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ON THE STRUCTURE OF LOCAL COHOMOLOGY MODULES
FOR MONOMIAL CURVES IN P,
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1. Introduction

Our setting for this paper is projective 3-space Pf} over an algebraically
closed field K. By a curve C C P,i is meant a 1-dimensional, equidimensional pro-
jective algebraic set, which is locally Cohen-Macaulay. Let M(C) = ®,., H' (P},
J-(m)) be the Hartshorne-Rao module of finite length (cf. [R]). Here Z is the set of
integers and J the ideal sheaf of C. In [GMV] it is shown that M(C) = H,,(R),
where R = R/I(C) = Klx,,. .., x,] /I(C), I(C) is the homogeneous ideal of C,
m = (x,,..., )R and HMI(M) is the first local cohomology module of the
R-module M with respect to m. Thus there exists a smallest nonnegative integer k
€ N such that mkH;(I?) = 0, (see also the discussion on the 1-st local cohomolo-
gy module in [GW]). Also in [GMV] it is shown that k¥ = 0 if and only if C is
arithmetically Cohen-Macaulay and C is arithmetically Buchsbaum if and only if k
< 1. We therefore have the following natural definition.

DerINITION 1.1, For a curve C & P,a(, C is said to be strictly k-Buchsbaum if
k is minimal in N such that mkH;(R) = 0. C is said to be k-Buchsbaum if
mH,,(R) = 0.

If C is strictly k-Buchsbaum, then we set k = k(C) and call k(C) the Buch-
sbaum number of C.

It is our purpose in this paper to investigate for the class of monomial curves
C(n,, ny,, ny) < Py the integer k(C(n,, n,, n,)). These curves are defined by their

Na—Ny N No=Noy N n oy .
ST, SRR ER), where ny < m, < m, are positive integers

generic zero (s™, s
and g.c.d.(n;, n, n) = 1. For some of these curves k(C(n,, n, n,)) was
obtained in [FH], [H] and [FV] and we will discuss some of these results as con-
sequences of out own investigations (see also [HV] and [MM]).

Our own main result is that k(C) = diam(M(C)) for all monomial curves in
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P;. Here diam(M), the diameter of a Z-graded module M of finite length, is
explained as follows. Let [M], be the elements in M of degree n, let a(M) =
min{zn ; [M], # 0}, e(M) = max{n; [M], # 0}. Then diam(M) = e(M) — a(M)
+ 1, which, since M is of finite length, is an integer. For curves CQP;,
Hml(R) is a Z-graded module of finite length and therefore always k(C)
< diam(Hml(R)). Thus our result implies that for all monomial curves C(nl, Ny,
ny) S Pg, k(C(ny, m, ny)) is, in this sense, as large as possible. We prove this
result in Section 2. We will use there mainly the language of semigroups to de-
scribe Hml_(lé). For this let N be the set of nonnegative integers, #, = 0 and ¢; =
(ny—m, n) €EN°,0<i<3 Let SSN” be the semigroup generated by I =
{t;0<i<3}and H= {(o, B) EN*; ¢+ B=0mod n}. Let S, = <n, — n,,
ny—ny, ny ={z;2= 2oy z,n,—n), z, €N}, S, = {ny, ny, nyy. For i € {0, 1}
we define A;(S;, ny) = {0, w;),..., w,(n; — D}, w,(j) =min{z;z€ S;, z=7
mod #,}, to be the Apery sequence of S; with respect to #,. We set S’ = {¢ € H ;
e+ mt, €S, e+ mt, €S, for some m,, m, € N}. By identifying R with the
graded ring KIS], we then have by [B1], [TH] and {FH] the following lemma.

Lemma 1.1.

(1) Hy(KLSD) = K[S"\ S], where m is identified with K[S\(0)].

(1) S&€S"=HnN (S, X S).

(ii1) KIS1 is a k-Buchsbaum ving if and only if one of the following equivalent
conditions holds :
a) &+ k(S\(0) & S.
b) For J = H N (A,(S,, ny) X A, (S, n)\S,J+ kIS S.

(In both a) and b) k times a set means the set added to itself k times.)

In Section 3 we relate our result in Section 2 to the algorithm in [BR], which
obtains a minimal generating set B(n,, #,, #y) of binomials for I(C(n,, n,, n;)).
This enables us to calculate k(C(n,, n,, #5)) by considering a subset of B(n,, #,, 7).
For this we need to relate a minimal generating set of H_,;(R) to B(n,, n, n,) (see
Lemma 6 in [BSS]).

In Section 4 we show that the Castelnuovo-Mumford regularity for R =
R/I(C(n,, n, ny)), reg(R) = e(Hml(I?)) + 1if R is not Cohen-Macaulay.

Section 5 establishes that for the subset of non Cohen-Macaulay monomial
curves C(1 = ny, n,, ny), k(Cln,, n,, 1)) = n, — 2.

We conclude our paper with Section 6 which deals with liaison among
monomial curves in P,s(. It is shown that no two curves C(1, n,, #,), which are not
arithmetically Cohen-Macaulay, are in the same even linkage class. Qur main re-
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sult in this section is that for a fixed nonnegative integer k there are only finitely
many linkage classes among strictly k-Buchsbaum monomial curves in Pf}.

Acknowledgement. This paper was written during the stay of the fourth
named author at the Department of Mathematics, University of Ferrara, made
possible by a grant of CNR. He would like to thank both institutions for their
support.

2. The equality of k(C(n,, #,, n,)) and diam (H,, (R /I(C(n,, n,, n,))

We need to state some more definitions and prove some preliminary lemmas
and propositions. We will use the notation and terminology introduced in 1.

DeriniTION 2.1. For j € S, let the S;-degree of j be
0,¢) = minfa, + a, + a,;j = an, + amn, + an, a, € N}.

Analogously we define the S,-degree d,(2) for 1 €S,
For (¢, /) € H, we define its degree to be the number (i, j) = (1 +7)/n, = 0.

DerINITION 2.2, For (iy, j;) and (i, j,) in S’ we define the following partial
orders:
(i) G, 7D S Gy, 7)) if Gy =4y, 7, —7) €S,
(11) Gy, j) Sy Gy, 5 if (G — 4, , —J) € S

(7, 7) € $’\ Sis an S-maximal (minimal) element, if (z, ) is maximal (minim-
al) in 8"\ S with respect to the partial order <. (7, 7) € §’\ Sis an S’-minimal
element, if (¢, j) is minimal in S"\ S with respect to the partial order <.

Lemma 2.1 ([B1], [K]). Let (i, j) € S’. The following are equivalent:
(1) G,p €S
(i) 6, 5) = 6,().
(i) 00, 7) = 8,(0).

Proof. ()= (ii). Assume (i, §) € S, (i, j) = Z°_,a,t, Then 00, §) = =, a,
=>a, ta+a,20,().

(ii) = (i). Assume 0(i, j) = 0,()), let j = a,m, + a,n, + azm, with a; + a, +
a;=06,(). Let @, = 6, j) — (@, + a, + ay) and G, j) = X._,a,t,. Then j, =
7, 0y, 7)) = 8@, ), thus i, = i and (4, j) € S.

(i) < (iii) follows by symmetry as in the preceding. (Symmetry here and
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throughout means switching from one of S, or S; to the other.)

Remark 2.1. The following elementary facts will be used in the sequel.

a) If 0,(am, + am,+amy) =a,+a,+a, and b, <a;, 1 <i<3, then
0,(byn, + bn, + byny) = b, + b, + b,. Otherwise 0,(a,n, + an, + a;n,) * a, +
a, + a,

b) If n, < n, < mn, are positive integers, then the following are true for non-
negative integers a, b, c:

(1) lf @a # 0 and an, = bn, + cn, then a > b + ¢,
(i1) If ¢ # 0 and cny = an, + bn, then ¢ < a + b.

Lemma 2.2, Let (1, 7) € S\ (0). The following are equivalent:
(1) (, ) is an S-minimal element of S”\ S.
(i1) 1 = alny — n,), j = bn, and 6,(d) = a, 0,(7) = b.

Proof. (i)= (ii). Any element in S’ can, by subtracting or adding multiples of
ty, ..., t; be changed into an element of the form (a(n, — n,), bn) or (a(n, —
n), bn,). For an element (a(n, — n,), bn,), 6(a(n, — n), bn,) = a + (bn, —
an)/ny, = a if bn, — an, = 0. For bn, — an, = cn,, ¢ <0, from bn, + (— )n,
= an, and Remark 2.1 b), @ > b+ (—¢) or a+ ¢ > b. Thus in any case by
Lemma 2.1 (a(n, — n,), bn,) € S. Now the S-minimality of (7, j) implies (ii).

()= (G). oG, ) = dlan, — ny), bn) = a+ (bn, — an,)/n,, bn, — an, =
¢n; and ¢ = 0 would imply by Remark 2.1 6,(j) # b. Thus ¢ < 0 and 6(z, j) <
a = 0,(4), from which (i,j) €S by Lemma 2.1. S-minimality now follows by
observing that if (i, ) = (@’(n, — n,), b'n), @ < a, b < b, then (¢,7) L
(i, 7).

Remark 2.2. a) For another proof of Lemma 2.2 see Lemma 6 in [BSS]. From
that Lemma 6 we also obtain that if {x," — x, "z, 22y, 1,° — 2 %x, %2, <
B(n,, n,, n,), then a < a, and b < a;, where ¢ and b are as in Lemma 2.2.

b) Note that if (7, §) is S’-minimal, then (z, §) is also S-minimal.

Lemva 2.3, Let (i, ) = (a(n, — n,), bn) be an S-minimal element of S\ S.
Let ¢ = (b(n, — n) — a(n, — n,) — ny)/n,. Then ¢ is the largest nonnegative inte-
ger such that (i, j) + ct, € S. Similarly, if d = (an, — bn, — ny)/n, , then d is the
largest nonnegative integer such that (i, j) + dt, & S.
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Proof. (i, 7) + ct,= (b(n, — ny) — ny, buy), thus (G, 7)) + (ct) =b—1<
b = 8,(bn,) and therefore (i, j) + ct, € S by Lemma 2.1. As (i, 7) + (¢ + 1)¢,
= bt,, ¢ is maximal. Proof of the second statement is obtained by symmetry.

