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Abstract

We study moduli spaces of lattice-polarized K3 surfaces in terms of orbits of representations of
algebraic groups. In particular, over an algebraically closed field of characteristic 0, we show
that in many cases, the nondegenerate orbits of a representation are in bijection with K3 surfaces
(up to suitable equivalence) whose Néron–Severi lattice contains a given lattice. An immediate
consequence is that the corresponding moduli spaces of these lattice-polarized K3 surfaces are
all unirational. Our constructions also produce many fixed-point-free automorphisms of positive
entropy on K3 surfaces in various families associated to these representations, giving a natural
extension of recent work of Oguiso.
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1. Introduction

An important classical problem is that of classifying the orbits of a
representation, over a field or over a ring, in terms of suitable algebraic or
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geometric objects over that field or ring; conversely, one may wish to construct
representations whose orbits parametrize given algebraic or geometric objects of
interest.

In recent years, there have been a number of arithmetic applications of such
‘orbit parametrizations’ for geometric objects of dimension 0 and of dimension 1.
For example, for extensions of a field, or ring extensions and ideal classes in
those extensions, such parametrizations have been studied in numerous papers,
including [7–9, 11, 29, 74–76]; these descriptions of the moduli spaces have been
used in an essential way in many applications (see, for example, [10, 12, 19, 28,
69, 73]). In fact, many of the cleanest and most useful such bijections between
rings/ideal classes and orbits of representations have arisen in cases where the
representation is prehomogeneous, that is, where the ring of (relative) invariants
is a polynomial ring with one generator.

In the case of curves, recent work on orbit parametrizations in cases of
arithmetic interest over a general base field include [16] for genus one curves
and [15, 70] for various types of higher genus curves. Numerous examples have
also been previously considered by algebraic geometers, even classically, often
giving descriptions of the coarse moduli space as a GIT quotient. As before, many
of the most arithmetically useful bijections between data relating to algebraic
curves and orbits of representations have arisen in cases where the representation
has somewhat simple invariant theory—in particular, when the representation
is coregular, meaning that the ring of relative invariants is a polynomial ring.
In these cases, the coarse moduli space of the geometric data is thus (an open
subvariety of) a weighted projective space. In conjunction with geometry-of-
numbers and other analytic counting and sieve arguments, such representations
have seen applications in bounding average ranks in families of elliptic curves
over Q (see, for example, [17, 18]) and showing that many curves in families of
higher genus have few rational points (see [13, 15, 62, 67]).

A natural next step is to determine representations whose orbits parametrize
geometric data of interest associated to algebraic surfaces. K3 surfaces form
a rich class of surfaces that naturally lend themselves to such a study, and in
fact, there has already been significant work in this direction (albeit usually over
algebraically closed fields). For example, it is classically known that a general
polarized K3 surface of genus g = 3, 4, or 5 may be described as a complete
intersection in projective space Pg, and such descriptions may be easily translated
into the language of orbits of a representation of an algebraic group. For polarized
K3 surfaces of higher genus, Mukai and others have also described them in
several cases as complete intersections in homogeneous spaces (see, for example,
[53–55]). A sample of these results for polarizations of small degree appears in
Table 2.

https://doi.org/10.1017/fms.2016.12 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2016.12


Orbit parametrizations for K3 surfaces 5

Table 1. Representations V whose G-orbits parametrize data related to K3 surfaces. The
group Gss is a semisimple algebraic group with a map to the group G, whose kernel is
finite and cokernel is solvable. Here OD denotes the lattice underlying the quadratic ring
of discriminant D with the quadratic form being twice the norm form. Root lattices are
normalized to be negative definite, and U ∼= O1 denotes the hyperbolic plane.

No. Group Gss Representation V Rank Generic NS Section

1 SL2 Sym8(2)⊕ Sym12(2) 2 O1 = U 3.1
2 SL2

2 Sym4(2)⊗ Sym4(2) 2 U (2) 3.2
3 SL2 × SL3 Sym2(2)⊗ Sym3(3) 2 O9 3.3
4 SL2

3 3⊗ 3⊕ Sym2(3)⊗ Sym2(3) 2 O12 3.4
5 SL2

2 × SL4 2⊗ 2⊗ Sym2(4) 2 O4(2) 15
6 SL3

4 4⊗ 4⊗ 4 2 O5(2) 4
7 SL2

3 3⊗ Sym2(3)⊕ Sym2(3)⊗ 3 2 O21 3.5
8 SL3

2 Sym2(2)⊗Sym2(2)⊗Sym2(2) 3 U (2)⊕ 〈−4〉 3.6
9 SL5

2 2⊗ 2⊗ 2⊗ 2⊗ 2 4 U (2)⊕ A2(2) 7
10 SL2 × SL4 Sym2(2)⊗ Sym2(4) 9 U ⊕ E7(2) 16
11 SL4

2 2⊗ 2⊗ 2⊗ Sym2(2) 9 U ⊕ E7(2) 8
12 SL2

4 4⊗ Sym2(4) 11 U ⊕ E8(2)⊕ 〈−4〉 5
13 SL3

2 2⊗ Sym2(2)⊗ Sym2(2) 12 U (4)⊕ E8 ⊕ 〈−4〉⊕2 10
14 SL3

2 × SL4 2⊗ 2⊗ 2⊗ 4 13 〈4〉 ⊕ 〈−2〉⊕4 ⊕ D⊕2
4 14

15 SL3
2 2⊗ 2⊗ Sym3(2) 14 U (2)⊕ A⊕3

2 ⊕ E6 9
16 SL2

2 Sym2(2)⊗ Sym3(2) 15 U ⊕ A⊕2
2 ⊕ E6 ⊕ A3 11

17 SL4 Sym3(4) 16 U (2)⊕ A2 ⊕ D12 6
18 SL2

2 2⊗ Sym4(2) 17 U ⊕ 〈−8〉 ⊕ D12 ⊕ A2 12
19 SL2 Sym5(2) 18 U ⊕ A4 ⊕ D12 13

The purpose of this paper is to generalize these ideas to study moduli spaces
of K3 surfaces with possibly multiple line bundles, namely lattice-polarized K3
surfaces, in terms of the orbits of suitable representations. More precisely, the
classes of line bundles in the Picard group of a K3 surface X naturally form
a lattice, with the symmetric bilinear pairing being the intersection pairing on
divisors of the surface; this is called the Néron–Severi lattice of X . There is a
coarse moduli space MΛ of K3 surfaces whose Néron–Severi lattice contains a
fixed lattice Λ. (We will actually work with a slight modification of this moduli
space; see Section 2.2.) It is a quasiprojective variety, but in general it is very
difficult to explicitly describe it by equations or to understand its geometry,
especially if rank(Λ) > 1. We show that there are at least 19 representations
of algebraic groups whose orbits naturally parametrize such lattice-polarized
K3 surfaces. We list them in Table 1. Some of these orbit parametrizations are
classical, but most of the higher rank cases appear to be new.
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Just as 2 × 2 × 2 cubical matrices played a key role in the understanding of
many prehomogeneous representations [7], and just as 3 × 3 × 3 and 2 × 2 ×
2×2 matrices played a key role in the understanding of coregular representations
associated to genus one curves [16], we find that 4 × 4 × 4 and 2 × 2 × 2 ×
2 × 2 matrices appear as fundamental cases for our study of K3 surfaces. We
refer to these cases as the ‘Rubik’s revenge’ and ‘penteract’ cases, respectively.
We also study orbits on symmetrized versions of these spaces, which turn out to
correspond to moduli spaces of K3 surfaces of higher rank. For example, we show
that GL2-orbits on the space of quintuply symmetric penteracts—that is, binary
quintic forms—correspond to elements of a certain family of K3 surfaces having
rank at least 18.

We now state our main theorem more precisely. Given a K3 surface defined over
a field F having algebraic closure F , let NS(X) denote the Néron–Severi group
of X , that is, the group of divisors on X over F modulo algebraic equivalence. Let
NS(X) be NS(XF ). (When F is algebraically closed, we have NS(X) = NS(X).)
Then we define a lattice-polarized K3 surface over F as follows.

DEFINITION 1.1. Let Λ be an even nondegenerate lattice with signature (1, s)
with a choice of basis, and let Σ be a saturated sublattice of Λ. Then we say that
a K3 surface X over F is lattice-polarized by (Λ,Σ) if there exists a primitive
lattice embedding φ :Λ→ NS(X) such that φ(Σ) is fixed pointwise by the action
of Gal(F /F) and the image under φ of a certain subset C(Λ) of Λ contains an
ample divisor class of X .

We now define the subset C(Λ). Let Z(Λ) := {z ∈ Λ : 〈z, z〉 = −2} be the
set of roots of Λ. Fix a partitioning of Z(Λ) into two subsets Z(Λ)+ and Z(Λ)−,
where Z(Λ)− = {−z : z ∈ Z(Λ)+} and each is closed under positive finite sums;
also fix a connected component V of the cone {z ∈ Λ⊗ R : 〈z, z〉 > 0}. We then
let C(Λ) be the subset of V ∩ Λ consisting of elements that pair positively with
all z ∈ Z(Λ)+; this is the intersection of Λ with the Weyl chamber defined by the
positive roots.

Let MΛ,Σ denote the moduli space of such pairs (X, φ), where X is a K3
surface lattice-polarized by (Λ,Σ) and φ : Λ → NS(X) is a primitive lattice
embedding, modulo equivalence; two pairs (X, φ) and (Y, ψ) are equivalent if
there exists an isomorphism f : Y → X and an isometry g : Λ → Λ fixing Σ
pointwise such that the following diagram commutes:

Λ
φ //

g

��

NS(X)

f ∗
��

Λ
ψ
// NS(Y )
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More generally, if X is a K3 surface that is lattice-polarized by (Λ,Σ), and if
S ⊂ Σ is a subset that spans the Q-vector space Σ ⊗ Q, then we also say that
X is lattice-polarized by (Λ, S). Similarly, we may speak of the moduli space
MΛ,S :=MΛ,Σ .

