevo's is evidently
an immediate corollary of Theorem 2, and necessity again may be inserted. In
the case q > 1 the extension is more elaborate and we forego the details.

The following is evidently an immediate corollary of Theorem 2.

COROLLARY 3. Let Conditions A and (11) hold. Then the necessary and suf-
ficient condition that the LSE be efficient for all f(l) in some class which se-
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parates the points of ( — 00,00) for q>\ (separates the points of [0, 00) for
q = 1) is that the elements of the spectrum be points for q > 1 (be points or
pairs of points symmetrically placed with respect to the origin for q = 1).

Again this completes a result of Kholevo (1969) (the corollary to Theorem 4).
The spectrum (1 + A2)~* separates the points of [0, 00), for example.

We may also characterise the nature of an x(t) for which Corollary 3 holds
exactly as in Corollary (VII. 1) in Hannan (1970; page 436), the proof being almost
precisely the same. Thus put Nj = Uj + iVj and consider the real vector space,3C
let us say, in which UJt Vj act. Then 9C may be decomposed into mutually perpendi-
cular subspaces, Ty, one for each 9j ^ 0 in the regression spectrum, so that the pro-
jection on Wj is Uj if 9j = 0 and otherwise is 2Uj. The matrix V, is skew sym-
metric and if Sj is a single point (as must be so for q > 1) then in a suitable basis
for 9C, it is

0

1

1

0

0

- 1

1

0

where omitted elements are zero. Thus 3C3 is even dimensional.
A set of xk(t) satisfying these conditions is

t" cos 9 4

t" sin
u = 0 , l , - - - , p y - l ; j = l , - - , s .

In particular, as was first pointed out by Rosenblatt (1959), if s = 1 and pt = 1
(for example) efficiency cannot obtain when q > 1 for all /(A) in a suitably wide
class if cos9t occurs in the regression without sinGt (or the reverse). In other
words the knowledge of the nature of the polarisation of a sinusoidal signal
provides information which the LSE does not use.

4. Observations on [0, T]

We have considered the interval of observation to be ( —00, T) because it
is slightly more convenient. A more relevant interval would probably be [0, T)
or ( - T, T). It is fairly obvious that all of the theorems given above continue
to hold. Indeed the only point at which the proof essentially varies is in the Lemma
which now must read, for [0, T] for example,
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lim {Iq®&T)-1) 17 + f° {X^WX^Xtfidtlil^QiT)-1) = 0
r-*o> \_J-°o JT

The proof is however much the same.

5. An Application to Filtering

In Blackman (1965) the following problem is considered. We are to construct
a linear filter of length IT which will pass any polynomial, p(s), of prescribed
degree p — 1 and will produce an output with minimum variance if the input has
spectrum/(A) (We require/(I) to be scalar and to satisfy Conditions A.) We take
the filter to be "centred" so that it is to be of the form, for input z(s)

z(t + s) a(i)dt

or is to be a limit on mean square of such expressions. It is intuitively seen (see
Hannan (1970; page 191) that the filter is obtained as follows. We take ts[ - T, T ] ,
y(t) = z(s + t) and xk(t)=t"~1, k = 1, ••-,/> in our model (for q = 1). If pk(s) is
the BLUE (it does of course depend upon s) then the output of the optimal
filter at time point s is

Of course this begs the question of the actual construction of the ftk(s), which
Blackman extensively discusses for rational f(A). Of course the problem was
effectively solved in the rational case during the proof of the lemma, above. Black-
man also considers

where $k{s) is the LSE from the same data, and observes that, for example for
p = 2 and /(A) = (1 + p2A2)~i, p> 0, the LSE performs almost equally as
well as the BLUE. Indeed the ratio of the variance of output of the latter to that
of the former reaches a maximum, of about 1.07 and declines to unity as T-> oo .
(The ratio depends only upon pT and the maximum is at pT near to unity.)
Needless to say these results are aspects of our Theorems for here xk(t) evidently
satisfies all conditions required of it in Conditions A and (11) and are of the form
required in Corollary 3 so that as T -> oo the two procedures must become equi-
valent. Of course Blackman's results are of independent interest since they show
that in the special cases he discusses the LSE is never much worse than the
BLUE and, for example in the case described above, when the autocorrelation
function of the noise, exp(—p| t\), declines quickly to zero the two are almost
equivalent even for quite small values of T.
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Appendix. Proof of Formula (2)'

Rewrite (1) as y(f) = <xm(i) + e(f), te( —oo,T), where a is a scalar. Let
L2( —oo, T) be the space of vectors, a(t), of q components, for which

J — oo
a(t)*a(f)dt < oo.

0

Then L2 <= •#" where ^ is the space of vectors for which

f f a*(s)r(s - t)a(t)dsdt < oo .

Indeed putting
I-T

d(X) = e~Ma(t)dt
J — co

~" i*CO

a*(s)r(s-Oa(O^sdf = d(A)*
o J — oo

g c f a(/l)*o(/l)(//l = 2/tc f a*
J — oo •/— co

Let!2 be the closure of L2 in Jf. The operator aeJf

= f
J —

is well denned, maps 3^ into L2 and is bounded and Hermitian. Indeed

Ta = (X eiaf(X)d(X)dX
J — oo

where a is now a limit with respect to f(X) as weight function. Thus

f°° a{X)*f{X)d(X)dl ^ constant f"
J — oo J — c

since /(2) is a continuous matrix function whose norm is uniformly bounded.
Now we assert that if it is not possible to be, almost surely, to determine whether
or not a = 0, then it must be true that m(t) 6 TJtf' (i.e. the range of T as an operator
in JP). If that is not so then m is not orthogonal to (E3^)x, the orthogonal com-
plements of TJV in L2 (which is the same as (JT^T)1-). Then there is a b(f)e F
such that

L
If.

b(t)*m(i)dt / 0

r
= 0
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(since the second expression merely requires that b(t) be orthogonal to FL 2 ) .

But now, almost surely

f b(t)*y(t)dt = a f b(t)*m(t)dt
J — oo J — oo

since

has mean square

ff fc(0*r(f-s)Ks)^' = 0,

Thus mtOeriP i.e.
/• 00

m(f) = e'a/(A)d(A)dl
J-OO

where fl(l) is the Fourier transform of a function in L2 or is the limit in mean
square with weight matrix / ( I ) , of a sequence of such functions.

Now put a = 1 and

)'}P = r euxf(X)d,(X)dl
J — 00

where evidently d̂  depends linearly on /J. Since this relation is to hold for all /?
we must have

where <J>(T) is as described below (2)'.
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