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Asymptotic analysis of a

linearized trailing edge flow

K. Capell

An Oseen type linearization of the Navier-Stokes equations is

made with respect to a uniform shear flow at the trailing edge

of a flat plate. Asymptotic expansions are obtained to describe

a symmetrical merging flow for distances from the trailing edge

that are, in a certain sense, large. Expansions for three

regions are found:

(i) a wake region,

(ii) an inviscid region, and

(iii) an upstream lower order boundary layer.

The results are compared with those of Hakkinen and O'NeiI

(Douglas Aircraft Co. Report, 1967) and Stewartson [Proa. Roy.

Soa. Ser. A 306 (1968)). They are further related to the

results of Stewartson {Mathematika 16 (1969)) and Messiter [SIAM

J. Appl. Math. 18 (1970)).

1. Introduction

A problem of fundamental importance in boundary-layer theory is that

of uniform incompressible flow at high Reynolds number past a finite flat

plate aligned with the stream. Let L be the length of the plate, Um

the unperturbed mainstream velocity, and V the kinematic viscosity.

Choose axes Ox*y* with 0 at the trailing edge and Ox* along the wake

centre line. (Asterisks designate physical quantities.) The Reynolds

Received 16 November 1971. The author thanks Professor K. Stewartson
for suggesting the problem.
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number Re is given by

(1.1) eS-B,-1-^.
GO

The drag D on the plate, namely

(1.2) D = 1.328elt(p{/(2z0 ,

gives a good approximation to the drag on a thin aerofoil. Of considerable

interest is the error in the drag arising from the trailing edge flow.

Goldstein's [2] near wake solution provides important information on

the transition from the Blasius boundary-layer flow to the wake flow.

Although the trailing edge flow has received considerable attention during

the last twenty years, it was only in the last decade (particularly the

last few years) that the essentials of the flow structure were discovered.

As late as 1968, it was commonly believed that the Blasius shear flow well

within the boundary layer provides the forcing flow for a small region near

0 in which the full Navier-Stokes equations are needed to describe the

flow accurately. It was further believed that the solution for this region

could be joined onto the Goldstein solution. Using such a model, we may

introduce a scaling of variables, demand that the Navier-Stokes equations

are invariant and ask that, as we leave the region of interest, the

vorticity approach the Blasius vorticity fi* , except possibly near the
D

downstream axis. The extent of the region is then found to be 0(e6L) .

Using this flow model, Rott and Hakkinen [6, 7] investigated merging

shear flows at the trailing edge. In particular, for the case of

symmetrical merging shears, they obtained (in numerical form) a wake

similarity solution for distances that were large compared with a viscous

length L = (v/fi*) = O( E l) , This solution was extended by Hakkinen

and O'Nei I [3] who obtained asymptotic expansions for the flow at the

periphery of this trailing edge region. Stewartson [9], using the same

scale, also recognized the need for the full equations but introduced an

Oseen type linearization with respect to a uniform shear. He solved the

resulting approximate problem exactly using Wiener-Hopf techniques.

Earlier, Imai [4] had followed the same procedure but, unlike Stewartson,

did not permit a pressure gradient. Later (1968) he reworked the problem
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and included a pressure gradient. Each believed that his solution merged

with both the Goldstein and Blasius solutions. Non-dimensionally, since

the skin friction is OfE1*) over a length 0(e6) , the error in the drag

coefficient thus calculated is 0(e10) = o(Re~5^ ) .

Subsequently, Stewartson [JO] and Messiter [5] introduced a triple

deck structure to describe the flow near the trailing edge. The need for

such a region arises from a singularity along the line x* = 0 in the

Goldstein transverse velocity which implies a velocity of inflow to the

wake oU^UJ^^/x*2^3] and a pressure term ole^pU^L2^3/x*2/3\ . The

singularity may be handled satisfactorily by making the triple deck region

O(e3i) in the x*-direction. Non-dimensionally, the skin friction, still

OCe1*) , effective over a length 0(e3) , leads to a correction 0(e7) in

the drag coefficient. The three decks have scales e3l, e4L, Z5L in the

^-direction. Deep within the latter or innermost (sublayer) region, the

flow on either side of the plate is a uniform shear the order of the

vorticity being the same as for the Blasius vorticity, Ae~ L~ Um , where

X = 0.33206. The Navier-Stokes region is still 0(e6L) and the results of

the earlier investigations mentioned above are useful provided fl* is

replaced by SI* , the limit of the sublayer shear vorticity as the

Navier-Stokes region is approached from upstream. It is expected that

SI* = A, ft* , where X, > 1 through the effect on the Blasius flow of a
± D -L

favourable pressure gradient upstream of 0 . The contribution to the drag

coefficient from the Navier-Stokes region is still 0(e10) .