REMARK 1.2. By convention, we assume that the lattice Λ has a class with
positive norm and has a unique embedding in the K3 lattice E2

8 ⊕ U 3 (up to
equivalence) in order to define the above moduli space (see [30, 58]); here E8

denotes the unique 8-dimensional negative definite even unimodular lattice and
U the hyperbolic lattice with Gram matrix (0 1

1 0). In all of the cases we consider,
the lattice Λ will satisfy these properties. If S equals Λ (or contains a set of
generators of Λ) in Definition 1.1, then we obtain the moduli space MΛ of Λ-
polarized K3 surfaces. Furthermore, if the Z-span of S contains a positive class,
then the cover MΛ,S →MΛ is finite.

Then our main theorem is as follows.

THEOREM 1.3. Let F be a field of characteristic 0. For any line of Table 1, there
exists an explicit finite subset S of Λ such that the G(F)-orbits of an open subset
of V (F) are in canonical bijection with the F-points of an open subvariety of the
moduli space MΛ,S of K3 surfaces lattice-polarized by (Λ, S).

In each section, we will specify the relevant subset S of Λ.

COROLLARY 1.4. The moduli space MΛ,S of (Λ, S)-polarized K3 surfaces is
unirational. In particular, the moduli space MΛ of Λ-polarized K3 surfaces is
unirational.

A number of the spaces in Table 1 have been studied previously, often from the
point of view of invariants of group actions and not necessarily with a specific
connection to K3 surfaces, and usually over an algebraically closed field. Some
of these results show that many of the moduli spaces in Table 1 are actually
rational over F . For instance, [47] proves the rationality of Nos. 2, 16, and 18;
the rationality of No. 1 follows from [42]. The rationality of No. 17 follows from
the classical computation of invariants of cubic surfaces, and that of No. 19 from
the invariant theory of the binary quintic. It is an interesting problem to determine
exactly which of the spaces in Table 1 are rational over F or over F .

We note that Table 1 is not intended to be a complete classification of all orbit
spaces that are birational to moduli spaces related to lattice-polarized K3 surfaces.
For instance, one could consider the space 3 ⊗ 3 ⊗ 4, whose elements define an
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Table 2. Representations whose orbits parametrize polarized K3 surfaces. (The cases of
degrees 10 to 18 are due to Mukai.)

Group Gss Representation V Degree
SL3 Sym6(3) 2
SL4 Sym4(4) 4
SL5 Sym2(5)⊕ Sym3(5) 6

SL3 × SL6 3⊗ Sym2(6) 8
SL2 Sym8(2)⊕ Sym12(2) 10

SL8 × SO10 8⊗ S+(16) 12
SL6 × SL6 6⊗∧2(6) 14
SL4 × Sp6 4⊗∧3

0(6) 16
SL3 × G2 3⊗ (14) 18

unordered set of six points in the plane, or via duality, a set of six lines; the double
cover of the plane branched along the six lines is a K3 surface of Picard number
16, so over F (but not F), there is a correspondence between these orbits and
such K3 surfaces. Such K3 surfaces have been extensively studied in the past; for
example, see [46, 48, 56].

As mentioned earlier, in the case where Λ (=Σ) has rank 1, several cases have
been studied previously, and we have recorded them in Table 2. The first four
cases are classical and are easily adapted to give the correct parametrization over
any field, while the last five are more recent and arise in the beautiful work of
Mukai [53]. It is an interesting problem to work out the appropriate forms of
Mukai’s representations so that they also parametrize polarized K3 surfaces over
a general field.

Figure 1 shows how many of the cases from both Tables 1 and 2 are related. In
particular, each arrow from a representation V of the group G to a representation
V ′ of G ′ indicates that there is a group homomorphism τ : G → G ′ and a map
V → V ′ that is G-equivariant with respect to τ . For each arrow, there is a map
between the associated moduli spaces of lattice-polarized K3 surfaces as well as
a reverse inclusion of the corresponding polarization lattices Λ and Σ . The ranks
of the polarization lattices Λ are indicated in the first column.

Such explicit descriptions of the moduli spaces of lattice-polarized K3 surfaces
also have several other potential applications. For example, these moduli spaces
are related to Noether–Lefschetz divisors, which are special cycles on moduli
spaces of polarized K3 surfaces (see, for example, [45]). There has also been a
great deal of recent activity surrounding the Noether–Lefschetz conjecture [6, 49],
and it would be interesting to extend the work of Greer et al. [37] on the GIT
stability of the Mukai models to these spaces of lattice-polarized K3s.

https://doi.org/10.1017/fms.2016.12 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2016.12


O
rbitparam

etrizations
for

K
3

surfaces
9Figure 1. Covariance relations among orbit parametrizations of lattice-polarized K3 surfaces.

https://doi.org/10.1017/fm
s.2016.12 Published online by Cam

bridge U
niversity Press

https://doi.org/10.1017/fms.2016.12


M. Bhargava, W. Ho and A. Kumar 10

In many of the new cases listed in Table 1, we also obtain natural
automorphisms of the corresponding K3 surfaces. Due to their frequently
extremely interesting and rich groups of automorphisms, K3 surfaces have
provided a natural setting in recent years on which to study questions of dynamics
(see, for example, [20, 51, 60]; for a nice survey, see [21]). In particular, there
has been considerable interest in exhibiting positive entropy automorphisms of
projective algebraic K3 surfaces. Recall that the entropy of an automorphism φ of
a projective surface X is defined to be log λ(φ), where λ(φ) is the spectral radius
of φ∗ on NS(X) ⊗ R. When X is defined over C, this definition agrees with the
topological entropy (see [21, Section 4.4.2]).

Recently, Oguiso [61] showed that any projective algebraic K3 with a fixed-
point-free automorphism of positive entropy must have Picard number at least
2. He also produced a family of examples with Picard number 2 by considering
the Cayley K3 surfaces, that is, the K3 surfaces arising from Rubik’s revenge
(Line 6 of Table 1). More precisely, he proved that any K3 surface with Néron–
Severi lattice exactly O5(2) has a fixed-point-free automorphism with entropy
ηRR = 6 log((1+√5)/2) > 0. (See also [34].)

Our perspective on the Rubik’s revenge case in Section 4 allows us to give a
simpler proof of Oguiso’s theorem, and in a stronger form, in Section 17. More
precisely, we prove:

THEOREM 1.5. Let X be a K3 surface with line bundles L1 and L2 satisfying
L2

1 = L2
2 = 4 and L1 · L2 = 6. Assume that the projective embedding of X

corresponding to L1 is smooth. Then X has a fixed-point-free automorphism of
entropy ηRR = 6 log((1+√5)/2) ≈ 2.887 > 0.

The key ingredient is the use of the hyperdeterminant. The hyperdeterminant
is a generalization of the determinant for multidimensional matrices, which was
introduced by Cayley and studied in depth by Gelfand et al. [35]. For most orbit
parametrizations of rings and ideal classes by multidimensional matrices (for
example, all those in [7, 8, 75]), the hyperdeterminant can be shown to equal
the discriminant of the corresponding ring. For most orbit parametrizations of
algebraic curves in terms of multidimensional matrices (for example, all those
in [4, 14, 16]), the hyperdeterminant can be shown to equal the discriminant of
the corresponding algebraic curve. Thus, for all these parametrizations of data
associated to rings and curves by multidimensional matrices, the nonvanishing
of the hyperdeterminant corresponds to the nondegeneracy of the associated ring
and the nonsingularity of the associated curve, respectively.

The orbit parametrizations (of K3 surfaces by multidimensional matrices)
considered in this paper yield a number of examples where the hyperdeterminant
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does not coincide with the discriminant. Indeed, in these cases, we show that the
hyperdeterminant only divides the discriminant of the K3 surface, but is not equal
to it. This raises the question as to the interpretation of the hyperdeterminant
in these cases. We will prove that the nonvanishing of the hyperdeterminant
corresponds precisely to an associated automorphism of the K3 surface being
fixed-point-free. This interpretation is what consequently allows us to prove
Theorem 1.5 for all nonsingular Cayley K3 surfaces.

An additional advantage of our method is that it also naturally extends to
other cases. For example, we may use Line 9 of Table 1 together with our
hyperdeterminant method to produce examples of K3 surfaces of rank 4 having
many fixed-point-free automorphisms of positive entropy:

THEOREM 1.6. Let X be a nonsingular K3 surface corresponding to a penteract.
Then X has a fixed-point-free automorphism with entropy log(λpent) ≈ 2.717 >
0, where λpent = 4 + √13 +

√
7+ 2

√
13 ≈ 15.145 is the unique real root of

x4 − 16x3 + 14x2 − 16x + 1 greater than 1.

In fact, we will show that these K3 surfaces coming from penteracts have
infinitely many automorphisms of positive entropy. Recall that a Salem number
is a real algebraic integer λ > 1 whose conjugates other than λ±1 lie on the
unit circle; its irreducible minimal polynomial is then called a Salem polynomial
(see [36] for a survey of problems involving Salem numbers). (We follow the
convention of McMullen [51], where the set of Salem numbers includes quadratic
integers with these properties. Another convention is to call such quadratic
integers Pisot numbers.) The entropy of an automorphism of a projective K3
surface is either 0 or the logarithm of a Salem number [51, Section 3], and it is an
interesting question as to which Salem polynomials arise from automorphisms of
K3 surfaces (see, for example, [20, 51, 52, 63]).

We obtain a plethora of quadratic and quartic Salem polynomials from the
automorphisms of the K3 surfaces arising from penteracts. In fact, we will
demonstrate in Section 7.4 that, for a positive proportion of natural numbers n,
both the polynomials x2 − (4n2 ± 2)x + 1 and x2 − (12n2 ± 2)x + 1 arise as
Salem polynomials of automorphisms of the general K3 surface in the penteract
family. As a consequence, it follows that all real quadratic fields occur as the
splitting fields of Salem polynomials of automorphisms of general K3 surfaces in
this family.

Other examples, similar to those mentioned in the preceding two theorems,
will be constructed in Section 17; for example, we will construct fixed-point-free
automorphisms on K3 surfaces in certain families having entropy equal to the
logarithm of 3+ 2

√
2, (3+√5)/2, and 2+√3, respectively.
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Outline. This paper is organized as follows. In Section 2, we give some
background on lattices and K3 surfaces, as well as notation, that will be used
throughout the paper. In Section 3, we then very briefly discuss some cases from
Table 1 that are classical; for example, some of the moduli spaces where the
general K3 has Picard rank 2. As seen in Figure 1, these classical examples often
appear as covariants of other cases that we consider in this paper.