Remark 2.3. 1In the sequel integers ¢, and d, will be defined for (a,(n; — n,),
bm,) as were ¢ and d for (a(n, — n,), bn,).

Lemva 2.4, Let (i, ) = (a(ny — ny), bn,) be an S’-minimal element of S\ S
(see Remark 2.2 b), and let ¢ and d be as in Lemma 2.3. Then (i, j) + ct, + dt, &
S. Moreover, 0,(bn, + dn,) = b+ d, and 6,(a(ny, — n,) + cny) = a + c.

Proof. (i, j) + cty + dt; = (b(ny — n) — ny, bn, + dn,), thus by Lemma
2.1, it suffices to show 0,(bn, + dn,) = b + d, since the corresponding d-degree
is b— 1+ d. Suppose 0,(bn, + dn;) < b+ d, and let bn, + dn, = an, + a,n,
+ aymn, with

(*) o+ a,+a,<b+d.

By Lemma 2.2 §,(bn;) = b, hence d > @, since otherwise (*) is contradicted,
thus bn, + (d — ;) = aymy, + apm,. @y = b implies d — a; < a, — b+ a, by
Remark 2.1 b), which contradicts (*). Thus @, < b and a, > 0. As bn, + dn, =
an, — n, by definition of d, @, < a. But then by a straightforward calculation
(i, ) +dt, — at, — azt, = ((a — ) (ny — ny), aymy) <g (i, 7), contrary to
S’-minimality of (i, ). The proof that dy(a(n, — n,) + cny;) = a + ¢ follows by
symmetry.

Let G’ = {(a,(n; — n,), byn,) ;1 < i < 7} be the S’-minimal elements of S”\ S,
where a, <a,<---<a, and b, > b, > -+ > b, Let a,, be the smallest
positive integer satisfying dy(a,,,(m, — n,)) < a,,, and b, the smallest positive
integer satisfying 0,(byn,) < b, For each 1,1 <i <7, let ¢; = (b,(n, — n) —
a,(ny, — ny) — ny)/ny and d, = (am, — b, — ny)/n,.

Remark 2.4. Let R = R/I(C(n,, n,, ny)). By [BSS|, H,(R) = (R; N R;)/R

—a; b
. Ly T .
and the elements in G’ correspond to the elements — "= = Py obtained from
Z3 TLo

the elements 232y — 2z, in B(n,, n,, n,). Furthermore a,,, = a, and b, =
a,, @, and a, defined in Remark 2.2 a). Also the S-minimal elements of S\ S
=i
I
correspond to products of elements —_dil.
Z,'
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Lemma 2.5, For 1< i< 7, 0,(bn, + (a,,, —a, — Dn,) = b, + a,;,, — a,
— 1, and 0,(a,(n; —n,) + (b,_, — b, — V)(n, —n)) =a,+ b,_, — b, — 1.

Proof. Suppose we have
*) b, + (@, — a, — Dn, = ayn, + apn, + agn,,
such that

o +ta,+a,<b+a,,—a—1

By Lemma 2.2 @;,;, — a; — 1 > a, (otherwise the minimality of b, is contradicted).

Case 1. a; = b,. Starting with (™) a straightforward calculation gives (@ —
a—1—a) y—n) = b, +a,—a,—~1—a,—o,— an,+ (@, —b) (n,~n).
By the definition of @,.;, 0o((@;y;, —a; — 1 — ), —n,)) =a,,;, —a,— 1~
«,, which contradicts Remark 2.1 b).

Case 2. a; < b, Then (a,(n, — n,), bn) + (a,,, — a; — Dt, — a,t, — a;t, =

(@, — 1 — ay)(n, — m,), an,) would be an S-minimal element of S’\S by

Lemma 2.2. But @; < @a;,, —1— a, < a,,, and a; < b; thus such an element is

neither S’-minimal nor comparable to any S’-minimal element by definition of G’,

a contradiction. Therefore 6,(bn, + (@,,, — a; — Un,) = b, + a,,, —a, — L.
Proof of the other statement follows by symmetry.

LeMMA 2.6. For 1 <1< assume 0<e<a,, —a;,0=<f<b_, —b,
and that there is no equation Bin, + Bm, = Banty with B, > 0,08, < b, +f,0
<B,<e Then 0,((b,+ Hn, +en,) =b,+ f+ e and 0,(f(n, — n) + (a; +
e, —mny)) =a,+e+f

Proof. Suppose (b, + fin, + en, = ayn, + am, + an, with o +a, + a
<b+et+fIf a,=e then 0,((b, + n) < b, + f<b,_, would follow from the
inequality, a contradiction to the definition of b, Thus a, < e. Similarly o < b, + f
since 0<e<a,,—a;<a;,<a,, Then (b,+f—a)n, + (e — a)n,= ayn,
contradicts the hypothesis. Hence 0,((b; + f)n, + en,) = b, + f+ e

Suppose f(n, — n) + (a;, + &) (n, — n,) = a,(n; — n) + a,(n, — n,) + ayn,
with oy + a, + a3 < a; + e + f As before, we would have f > ay. If ¢ < v, then
0,(fny — m) +a,(n, — ny)) <f+a, would contradict Lemma 2.5. Thus
e > a, Then S’ contains (@;(ny — n,), bn,) + ft, + et, — a,t; — a,t, = (azm,,
(b, + f— a)n, + (¢ — a,)n,), which contradicts the hypothesis. Therefore
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0 (fny —my) + (@, + &)y, —ny)) =a, +e+ f

LEmMA 2.7. Forl1 <1<,

(i) 6,(bm, + (@jyy —a,— Dn, +dm) = b, + a;,, —a,— 1+ d,;, and

(it) 0y(a;(ny — my) + (b;_, — b, — D(m;—mn,) + ¢my) =a; +b,_, — b, — 1
+ ¢;.

Proof.  Suppose that bmn, + (a,,, — @; — Dn, + d;n, = ayn, + a,n, + ayn,
with ay T a, T a, < b, + a;,;, —a; —1+d,. By Lemma 2.5 d;, > a; Suppose
a, < a,,,—a;,—1 Then (@, —a,—1—ay)n, + d, — ayn, = (o, — b,
and oy — b; < (@;,;, — a; — 1 — a,) + d; — @5 by the initially assumed inequal-
ity, a contradiction to Remark 2.1b). Thus @;,; — a;, — 1 < a, and bn, + d;n; =
an + (a, — a,., + a; + 1)n, + azn,, which is contrary to the second part of
Lemma 2.4. Therefore (i) holds and the proof of (ii) follows by symmetry.

Lemva 2.8, For 1 < i< r, §,((a;,, — Dy — n,) +cmy) =a,,, — 1+
and 06,((b,_, — Dn, + dn;) = b,_, — 1 + d,. Moreover each of (a,(n, — n,), bn,)
+ (a,,, — a, — Dt, +¢it, + d;ty, (a;(n; — n,), bn) + (b,_, — b, — )¢, + ¢;t,
+dt,is in S'\S.

Proof. By substituting for d;n; we obtain d((a,(n, — n,), bn,) + (b,_, — b,
— Dty +tct, +dit) = (a;(ny —ny) +bny + (b;_, — b, — 1+ c)n, + am, —
bn, —n)/m;=a; +b,_,— b, —1+¢; — 1. It follows by Lemma 2.7 (ii) and
Lemma 2.1 that this element is not in S. But then, substituting for ¢;#s, d((a;(n,
—uy), b)) + (b, — b, — Dt, + ¢c;t, + dity) = (a,(ns — ny) + bn, + (b, —
b—1+d)n,+b,n,—n) —d,(n,—mn,) —ny)/n,=b,_,—2+d, Thus 0,((b_,
—DVn,+dmny) >b_,—2+d;, by Lemma 2.1. Since 6,({(b,_; — Dn, + dmn,)
< b,_, — 1 + d;, equality holds.

Proof of the other two statements follows by symmetry.

ProposiTion 2.1. Let 1 <i<7 Assume 0<e<a,,, —a;, 0<f<b_, —
b; and that theve is no equation Byn, + Boyn, = Bany with B, > 0,0 < B, < b, + f,
0 < B, < e Then (a,(n, — n,), bn,) + ft, + et, + ¢;t, + d,t, is in S’\ S.

Proof. Suppose (b; + n, + en, + din, = ayn, + an, + azn, and o + a,
+a; <b,+f+ e+ d. Lemma 2.6 implies d; > a; and thus e < &, by Remark
2.1 b). But then (b; + n, +dmn, = am, + (@, — e)n, + azm,, which contra-
dicts Lemma 2.8. Therefore 0,((b; + f)n, + en, + dmn,) = b, + f+ e + d,. Then,
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substituting for ¢#; one obtains  6((a;(n, — n), bn) + ft, + et, + c;t,
+dt) = (a;,(ny—ny) +bm, + (f+e+d)n,+b,my,—n) —a,n,—n,) —
n)/n, =b, +f+ e+ d, — 1, from which the conclusion follows by Lemma 2.1.

Lemma 2.9, Assume that (a(ng — n,), bn,) is an S-minimal element of S'\ S
which is not S’-minimal. Let ¢ = (b(ny, — n,) — an, — ny)/ny and d = (an, — bn,
— ny)/ 0. Then either 6,(bn, + dny) < b+ d or 6,(aln, — n,) + cny) < a+c.