Recently, TaIke and Berger [JJ] followed by Schneider and Denny [8]

treated the problem numerically. However, they neglect the nature of the

singularity as x* •*• 0 . Talke and Berger used a series truncation method

to determine the extent of the Navier-Stokes region. They retained the

full equations and constructed a wake asymptotic expansion of the stream

function in terms of parabolic coordinates. Their expansion form was

governed by the Goldstein inner expansion with which it was matched. Their

apparent success may be due to the fact that, near the wake centre line,

the stream function expansion in the Stewartson-Messiter sublayer is

formally comparable with the Goldstein inner expansion; further, the
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actual upstream sublayer shear is of the same order as the Blasius shear.

The aim of the present discussion is to obtain an approximate

(asymptotic) solution of the approximate (Oseen-linearized) problem solved

exactly by Stewartson. Sufficient progress is made to allow

(i) a quantitative comparison with asymptotic forms of Stewartson's

[9] results, and

(ii) a qualitative comparison with the results of Hakkinen and O'Nei I

[3].

Of particular interest are the eigenfunction problems associated with

the wake and inviscid flow expansions, since they throw some light on the

corresponding problems overlooked by Hakkinen and O'NeiI in the

non-linearized problem.

2. Statement of the problem

The scaling of variables for the Navier-Stokes region is given by

\h* = v^ = £ U LV • D* — V* -
' CO * c r0O

(2.1)

x* = x/n* ' v* = V n * ' r* = RJtt* '
where ty* is the stream function, p* the pressure, and

r* = x* + y* . When the correct vorticity field £2* = A fi* is used, we

find that r* - /?£ L(AA ) ~ . The exact problem for this region is

32 32

where V2 = + , with boundary conditions

3X2 dY2

(2.3) * = ¥y = 0 at v = 0 , for X < 0 ,

(2. U) V = Vy y = 0 at y = 0 , for X > 0 ,

(2.5) f + ^ Z as I + » or / + ^ > .
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A trailing edge flow

When (2.2) is linearized with respect to the uniform shear,

V = — i , in the manner of Oseen, we obtain

(2.6) Y jg (V2¥) = V ^ .

The boundary conditions are still given by (2.3) to (2.5). Note that

S+ewartson's [9] transformation is identical with (2.1) provided the

Blasius shear is replaced by the actual shear. The problem stated above is

the one solved exactly by him. Since the flow is symmetrical, the solution

for Y < 0 need not be considered.

3. Asymptotic expansions

Following Hakkinen and O'Neil's treatment of the non-linearized

problem, we find an asymptotic solution of (2.3) to (2.6) for R » 1 ,

-I S 8 S TI . For such values of R , the flow field is divided into three

regions:

(i) the wake, where inertia and viscous terms are of equal

importance;

(ii) an outer region where inertia effects dominate and the flow is

essentially inviscid;

(iii) an upstream (lower order) boundary layer to correct for a

velocity of slip over the plate as predicted by lower order

terms of the inviscid outer expansion.

The corresponding expansions introduced by Hakkinen and O'Neil are

(3.1)

(3.2) Q 1 2 ^

T2
(9) + (iT2ln/?)fl6(9) + ... ,

(3.3) *" = //3ft0(C) + hxU) + X~2/\U) + X~k/3h3U) + ... ,

where n = Y/X1 with X > 0 , and £, = Y/X1'3 with X < 0 . Then

(3.1) and (3.2) were matched as n •+ °° and 6 •*• 0 , while (3.2) and (3-3)
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were matched as 6 -»• IT and X, •*• -00 . The forms of the leading terms in

(3.1) and (3.3) meet the requirement that the vorticity is independent of

X as n * °° and Z, •*• -°° , respectively. Although Hakkinen and O'Nei I

found no inconsistency in matching several terms of these expansions, they

are not sufficiently general and must be replaced by others which contain

(in their final form) arbitrary multiples of eigensolutions. It is

important to consider next the eigenfunction problems for the linearized

flow.