The bulk of this paper lies in Sections 4–16. In each of these sections, we prove
Theorem 1.3 for the specified group G, representation V , lattice Λ, and subset
S of Λ as listed in Table 1. We begin each section with a construction of the
K3 surfaces, and associated line bundles/divisors, obtained from a general G(F)-
orbit of V (F). In many of the sections, we also discuss various automorphisms of
the relevant K3 surfaces arising from these constructions.

Finally, in Section 17, we consider some connections between these bijections
and hyperdeterminants, as well as some applications to dynamics on K3 surfaces.

2. Preliminaries

2.1. Lattices. A lattice Λ is a free abelian group of finite rank, equipped
with a bilinear pairing 〈 , 〉 : Λ × Λ → Z. We will assume that the pairing is
nondegenerate. A lattice is often described by the Gram matrix G = (〈vi , v j 〉)i j

with respect to a basis v1, . . . , vn of Λ. The discriminant of the lattice is then
det(G) and the discriminant group of Λ is A = Λ∗/Λ, where Λ∗ is the dual
lattice. It is equipped with a discriminant form φ : A × A → Q/Z. The real
signature of Λ is the pair (r+, r−) consisting of the number of positive and
negative eigenvalues of its Gram matrix G. We say that Λ is positive definite
(respectively, negative definite, or indefinite) if r− = 0 (respectively, r+ = 0, or
r+r− 6= 0). Similarly, one can define the integral p-adic signatures for every
prime p, by considering Λp = Λ ⊗ Zp and its discriminant group AΛp . These
are invariants of the isomorphism class of the lattice.

We now record for use in this paper some useful theorems regarding
embeddings and isomorphisms of lattices.

THEOREM 2.1. Let Λ be an indefinite integral lattice of rank n > 3 and
discriminant d. Assume that there is no odd prime p such that pn(n−1)/2 | d, and
that 2n(n−3)/2+b(n+1)/2c - d. Then the class number of the genus ofΛ is 1. That is,Λ
is determined by the collection of its real and p-adic signatures.

This theorem is used in Table 1 to identify the various Néron–Severi lattices
that arise in our orbit problems with direct sums of familiar lattices. For the lower
rank examples, it is easy to give a direct identification; for higher rank, it suffices
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to compute the genus symbols of the Néron–Severi lattice (defined by a Gram
matrix in the corresponding section), and match them with those of the lattices
given in the table. For brevity, we omit these verifications in the text.

THEOREM 2.2 (Nikulin [59, Theorem 1.14.4]). Let M be an even lattice with real
signature (t+, t−) and discriminant form φM , and let Λ be an even unimodular
lattice of signature (s+, s−). Suppose that

(a) t+ < s+;

(b) t− < s−;

(c) `(AMp) 6 rank(Λ)− rank(M)− 2 for p 6= 2;

(d) One of the following condition holds at the prime 2.

(i) `(AM2) 6 rank(Λ)− rank(M)− 2; or

(ii) `(AM2) = rank(Λ)−rank(M) and φM
∼= u+2 (2)⊕ q ′ or φM

∼= v+2 (2)⊕
q ′ for some q ′.

Then there exists a unique primitive embedding of M into Λ.

Here, `(A) denotes the smallest number of generators of the group A, and
u+2 (2) and v+2 (2) are specific discriminant forms on certain finite 2-groups (see
[59]). This theorem is the key ingredient in checking that our lattices have unique
primitive embeddings in the K3 lattice. We leave the routine verification to the
interested reader.

2.2. K3 surfaces. In this subsection, we first recall some basics of K3 surfaces
and explain the existence of a coarse moduli space MΛ,S for a lattice Λ as in
Remark 1.2 and a subset S of Λ. For simplicity, we work over the complex
numbers, though it is possible also to give an algebraic description of lattice-
polarized K3 surfaces [5].

A K3 surface X over F is a projective algebraic nonsingular surface with trivial
canonical bundle and h1(X,OX )= 0. The cohomology group H2(X,Z), equipped
with the cup product form, is a 22-dimensional lattice that is abstractly isomorphic
to the K3 latticeΛK 3 := E2

8⊕U 3, where E8 is the 8-dimensional negative definite
even unimodular lattice and U is the hyperbolic lattice with Gram matrix (0 1

1 0).
The Néron–Severi group NS(X) as defined in the introduction is a primitive
sublattice of the K3 lattice, with signature (1, ρ − 1).

We start with the notion of a marked Λ-polarized K3 surface. Pick an
embedding Λ ↪→ ΛK 3 (it does not matter which, since all embeddings are
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equivalent by assumption). A marking is an isomorphism φ : H2(X,Z) → ΛK 3

such that φ−1(Λ) ⊂ NS(X). For such a marked polarized K3 surface, the class
of a regular 2-form ω on X maps under φ to an element z ∈ Λ⊥ ⊗ C, since z
pairs to zero with the algebraic classes. Furthermore, it is easy to see from Hodge
theory that 〈z, z〉 > 0 and 〈z, z〉 = 0. Therefore, we have z ∈ Ω where Ω is
an open subset of the quadric cone in Λ⊥ ⊗ C defined by these two conditions.
Since the form is unique up to scaling, we obtain a well-defined element of P(Ω).
The map taking (X, φ) to z is called the period mapping. It can be shown that it
yields an isomorphism between the moduli space of marked ample Λ-polarized
K3 surfaces and the complement Ω0 of a union of hyperplanes in Ω .

To remove the marking, let Γ (Λ) be the group

Γ (Λ) = {σ ∈ O(ΛK 3) : σ(v) = v for all v ∈ Λ}.
Then an element σ ∈ Γ (Λ) acts on the moduli space by sending (X, φ) to (X,
φ ◦ σ), which gives an isomorphism of the polarized K3 surfaces. Let ΓΛ be the
image of Γ (Λ) in O(Λ⊥). Then the moduli space of Λ-polarized K3 surfaces
is obtained by taking the quotient by the group action of Γ (Λ). It establishes an
isomorphism with the period domain, obtained by taking the quotientΩ0/ΓΛ. For
more details, we refer the reader to [30].

In this paper, we will require a minor modification of this construction. Namely,
we do not quotient by the pointwise stabilizer of Λ, but only by the pointwise
stabilizer of S. Let

Γ (Λ, S) = {σ ∈ O(ΛK 3) : σ(Λ) = Λ and σ(s) = s for any s ∈ S}.
Then Γ (Λ, S) contains Γ (Λ) as a subgroup, and is generally strictly larger.
(However, Γ (Λ) is a finite-index subgroup of Γ (Λ, S) if S (or its span) contains
a positive/ample class.) Let ΓΛ,S be its image in O(Λ⊥). The moduli space of
(Λ, S)-polarized K3 surfaces is obtained by taking the quotient of the fine moduli
space of ample marked Λ-polarized K3 surfaces by Γ (Λ, S). From the period
mapping, it follows that the dimension of the space MΛ,S (when S contains a
positive divisor) is 20− rankΛ.

We note here a lemma of Nikulin [57, Lemma 3], which will be very useful
in the determination of Néron–Severi groups of the K3 surfaces studied in this
paper.

LEMMA 2.3 (Nikulin). Let X be a K3 surface, and E1, . . . , En disjoint smooth
rational curves on X such that 1

2 (E1 + · · · + En) ∈ NS(X). Then n ∈ {0, 8, 16}.

The proof is a simple calculation of the Euler characteristic of the double cover
of X branched along the divisor

∑
Ei .
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2.3. Notation and conventions. We make some brief remarks on the notation
and conventions used in this paper.

• Unless otherwise stated, we will work over a field F of characteristic 0. We
expect that most of the results also hold for nonsupersingular K3 surfaces in
positive characteristic larger than 3.

• For a vector space V , the notation Symn(V ) denotes the nth symmetric power
of V as a quotient of V⊗n . However, since we will be working over a field of
characteristic 0, this space is canonically isomorphic to the subspace Symn(V )
of V⊗n and, in fact, it will usually be more natural for us to view it as the
subspace.

• If V is a representation of a group G, we will sometimes consider an action of
Gm × G on V , where Gm acts by scaling.

• We will be denoting various K3 surfaces using indices; in each such case, any
permutation of the subscripts will denote the same surface; for example, X123

and X132 will refer to the same surface.

• We pass between line bundles and divisors on our K3 surfaces freely, and we
will often use additive notation to denote the tensor product of line bundles.
When working with relations among line bundles, we also use = to denote an
isomorphism (or equivalence among divisors).

• Multilinear forms play a large role in many of our constructions. For example,
for vector spaces V1, V2, and V3, we sometimes denote an element A of V1 ⊗
V2⊗V3 as the trilinear form A( · , · , · ), where each ·may also be replaced by an
element of the appropriate dual vector space V ∨i . By abuse of notation, we may
also allow points of the projective space P(V ∨i ) as entries in the multilinear
form A when we are only asking about the vanishing or nonvanishing of A.
Finally, the notation Ay x for an element x ∈ V ∨2 is just A( · , x, · ), for example.

• When discussing the induced action of an automorphism of a K3 surface on the
Néron–Severi group, the matrices will act on row vectors. In particular, if Q is
the matrix of the quadratic form representing the Néron–Severi lattice, then we
have M QM t = Q for the matrix M of any automorphism.

3. Some classical moduli spaces for K3 surfaces with low Picard number

We first recall some of the classical cases listed in the first few entries of Table 1.
All but the last of them have Picard number 2, leading to a moduli space of
dimension 20− 2 = 18. In each case below, we see directly that the moduli space
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is unirational and the points in an open subset correspond bijectively to orbits of
a suitable representation of a reductive group. The excluded locus in each case is
a union of Noether–Lefschetz divisors (in the sense of [49]) on the corresponding
moduli space of lattice-polarized K3 surfaces.

For the cases with Picard number 2, the generic Néron–Severi lattice is even, of
signature (1, 1) and of (absolute) discriminant D. This lattice coincides with the
lattice underlying the quadratic ring OD of discriminant D equipped with twice
the norm bilinear form, that is, the form 〈u, v〉 = N (u + v)− N (u)− N (v).