Proof. By symmetry we can assume without loss of generality @ < b. (This
will imply the first of the two stated inequalities, the other follows from a > b.)
By S-minimality assume (a(n; — n,), bn) = X_, (a,,,(n; — n,), by;n), where
each summand is an S’-minimal element of '\ Sand t 2 2. X/_a,, =a < b=
2.1 b, implies that there exists an &, 1 < h < ¢, such that @;4) < b, (other-
wise a>b). Wlog let =1 Then bn, + dn,=bn +an, — bn, — n, =
an, — Ny = Z;=1 Aiphy — N3 = Z;=2 bigyny + (Z;=l Aiphy — Z:;=2 byyny) — ny =
Ay, + Z;=2 bipm + Z;=z (@50, = by — ny) + (6= Dy — 0y = a,qm, +
S bipm + (t— 2+ X5, d,;)n, The definition of b, and by, 1 <j<t,
implies d > (t —2) + X,_,d,;. From this and b;,, = a,, (thus b= a;, +
-2 b)), 0,(bn, + dny) < b+ d is obtained.

Lemma 2.10.  Let (A, B) be an S-maximal element of S’\'S, where A = A,(n,
—n) + A,n, — n) + An,, B= Byn, + By, + B, with 6,(4) = Z°_, A,
0,(B) = X2_ B,. Then for some i,1 <i<r,A,—B,=a, B,—A, =b, A, =
¢,, and By = d,.

Proof. By Lemma 2.1 4,(B) > d(4, B). If 0,(B) > d(A, B) + 1, then
0,(B) > d((A, B) +t), and then (A, B) <;(4, B) +t,€ S’, contrary to
S-maximality. Thus B, + B, + B, = §,(B) = 6(4, B) + 1. Then (B, + B, +
B, — Dn, = 6(A, Bn, = A(n; — n) + A,(n, — n,) + Asn, + Bin, + Byn, +
B,n,, which implies A,(n, — n,) + A,(n, — n,) + A, = B,(n, — n) + B,(n, —
n,) — n, Thus A, = (B, — A)my, —n) — (4, — B,) (n, — n,) — ny)/n,. By
symmetry, B, = ((4, — B)n, — (B, — A)n, — n,)/n, Next consider the follow-
ing element of S'\S: (4, B) — A,t, — Byt, = (A, (n, — n)) + A,(n, — n,), Bym,
+ B,n,). Suppose A, = B,. Then (4, — B,) (n, — n,) + A,(n, — n,), Byn,) <;
(A, B). A, = B, immediately implies (4, B) € S, contrary to hypothesis. If A,
< B, then ((A4;, — B)) (n; — ny), (B, — A)n,) € S by Remark 2.1 b) and Lemma
2.1 since §,(A) = A, + A, + A,. But then again (4, B) € S contrary to assump-
tion. Thus A, < B,. By symmetry B, < A, Hence, by Remark 2.1 a), we must
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have ((4, — B, (n, — n,), (B, —Apn,) € S" with (4, — B,) n; — n,)) =
A,— B, and 0,((B, —A)n) = B, — A,. By Lemma 2.2 ((4, — B, (n, — n,),
(B, — A)ny is an S-minimal element of S"\'S. But §,((4, — B,) (n; — n,) +
Amn) =A,—B,+ A, and 0,((B, — A)n, + Bsn,) = B, — A, + B,, thus by
Lemma 2.9, ((A4, — By (n, —n,), (B, — A)n) is an S’-minimal element of
S’\'S. Therefore for some i, 1 < i<y, A,— B, = a, and B, — A, = b,. A, = ¢,
and B; = d; now follow from the definition of ¢; and d; and the calculations for A,
and B, above.

ProrosiTioN 2.2. Let (A, B) be an S-maximal element of S’\'S. Then (A, B)
= (a,(ny — ny), b)) + ft, + et, + c;t, + d;t; where:
(1) (a;(ny — ny), b)) is an S'-minimal element of S”\ S.
(1) ¢; and d; are as defined before, namely ¢; = (b;(ny — n) — a,(n, — n,) — ny)/n,,
d;, = (a;n, — bn, — ny)/m,.
(i) 0<e<a,,, —a;, 0 f<b,_, — b, and there is no equation B;n, + Bn, =
Byns, 0B <b, T, 058, <e

Thus every S-maximal element is one of the elements in Proposition 2.1.

Proof. We use the notation of Lemma 2.10. Thus for some ¢, 1 < i< 7, (4, B)
= (a;(n, — ny), bmn,) + Ajt, + Byt, + ¢;t, + d;t, It suffices to show that A, and
B, satisfy the conditions for f and e in (iii) above. Suppose A, = b;_;, — b,. Con-
sider (@,(ny; — n,), bn,) + (b,_, — b) (ny — n,, n) = (a;(ny —n,) + (b,_, — b))
(ny —ny), b,_n) € S"\S.

Case 1.i=1. Then &,(b,_n) = 8,(bn) < b, and ,(Bu, + B,n, +
Bn) < B+ B,+ B, since By=B, —A,+A,=b,+ A, =b, contrary to
assumption.

Case 2. 2<1i<7 Since (a,_,(n,—n,), b_n) <€ S’'\S and q,_, < a,,
(a;_\(ny — ny), b_m) <g(a;(ny — ny) + (b;_, — b) (my — n), b,_n,). Thus
a;(ny—mny) + (b_, — b)(ny —n) = a,_,(n, —n,) +gn, g>0. As a,_, <a,
0yla;(ny —ny) + (b_, — b))y — my)) <a,+b,_, — b, and 6,(A,(ny; — n) +
A,(ny — my) + Am) <A, + A, + A, since A, = a;, which is contrary to assump-
tion. Therefore A, < b;,_, — b; and by symmetry B, < a,,, — a,. Finally if 8n, +
By, = Bny with B3, >0,0< 8, <b +A =B, 0=<B,< B, then 0,(Byn, +
B,n, + Byn,) < B, + B, + B,, a contradiction to the choice of B;, 1 <7< 3.
Hence there is no such equation.

ProrosiTiON 2.3, Let (A, B) be an S-maximal element in S’\'S and (A,
B,) an S’-minimal element of S"\ S. Then (A,, B)) <s(4, B).
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Proof. By Proposition 2.2 let (4, B) = (a,(n, — n,), bn,) + ft, + et, + ¢;t,
+ d;t; and let (4,, B)) = (a;,(n; — n,), bn)). If i =j there is nothing to prove.
Assume 1 # j. By symmetry we can assume b, < b; and a; > a, (for b; > b; we
use a@; < a;). Then (4, By *+ (b, — b)m; — n, n) = (a;(n, — n,) + (b; —
b) (n, — n), bn) € S'. (@;(ny; — ny), bm,) € S’ implies (a; — a,) (n, — n,) +
(b; — b)) (my — ny) = gny, g >0, thus a;(ny, — n,) + (b, — b) (n, — n) = a,(n,
—ny) + gn, Thus (@;(ny —n,) + (b; — b) (ny — ny), bn) = (a;(ny — n,) +
gns, bmn,) for some g> 0. If (a,(n, — n) + gn,, bu) € S, then g> ¢, by
Lemma 2.3. Then a;(n, —n,) + (b; — b) (n, — n) = a,(n; — n,) + (¢; + D,
= b,(n; — ny) (by definition of ¢;). From this a;(n, — n,) = b;(n, — n,), from
which (@;(n; — n,), bn,) € S by Lemma 2.1 since then a; + (— am, + bn,)/n,
= b;. But this is contrary to assumption. Hence (@;(n; — n,) + gn,, bn)) € S and
g < ¢;. Therefore (Ay, By <; (4,, By + (b, — b)) (ny — ny, n) <g(a,(n, — n,),
bm,) + ¢ty <¢ (A, B), which finishes the proof.

We can now state and prove the following.

THEOREM 2.1. For a monomial curve C(ny, n,, ;) in Py we have k(C(n,, n,,
ny)) = diam(H, (R)). Furthermore an element of minimal degree in H,,(R) must
oceur amongst the S’ -minimal elements, thus by Remark 2.4, amongst the generators of
H,(R) obtained from elements xy" 'zy' — x'z;"" € Bny, ny, n). An element of
maximal degree is obtained by considering all possible extensions of S’-minimal

elements to S-maximal elements.

Proof. The first statement follows immediately from Proposition 2.3, since
(A, B) and (A4,, By are arbitrary in their respective sets. The second statement
is a consequence of the correspondence between S’-minimal elements of S”\ S and
generators of Hl,,l_(l?) as specified by Remark 2.4. The third statement follows
immediately from Proposition 2.3.

3. An algorithm for computing k(C(n,, n,, n,))

This section requires a somewhat more detailed study of the minimal generat-
ing set B = B(n,, n,, n,) of I(C) obtained in [BR] (see also [B2] and [BH]). For the
convenience of the reader not familiar with the algorithm of [BR], we also include
a brief description of it at the end of this section when we compute k(C(n,, #,,
73)). Let

B, = {B,; B, = x)°x,* — x'x3° € Bny, n,, n,), and @, > 0, 0 < § < 3},
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ay a,
. P A— 1 1/ 5 .
From elements in %, "= e EHm(R) are obtained and these elements
xS x()

correspond to the S’-minimal elements of S’\'S, S and S’ defined in Section 2.
(By abuse of notation we shall delete bars on variables.) Let

By = {By; By = x°xs* — x)*x)* € B(ny, ny, my), and b, > 0, 0 < § < 3},

Then B(n, n,, n) = B, U B, U {F, = 2 — x,x;%x,, F, = x,° — 1,1, "2, )
and every binomial 8 € B(n,, n,, n,), except for the first two binomials in the
algorithm of [BR], is obtained from binomials 5’ and 8” by cross-multiplying the
monomial terms of 3” with the monomial terms of 8” and deleting common factors
of the resulting two monomials. We will write for this 87(8") = 8 and say B” acts
on B’ to produce .

DerviTion 3.1, Let {7, 7} = {2, 3}, B, € B;. The set
B(,B]) = {B, ;ﬁ](‘gi) = Bi’ {Bi, B_z} < PBz} U {B—z , ABj(Bi) = Bi! {Bi’ Bt} < %i}’
will be called a block in B,
Ordering the elements in %;, ¢ = 1,2 by decreasing x, and &, exponents (and
therefore increasing x, and x; exponents) establishes by [BR] a linear order on

each block and on 3,.