4. The eigenfunction problems

The boundary-layer equation for the wake vorticity has the parabolic

form

C+.l) Mx = ayy •

The boundary conditions at Y = 0 and Y = °° , namely

(i+.2) n u , o) = o , n •+ -l as y -• «• ,

are applied to the similarity solution, flQ = X~ ^ n n > for which (l».l)

reduces to an ordinary differential equation. No boundary conditions are

applied at X = XQ > 0 and an eigenfunction problem arises for (l+.l) and

(1+.2). A small symmetrical disturbance near X = 0 , Y = 0 leads to a

small perturbation ett(X, r\) = zX ' V(X)T(r\) in the wake vorticity and

this satisfies (1+. 1) which, on separation, yields

(k.p) V = bX~k , b = cons t an t .

and

(l+.U) 3T" + n22" + {3k+2)r)T = 0 .

Here k is essentially a separation constant. The only boundary

conditions are

(U.5) 2"(0) = 0 ,

(1».6) T •*• 0 exponentially as n •* °° .

The assumption of exponential decay of vorticity in (1».6) is discussed

in the Appendix. After writing H = e T , where t = n /9 , we obtain the
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confluent hypergeometric equation,

(1».7) tH" + [I- *]#' + kH = 0 .

Equations (U.5) and Ct.6) are replaced by

(k.Q) ff(o) = 0 ,

(U.9) e~ H •* 0 exponentially as * - * • « .

The fundamental solution that vanishes at the origin is

Only real values of t are of interest. Asymptotically, as t •*• °° ,

except when H{,t) degenerates into a polynomial, which occurs for

k = m + — with m = 0, 1, 2 (Apart from these cases, e~ H •*• 0 as

t •* °° only if fe > -2/3 ; thus -2/3 is a lower bound on k for

solutions that vanish at infinity.) The condition (U.9) is thus seen to be

satisfied for the discrete set of eigenvalues

(U.12) k = m + 1/3 (m = 0, 1, 2, ...) .

The first two eigenfunctions corresponding to k = 1/3 and k = h/3

are respectively

(n-nU/i2)e"n3/9 .

The general eigenfunction T is obtained by terminating (U.10) at

the appropriate term. Now let V = x(X)E{r\) . In the wake boundary-layer

equations, Q = - 5 y y , so that x^U) = x"^m+1^3' and

Now (U.U) and (U.5) imply that T_(n) is odd and this in turn forces

an odd particular integral in (U.15). The coefficient of the odd
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complementary function n must be determined in terms of b so that
m

E' (°°) = 0 for undisturbed flow outside the wake. The even complementary

function does not appear in the solution. Thus E can be found from

T . In particular,
m

C+.16) E = b s(s-n)e /yds + 3 /Jr(2/3)n .

LJ0 J

In the inviscid region, the basic flow satisfying V2V = 1 for

R » 1 is a similarity solution i?2G0(6) , where 6 is the similarity

variable. Conditions are imposed at 6 = 0, IT (with R » 1 ) but on no

other boundary lines. The elliptic nature of the problem leads to an

eigenfunction problem. The eigensolutions are harmonic functions which are

bounded as R •*• °° . They must vanish on 6 = 0, n , since R2GQ satisfies

the matching conditions at the edges of the wake and upstream boundary

layer. The eigensolutions are, in fact, R sinkB , where

k = 1, 2, 3

5. The wake expansion and leading term

The results of Section 4 lead to the following modified form of the

wake expansion (3.1):

oo

(5.1) ^ = I ^ U , n) =
n=0 "

—1/3
The first inner eigensolution X /p(n) forces new terms later in

the expansion; X f- is needed to match the first outer eigensolution

R~ sin6 . The logarithmic term is needed to ensure matching and is

associated with the second inner eigensolution which appears in

X~ jY(n) • The inner expansion of Hakkinen and O'Neil contains no term

0{x~ ) while no term o[R~ ) appears in their outer expansion. This

accounts for the consistent though misleading matching of their expansions.
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Even a term 0(x~ ) in (3.1) could be matched successfully by them, the

implication being that an eigensolution does not occur at this stage in

their expansions for the non-linearized problem.