3.1. Elliptic surfaces with section. The simplest indefinite even lattice is the
hyperbolic plane U of discriminant 1. The moduli space of K3 surfaces lattice-
polarized by U is the same as that of elliptic surfaces with section. Over a field of
characteristic not 2 or 3, we may write the Weierstrass equation of such a surface
as

y2 = x3 + a4(t)x + a6(t),

with a4(t) and a6(t) polynomials of degree at most 8 and 12, respectively. (For
such a Weierstrass equation to describe a K3 rather a rational surface, we also
need deg(a4) > 4 or deg(a6) > 6.) Once we quotient by Weierstrass scaling (x,
y)→ (λ4x, λ6 y) and the PGL2 action on the base P1

t , we obtain a moduli space
of dimension 9+ 13− 1− 3 = 18, as expected. This moduli space MU is clearly
unirational, and corresponds to the representation Sym8(2)⊕ Sym12(2).

3.2. Double covers of P1 × P1. The second discriminant we need to consider
is 4, corresponding to the lattice U (2). The corresponding K3 surfaces are double
covers of P1 × P1, branched along a bidegree (4, 4) curve. The pullbacks of the
two hyperplane classes give us line bundles L1 and L2 with L2

1 = L2
2 = 0 and

L1 · L2 = 2. Either of the projections to P1 is a genus one fibration, and exhibits
the surface as an elliptic surface with a 2-section. The moduli space is birational
to the space of orbits of Gm × GL2

2 on Sym4(2)⊗ Sym4(2).

3.3. Hypersurfaces of bidegree (2, 3) in P1 × P2. A smooth hypersurface of
bidegree (2, 3) in P1 × P2 is a K3 surface. It has two line bundles L1 and L2

which are pullbacks of the hyperplane classes, and satisfy L2
1 = 0, L2

2 = 2, and
L1 · L2 = 3. The generic Néron–Severi lattice of this family(

0 3
3 2

)
,

has discriminant 9. The moduli space is birational to the quotient of Sym2(2) ⊗
Sym3(3) by Gm × GL2 × GL3.

https://doi.org/10.1017/fms.2016.12 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2016.12


Orbit parametrizations for K3 surfaces 17

3.4. Complete intersection of bidegree (1, 1) and (2, 2) hypersurfaces
in P2 × P2. Next, we consider K3 surfaces given as the smooth complete
intersection of bidegree (1, 1) and (2, 2) forms in P2 × P2. This time, the
pullbacks L1 and L2 of the two line bundles satisfy L2

i = 2 (since the intersection
of two lines on one of the P2’s specifies a point, whence L2

i is obtained by
computing the intersection number of a line and a conic). Similarly, we check
that L1 · L2 = 4, from the intersection number of bidegree (1, 1) and (2, 2) curves
on P1 × P1. Therefore, the generic Néron–Severi lattice has Gram matrix(

2 4
4 2

)
with discriminant 12. The moduli space is birational to the quotient of 3 ⊗ 3 ⊕
Sym2(3)⊗ Sym2(3) by Gm × (G9

a o GL2
3), where G9

a acts by adding to the (2, 2)
form the product of the given bidegree (1, 1) form with another bidegree (1, 1)
form.

3.5. Complete intersection of bidegree (1, 2) and (2, 1) hypersurfaces in
P2×P2. Finally, consider K3 surfaces given as the smooth complete intersection
of bidegree (1, 2) and (2, 1) forms in P2 × P2. As in the case of discriminant 12
above, we obtain the generic Néron–Severi lattice(

2 5
5 2

)
of discriminant 21. The moduli space is birational to the quotient of 3⊗Sym2(3)⊕
Sym2(3)⊗ 3 by GL2

3.

3.6. Hypersurfaces of tridegree (2, 2, 2) in P1×P1×P1. Finally, we consider
K3 surfaces defined by the vanishing of a tridegree (2, 2, 2) form on P1×P1×P1.
The three line bundles obtained from pulling back OP1(1) have intersection matrix0 2 2

2 0 2
2 2 0

 .
The moduli space is birational to the quotient of Sym2(2)⊗ Sym2(2)⊗ Sym2(2)
by Gm × GL3

2.

4. Rubik’s revenge: 4 ⊗ 4 ⊗ 4

We begin with a space of K3 surfaces that has been well studied in the classical
literature in algebraic geometry [23, 41, 65, 68], as well as more recently [4, 34,
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61]: that of determinantal quartics. However, our perspective is slightly different,
allowing us to unify several existing results in the literature; in particular, we
classify orbits on the space of 4 × 4 × 4 cubical matrices over a general field F
in terms of moduli spaces of certain lattice-polarized K3 surfaces of Picard rank
2 over F , allowing general ADE singularities. The constructions we use here will
also help prepare us for the larger rank cases to follow in later sections.

THEOREM 4.1. Let V1, V2 and V3 be 4-dimensional vector spaces over F. Let
G ′ = GL(V1)×GL(V2)×GL(V3), and let V be the representation V1 ⊗ V2 ⊗ V3

of G ′. Let G be the quotient of G ′ by the kernel of the multiplication map on
scalars, that is, Gm ×Gm ×Gm → Gm . Let Λ be the lattice whose Gram matrix
is (

4 6
6 4

)
,

and let S = {e1, e2}. Then the G(F)-orbits of an open subset of V (F) are in
bijection with the F-points of an open subvariety of the moduli space MΛ,S of
nonsingular K3 surfaces lattice-polarized by (Λ, S).

4.1. Construction of K3 surfaces. We first describe the construction of a K3
surface from an element A ∈ V = V1 ⊗ V2 ⊗ V3, where V1, V2, and V3 are 4-
dimensional F-vector spaces. With bases for V1, V2, and V3, we may view A as a
4× 4× 4 cubical matrix (ai jk)16i, j,k64 with entries in F . For any x ∈ V ∨1 , we may
obtain a 4× 4 matrix Ay x of linear forms in x . The determinant of this matrix is
a form f of degree 4 in four variables, and its vanishing locus is a quartic surface
X1 in P(V ∨1 ) ∼= P3. We restrict our attention to the general case where X1 has at
most simple isolated singularities, which are thus K3 surfaces; in this case, we
say that A is nondegenerate.

Similarly, we may repeat this construction in the other two directions (replacing
V1 with V2 or V3) to obtain two more K3 surfaces X2 ⊂ P(V ∨2 ) and X3 ⊂ P(V ∨3 ).
We claim that these three K3 surfaces are birational to each other. For example,
to exhibit the map X1 99K X2, we view A as a trilinear form on V ∨1 × V ∨2 × V ∨3 .
Then let

X12 := {(x, y) ∈ P(V ∨1 )× P(V ∨2 ) : A(x, y, · ) = 0}.
Then we observe that the projections of X12 to P(V ∨1 ) and P(V ∨2 ) are X1 and X2,
respectively, thereby giving a correspondence between X1 and X2. In particular,
given a point x ∈ X1, the determinant of Ay x vanishes, and the y ∈ X2 such that
(x, y) ∈ X12 are exactly those y (up to scaling) in the kernel of Ay x in V ∨2 . We
claim that if the kernel is at least 2-dimensional, then the point x ∈ X1 is a singular
point. Indeed, if all of the 3 × 3 minors A∗st(x) of Ay x vanish, for 1 6 s, t 6 4,
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then so do the partial derivatives

∂ f
∂xi

(x) =
∑

s,t

cist A∗st(x),

where cist = (−1)s+taist . Hence if x ∈ X1 is nonsingular, then the kernel of Ay x
is exactly 1-dimensional. Generically, if the kernel of Ay x is 2-dimensional, then
x gives an isolated singularity of X1, which we call a rank singularity of X1.
(Furthermore, if the kernel is 3-dimensional, then the surface X1 is a rational
surface.) (It is possible for X1 to have isolated singularities that are not rank
singularities; see Section 17.1 for a further discussion of singularities on these
surfaces.)

This describes a map ψ12 : X1 99K X2, and it is easy to see that it is generically
an isomorphism, as we may construct the inverse map ψ−1

12 = ψ21 : X2 99K X1 in
the analogous manner. Similarly, we have maps ψi j = ψ−1

j i for all 1 6 i 6= j 6 3.
However, we note that the composition Φ := ψ31 ◦ ψ23 ◦ ψ12 is not the identity!
The resulting automorphism will be discussed further in Section 4.4.

The isomorphism classes of the K3 surfaces X i and maps ψi j are invariant
under the action of the group G. As there is a finite stabilizer group for a generic
point in V (in fact, the stabilizer is trivial; see Lemma 4.3 below), the dimension
of the moduli space of K3 surfaces obtained in this way is 64− 46 = 18.

4.2. Néron–Severi lattice. We will see below that the Néron–Severi lattices of
these K3 surfaces all contain a particular 2-dimensional lattice with Gram matrix(

4 6
6 4

)
. (1)

The space of K3 surfaces with this lattice polarization has dimension 20−2 = 18.
Therefore, we see that the Néron–Severi lattice of a generic K3 surface in this
family will be this 2-dimensional lattice above.

To understand the Néron–Severi group of a K3 surface in our family, say X1 =
X1(A) for a particular choice of A and bases for the vector spaces, we proceed
as follows. Let W be the vanishing locus in X1 of the top left 3 × 3 minor of
A(x, · , · ); note that W contains, in particular, all the isolated rank singularities
of X1. The maps ψ12 and ψ13 can be expressed by the minors of the last row and
column, respectively, of A(x, · , · ) (with the appropriate signs). Note that each
of these two sets of minors contains the top 3 × 3 minor of A(x, · , · ). Hence
we see that W contains a divisor equivalent to C = ψ∗12(L2), where L2 is the
hyperplane class of X2 ⊂ P(V ∨2 ), and similarly W contains a divisor equivalent to
D = ψ∗13(L3). By direct calculation, we observe that the scheme W is reducible,
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and generically decomposes into two components, which must therefore be C and
D. In the Néron–Severi lattice, we therefore have

3H = W = C + D +
∑

i

Ei , (2)

where H = L1 is the hyperplane class of X1 and the Ei are the exceptional divisors
over the isolated rank singularities. In the generic case, there are no exceptional
divisors Ei .