DerinitioN 3.2. B; € B(B)) of largest or smallest x, and x; exponent are cal-
led end polynomials. All other 8; € B(B;) are called middle polynomials.

a a . .
DerviTION 3.3. Let x,°%,” — z,'x;° € B,, X a monomial term in R, 0 #

z,’ _ z,"
X% € H,(R). Then d( > ) =d(X) + a, + a,, where d(X) is the ordinary
Z5° z°

total degree of a monomial term.

az
xz
Remark 3.1. Note that d( zaa> = 0(a,(n; — n,), a;ny) and if ¢, and z;
X3
correspond, 0 < ¢ < 3, then d and § agree.

DeFINITION 3.4, For x,°r,* — 2,'zy° € B, and X a monomial term in R, 0 #

[ a3 a;
s — X X. -
X—Za € H,(R) is a maximal multiple of Za if xi(X Za ) =0 in H,(R), 0 <
xI® h xr;° xz,° h
1 <3
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Remark 3.2. Note that if 8, = x,°x,* — x,'x,® is a middle polynomial in B,,
then there exists a uniquely determined polynomial x(f"x:a — xlb‘xzbz € B,, which
acts on B, to produce the successor of B, in B,. If 8, is an end polymomial in $,,
but neither the first nor the last polynomial in %, then B(B,) *# @ and if
BB, = {f, =z’ — 2]z, -, f, = x3°xy® — x2'2;”} with f, the first and f,
the last polynomial in B(B,), then £, acts on the predecessor of 8, to produce (8,
and f; acts on S8, to produce the successor of 8, in B, If B, is the first or last
polynomial in %, then B(B,) may be empty. If for this case B(B,) is empty, then

by b by b Cy € ¢ C . . .
let xy'x,° — 2,'%,° = X,°%;° — x;'x,” be the first or the last polynomial in B, re-
spectively.
ay az
— T0,..73 ©2 172 . . . 2
Now let m = x,'x,” —x,'x," be an arbitrary maximal multiple. Assume
3

Xy zy°
corresponds to a middle polynomial. If 7, = b, b, defined in Remark 3.2, then,

since by the algorithm of [BR] @, > b,,

a; ay=by
Lo™ vy 10ty 13 L2 Ti=by_ 7y
a3
Z3 3
a,~by a

2, corresponds to the predecessor of za . Note that the x,-exponent
3 3 3
3 Ty a

is unchanged. If 7, = b,, then by the exactly analogous procedure, with 2

0,7
m= 2,1,

where

"
a;
Ly
)
0
1.2“2 2‘12

of =~ Now let —
3 3

L L3

in Remark 3.2, then as above a, > b,, and we have a reduction in m of the
a
ZZ
x5
the first element in B,, then 7, = b, is not possible, since this would imply m = 0.

If v, = ¢, ¢, defined in Remark 3.2 then as before we obtain a reduction of 7, in
a
22
as
3

represented by , we obtain a reduction of 7, by b, and a shift to the successor

correspond to an end polynomial. If 7, = b,, again b, defined

x,-exponent by b; and a shift to the predecessor. Note that if cprresponds to

m by ¢, and a shift to the successor. Note again that if corresponds to the last

polynomial in 8,, then this is not possible.

Since this procedure leaves one of the two exponents 7;, ¢ = 1,2, invariant,
while reducing the other we get a reduction of maximal multiples to maximal mul-
tiples to one of two possible cases:
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a; a,

% _ 0y 04 42 oo, Ly . .
L m” = x,°z;° a T, 'x,?, a corresponds to a middle polynomial and
x
3 3

0,<b—1,0,<b,—1, b, b, defined in Remark 3.2.

a, a,
* g, 05 Lo g, 0. xz .
L. m" = x,°2,° —,-2,'x,°, —,- corresponds to an end polynomial and
z,° z®

0,<b—1,0,<c,— 1, b, c, defined in Remark 3.2.
We will deal with the two cases separately.

Lemva 3.1, Let m™ be as in I. above. Then o,=a,—1l,0,=a,—1,0,=0,
—1,0,=b,— 1.

Proof. Clearly 0, < @, — 1 and d; < a@; — 1. Suppose 0, < a; — 1 or 0 < a,4

Gy, 8y+0, 0)

x() 1"2 ‘rl
az~03-1
3

— 0, — 1. Then = 0, thus there must exist a monomial of a binomial

. e e g +0 . . . . © e qe +0. [
in B, dividing x,°x,*"”* or a monomial of a binomial in B, dividing x,* “z;". In

the first case since g, < @, — 1, this would produce an x,-exponent > @, (since
the x;-exponents are monotonically increasing with decreasing x,-exponents), thus
m" = 0, which it is not. Hence this is not possible. In the second case, since o,
< b, — 1, by the algorithm in [BR], again the x,-exponent produced is > @, thus

4

* _ . LI
m~ = 0, a contradiction. Hence 0; = @; — 1. Changing to the representation — -,
Zy°
z,°

. . -1 2,

we obtain ¢, = @, — 1 by an analogous argument. We consider next x,° z
3

x'x,?, 6, < b, — 1,0, < b, — 1. Then by the algorithm of [BR] and the middle

polynomial assumption, there does not exist a binomial in %B; with monomial term
dividing .rf‘x;’”’“, from which o, = b, — 1. By an analogous argument with the
"
representation ——la—o, o, =0b —1.
X,
a;
2

ag
L3

For the next three lemmata will correspond to an end polynomial.

LEmMa 3.2, Let B, = x,°0,* — '3 € B, be an end polynomial. If B(B,) #
G let f,= .r(f"x:s - xf‘xzbz #* f, = x,°2,° — x,'x,* as defined in Remark 3.2. If
B(B,) = 0 (ie if B, is the first or last polynomial in B, and the algorithm in [BR)
proceeds such that B(B,) = @), then let f, = f, be either the first or last polynomial in

B, (depending upon if B, is the first or last polynomial in B,). Then m, = x, °—lx3a .
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a 2z a;
2 bi=1_by—1 _ a1 a1 Ly -1 -1 ) . Ly
RIS and m;, = I, I, LT T are maximal multiples of P
x
3 3 3

Proof. Since there does not exist 8; € B;, ¢t = 1,2, with one of its monomial

a; a
ay-1_ay+cy—1 -1 _agtey-1 _ag-1 L2 -1 _cp-1 _ _az-1 %1
terms dividing x,° x,° °  or Iy X0 ° , X Txll " =150 -
3 )

¢1=1_cy~1

7'z, # 0 in Hy(R). Clearly x, and &, annihilate this multiple. That this is
also the case for x, and x, follows from x,°r;* — x,'x,” € B, The proof for the
other multiple is analogous.

a3 ay
* Oy O xz 0y _ O, . . 2
LEMMA 3.3. Let m = x1,°x;° P 'x," be as i I, ie. —_~ corvesponds to an
x 3
3 3

end polynomial, 0, < b, — 1, 0, < ¢, — 1, by, ¢, as in Remark 3.2. Then 0, = a, —
1land 0, = a; — 1.

Proof. As always 0, < a,— 1 and 0, < @, — 1. Suppose 0, <a;—1 or
ayt+0,
0<a;— 0, — 1. Then x:"ﬁxf]‘ = 0. Since 0, < b, — 1, if ;22" is to
3
be divisible by a monomial term of a binomial in B,, its x;-exponent is > @, But
then m™ = 0, a contradiction. If 231, " is to be divisible by a monomial term of
a binomial in B, then since g, < a, — 1, its x;-exponent again is > a; Thus

again m* = 0, a contradiction. Hence 0, = a, — 1. By replacing the representation

a; a;
x, | .
.. by =~ and an analogous argument, we obtain 0, = @, — 1.
x;® x,’
zy?
2 . a
LemMa 3.4. Let 4, correspond to an end polynomial B, = x,°x, — x,'x,°. Let
‘r3
a
a1l _a;-1 L2 o o, . . .
m=x, I, X, 'Ly be a maximal multiple of largest possible degree. (Note that
3

x3
the degree of m here need not necessarily be e(Hml(R)). Ifa, > a,, then g, = b, — 1,
o,=b,—1 ifa, <a, theno,=c¢,—1,0,=c¢,— 1 and if a, = a,, then either
of the preceding two choices is possible.
a2+0'2

ap—1 Z,

Proof. Let m = zx, x,'. We first determine the possibilities for o
0 Z, 1 1

and 0,. We consider two cases:
. . . . . ay,+0,+1 0. .
a) No monomial term of a binomial in $B, divides x,* * ;' Since g, — 1

. ay—C a,+ - +c
<a, and a,+ 0, + 1> a, there must exist Z," ‘z,* *— x;  x, " € B,,
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Co.C.

' — x'x,” € By, and a, + 0, + 1 = a, + ¢, where ¢;, 0 < i < 3 are as de-
fined in Remark 3.2. Hence 6, = ¢, — 1. By Lemma 3.2 ¢, = ¢; — 1 now follows

immediately.
. . . . . .. +0,+1
b) There are monomial terms of binomials in %, which divide xzaz % xf‘.
Since m is a maximal multiple and since the x, and x, variables do not appear in

. + +1 . e .
any monomial of B(n,, n,, #,), we also must have that x,* “%z,""" is divisible by a

monomial term of a binomial in B, For B(B8,) = @, we revert back to case a). Let
0 #+ BB, = {x, 'z, — 2z, . .., a0l — ), rxy — 2y, In
order for xy* ”z* to be as required, 0, has to be by one less than the
x,-exponent of an element in 8B, and a, + 0, by one less than the x,-exponent of
its successor. From this we get a, + 0, < ¢, (otherwise m = 0), and by symmetry

a, + o, < b,. Thus the maximal multiples to consider are

az
o ag=1_ay-1 Ly p-1 byl
m =Xy, X PRSI
Z3
az

a
— _ay-1_az-1 X, (b= —a; _(by—1)+a, — _ay—1_az-1 Ty (cy=1+ay _(cy—1)—a,
my, = Xy X3 a5 X, Xy yee sy = Xy X3 “'a"s A Xy .
T3 X3

The statement about the degree now is immediate.