The equation and boundary conditions for fQ are

(5.2) iV

(5-3) /Q(0) = /£(0) = 0 ,

(5.k) f" •*• 1 exponentially as n •+ °° .

We find f^' = CQe~
n '9 , or alternatively

0.5; / 0 + 3 n / 0 - 3 n/0 + 3 / 0 - cQ ,

where CQ is related to a pressure field Py = C.X~ . The odd solution

of (5.2) satisfying (5.!*) is

(5.6) /o = |
c o f (n-z)V33/9d3 + «01n ,

where ex., is a constant to be determined by matching; by (5.M CQ must

have the non-zero value 31^3/r(l/3) = 0.538U.

The analysis leading to (5-6) is related physically to the change in

boundary condition from one of no slip upstream of 0 (associated with the

uniform shear) to the symmetrical flow condition (associated with the wake

boundary layer region within the shear). As a result there is an induced

pressure field P^ = CQX~ in the wake, the scale of the physical

variables being e L « x* « e L , y* i> e x* . We are therefore

describing the wake flow leaving the Navier-Stokes region and entering the

sublayer of the triple deck region. The situation where the wake leaves

the triple deck region (namely, £3L « x* « 1 , y* ^ e x*1'3 ) as

described by the Goldstein [2] inner solution, is very similar. A

linearization with respect to the Blasius shear is formally identical with

that above but leads to an intolerable pressure gradient, contradicting
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the presence of a uniform pressure in the uniform flow region outside the

Goldstein wake. A correct, if somewhat artificial, linearization here is

with respect to a modified uniform shear of the form

f = | / + or1 1 = 2? [k T12 + «n • (The scaling, of course would be

different.) In principle, the constant a can be found from two relations

between a and A' (the analogue of A ) obtained by letting the

boundary-layer flow merge into the modified shear as n •*• °° .

The asymptotic form of (5.6) as n •+ °° is easily found using the fact

that

f
We find

(5.7)

where

(5.8)

-n"3/9i
a02

'oo

=

a01

O.8OT6 .

- i.9529C0

"02 2 "0

The dependence of a. on aQ, is of no importance. In Section 8,

matching is shown to imply a = 0 , which is consistent with

linearization with respect to an unmodified uniform shear.

6. Lower order wake terms

The equation and boundary conditions for f^ are

1 2 2(6.1)

(6.2) = 0 .

The solution,
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/ , = C. { ds f e-t3/9dt [ ez3/9dz +(6.3) { f t3/9 [ L.n

contains two arbitrary constants C\ and a n which can be found by

matching. The asymptotic form of /i , for n » 1 , is

-3 Inn - Sa^rfX + (a^ - \ a

|2
I—I +

where

(6.5)

Y being Euler's constant. The equation and boundary conditions for /_

(the first eigenfunction) are

(6.6) f»z" + i n
2/^1 + n/2 = o ,

(6.7) /2(o) = /^(o) = o .

The general form of the odd solution is

(6.8) f2 = a21n + 0122(2/0-1/0) •

In preparation for matching, we note that, as r| -*• °° ,

(6.9) /2 * n(«21+a22a01) + 2aQ2 + o(nV
n 3 / 9 ) .

The precise form of exponentially decaying terms is not required.

7. The upstream inner expansion

Although there is no eigenfunction problem for the upstream boundary

layer, (3.3) must be modified to permit matching with new outer expansion

terms containing outer eigensolutions as well as others forced by inner and

outer eigensolutions. The first additional term is X h_(?) rather than

X 7ip(O as might perhaps have been expected:
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(7.1) r = I V*{x, z) = fl3hAz) + hAz)
«=0 n 0 1

Substitution in (2.6) yields equations for h$, hi which are also

obtainable from those for /Q » / l by replacing n ly ? and / 0 , / j by

hg, hi . Of course, the boundary conditions are different:

(7-2) MO) = h'.(O) = 0 , i = 1, 2 .