We now compute the intersection numbers involving H and C , assuming there
are no exceptional divisors. We have H 2 = 4, and C2 = 〈ψ∗12(L2), ψ

∗
12(L2)〉 =

L2
2 = 4 and similarly D2 = 4. So we obtain 36 = (3H)2 = C2 + D2 + 2C · D =

4+ 2C · D, giving C · D = 14. Therefore, C · 3H = C · (C + D) = 4+ 14 = 18,
leading to C · H = 6. The divisors H and C thus have the intersection matrix (1).

PROPOSITION 4.2. The Picard group of the K3 surface X1 corresponding to a
very general point (in the moduli space of Rubik’s revenge cubes) is generated by
the classes of C and H.

Proof. The discriminant of the lattice generated by C and H is 20 = 22 ·5, so it is
enough to check that it is 2-saturated. Since C/2 and H/2 have self-intersection
1, which is odd, neither of these classes are in NS(X). Similarly, (C + H)/2 has
self-intersection 5. Therefore, NS(X) = ZC + ZH .

LEMMA 4.3. A quartic surface X = X1 associated to a very general point in the
moduli space of (Λ, S)-polarized K3 surfaces has no linear automorphisms (that
is, induced from PGL4) other than the identity.

Proof. From [58], we have the following description of the automorphism
group. Let O+(NS(X)) be the set of isometries of the Néron–Severi lattice
which preserve the Kähler cone and Oω(T(X)) be the set of isometries of the
transcendental lattice which preserve the period ω of the K3 surface, up to ±1.
Then

Aut(X) ∼= {(g, h) ∈ O+(NS(X))× Oω(T(X)) : ḡ = h̄},
where ¯ refers to the natural morphisms from the orthogonal groups of the lattices
NS(X) or T(X) to their discriminant groups, which are isomorphic.

For a general element of the moduli space, the only Hodge isometries of the
transcendental lattice are h = ±Id. Suppose g preserves the class of H and
g(C) = mC+nH for some m, n ∈ Z. Since g(H) · g(C) = H ·C = 6, we obtain
6m + 4n = 6. Similarly, g(C) · g(C) = C · C = 4 gives 4m2 + 4n2 + 12mn = 4.
Combining these, we get (m, n) = (1, 0) or (−1, 3). In the first case, we have
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g = Id and by the condition on the discriminant group (which is not 2-torsion),
we see that h = Id is forced, leading to the identity automorphism of X . In the
second case, we see that C and D are switched under g; however, since g does
not act by ±1 on the discriminant group, which is generated by (H + C)/10 and
H/2, it does not give an automorphism of X .

COROLLARY 4.4. The stabilizer of the action of G on V is generically trivial.

Proof. If g = (g1, g2, g3) stabilizes v ∈ V , then gi gives a linear automorphism
of X i for each i . Therefore, generically g = 1.

4.3. Moduli problem. This subsection contains the proof of Theorem 4.1. We
have already given a construction from an element of V1 ⊗ V2 ⊗ V3 to a (Λ, S)-
polarized K3 surface. The bulk of the proof is to show the reverse construction.
We start with a well-known lemma; a simple proof may be found in [50] with
more details in [66]. We include this proof below, since it is a useful template for
the proofs of this section.

LEMMA 4.5. Let (X, L) be a generic point in the moduli space M4 of K3
surfaces equipped with a line bundle L with L2 = 4. Then the linear system |L|
embeds X as a quartic surface in P3.

Proof. By Riemann–Roch, h0(L)+ h2(L) > 4, so L or −L is effective. We may
assume the former without loss of generality. For a generic point in the moduli
space, the linear system |L| contains an irreducible curve C . By Bertini’s theorem,
we may even assume C is smooth. It is not difficult to show that h1(L) = 0,
so h0(L) = 4. Therefore, the associated morphism φL maps X to P3. Either (i)
deg(φ) = 1 and the image is a quartic surface in P3, or (ii) deg(φ) = 2 and
the image is a quadric surface, and the curve C is a double cover of a plane
conic branched at 8 points, and therefore a hyperelliptic curve of genus 3. The
second case does not occur generically (see, for instance, the argument in [40,
Remark 2.3.8 and Example 2.3.9] or [1, Exp. VI]), and leads to an increase in the
Picard number.

REMARK 4.6. The locus of K3 surfaces for which |L| does not contain an
irreducible curve (alternatively, has a base locus, necessarily a smooth rational
curve) is a Noether–Lefschetz divisor. In this unigonal case, the complete linear
system |L| describes X as an elliptic surface over a twisted cubic in P3. The
hyperelliptic or digonal case (ii) in the proof above also corresponds to a Noether–
Lefschetz divisor.

https://doi.org/10.1017/fms.2016.12 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2016.12


M. Bhargava, W. Ho and A. Kumar 22

Most of the proof of Theorem 4.1 will be established in the following result,
which we state separately, since it will also be useful in subsequent sections.

THEOREM 4.7. Let X be a K3 surface equipped with two line bundles L1, L2

such that L2
1 = L2

2 = 4 and L1 · L2 = 6. Assume in addition that L1 and L2

correspond to effective divisors C1 and C2 on X that induce maps to P3 whose
images are normal quartic surfaces. Then X arises from a 4 × 4 × 4 matrix via
the construction of Section 4.1.

Proof. We consider X as a quartic surface in P3, embedded through the linear
system |L1|. Then L2 corresponds to a nonhyperelliptic curve C on X of genus 3.
Equivalently, C is projectively normal. It is well known that the sheaf OX (C) is
arithmetically Cohen–Macaulay (see [4] and for more general hypotheses, [31,
Ch. 4]). Therefore, there is an exact sequence

0→ OP3(−1)4 → O4
P3 → j∗L2 → 0,

where j : X → P3 is the embedding as a quartic surface. Taking the long
exact sequence, and using h0(P3,OP3(−1)) = h1(P3,OP3(−1)) = 0, we have
an identification of h0(P3,O4

P3) with h0(X, L2).
Next, tensoring with the exact L1 and taking cohomology, we obtain

0→ H0(OP3)4 → H0(OP3(1))4 → H0( j∗L2 ⊗ L1)→ H1(OP3)4 = 0.

Thus we obtain a surjective map

µ : H0(X, L1)⊗ H0(X, L2)→ H0(X, L1 ⊗ L2). (3)

Since each H0(X, L i) is 4-dimensional, the map has a 4-dimensional kernel. Thus,
we obtain a 4×4×4 matrix, giving rise to a determinantal representation of X .

Proof of Theorem 4.1. Given a 4 × 4 × 4 tensor, we have already seen how to
produce a K3 surface X with two line bundles L1 and L2 with the required pairing
matrix.

Conversely, given a K3 surface X with line bundles L1 and L2, Riemann–Roch
shows that either L1 or its inverse is effective, and similarly for L2. Normalizing
so that L1 and L2 are effective, we see that generically (in the moduli space of
lattice-polarized K3 surfaces) each gives a quartic embedding to P3. Therefore,
we may use the result of Theorem 4.7 to produce a 4× 4× 4 tensor.

It remains to show that these two constructions are inverse to one another. Given
a K3 surface X with two line bundles L1 and L2 with intersection matrix (1), let
Y12 be the natural image of X in P(H0(X, L1)

∨) × P(H0(X, L2)
∨) and let Y1 and

Y2 be the projections onto the respective factors.
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On the other hand, construct the element A ∈ H0(X, L1)⊗H0(X, L2)⊗(kerµ)∨

from (X, L1, L2) as above, and let X12, X1, and X2 be the K3 surfaces constructed
from A in the usual way. We claim that X12 = Y12 and X i = Yi as sets and as
varieties.

By the construction of A from the kernel of µ, we have A(x, y, · ) = 0 for any
point (x, y) ∈ Y12, so Y12 ⊂ X12 and Yi ⊂ X i . Now the quartic polynomial defining
X1 is not identically zero, because A must have nonzero tensor rank. Therefore,
X1 and Y1 are both given by quartic polynomials and must be the same variety,
and similarly for X12 and Y12.

Conversely, given a nondegenerate A ∈ V1 ⊗ V2 ⊗ V3, let X be the K3 surface
X12 constructed from A, and let L1 and L2 be the line bundles on X . Then the
vector spaces V1 and H0(X, L1) are naturally isomorphic, as are V2 and H0(X, L2),
and V ∨3 may be identified with the kernel of the multiplication map µ in (3). With
these identifications, the element of H0(X, L1)⊗H0(X, L2)⊗(kerµ)∨ constructed
from this geometric data is well defined and G-equivalent to the original A.

REMARK 4.8. Strictly speaking, we have not shown that, for a generic point
of the moduli space M = MO20 of K3 surfaces lattice-polarized by the 2-
dimensional lattice O20 with matrix (

4 6
6 4

)
,

the two line bundles L1 and L2 give quartic embeddings—we have only showed
this for K3 surfaces lattice-polarized by 〈4〉. Let B ⊂ M4 be the divisor in
M4 corresponding to K3 surfaces for which the polarization is the class of a
hyperelliptic curve; it is 18-dimensional. There are two obvious maps φi :M→
M4, taking (X, L1, L2) to (X, L i). For any value of i ∈ {0, 1}, since M is 18-
dimensional, in principle it is possible that the ‘bad’ subvariety φ−1

i (B) of M
for which the polarization L i gives a hyperelliptic curve coincides with all of M.
However, this does not happen, and there are at least two ways to see why. First,
one may see it directly in this special example, as follows. Suppose |L1| gives a
2-to-1 map φ to a quadric surface. Then we have L1 = E + F , where E and F
are pullbacks of the generators of the Picard group of the quadric surface. They
satisfy E2 = F2 = 0 and E · F = 2. However, the original 2-dimensional lattice
has no isotropic vectors, which implies that the locus of ‘bad’ K3 surfaces is a
Noether–Lefschetz divisor in M.

Another more general way to see that generically L1 and L2 should give
quartic embeddings is the following: the locus Z of K3 surfaces for which the
corresponding map is 2-to-1 to a quadric surface, or is composed with a pencil, is
closed in the moduli space M. Therefore, it suffices to show that the moduli space
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is irreducible, and to show that it contains a point outside Z . The first assertion
follows (over C) from the description as a quotient of a Hermitian symmetric
domain, and the second from the ‘forward’ construction which produces such a
K3 surface from a 4× 4× 4 cube. We will use this more general method, without
further mention, in the doubly and triply symmetrized cases of Rubik’s revenge.
The irreducibility follows from the uniqueness of the embedding ofΛ into the K3
lattice.