CorOLLARY 3.1.  There exists an element of maximal degree amongst the maximal
multiples of Lemma 3.1 and Lemma 3.2.

Proof. This follows from the preceding, the fact that the initial maximal
a;

. Ly . .
multiple m = x,°x;° . x,'xz,” was arbitrary and only homogeneous polynomials
3

3
were used in all of the above (thus no change in degree), and by the structure

theorem (Theorem 2.1) in Section 2.

Lemma 3.5.  Assume that m, and m, ave maximal multiples as in Lemma 3.1
and Lemma 3.2  which correspond to succesive binomials b, = I, °T,"
22 and b(b) = b, b= x°x* — %% Then d(m,) — d(m) = A = d, — d,.

1]

a,

x -

. ay—1_az—1 42 dy—1_dy—1

Proof. The degree difference between m; = x,° x,° —-x,' Z,” and m,
3

.Z‘a2+d2
— Gy—dy—1l_aztdz—1 22 di—=1_dy—1 . _
=, Z, o Lt isd,— d,
3 3
Z3
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THEOREM 3.1. For a maximal multiple of maximal degree omly the maximal

x,?
a
ay_a, a, _a 1'33 . .

Ty Xyt — X, X" and @, > @, then my of Lemma 3.2 needs to be considered, if a; < a,

then m, of Lemma 3.2 will do and if @, = a,, then d(m,) = d(m,).

multiples in Lemma 3.2 need be considered. If corvesponds to the end polynomial

Proof. This follows from Corollary 3.1, Lemma 3.5 and Lemma 3.4.

Remark 3.3. (i) It follows readily that an element of minimal degree in.
a;

2 .
——, which corresponds to an end
xz;®

Hml(R) is also obtained from an element

polynomial in 8,
(i) We note that our algorithmic procedure in this section calculates also the
socle of H;(I?).

We conclude this section with an algorithmic computation of k(C(#n,, n,, #ny)).
1. Let a; be minimal positive integers such that o, = a;m; + a,n, €
{n, m, {1, j, k} = {1,2,3}. These equations define polynomials

— ¥ 12,013 — @2 . %21,,023 — 3 %31, 3
L=z 2,2y, f, =, M2, [y Xy "X,

Assume that 0 < a, < @y + s, @y > 0, and 0 < a; < @ + @y, with ay, > 0.
(If one of these conditions is not satisfied, then C(n,, #,, #,) is Cohen-Macaulay.)
Let {7, j} = {2, 3} and a;; < @;,. Then from f, and f; one obtains either f,(f;) or
f:(fy) equal to:

— ety
fe =% Xy

aj—ay

X,

a;+a;
f .

We repeat the process as in the Euclidean algorithm for a,, and ag until we
‘921

obtain a polynomial z.? — z 225 with B, = B,y + Bas.
Assume f, ¥ — f, and f; ¥ — f,. Then we obtain:
B ={f, hh € £}, fa € U ) froe s fu, = hyse s funr e
Jer, = Pisrse s Fmvpoe o os Fomig, = By frne s frt,}r

where hy(fi)) = fiap. ooy By(frm) = by, By(h) = Sy,
If f,= — fior f; = — f; we delete f, or f, and obtain:

B = f, b € U ) frare oo froy = Mase 5 franse oo
f;—l.e,_l = hr;frv- ey f;'e,}'
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where h1(~ fl) = fll’ ey hl(fl,el——l) = hz, hz(hl) = f217~ .
In both cases, with the homogenized binomials of B* denoted by capital letters
and with corresponding subscripts, we have:

B(ny, my, my) = {F,, H,, Fyy,. .., Fml =H,;...;Fu,..., Fk.nk =Hyions
Fovvrooi Foon, = H, 3 Fyy ., F,nr}.

and

8 — {{Fu,..., Fu;Fy; ..o Fy...iFy,. .. F,, ) if risodd,

2 {Hy, Fyy..., Fo s Fays oo Fus oo 3 Fy o Fyy, ) if 7is even,

2. Let dy = deg(F,)), d, = deg(H)),..., d, = deg(H,), and

Q. = {deg(F,, a1 if 2, > 1,
™t ld, ifn, =1,

Let Ml = max{d, +d,,,;i=0,..., 7}, and m = min{a, — a;; x,°z," — 2,'2," €
B,}.

Then k(C(n,, n,, 1)) = M — m — 3.

4. Castelnuovo-Mumford regularity for monomial curves in P,s(

Let A= ;5 ,A; be a Noetherian graded standard K-algebra, ie. A = R/I,
where I is a homogeneous ideal of a polynomial ring R = Klz,,..., z,] in n + 1
indeterminates. Let m = €,,,A; be the homogeneous maximal ideal of A. Recall
that the Castelnuovo-Mumford regularity of A is defined as follows:

reg A = max{e(H,,(A) +i;i< dim A},

where e(H;(A)) = max{j; [H;(A)]j # 0}. This is an important invariant of A. If
A has the following minimal graded free resolution:

0— D2, R(— e) = — @ R(—e¢,) > R—A—0,
it is well-known that (see [M], [EG])
regA=max{e,;, —j;j=1,...,pand 1 < i< n}.

In this section we will prove:

THEOREM 4.1.  Assume that C = C(ny, n,, ns) is not Cohen-Macaulay (C-M).
Then
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reg(K[S]) = e(H,,(K[SD)) + 1.
As an immediate consequence of this theorem and Theorem 2.1 we have

CoroLLary 4.1, If C(ny, n,, n,) is not C-M, then
k(C(ny, n,, n,)) = reg(K[S]) — a(H,(K[S])),
where a(H;(K [SD)) is defined in Section 1.

The proof of Theorem 4.1 is divided into several lemmata. First, as in Section
1, for i = 0,1, the set 4;(S;, ny) = {0, w;(1),..., w;(n; — 1)}, where

w,(j) =min{le € S;;a=jmodny},;j=1,...,n,— 1,
H 0 (A)(S,y, 1) X A(S,, 1) = {(w,(D), w,(n; — D) ; i=0,...,n,— 1} =1,
and
J=1I\S.

It is clear that if w,(d) = an, + bn, then w,(n; — 1) < aln, —n) + b(n, —
n,) and the equality holds if and only if a(n, — n,) + b(n, — n,) € n, + S, Note
that J generates K[S”\ S] as K[SI-module (see [FH], Lemma 2.4). C(n,, n,, n,) is
not C-M if and only if /] # @.

Next we define a; (resp. ;) to be the least number such that 0,(eyn,) < a,
(resp. Bin, € my + S)). Analogously we define the corresponding numbers a,, B,
for the generators n, — 1, < #, — n; < 1, of S,.

Remark 4.1. From the definition of a;, B;, 1= 0,1, we get B, < a, and S,
< «, These relations are also immediate consequences of the algorithm in [BR].

In the next lemma we use the following partial order < on the set N*: (a, b)
<@,b)ifa<a andb< 0.

Lemva 4.1, If the set {(a, b);0<a<a,0<b=<p, and an, + bn,=
mn, for somem > 0} # @ then it has a unique minimal element.

Proof. Assume that there are two equations: min, + myn, = m'n, and mn,
+ myn, = mn, with mi; > m, and m, < m, or m; < m, and m, > m,. Subtracting
one equation from the other we get an, = bn, + cn, or bn, = an, + cn,;, where
0<a<a;,0=<b< B, By the minimality of &, and 3,, this can happen only if
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b = f,, i.e. one of the two numbers m, and 5 is 0. But this contradicts the mini-
mality of «;.

If the set defined in Lemma 4.1 is not empty, we denote its minimal element
by (m,, m,). Otherwise we set m, = @, and m, = f,. Let us introduce the follow-
ing set:

B ={a,0;0<a<m,0<b<B}U{(ab);m=<a<a,0=<b<m}.

Then we have:

Lemva 4.2, The set B] = {an, + bn,; (a, b) € B} consists of distinct
elements and coincides with the Apery sequence A;(S;, ny) of S, (up to permutations).
Moreover, for each element an, + bn, € B we have 0,(an, + bn,) = a + b.

Proof.  Since A,(S,, n;) & (Nn, + Nu,)\(n, + S,), we must have A,(S,, #n,)
S B|. Let (a, b) € B,. Choose an element a'n, + b'n, € A,(S,, n,) such that
(@, b) € B, and an, + bn, = cn, + a’n, + b'n,. From the minimality of &, and
B, it follows that @ = a’, b = . Then we have (@ — a)n, + (b — b)n, = cn,.
By Lemma 4.1, (@—da/,b—b) = (m;, m,) unless a—a =b—b' =c¢=0.
Since a < m, or b < m,, we must have a =a’, b = b" and ¢ = 0. This proves
that the element an, + bn, € (n, + S)), ie. B; = A,(S,, ny) and the elements in
B[ are distinct. From this it also follows that if an, + bn, = cny + a’n, + b'n,
for some ¢, @', b’ EN,then¢c=0anda + b < & + b’ (Note thate + b < a" +
b’ is possible.) Hence 0,(an, + bn,) = a + b, as required.

Remark 4.2. An equivalent formula to the one in Lemma 4.2 was given by
Rodseth (see [Ro], pp. 175).

Lemma 4.3, Assume that (a, b) € B, and a < B,. Then a(n, — n,) + b(n, —
ny) € Ay(Sy, ny).

Proof. Assume that a(n, —n) + b(u, — n,) = a’'(n; — ny) + b'(n; — n,)
+ ¢'n,, where ¢’ > 0 and @/, ' € N. By Remark 2.1 (or [BR]), b <, < a,, and
by assumption @ < f3,. From the minimality of &, and B, it follows that (@, b) =
(@, b'). We then get: (@a—a)n, + b —b)n,=(@a—a +b—b — cIn, By
Lemma 4.1 we must have (@ —a’, b— b) = (m;, m,) which implies that
(a, b) = (m,, m,), a contradiction.
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LemMa 4.4, If Clny, n,, n,) is not C-M, then

max{6,(a) ; a € A,(S,, ny)} < max{d,(e,), 6,(e) ; (e, €)) € J}.