Moreover, since X < 0 , 2 > 0 and £ = Y/X1'3 , we have

-°° < £ < 0 and it is the asymptotic behaviour of h. as £ •*• -°° that
If

must be compared with the inviscid expansion as 6 •+• IT . We find, after

using (7-2),

(7.3) ^ o = | D

The exponentially large term cannot be tolerated so that Do = 0 ,

while 3oo = 1 to satisfy (2.5). Then

(7.U) fcQ = \ T? .

It is easy to show that

(7.5) hi - D.e^/9 f e*3/9d2 * ^ / 9 .

Again Bio = ° to avoid exponential growth of the solution as X, •* -°° .

The solution satisfying (7.2) is

This contains just one arbitrary constant D\ to be determined by

matching; in preparation for this we note the asymptotic form of hi as

Z, •*• —°° :

(7.7) \ * b±2i, + fc13 +
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where b12 = - ^ X f r f i ] ] , i 1 3 = - D±[y - - ^ - | ln3 + 3] . The

remaining terms of r11 are not discussed in detail although the

correctness of (7.1) is considered in Section 9.

8. The inviscid flow expansion

The modified outer expansion is

00

(8.1) ¥° =. I to(E, e)
n=0 n

= R2GQ(Q) + i?!*/3(;i(e) + i?
2/3c2(e) + c3(e) + i?"

1/3cu(e)

+ i?~2/3G (9) + H'^-GAB) + R~k/3GW(Q) + i?"2Gn(6) + . . .
5 o T o

+ lnfffl ( 6 ) + i T ^ l n f f f f ( 6 ) + i?"2lni?fiQ(9) + . . . .
3 T o

The term i?~1/3Glt(9) is needed to match the first wake eigensolution,

no earlier modifications being necessary. The need for the various terms

in (8.1) becomes apparent as the matching proceeds. The polar coordinate

form of (2.6) is

(8.2) i?2r-2si

Substitution of (8.1) in (8.2) yields firstly the equation for Go :

(8.3) Cg1 + ltfj = 0 ,

the general solution of which is expressible most conveniently as

(8.U) Go = 400sin
29 + 401cos29 + y502sin29 .

It is convenient to determine progressively the various constants that

appear in V° . At the same time, constants in Y and * become known.

Matching is achieved by comparing ¥° with H1" as 6 -* n_ , x, •*•-"> and

with T as 8 -• 0 , ri">'0°. The procedure is initiated upstream, where
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the initial flow has already led to the value of 3oo i n (7-3)- Now

for a l l 6 , and in par t icular as 9 •*• TT . Comparison with

shows that / !„ = 0 = AQ2 and AQQ = — . Then

(8.5)

As 6 -»• 0 , a match with the leading term of "tf? as n -<• °° is

prearranged in (5-'*). The basic inviscid flow is simply the uniform shear,

and the upstream boundary layer is a lower order effect arising, as we

2/3
shall see, from a velocity of slip associated with the term R G . The

V3
term R C. is superfluous, its inclusion having been prompted by the

possible need to match a term in £ in 7i_ as £ •*• -°° . Consequently,

there is no term T\A in V° as 8 * 0 with which to match such a term

in ^ as n •*• «> . It follows from (5-7) that aQ1 = 0 so that

(8.6) a Q 1 = 3
1/3r(|)c0 = 1.0511* •

The corresponding coefficient of r\ in the non-linearized case is

also zero: the resulting non-zero pressure gradient, Pv = C X , in

both cases is attributed to the change in the boundary condition.

Returning to the linearized problem, note that /Q is now known

completely. The equation for G2 ,

(8.7) sinBG^' + | cosSC^ + | sin6G^ + | | cosS^ = 0 ,

has the general solution

(8.8) G2 = A20sin
2/ 36 + ,4^00529/3
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A non-trivial solution is required here for matching with iP . For

merging with the uniform shear upstream, A20 = 0 • The remaining terms

lead to a velocity of slip on the plate necessitating the introduction of

the upstream boundary layer as anticipated. The expansion of V°

about 6 = TT may be written in terms of
•-)

(8.9) V? =

The first term of (8.9) when matched with ^ yields

(8.10) -A2\ + J3 A22 = 0 .