4.4. Automorphisms. Next, let us compute the action of Φ∗ = (ψ31 ◦ ψ23 ◦
ψ12)

∗ on the part of the Néron–Severi lattice given by (1) for K3 surfaces
associated to generic orbits. The relation (2) holds also for the analogous divisors
on X2 and X3, and in the generic case, there are no singularities. We therefore
have

3H = C + D
3C = Φ∗(D)+ H

3Φ∗(D) = Φ∗(H)+ C
3Φ∗(H) = Φ∗(C)+Φ∗(D),

where each relation is the analogue of (2) for X1, X2, X3, and then X1 again, when
applying the ψi j in Φ in turn. Thus, the automorphism Φ∗ acts on the sublattice
N0 := ZH + ZC ∼= O20 of NS(X1) by the matrix

M =
(−3 8
−8 21

)
in the basis (H,C). It describes an automorphism of infinite order, and in fact

Mn =
(−F6n−2 F6n

−F6n F6n+2

)
where the Fn denote the Fibonacci numbers F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2.
The group generated by M has index 6 in the integral orthogonal group O(N0,Z)
of N0. For a very general such X (that is, if NS(X) = N0), it can be shown that Φ
generates Aut(X).

Note that the automorphism Φ of X is the same as the automorphism
considered by Cayley [23, Section 69], and more recently in the context of
dynamics on K3 surfaces by Oguiso [61], who showed that for those X having
Picard number 2, the automorphismΦ is fixed-point-free and has positive entropy
(see also [34] for more on this case). In Section 17.1, we will give a simple proof
of this theorem, as well as of various extensions, using hyperdeterminants.
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5. Doubly symmetric Rubik’s revenge: 4 ⊗ Sym2(4)

We now consider doubly symmetric 4×4×4 cubical matrices, namely elements
of the space V1 ⊗ Sym2V2 for 4-dimensional F-vector spaces V1 and V2. Since
the natural injection of V1 ⊗ Sym2V2 into V1 ⊗ V2 ⊗ V2 is equivariant for the
GL(V1) × GL(V2)-actions, one can understand the GL(V1) × GL(V2)-orbits of
V1 ⊗ Sym2V2 using Theorem 4.1.

However, there are some important differences in the geometric data attached
to a general 4 × 4 × 4 cube compared to that attached to a symmetric one. For a
general 4×4×4 cube, the three resulting K3 surfaces are nonsingular. The basic
reason is that in the P15 of 4 × 4 matrices, the variety of matrices having rank at
most two is 11-dimensional and thus will not intersect a general P3 ⊂ P15 spanned
by four 4×4 matrices. As a result, the corresponding determinantal quartic surface
will have no rank singularities and will in fact generically be smooth.

In the P9 of symmetric 4 × 4 matrices, the matrices having rank at most two
form a 6-dimensional variety of degree 10, namely, the secant variety to the image
of the Veronese embedding P3 ↪→ P9. A general P3 ⊂ P9 spanned by four 4 × 4
matrices will intersect the variety of matrices of rank 6 2 in a 0-dimensional
subscheme of degree 10; consequently, our determinantal quartic surface will
have 10 isolated rank singularities, which are in fact nodes, and generically, there
will be no other singularities.

These K3 surfaces, cut out by determinants of a symmetric 4×4 matrix of linear
forms, were also classically studied, and are called quartic symmetroids [23, 26,
41]. We prove that the general orbits of tensors in V1⊗Sym2V2 correspond to
certain K3 surfaces with Picard rank at least 11 over F :

THEOREM 5.1. Let V1 and V2 be 4-dimensional vector spaces over F. Let G ′ =
GL(V1) × GL(V2), and let G be the quotient of G ′ by the kernel of the natural
multiplication map on scalars Gm × Gm → Gm sending (γ1, γ2) to γ1γ

2
2 . Let V

be the space V1 ⊗ Sym2V2. Let Λ be the lattice given by the Gram matrix

4 6 0 0 0 0 0 0 0 0 0
6 4 1 1 1 1 1 1 1 1 1
0 1 −2 0 0 0 0 0 0 0 0
0 1 0 −2 0 0 0 0 0 0 0
0 1 0 0 −2 0 0 0 0 0 0
0 1 0 0 0 −2 0 0 0 0 0
0 1 0 0 0 0 −2 0 0 0 0
0 1 0 0 0 0 0 −2 0 0 0
0 1 0 0 0 0 0 0 −2 0 0
0 1 0 0 0 0 0 0 0 −2 0
0 1 0 0 0 0 0 0 0 0 −2


https://doi.org/10.1017/fms.2016.12 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2016.12


M. Bhargava, W. Ho and A. Kumar 26

and let S = {e1, e2}. Then the G(F)-orbits of an open subset of V (F) are in
bijection with the F-points of an open subvariety of the moduli space MΛ,S of
nonsingular K3 surfaces lattice-polarized by (Λ, S).

For a generic A ∈ V1⊗Sym2V2, from the constructions in the previous section,
we obtain nonsingular quartic surfaces X2 and X3 by slicing the cube A in
two directions, whereas in the third direction, we get a quartic surface X1 with
generically ten A1 singularities. By symmetry, X2 and X3 are in fact identical
surfaces in P(V ∨2 ), but we will sometimes refer to these separately in the sequel.

Because contracting the cube in the third direction gives a symmetric matrix,
we see that for a generic point x ∈ X1, the left and right kernels of Ay x
are spanned by the same vector. The map ψ12 : X1 99K X2 has a base locus
consisting of the ten singularities on X1 (since the kernel of Ay x at these ten
points is (generically) 2-dimensional), and hence it is the minimal resolution of
these singularities. Similarly, the map ψ21 : X2 → X1 is the blow-down of the
exceptional divisors, so it is just the map ψ−1

12 as a rational map. Furthermore,
while ψ13 ◦ ψ21 is the identity map from X2 to X3, the maps ψ23 and ψ32 are not
the identity map.

5.1. Néron–Severi lattice. We begin by describing a set of generators for the
Néron–Severi group for the K3 surface X arising from a very general doubly
symmetric 4 × 4 × 4 cubical matrix. Let L1 be the hyperplane class of X = X1

and L2 be the pullback of the hyperplane class of X2 via ψ12. Finally, let P1, . . . ,

P10 be the exceptional divisors corresponding to the ten singular points. While L1,
L2, and

∑10
i=1 Pi are defined over F , the Pi individually may not be.

PROPOSITION 5.2. The Picard group of XF is generated by L1, L2 and the
classes of the Pi .

Proof. We first observe that the dimension of the moduli space of quartic
symmetroids is 10 · 4− 15− 15− 1 = 9. Hence the Picard number is at most 11.
Since the classes of L1 and the ten Pi are all independent, the Picard number is
exactly 11 for a very general point on the moduli space, and there are exactly ten
singular points on the associated quartic surface. We obtain the relation

3L1 = 2L2 +
∑

Pi (4)

by specializing the relation (2). Hence a basis for the span of all these classes
is given by {L1, L2, P1, . . . , P9}. We easily compute that the discriminant of the
lattice Λ they span is 1024 = 210 and the discriminant group is Z/4Z⊕ (Z/2Z)8.
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It is enough to show that Λ is saturated in NS(X). In fact, by computing the
inverse of the Gram matrix, one immediately checks that any element of the dual
lattice of Λ must have the form

D = c
4

L1 + 1
2

( 9∑
i=1

di Pi

)
,

for integers c and di . Suppose D is in the saturation Λ′ of Λ. If c is odd, then
2D −∑ di Pi = (c/2)L1 is also in Λ′, which is a contradiction since its self-
intersection is odd. Therefore, we may assume that D has the form

D = c
2

L1 + 1
2

( 9∑
i=1

di Pi

)
.

By symmetry, it follows that (c/2)L1 + 1
2 (
∑8

i=1 di Pi) + d9 P10 ∈ NS(X), and
therefore we have 1

2 d9(P9 − P10) ∈ NS(X). By Lemma 2.3, this forces d9 to
be even. Similarly, all the di are even, and then (c/2)L1 ∈ NS(X), which is a
contradiction as above. This concludes the proof.

5.2. Moduli problem.

Proof 1 of Theorem 5.1. As before, one direction has already been proved.
Starting with a K3 surface X and line bundles L1, L2 and P1, . . . , P10 satisfying
the desired intersection relations, we need to construct a doubly symmetric
4× 4× 4 matrix, or equivalently, a symmetric 4× 4 matrix of linear forms. This
construction is described in, for example, [31, Section 4.2] (see also [26, 71]); we
briefly sketch the argument:

Assume without loss of generality that L1 and L2 are very ample. Let Y be the
image of the quartic embedding corresponding to the line bundle L1. For each i ,
since P2

i = −2 and Pi · L2 > 0, we have that Pi is effective and thus corresponds
to a smooth rational curve on X . These collapse to singular points on Y , since L1 ·
Pi = 0. The surface Y has ten singular points. Next, let F be the pushforward of
L2 from X to Y . We compute that F∨ has the divisor class−L2−∑ Pi . Therefore,
the relation

F ∼= F∨(3)

holds in the Picard group of Y , so the ACM sheaf F gives a symmetric
determinantal representation.

Checking that these constructions are inverse to one another is a similar
verification as in the proof of Theorem 4.1.
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We may give a second, more elementary proof of Theorem 5.1, using the
construction in the proof of Theorem 4.1 together with the following lemma:

LEMMA 5.3. Let B and C be two n×n matrices over F with C invertible. Assume
BC−1 has distinct eigenvalues over F and that for all x, y ∈ F , the transpose of
the left kernel of Bx−Cy is equal to its right kernel. Then B and C are symmetric
matrices.