Proof. First assume that 8, = a;. Let ¢ = (w,(n; — 1), w,())) be an arbit-
rary element of I. We write w, (1) = an, + bn, with (@, b) € B,. By Lemma 4.3,
alng — n) + by, — n,) € A(S,, ny). Hence wy(n, — 1) = aln, — n)+ b(n, — n,),
which implies that e € S. This shows that I < S, ie. Cln,, n,, n;) is C-M, a
contradiction. So, from Remark 4.1, we must have 8, < ¢, and, by symmetry,
B, < a,

Now we consider two cases separately, noting that (7, /) equals the number
of steps between — ¢ and j in the congruence class #,.

Case 1: (m,, m,) = (ay, B)).

By Lemma 4.2 there exists j such that ,(j) = (&, — Dn, + (B, — Du, € A (S,,
ny). Since a; — 1 = B,

(a, = Dy —n) + B, — Dn;— n,) €n,+ S,

By the definition of Apery sequence, we then get w,(n, —7) < (o — 1) (n; — n,)
+ (B, — D(ny — n,). Therefore d((w,(n; — 1), 0,(N)) < d(a; — 1) (ny; ~ n,)
+ @B —Dwm,~n,), (@—Dn+ @ —n)=(,— 1) + @B, — 1 =6, (w,()).
Thus by Lemma 2.1, (w,(n; — 7), ®,(j)) & S. Hence

max{él(a) s a S Al(Sp n3)} < o, — 1 + Bl —1=
0,(w0,()) < max{d,(e) ; (g, e) € J}.

Case 2: m; < a; and m, < B,.
Similarly as in Case 1, (@, — Dn, + (m, — 1)n, is the second component of an
element of J. Hence

(1) max{0,(e) ; (e, e) €EJ} 2 (a;, — 1) + (m, — 1).

If my > B, then considering (m; — D)ny, + (B, — Dn, we get similarly as above
that

(2) max{d,(e) ; (e, ¢) EJ} = (m, —1) + (B, — 1).

(1), (2) and the construction of B, imply the claim.

Finally let m, < 3, By Remark 2.1, m, < 8, < a,. Note that mn, + m,n, =
mny (m > 0) if and only if m,(n, — n) + my(n, — ny) = m'ny W’ = my, + m, —
m > 0). This implies that in our case (m,, m,) is just the unique minimal element
defined by Lemma 4.1 for n, — n, < n, — n, < 5, Applying Lemma 4.2 for the
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Apery sequence A,(S,, #,) we get that A,(S,, #,) is in one-to-one correspondence
with the set

By={(a,0;0<a<m, 0<b< B} U{lab;m<a<a,0=<b<m.

Since B, < @, similarly as in Case 1 we can show that (@, — 1) (n; — n,) +
(m, — 1) (n; — n,) is the first component of an element of J. Hence

(3) max{d,(e,) ; (e, ) EN =2y —1+m —1>p, +m — 2.
Combining (1) and (3) we get

max{d,(e,), d,(e,) ; (e, e,) € J} = maxf{a, +m, — 2, m, + 6, — 2}
= max{0,(@) ; a € B} = max{5,(a) ; a € A,(S,, ny)}, as required.

Now we are able to prove Theorem 4.1.

Proof of Theorem 4.1. Tt suffices to prove that e(H,:(K[S])) < e(H,,(K[S])
— 1. By [TH], Corollary 3.8, H2(K[S]) = KIZ(S)\ S, U S,], where Z(S) is the
additive subgroup generated by S. Hence
e(H2(KLSD) = max{d(wy(n, — §) — ny, @,() — 1)) ;0 < i < n,} =maxdle) — 2.

eel

(See also Proposition 1 and Corollary 5 in [BSS]) Let w,(i) = an, + bn,, where
(a, b) € B,. Since w,(n, — ) < aln, — n) + bny, — n,), it follows that d(w,(n, —
0, w,@) < dlaln, — n) + by — ny), w,@) =a+ b= 0,(w, (). Therefore
(4) e(Ha(KISD) = max d(e) —2 < max d(a) — 2.

eel acA | (S)n3)

On the other hand, since H,(K[S]) = K[S'\ SI, e(H,,(K[S]) = max,css
d(e). Let e = (e, ¢;) € S”\ S be an arbitrary element. By Lemma 2.1 we get that
8o(ey) > (e), 0,(e;) > d(e) and e+ (G,(e) — 6(e) — 1)t, € S’\'S, and e+
(8,(e) — () — D, € S'\'S. As a consequence, maX,esns 0(f) = max{dy(e,),
0,(e;)} — 1. Hence

(5) e(H) (K[S]) = max,., {3,(¢), 0,(e)} — 1.

Combining (4) (5) and Lemma 4.4 completes the proof of the theorem.

Analyzing the proof of Lemma 4.4 we get the following criterion for the
Cohen-Macaulay property of C(n,, n,, #,).
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COROLLARY 4.1. The following are equivalent:
(1) Cny, n,, ny) is C-M,
(i) ay = B,

(iti) ap = B,

Proof. We can use [B2] in order to give another proof as follows. By [B2]
C(ny, ny, ny) is C-M precisely when u(I(C(ny, n,, ny))) < 3, where g denotes
the minimum number of generators. Now from the algorithm in [BR] the equiva-
lence of (i), (ii), and (iii) follows immediately.

In the next section we need the following.

ExampLE 4.1, Let us consider the curve C(1, @, d), ie. n, = 1, n, = a and
n,=d Letd=pa+ q where 0 < g<a Then B,=p+1ifg>0and B, =p
if ¢ = 0. From the equation a,(d — @) = y(d — 1) + zd, y, z € N, one can easi-
ly check that @, = B, if and only if a < p+ g+ 1 or ¢ = 0. Hence C(1, a, d) is
C-Mifandonlyifa<p+g+1lorg=0.

5. Monomial curves with at most one singular point

In this section for notational convenience we denote #, by @ and #n, by d. We
will consider the class of curves C = C(1, a, d) and we compute k(C(, a, d))
explicitly. From this it will become apparent, that to calculate k(C) for a class of
curves still is a formidable task. We always assume that C is not C-M. Let
d = pa + g, where 0 < g < a. By Example 4.1 our assumption on C says that
a=zp+gqg+1andgqg>0.

Lemma 5.1.  Assume that C(, a, d) is not C-M. Then

(1) Every S-minimal element ¢ of S'\'S has the form e = ((a + Bp) (d — a),
aa — Bq) for some positive integers @ < B such that 1 < aa — fq < a.
Moreover. 6(e) = a + B(p — 1).

(ii) (G + 1)(d—a), a — @ is an S-minimal element of S\ S.

(i) ([FH), Lemma 5.3) a(H.(K[S])) = p.

Proof. (i) From Lemma 2.2 we know that e = (m(d — a), ») for some posi-

tive m, » with #» < @ and # — ma = — Id, where ] > 0. Hence # = ma — [(pa +
q) = (m — Ip)a — lg. Setting @ = m — Ip and B = | we can easily get the asser-
tions.
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(11) is immediate from Lemma 2.1 and the fact thatp + ¢+ 1 < a.

(ii1) Since S-minimal elements of S”\'S generate K[S’\ S] as K[S]-module,
a(H,,(K[S])) = min §(¢), where e runs over the set of S-minimal elements of
S’\'S. Hence (iii) follows from (i) and (ii).

The main result of this section is the following:

TueoreM 5.1. Assume that CQ, a, d) is not C-M. Then k(C(QA, a, d)) =
diam(M(C)) = a — 2.

The proof of this theorem is based on estimating degrees of elements in the
numerical semigroup S; = <1, @, d> = N with respect to the generators 1, a, d.
Namely we need the following technical lemma.

LEMMA 5.2. Assume thatp, g =1 and p + g+ 1 < a. Then
0la—q +1+na) <a+p—2,

for any nonnegative integers I, n such that l +n < a — 2.

Having this lemma we can prove the main Theorem 5.1 as follows: By Lemma
51, e=((p+1)d—a), a— q is an S’-minimal element of S’\ S and d(e) =
p. Let f = kt, + It, + nt, + mt, be an arbitrary element of S with 6(f) = a — 2.
We have e + ¢, = (p + 1)t, € S. Hence, if m > 0, e + fE S. If m = 0, then the
second component of e+ f is le+fl,=a—q+ [+ na By Lemma 5.2,
0,(le+f1) <a+p—2=7d(e + d(f) =d(e+ f). By Lemma 2.1 it follows
that ¢ + f € S too. Therefore e + f € S for any f € S with 0(f) = a— 2. Let g
be now an element of S’\S having the maximal degree. g is, of course, an
S-maximal element of S”\ S. By Proposition 2.3, g = ¢ + & for some element & €
S. Since g € S, it follows from the above consideration that 6(%) < a — 2. Hence
3@ <a+p—3, and so e(H,(K[S))) <a+p—3. By Lemma 5.1 (i) we
then get k(C(, a, d)) < diam(M(C)) < a — 2. On the other hand, by [FH], Lem-
ma 5.2, k(C(, a, d)) = a — 2. Hence k(CQ, a, d)) = diam(M(C)) = a — 2,
as required.

From Theorem 5.1 and Theorem 4.1 we get

CoroLLARY 5.1. reg(K[S]) =a+p — 2.
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The rest of this section is devoted to the proof of Lemma 5.2. The main idea
is the following: Let £ = a@ — q + [ + na. We consider various representations of
E and try to locate one with a small sum of coefficients. Here, under a representa-
tion of E we mean a sum E = x-1 + y-a + z'd with nonnegative integral coeffi-
cients &z, ¥y, 2.

We first define some nonnegative integers as follows:

a=aq+q, 0=<¢q <g,and
74, =4+ ¢, 0 < g, < gq, (if q, > 0).

Note that ¥ = 2 if ¢, > 0. We need to prove that

0,(E) <a+p—2.

CLamm 1. Omne can assume that
1) 1<qg—1,

i) > (@ — 1p, and

) g, > 0.