Ho term in X2^ appears in V" (or ^ ) so that A2Q = 0 . If such

terms are included in these expansions they are found to be zero. For the

expansion of 4"° about 8 = 0 , we then obtain

The coefficient of A in (8.11) is now compared with the constant

term in the asymptotic form of ii = X2 fQ\
 f o r n » 1 - see (5-7),

(5.8). We find A21 = | CQ = O.8O76 . Then (8.10) implies

A = p c 0
 = 0.U663 . Thus G is known completely:-

(8.12) G2 = -421(cos Y + — sin -|j = 0.8076 cos y + 0.1+663 sin y .

Next compare the coefficient of X° in (8.9) with (7-7):

(8.13) D\ = 0.1802 .

Thus f^ (= h.) is known completely. The term in X in (8.11) matches
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with the linear term in (6.k), provided

(8.110 a12 = 9"1/3[r(i)]\ , axl - § ̂  = 0.3109 .

Only one degree of freedom remains in ft ; this can be removed only-

after finding new terms in Y0 . Now the right side of the equation for

(?3 contains GQ but in such a combination that

(8.15) sin9G3" + 2cos8G'J = 0 ,

for which the general solution is

(8.16) G3 = ^30ln|sin6| + A31 + A32B .

The coefficient of lnff when (8.1) is substituted in (8.2) leads to

the equation for #3 :

H'i = 0 .

(8.17) • H3 = B31 + B326 .

The term lxiRH3 i s included in (8.1) through the need to match the

logarithmic term in (6.U) and (7-7). Since logarithmic terms occur in both

V° [= G ) and lnRH (= Y" , say) , the matching of these two terms with

Y" and 4^ i s considered together. As 6 -»• IT ,

(8.18) V° - 4 3 0 l n | c | - | 4 3 O l n | x | + K j ^ ^ ) + ••• ,

(8.19) ^ + (B3 1+B3 2^)ln| j | + . . . .

Comparison of (8.18), (8.19) with (7-7) shows that

( i ) ^ 3 0 = - 3DX ,

(ii)

(i i i)

Similarly,

(iv)

(v)

2
3 30

X 31 + AX

matching

A3Q = - :

A = a

H 5 3 1

r3 and V° as 6 -»• 0 with (6.1*) shows that
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When these six equations are solved for the unknowns /13Q , ̂ 3i> ^32> #31>

B32> cl » w e obtain A3Q = - 0.5>»06 , 4 3 1 = - 0.7090 , A32 = O.IOUO ,

B3 1 = - 0.3601* , B 3 2 = 0 , Ci = 0.1802 = Dl . From (8.13) and (8.1U), it

follows that a n = - -^ Co = - 0.311 • Then f0, fi, h0, hx, Go, Gj, Gz,

G3, H3 are known completely. From the discussion in Section 4, the term

R~ GAQ) is deemed known also apart from an arbitrary constant that

remains after completion of the matching. The term E~ G,(6) is

—2/3
discussed in the next section. The term R G (9) is not considered at

all.

9. Eigensolutions and the matching procedure

Matching fz in (6.9) with outer terms shows that ex2i = 0 and

fi = ^itefo-^fo) , which is easily identified as EQ . (0122 persists as

an arbitrary constant.) For the express purpose of matching the

eigensolution X~X^3f2 , the term i?"l/3G1+(e) has been included in T ,

the general solution for G< being

(9-1) Gk = AhQsin-
1/3e + AklcoB | + A^sin | .

Matching with 4^ and ¥" shows that

(9.2) S = la22

No term in X appears in "r ; (9-2) must be matched with a term

X^h^C.) = e - T H ^ U ) , where B depends on a.^ . The terms ¥°, 4^ are

independent of X and the terms X~l/3f2(r)), R~1/3Gk(Q), / " " ^ U ) are

respectively proportional to the ^-derivatives of ^'^f^n), R G2(6),

h.(z) : thus, in the usual way, the first eigensolution is related to a

shift of origin along OX . The first outer eigensolution leads to
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modifications in Vr and v" but these are not described here.