Proof. Since det(BC−1 − λI ) has distinct roots in F by assumption, the binary
n-ic form det(Bx − Cy) = det(C) det(BC−1x − I y) has distinct roots [xi : yi ]
(i = 1, . . . , n) in P1(F ). For each i , let vi be a nonzero vector in the right kernel
of Bxi − Cyi , implying that vt

i is a nonzero vector in the left kernel. The vectors
vi are linearly independent, because they are eigenvectors corresponding to the
distinct eigenvalues of BC−1.

Consider the two symmetric bilinear forms B( · , · ) and C( · , · ) defined by
B(w, z) = wt Bz and C(w, z) = wtCz. We wish to show that B and C are
symmetric bilinear forms. To see this, note that vt

i (Bxi − Cyi)v j = vt
i (Bx j −

Cy j)v j = 0 for any i 6= j . Since (xi , yi) and (x j , y j) are linearly independent (as
they yield distinct points in P1(F )), we conclude that vt

i Bv j = vt
i Cv j = 0 for any

i 6= j .
It follows that B and C are diagonal bilinear forms with respect to the basis

v1, . . . , vn . Hence B and C are symmetric bilinear forms, and thus correspond to
symmetric matrices with respect to any basis.

Proof 2 of Theorem 5.1. Again, we only need to show that the geometric data
gives rise to a doubly symmetric 4 × 4 × 4 matrix. Given (X, L1, L2, P1, . . . ,

P10), we use the multiplication map

µ : H0(X, L1)⊗ H0(X, L2)→ H0(X, L1 ⊗ L2)

to obtain a 4 × 4 × 4 matrix A as before. It remains to show that there exists
an identification of V3 := (kerµ)∨ and V2 := H0(X, L2) such that A is doubly
symmetric. Let V1 := H0(X, L1).

The proof of Theorem 4.1 implies that A in turn produces a K3 surface and line
bundles isomorphic to those with which we started. In particular, the embedding
corresponding to L1 has ten singular points, since L1 · Pi = 0 implies that these
(−2)-curves are contracted. Therefore, by applying equation (2) of Section 4.2
and comparing with the relation (4), we deduce that the line bundles L2 and L3

are isomorphic. We therefore have an isomorphism φ : V2
∼→ V3. Let X1 be the

image of X via the quartic embedding given by L1. For any point x ∈ X1, we have
det(A(x, · , · )) = 0 and the kernel of A(x, · , · ) in V ∨2 and in V ∨3 is the same
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(under φ). In other words, since X1 spans P(V ∨1 ), the image of V ∨1 in V2 ⊗ V2

given by (Id⊗ φ) ◦ A is a 4-dimensional subspace of V2 ⊗ V2 such that the ‘left’
and ‘right’ kernels of each element in V ∨2 are the same (usually empty, of course).

We now wish to apply Lemma 5.3 to any two generic matrices in this 4-
dimensional space. For two nonsingular elements B and C of V2⊗ V2, the matrix
BC−1 will have distinct eigenvalues over F if the binary n-ic form det(Bx −Cy)
has distinct roots, in which case Bx − Cy has rank at least 3 for any values
of x and y. Recall that the K3 surface X1 has only a finite number of isolated
singularities, points x ∈ P(V ∨1 ) where A(x, · , · ) has rank 2. For any line in
P(V ∨1 ) not passing through one of those singularities, the corresponding pencil
of matrices in P(V2 ⊗ V2) will thus satisfy the conditions of the lemma. That is,
let B and C be nonsingular elements of V2 ⊗ V2 such that their span does not
contain an element with rank less than 3. Lemma 5.3 implies that B and C are
symmetric. We may repeat this process to obtain a basis for the image of V ∨1
in V2 ⊗ V2 only consisting of symmetric elements, thereby giving an element of
V1 ⊗ Sym2V2 as desired.

Since these constructions are inverse to one another in the proof of Theorem 4.1,
they are also inverse to one another here.

5.3. Automorphisms. The map Φ = ψ31 ◦ ψ23 ◦ ψ12 : X1 99K X1 considered
in Section 4.4 can be constructed in this situation as well. Though it is only
a birational automorphism of X1, it can be lifted to an actual automorphism
of the blown-up nonsingular model X12. This follows from the general fact
that a birational map between two minimal nonsingular algebraic surfaces with
nonnegative Kodaira dimension is an isomorphism (see, for instance, [3, Theorem
10.21]).

First, we observe that Φ is an involution. Indeed, the symmetry implies that
ψ12 = ψ13, ψ23 = ψ32, and ψ31 = ψ21, and thus Φ = Φ−1. We now compute its
induced action on the Néron–Severi group.

The main idea is the same as in Section 4.4: use the relation (2) repeatedly, as
we apply the maps ψ12, ψ23, ψ31, and ψ12 again. Let L1, L2, and Pi for 1 6 i 6 10
be the classes introduced earlier. Then we obtain the following equations among
these classes (written additively):

3L1 = 2L2 +∑i Pi , 3L2 = L1 + L2,

3Φ∗(L2) = Φ∗(L1)+ L2, 3Φ∗(L1) = 2Φ∗(L2)+
∑

i

Φ∗(Pi).

By checking intersection numbers, we compute that Φ∗L1 = −3L1 + 8L2,
Φ∗L2 = −L1+ 3L2, and Φ∗Pi = 2L1−∑ j 6=i Pj . The associated transformation
matrix squares to the identity, as expected.
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REMARK 5.4. The automorphism group of a general quartic symmetroid
contains a subgroup of the automorphism group of a general nodal Enriques
surface. The latter group is a finite-index subgroup of the reflection group W2,4,6

corresponding to the Coxeter diagram of type T2,4,6, and was computed explicitly
by Cossec and Dolgachev [25].

6. Triply symmetric Rubik’s revenge: Sym3(4)

We consider next the triply symmetric Rubik’s revenge, in order to understand
the orbits of Gm × GL(V ) on Sym3V for a 4-dimensional vector space V .

Such a cube is doubly symmetric in all three directions, and the three K3’s
arising from such a triply symmetric Rubik’s revenge are identical. A generic
such triply symmetric Rubik’s revenge will thus give rise to a K3 that has at
least 10 singularities, and a numerical example shows that we obtain exactly 10
singularities in general.

The quartic surface X has been well studied in the classical literature [23, 38,
39, 41], as a Hessian quartic symmetroid, since the matrix of linear forms whose
determinant defines X is the Hessian (the matrix of second partial derivatives) of
a single cubic form F in four variables. For more recent references, see [26, 32].

Generically, over an algebraically closed field, there are five planes tangent
(along a degenerate conic) to such a Hessian surface. If `i are the linear forms
defining these planes Z i , the equation of the quartic may be written as

1
a1`1
+ · · · + 1

a5`5
= 0

for some constants a1, . . . , a5. The cubic form is F = a1`
3
1 + · · · + a5`

3
5. The ten

singular points are given by the intersections of all ten triples of the hyperplanes
Z i . In addition, the surface contains ten special lines, which come from the
pairwise intersections of the Z i . Thus, the singular points may be labeled Pi jk and
the lines L lm , with Pi jk lying on L lm exactly when {l,m} ⊂ {i, j, k}. Therefore,
there are three singular points on each special line and three special lines passing
through each singular point. For 1 6 i 6= j 6 3, the maps ψi j defined in Section 4
are all identical. Denoting them by ψ , it is clear that ψ is a birational involution
on the K3 surface X , blowing up the ten singular points Pi jk and blowing down
the L lm . In fact, it exchanges Pi jk and L lm , where {i, j, k, l,m} = {1, 2, 3, 4, 5}.

We show that the general orbits of tensors in Sym3V correspond to certain K3
surfaces with Picard rank at least 16 over F .

THEOREM 6.1. Let V1 be a 4-dimensional vector space over F. Let G ′ = Gm ×
GL(V1) and G be the quotient of G ′ by the kernel of the multiplication map Gm ×
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Gm → Gm given by (λ1, λ2) 7→ λ1λ
3
2. Let V be the representation Sym3V1 of G.

Let Λ be the lattice given by the Gram matrix



4 6 1 1 1 1 1 0 0 0 0 0 0 0 0 0
6 4 0 0 0 0 0 1 1 1 1 1 1 1 1 1
1 0 −2 0 0 0 0 1 1 1 0 0 0 0 0 0
1 0 0 −2 0 0 0 1 0 0 1 1 0 0 0 0
1 0 0 0 −2 0 0 0 1 0 1 0 1 0 0 0
1 0 0 0 0 −2 0 1 0 0 0 0 0 1 1 0
1 0 0 0 0 0 −2 0 0 0 1 0 0 1 0 0
0 1 1 1 0 1 0 −2 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 0 −2 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 −2 0 0 0 0 0 0
0 1 0 1 1 0 1 0 0 0 −2 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0 0 −2 0 0 0 0
0 1 0 0 1 0 0 0 0 0 0 0 −2 0 0 0
0 1 0 0 0 1 1 0 0 0 0 0 0 −2 0 0
0 1 0 0 0 1 0 0 0 0 0 0 0 0 −2 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 −2



(5)

and let S = {e1, e2}. Then the G(F)-orbits of an open subset of V (F) are in
bijection with the F-points of an open subvariety of the moduli space MΛ,S of
nonsingular K3 surfaces lattice-polarized by (Λ, S).

6.1. Néron–Severi lattice. The Picard group of the generic Hessian surface
(base changed to F) is spanned over Z by the classes of the lines L i j and the
exceptional curves corresponding to the singular points Pi jk . The lattice spanned
by these has rank 16 and discriminant −48. Since its discriminant group is
Z/3Z⊕ (Z/2Z)4, a case-by-case argument shows that this lattice is the full Picard
group. We omit this proof, since the result is established in [32] (using elliptic
fibrations) and by a different method in [27].