Proof. 1) If [=>¢q, then 0,(E) <n+I<a—2, since E=(—¢q + @&+ 1Da
and all the coefficients in this equation are nonnegative.

DHEn<(a—Dp letn=xp+y where 0 <r<a—1and 0 <y <p.
Then E=xd + [(@ —1—x)q + g, + I1 + ya. Hence

0B Lz+(a—1—2qg+q+Ii+y
Lx+@—1—2qg+q +q—1+p—1 (by@)
<a—1+4+p—1.
iii) Assume that g, =0, i.e, @ = aq. By ii) above we have w' =n— (@ — 1)p
>0. Then E=(@— g+ 1+ (a— Dpa+ nwa= (a—1)d+ [+ n'a Hence
0(E)Sl+nw+a—1=<1+n=<a— 2 Note that this case also follows easily

from Section 3.
We now divide into cases.

Casel. n<ap+ (—1DA+ap) — 1L

Case laza =2 and q, =2 2p +1
Looking at the representation

(1) E=(@—-1)d+ (U+gq) + [n— (@ — Dpla,
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we get

2 o6E)Lgt+itn—(@—1D@p—-1)
<gtg—1+ap+G—-—DA+ap) —1—(@—1D@p—1
=at+p—2-—alg— G—Dp—11+(G—1) +q¢—1.

Since a = 2 it follows easily that it suffices to show that 2¢ = 2p + 1D (y— 1)

+ ¢ + 1. But this is immediate from the following inequalities: ¢ — 1 = yg, — ¢,
—12(r—1¢q, = (y—1)(2p + 1) (here we use our hypothesis).

Case I1b:a=1,1ie.a=q * gq,.
Let 7 be the smallest integer such that

n—ip+1 +1<0.

By the assumption of this case and by Claim 1(ii), 0 < ¢ < 7. Then the coefficient
of a in the following equation is nonnegative:

E=0G—Dd+l+igg—al+n—>G—-1D@+1 +1la.

As in the proof of Claim 1(i) from this equation we obtain §,(E) < a+ p — 2 if
I+1ig, —a=0. Let I +1ig, —a <0. Using the representation (1)(with a = 1)
and the bounds on # and [ we get 6,(E) < Il+n+q <a—1ig—1+ip+1)
—2+¢g=a+tp—2+G—1Dp+1—g)<a+p—2 (since a=qg+q
Z2p+qg+1landi=1).

Case 1c: @ 2 2 and q, < 2p.

Looking again at (2) it suffices to consider the case ¢, = (@ — 1)@ —1) +p
+ 1 = 2p. Hence by combining with Case la we have still to consider the case
a = 2 and q; = 2p. We have

(3) E=2id++2ip—ql +n+1—iQ+2pnla,

for arbitrary ¢ Similarly to Case 1b, we choose 7 to be the smallest integer such
that

n+1—G+1)1+2p) <0.

By Claim 1(ii) and the assumption of our Case 1, 0 < ; <y < ¢q. After using the
above equation for E in (3), we have still to consider the following case, namely

1+ 2ip— g <o0.

Using the representation £ = 1-d + (I + 2p) + (» — p)a and the above bounds
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for n, 1,7 we get 0,(E) <nu+1+p+1<(G+1DA+2p) —2+q—2ip—
l+p+l=a+p—2—qg+i+1<a+p+2 (since : < g). This completes
the proof of Case 1.

Case2. n=2ap+ (G—1DA + ap).
We have

E=@—1Dd+ U+ q) +[n— (ad— Dpla
=(@—1Dd+1+qg +ag+q +n—(a—1Dp—1la
=la—1+ald+U+2q) +n—(@—Dp— A+ ap)la

=a—1D+G—2ald+ I+ (—Dgl +
[n—(a@—Dp—(G—2A + ap)la
=la+(G—2add+l—(g—g)l +In—ap— (r—2)A + ap)la.

Looking at the last expression of E, similarly as in the proof of Claim 1(i), we get
CLaM 2. Ome can assume that | < g, — q,.
Next we define a new sequence of representations of E. Continuing the above
procedure, we get the following expression of E :
E=la+G—Dad+U+g)+n—ap—G—1DA+ ap)la.

We set A,=a+ (r—Da,B,=¢q and C,=n—ap— (y—1)A + ap).
Assume that we have found an i-th expression:

E=Ad+1+ B, + Ca.

We use again the above procedure in order to find a new one.
If I+ B, — (g, — g =0 then the (i + 1)-st expression of E, obtained by
iterating

E=Ad+1+B+Ca=Ad+1+B,+ag+q+(C,—Da
U+ adt U+ B +g)+(C—1—apa= -

is
E=[A4+G-1Dald+1+B,+G—1g+I[C,— —DA+ ap)la
=[A+1+G—Dald+[I+B,—(q—g]+I[C,—p—G—DA+apla.

That means, in this case we set A;,;, =4, +1+ (y —Da, B;;,;, =B, — (g, —
gy and C, ., =C,—p— (r— DA + ap).
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If I+ B; < g, — g, then we consider the following (¢ + 1)-st expression of
E:

E=[A +7ald+ 1+ B,+ 7q, + [C,— 7QA + ap)la
=[A +1+yald+ I+ B, +¢q) +[C,—p— 71+ ap)la.

So, in this case we set A;,, = A, +1+7ra,B;,, =B, +¢q,and C,,;, =C, —p —
r(1 + ap).
From the above procedure and by Claim 2 we immediately get:

Cram 3. For all 121 we have E= A, d+ 1+ B, + C,a with A,;, B,, C,
being defined as follows:
i)

A=a—1+i+ @+ +B)a, ad

Ci=n—(@—1+dp— @B, + - +8)A+ ap),
where 3, =7 — 1, and fori = 1

8 :{r if 14+ B, < g, — ¢,
i+1

v — 1 otherwise.
ii) B, = g, and

,8- = [B’+q2 ifBz+lzrv
. Bi - ((]1 - qz) ifBi+1 =7r—1

iii) 0 <1+ B, <q,.

Let s be the smallest integer such that C,,; < 0. By the hypothesis of Case 2,
s 2 1. Then all above expressions of E with ¢ < s are indeed representations of E.
Hence for 1 < ¢ < s we get from Claim 3 (i) that

(4) 0,(E) <1+ B, + A+ C
=B, +tl+n—(@—-1+0p—-D—-@+ - +)A+ap—a).

Since I + #n < a — 2, we conclude (otherwise there is nothing left to prove):

CLaM 4.  One can assume that for 1 < 1 <'s,
BzZa—1+dp—D+@+ - +pB)A+ap—a) +p+1.

We now consider two subcases.
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Case 2a: (p, 1, Bsy) # (1,2,1).
For short, let 8 = B, + -+ + B,. The condition C,,,; < 0 means that

(5) n<(a+s)p+ B+B,0A+ap —1.
Hence, from (4) with ¢ = s and Claim 3 (iii) we get

SEY<U+B)+n—(a—1+90—1) —pA+ap — a)
<g—l+(@t+s)p+@B+B, )0 +ap) —1
—(a—14+9¢p—1 —BQ+ap—a
=¢qt+p—2+at+s+B,,A+ap) +PBa—1
=a+p—2—aqgtat+s+p,.,0+ap) + pa—1.

We need to show that ag = a + s + 8,.,(1 + ap) + Ba — 1, or, equivalently,

(6) a(q - 1 ——pﬁs+l - B) 2 nBs+1 + s 1‘
If B,,; = 7 then, by Claim 3 (i), B, < g, — ¢,. Hence, by Claim 4, we have

=70~ ¢27q —q) 27B,+ 1)
2r[la~1+990p—1 +BA+ap—a) +p+ 2]
2yBp+p+2)
=7+ 1) + 1+ 28 (because 7 = 2).

Since =B, + -+ + B, = s, we then get

alg=1—pB— B =alg—1—pr—PN=2qg—1—1p—p
2r+B=B4 +B2Byy +5>Be +5—1,

which gives (6).
If B,y = v — 1, then by Claim 3 (iii) and Claim 4 we have

g=1=7¢,—-¢—-12G~Dg2G—-DB+D
>G—Dlla—1+9¢0—1D)+pA+ap—a) +p+2]
ZPp+DG-—D+1+sp-D+G—2)8+58
2B+ @Pp+DG—1 +s@—1+ y— 2) (because B = ).
=B+ @+ DB, +sop—1+71—2).

From this it follows, since p > 1 or 7 > 2, that (6) holds.
Case 2b:p =1,y =2 and B,,; = 1.
If B, =+ =B, =1, then by Claim 3 (ii) B,=B,— (s — 1) (¢, — ¢,) =

g, — (s —1)(q, — q,) < q, — s. Hence, by Claim 4, we get ¢ > ¢, = s+ B, = s
+ B + 2, where B is defined as in Case 2a. This shows the inequality (6) for
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p=1, B,,; = 1 and we are done.

Finally, assume that not all 8; are equal to 1. Let j be the largest integer such
that B;,;, =2. Thus 1 <;<s—1 and B;,,= -+ = B,;; = 1. By Claim 3 (i),
[+ B; < g, — ¢, By Claim 4 it then implies that ¢, — g, > 2. Using (4) with
1 =7 and (5) we get:

00E)<¢—¢—-1+G6+a) +(@+DB,+---+B,+---+B,)—1—
B+ -+ 8
=¢—¢—1+@+s)+aB,+ ---+6)—1+(@+D+2—)
=a—1—-ag—qt+aB+ - +8)+tals+3—j5) +2s+1—7.

We need to show that

(7 alg— @B+ +B)—(G+3—PDl+g=2s+1—7.