10. Discussion

Apart from the eigensolutions, the expansions found above closely

resemble those of Hakkinen and O'Nei I at least qualitatively. The pattern

of matching described in Section 8 is identical with theirs: in

particular, the asymptotic behaviour of wake and boundary-layer terms, for

n » 1 and |^| » 1 respectively, is qualitatively the same in the

linearized problem as in the non-linearized one. The quantitative

agreement cannot be expected to be very good since the Oseen linearization

is rather crude within the wake. For example Co = 0.5381* in the

linearized problem while the value in the non-linearized case is O.UO89.

The neglect of eigensolutions by Hakkinen and O'NeiI accounts for the

important difference in the expansion forms; it is clear from our results,

if not from other considerations, that their expansions are not

sufficiently general. Moreover, if we take the first inner eigensolution

(for the non-linearized problem) to be related to an origin shift, the

remarks in Section 9 suggest that the early modifications of their

expansions are easy to incorporate. The eigenvalue problems for the

non-linearized case and the nature of later modifications are discussed

elsewhere.

The results of this paper are also in close agreement both

qualitatively and quantitatively (as they should be) with those of

Stewartson [9]. From the results above, the velocity on the wake centre

line is found to be

8 ^
(10.1) gy~

y=o
l.OSlka JTZ/3 + Oix'1) .

The first two numerical coefficients agree with those of Stewartson.

In effect, the value of a can be determined from his coefficient of

_p/O —I

X ' . Stewartson actually finds the coefficient of X to be zero.

For the skin friction on the plate, the results of earlier sections give
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(10.2) 2-±-

^ y=o

= 1 + 0.33k6X~2/3 + ... .

The numerical coefficient again agrees with Stewartson's. Furthermore

the terms in (10.2) after the second agree qualitatively with his, the

error term 0[X ) corresponding to the modifying term X h in V? .

Furthermore, Stewartson's pressure gradient in the wake,

U0.3; 9A.^ 2iTAi(0)
 x -

agrees with our result.

Thus the expansions are in qualitative and quantitative agreement with

Stewartson's results. As we have seen they differ qualitatively from the

expansions of Hakkinen and O'NeiI through the inclusion of inner and outer

eigensolutions.

APPENDIX

Limiting behaviour of the wake vorticity

The boundary-layer approximation of (2.6) for the wake region is

(A.I) YWX = Wyy ,

where W = 1 - Vyy ^ 1 - V2V . The boundary conditions are

(A. 2) W = 1 at Y = 0 for X > 0 ,

(A. 3) l?+0 as 7 + » for / + - » .

Consider the behaviour of W as Y •*• <» for finite values of X . We

make the rather weak assumption that, in the 'similarity region1 where

X ->• °° , W = o [Y~ ) for sufficiently large values of Y to ensure that

H •+ °° . Let the Fourier transform of W(X, Y) be

(A.U) W(S, Y) = f e~lSXU{X, Y)dX .
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Then from (A.I) and (A.3) it follows that

(A.5) W(S, Y) = S(5)Ai{(tS)1/3y} ,

where B[S) is a function of S only, Ai(a) is the Airy function, and

(iS) i s def ined so t h a t , when 5 i s r e a l , W -*• 0 as Y •+ °° :

US)1/3 = s ^ i r f / 6 f o r S > Q m d ( i s ) l / 3 = | 5 | l / 3 e - i r i / 6 f o r S < Q ^

Now W = — f e WdS . Using an asymptotic r e s u l t given by Antosiewicz

[ 7 , p . UU83 for A i (z ) , we obtain

(A.6) W(X, X)*£[ B(S)[(iS)l/3Y]-1/heXp{iSX - | ( i S ) 1 / 2 y 3 / 2 \ d S .

By suitably deforming the contour of integration into a new contour C

passing through the point S = - — iY /A , at which

4jyiSX - - (i5)1/'2y3/'2y = 0 , we finally obtain
dS\ 3 J

(A.7) W(X, Y) -v. ± exp[- J T3/*] | B(5) [ ( t S ) 1 7 3 ^ " 1 / ^ .

Since the exponent in the decay factor as Y •* °° for finite X

contains the similarity variable r\ = Y/X^ , we are led to expect that,

in the similarity solution, W •* 0 exponentially as n •+• «> . This is

consistent with the earlier assumption that W = o{Y ) as X •*• °° .
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