Since B, = -+ = B, =1 (= 7y — 1), Claim 3 (ii) and Claim 4 give us that
B,=B,, — (—j—Dg—q) 28+ +8,+2

Hence, by Claim 3 (iii),

(8) 41ZB;‘+1+12(S_j_l)(%-‘h)_i_ﬁl_,_“'+.Bs+3
>2(s—j—1)+s+3=3s—27+ 1.
So,

9) 29, =3s—2/+1+B+ - +8+3=8+ " +B+35—2+4

Since ¢ = ¢, + 1 and ¢, — ¢, = 1, from (8) it follows that ¢ = (8, + -+ + B,)
+s+3—5=2@B,+--+6)+ (+3—7. That means ¢ — (B, + -+ + )
— (s + 3 —7) = 0. Hence

alg— @+ +B) —(s+3—PDI+g=2qg— @+ +8) —
(s+3—7 +gq
=2¢,— @B, + - +B)— (s+3—j) (since 7 = 2)
>2s+1—j (by(9),

which shows (7). This completes the proof of Case 2b and therefore the proof of
Lemma 5.2.

- . . p3
6. Liaison among monomial curves in Py

In [BH] liaison amongst monomial curves in P; is investigated. There it is
shown that some linkage classes contain only few monomial curves, while in other

https://doi.org/10.1017/50027763000024971 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000024971

110 H. BRESINSKY, F. CURTIS, M. FIORENTINI AND L. T. HOA

linkage classes there are infinitely many monomial curves. Recall that two curves
C, C’ of P® are said to be linked if there is an R-regular sequence {f, g} €
I(C) N I(C’) such that I(C) = (f, g : I(C’) and I(C") = (f, g : I(C). In this
case one writes C ~ C’. C and C’ are in the same linkage class (the same even
linkage class) if there exists a sequence of links C=C;,~ C;~ -~ C,, = C’
(with m even, resp.).

Using the notion of k-Buchsbaum curves we can get some new insight on
liaison among monomial curves. An easy consequence of [R] is that two curves in
the same linkage class have the same Buchsbaum nunber (see [FH], Section 5b).
For k < 2, one can define all linkage classes of strictly k-Buchsbaum monomial
curves (see [BSV] and [H]). It is natural to ask whether for a given k there are
only finitely many linkage classes among strictly k-Buchsbaum monomial curves.
Using Theorem 2.1 we answer it in the affirmative.

Proposition 6.1.  Assume C(ny, #,, ;) is k-Buchsbaum for a nomnegative inte-
ger k. Then
(1) The number of S’-minimal elements in S'\'S is k.

3 ifk=0,

(it) pI(Cny, n,, ny))) < {Zk Y2k =1,

Proof. By Theorem 2.1 we have H,(K[S]) = M,,,® - - - ® M,,,, where
a(Hml(K[S])) =g+ 1. Assume k = 1 (the case k = 0 being true vacuously for

a

XZ,*
as
3

(i)). Let, in the notation of Section 3, € Hml(R) correspond to the first element

az

_ .

in B, (recall that R = K[S]). Then d< zaa) = a+ 1 As in Section 3, 0 #
z," = z,"

x:f‘x:z‘liaaxfl“x;z“ € H,(R). Hence a,—1+a+1< d(x;"’"‘ias) <a+tk
Z, )

from which @, < k. From this we have immediately | B,| <k, since the
x,-exponent decreases by at least one in every step of the algorithm in [BR], which
proves (i). If k = 0, then (ii) follows from [B2]. Assume k = 1. Then B, # @ with
x,'x,® — x,'x;* as its first element. As before we have by —1+a+1<a+k
or b, <k, from which | %3| < k, since the x;-exponent decreases by at least one
in every step of the algorithm in [BR]. Thus u(I(C(n,, n,, n,))) < 2k + 2, which
proves (ii).

Remark 6.1. The upper bound in (i) and (ii) is sharp, it is attained already
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for k = 0,1,2 (see [B2], [BSV] and [H]).

THEOREM 6.1. Let k be a fixed nonnegative integer. Then theve ave only finitely

many linkage classes for strictly k- Buchsbaum monomial curves in P;.

Proof. Since k = diam M(C), by Theorem 2.1 M(C) has the following form:
M(C) = H,(KISD) = k[S'\S] = M,,,® - D M,,,

We may consider modules over K[x,, 2;, Z,, ] = R or K[S] via the ring homo-

"3—"1t"1 ”3""2/’2

morphism: x, = s, x, s , X, S , &3+ 7. Since the Hartshorne-
Rao module M(C) is invariant under linkage (up to K-duality and a shift in
grading), we have M(C) = M(C’)(n) or M(C) = Exts(M(C"), R)(— n). Thus it
is enough to show that there are only finitely many different possible
R-modules of the above form. This is equivalent to showing that the dimension
| M, | of K-vector space M,, is finite for all @ + 1 < i < a + k. But an element of
S’\'S of degree i is of the form f, + -+~ + f, (with possible repetition), where f;
is an S’-minimal element of S'\S or f, € {t, t, t,, £}, and 1 < g<i—a.
Hence, by Proposition 6.1, | M,| < (k + 4)"™ < (k + 4)* as required.

In [BH] we have an algorithm for determining whether two monomial curves
are in the same even linkage class. Here we give a particular result in the “oppo-

site” direction.

PROPOSITION 6.2.  No two non C-M curves of the type C(1, a, d) are in the same
even linkage class.

Proof Assume that C = C(1, @, d) and C* = C(, a*, d¥) are in the same
even linkage class. Then k(C) = K(C* =k >0. By Theorem 5.1 we get a = a*
= k + 2. One needs to show that d = d*. Let d = pa + g and a* = p*a + q*,
where p, g, p*, q* are positive integers such that p + ¢ <a — 1 and p* + q*
< a—1 (by Example 4.1 and our assumption that C and C* are not C-M).
Consider the element ¢ = ((p + 1)(d — @), @ — ¢). By Lemma 5.1 it follows that
¢ has the minimal degree (which equals to p) among the elements of S’\S.
Moreover it is unique with this property if p > 1. If p = 1 there are maybe some
elements of S”\ S having the minimal degree. But e is still the unique element in
S’\ S which satisfies the following two properties:

1) d(e) is minimal among d(¢"), ¢ € S'\ S,

i) e+t €S.

The last property is true for any p. For the R-module M(C) these properties
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mean that:

17) e has the minimal degree among homogeneous generators of M(C) (we
identify e with the corresponding element in M(C) = H;(K[S]) = K[S"\ S]),

1) xy37e = 0.
Hence, for any curve C there is unique generator e defined by the above two prop-
erties (up to a scalar). For C¥ let ¢* = (0* + 1) (@* — @), a — ¢") € (§*)'\ ™
From the above observation and by [R], M(C) = M(C™)(n), we deduce that
e e

By Lemma 2.1 it follows that e + ¢t, € S, but ¢ + (g — 1)¢t, € S’\' S (and
an analogous statement for ¢ and q*). This means that g (resp. q*) is the smallest
integer such that zye = 0 in M(C) (xlq*e* =0 in M(C™), resp.). Hence ¢ = ¢*.
Analogously, m = a — p — q (resp. m*=a-— p* — q) is the smallest integer
such that x,'e = 0 in M(C) (resp. .rom*e* =0 in M(C™), resp.). Therefore a — p
—qg=a-— p* —q,s0p= p*, as required.

The following corollary examines even linkage between curves C = C(, a, d)

and C* = CWd* —a*, d* -1, d".

CoroLLARY 6.1. Let C(1, a, b) be a not C-M curve such thatd > a+ 1. If C
and C* = CWd™ — a”,d* — 1, d™) are in the same even linkage class, then a =
aF=p+q+1=p"+4¢"+1, where d=pa+q,0<qg<a, and d*=p*a*
+4¢%,0<q"<a"

Proof. By Theorem 5.1, a — 2 = k(C) = k(C™) =a™ — 2, thus a = a".
To prove p+qg+1=a= a* = p* + q* +1 let S™ denote the associated
semigroup of C*. As in the proof of Proposition 6.2, there is a uniquely defined
element f € (S™7\ S* such that f has the minimal degree and z,f = 0. (Note that
for I(C™) one needs to permute the variables Xy Ty T, < IT,.) Let ¢ € S\ S be
the image of f in the isomorphism M(C) = M(C*)(n). Then ¢ € [S"\ S1,, the
p-degree component, and x,e = 0. If [S'\S],, has only one element, then by the
proof of Proposition 6.2, the smallest integer # such that x, e =0 € M(C) is
a—p—gq Thus 1 =a — p — q. By symmetry a*=p*+q*+1=a. We will
show next, that the above is the only possible case. Suppose therefore that
[S"\ S], and [(S*)'\(S*)L,* have at least two elements. Then, by Lemma 5.1 (or
by the algorithm [BR]), p = % =1. Since xe =0, ie. t,+ e € S, from Lemma
5.1 and Lemma 2.1 we get that e= (1 + B (d —a), a — By and a — Bg = 2.
Note that C(1, @, d*) and C(d — @, d — 1, d) are also in the same even linkage
class. Hence, as before, @ — 87¢" = 2. Again by Lemma 5.1, 8 and B*equal the
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number of elements in [S\ S, and [($¥)’'\(S™1,, respectively. Therefore 8 =
B* = 2, which implies ¢ = ¢". By the proof of Proposition 6.2, x:_p*_q*—lfvb 0,
hence 2y e # 0, ie. (@ — g — 2)t,+ ¢ €S. By Lemma 2.1 this implies 8 + 1
>a—q— 1, or equivalently 0 = (8 — 1)(¢ — 1) (since @ = Bg + 2). But this is
impossible since 822 and ¢ > 1 by our initial assumption d > @ + 1. This

contradiction finishes the proof.

Remark 6.2. (i) An easy example shows that it is possible to have d = d* or
d+ d*and CQ, a, d) and CWd* — a*, d* — 1, d®) be in the same even linkage
class.

(ii) It is shown in [BSV] and [H] that for k < 2 each linkage class of strictly
k-Buchsbaum monomial curves contains a curve C(1, a, d). That this is not true
for all nonnegative integers & was shown by M. Morales in [Mo]. We therefore
conclude our paper with the following open problem: Determine all linkage classes
of monomial curves in Py which contain a representative C(1, @, d) or C(d — a,
d — 1, d) and determine the integer a for these linkage classes.
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