6.2. Moduli problem. We now proceed to the proof of Theorem 6.1. Given a
triply symmetric 4×4×4 cube and the resulting K3 surface X , we have seen that
the Picard group of XF is generated by the classes of the ten nodes and lines. Let
H1 and H2 be the hyperplane classes for X1 and X2, respectively. The set

{H1, H2, L12, L13, L14, L23, L34, P123, P124, P125, P134, P135, P145, P234, P235, P245}
is easily checked to be a basis for NS(X), yielding the Gram matrix (5). This data
is fixed up to isomorphism by the action of Gm × GL(V1).
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Conversely, given a (Λ, S)-polarized K3 surface, we construct a triply
symmetric Rubik’s revenge by using the second proof of Theorem 5.1. In
particular, we may use that proof to construct a 4× 4× 4 cube A in V1⊗ V2⊗ V3,
for certain 4-dimensional vector spaces Vi , where there is an isomorphism
φ32 : V3→ V2 so that A is symmetric, that is, maps to an element of V1⊗Sym2V2

under Id ⊗ Id ⊗ φ32. Here, we may also use the same proof to show that A is
symmetric under an isomorphism φ21 : V2 → V1 , that is, gives an element of
Sym2V1 ⊗ V3 under the map Id ⊗ φ21 ⊗ Id. Thus, since the transpositions (12)
and (23) generate S3, we may use φ12 and φ23 to identify all three vector spaces
and obtain an element of Sym3V1.

6.3. Automorphisms. The automorphism group of the Hessian quartic
surface is quite large. In [32], Dolgachev and Keum identified a set of generators
for the automorphism group. However, the relations between these are not
completely known, so a complete presentation for the automorphism group is
still unknown.

To connect with the earlier sections, we note that the maps ψ are birational
involutions (recall that they all are identical). In this case, each ψ is also the same
as the 3-cycle Φ described in Section 4.4 because of the symmetry. We described
above the action induced by this involution on NS(X): the divisors H1 and H2

are switched, and the Pi jk and L lm are switched for {i, j, k, l,m} = {1, 2, 3, 4, 5}.
Again, this is studied extensively in [32].

7. Penteracts (or 5-cubes): 2 ⊗ 2 ⊗ 2 ⊗ 2 ⊗ 2

Consider the representation V = V1 ⊗ V2 ⊗ V3 ⊗ V4 ⊗ V5, where each Vn is a
2-dimensional F-vector space, of the group G ′ = GL(V1)×GL(V2)×GL(V3)×
GL(V4) × GL(V5). With a choice of bases for each Vn for n ∈ {1, . . . , 5}, an
element A ∈ V (F)may be visualized as a 5-dimensional cube, or penteract, with
entries ai jklm ∈ F for i, j, k, l,m ∈ {1, 2}. The space of penteracts is extremely
rich, and indeed the next several sections, through Section 13, will focus on
variations of this space of penteracts.

Let G be the quotient of G ′ by the kernel of the multiplication map G5
m → Gm .

In this section, we will study the G(F)-orbits on V (F), and in particular, describe
the relationship between (an open subvariety of) the orbit space V (F)/G(F) and
the moduli space of certain K3 surfaces having Néron–Severi rank at least 4:

THEOREM 7.1. Let V = V1⊗V2⊗V3⊗V4⊗V5, where each Vn is a 2-dimensional
F-vector space. Let G ′ = GL(V1)×GL(V2)×GL(V3)×GL(V4)×GL(V5), and
let G be the quotient of G ′ by the kernel of the multiplication map G5

m → Gm . Let
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Λ be the lattice whose Gram matrix is
0 2 2 2
2 0 2 2
2 2 0 2
2 2 2 0

 , (6)

and let S = {e1, e2, e3, e4}. Then the G(F)-orbits of an open subset of V (F) are
in bijection with the F-rational points of an open subvariety of the moduli space
MΛ,S of K3 surfaces X lattice-polarized by (Λ, S).

7.1. Constructions of K3 surfaces. Given a general A ∈ V (F), we construct
a K3 surface with Picard number at least 4 as follows. First, let

X123 := {(v,w, x) ∈ P(V ∨1 )× P(V ∨2 )× P(V ∨3 ) : det A(v,w, x, · , · ) = 0}.
We similarly define X i jk for any subset {i, j, k} in {1, 2, 3, 4, 5} (where
permutation of the indices does not change the variety). The equation defining
each X i jk is a tridegree (2, 2, 2) form in P1×P1×P1 and thus X i jk is generically a
K3 surface; specifically, we only allow isolated rational double point singularities.
Also, let

X1234 := {(v,w, x, y) ∈ P(V ∨1 )×P(V ∨2 )×P(V ∨3 )×P(V ∨4 ) : A(v,w, x, y, · )= 0},
and define X i jkl for any subset {i, j, k, l} in {1, 2, 3, 4, 5} in the analogous way.
This variety X i jkl is the intersection of two multidegree (1, 1, 1, 1) forms in P1 ×
P1×P1×P1, which is also generically a K3 surface. In other words, we can view
the K3 surface as the base locus of a pencil of divisors of type (1, 1, 1, 1) in (P1)4.
Note that the projections from X i jkl to P(V ∨i ) are genus one fibrations.

For any permutation {i, j, k, l,m} of {1, 2, 3, 4, 5}, there exists a projection
π : X i jkl → X i jk , which is an isomorphism for the generic A ∈ V (F). The fiber
of each point (v,w, x) ∈ X i jk is determined by the kernel of the singular map
A(v,w, x) : V ∨l → Vm . If A(v,w, x, · , · ) is the zero matrix, then X i jk is singular
at (v,w, x), and we then call (v,w, x) a rank singularity. For nonsingular points
(v,w, x) on X i jk , the bilinear form A(v,w, x, · , · ) has a 1-dimensional kernel,
and the fiber of (v,w, x) under the map π is a single point, given algebraically.
In particular, we see that if X i jk is nonsingular, then it is isomorphic to X i jkl .

More generally, if X i jk has an isolated rank singularity at (v,w, x), then the
fiber of π at (v,w, x) is the entire line {(v,w, x, y) ∈ P(V ∨i )×P(V ∨j )×P(V ∨k )×
P(V ∨l ) : y ∈ P(V ∨l )}. Since such rational double point singularities are blown up
in one step, the surfaces X i jkl are nonsingular even when the X i jk have isolated
rank singularities. We call a penteract nondegenerate if the surfaces X i jkl are all
nonsingular.
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7.2. Néron–Severi lattice. We now compute the Néron–Severi lattice of X =
X1234. The surface X comes equipped with the four line bundles L i , given by the
pullbacks of OP(V∨i )(1) for 1 6 i 6 4. Their intersection numbers are easy to
compute: because of the description of X i jk as the vanishing of a tridegree (2, 2,
2) form, we have L i · L j = 2(1 − δi j). As the dimension of the orbit space is
25− (3 · 5+ 1) = 16, the dimension of NS(X) for a generic X in this family must
be exactly 4. Therefore, although we will find other natural divisors, these four L i

generate the Picard group of the generic K3 surface in this family.
There are other line bundles given by, for example, considering the pullback

of OP(V∨5 )(1) via the isomorphisms X = X1234 → X123 → X1235 followed by the
projection to P(V ∨5 ). This particular line bundle L (123)

5 satisfies the following:

LEMMA 7.2. If X123 is nonsingular (and therefore isomorphic to X), then we
have the relation

L1 + L2 + L3 = L4 + L (123)
5 (7)

among the above line bundles on X. More generally, if X123 has isolated rational
double point singularities, we have

L1 + L2 + L3 = L4 + L (123)
5 +

∑
i

Ei (8)

where the Ei are the line bundles corresponding to the exceptional divisors on X
arising from the singularities on X123.

Proof. We first assume that X123 is smooth. The rational maps ν4 and ν5 from
X123 to P(V ∨4 ) and P(V ∨5 ), which define L4 and L (123)

5 , respectively, are each given
by the appropriate kernel of A(v,w, x, · , · ) in V4 ⊗ V5. With a choice of basis
vectors, let

A(v,w, x, · , · ) =
(

A11 A12

A21 A22

)
,

where each Ai j is a tridegree (1, 1, 1) form on P(V ∨1 ) × P(V ∨2 ) × P(V ∨3 ). Then
ν4 and ν5 are given by, for example, the forms [−A21 : A11] and [−A12 : A11],
respectively. It is easy to check that the line bundle ν∗4OP(V∨4 )(1) is isomorphic to
O(Z(A11, A12)), where Z(A11, A12) refers to the common zero locus of those two
forms; similarly, ν∗5OP(V∨5 )(1) is isomorphic to O(Z(A11, A21)). Thus, the right
side of (7) is isomorphic to O(Z(A11)), and thus to the pullback of O(1, 1, 1)
from P(V ∨1 )× P(V ∨2 )× P(V ∨3 ) to X .

If X123 has isolated rational double point singularities, then for the singular
points (v,w, x), we have that A(v,w, x, · , · ) is identically zero. Thus, the
divisors Z(A11) on X123 contains components corresponding to L4, to L (123)

5 , and
to each of the singularities, giving (8).
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We will use versions of the relation of Lemma 7.2 (with permuted indices, as
necessary) to determine how divisor classes interact in many of the subsequent
sections.

PROPOSITION 7.3. For a very general X in this family of K3 surfaces, NS(X) is
spanned over Z by L1, L2, L3, and L4.

Proof. Because this moduli space has dimension 32−16 = 16, the Picard number
of such a very general X is at most 4, and we know that L1, . . . , L4 span a finite-
index subgroup of NS(X). The discriminant of the lattice generated by L1, L2,

L3, L4 is −48 = −24 · 3, and we only need to check that it is 2-saturated.
For i 6= j , the class (L i + L j)/2 cannot be integral, since its self-intersection

is odd, and similarly for (L i + L j + Lk)/2 for i , j , k distinct. By symmetry,
therefore, L i/2 cannot be in NS(X) (otherwise L i/2 + L j/2 would be). Finally,
if (L1+ L2+ L3+ L4)/2 = L4+ L (123)

5 /2 were in NS(X), so would L (123)
5 /2, and

therefore all L i/2 by symmetry, which is a contradiction.

LEMMA 7.4. A K3 surface X123 associated to a very general point in the moduli
space of (Λ, S)-polarized K3 surfaces has no linear automorphisms (that is,
induced from PGL2 × PGL2 × PGL2) other than the identity.

Proof. We proceed as in the proof of Lemma 4.3. Let g ∈ O+(NS(X)) and h ∈
Oω(T(X)) agree on the discriminant groups. As before we can assume h = ±Id.
On the other hand, g fixes the classes of L1, L2 and L3. Let

g(L4) = aL1 + bL2 + cL3 + d L4,

for some integers a, b, c, d . Taking the intersection with g(L1) = L1 through
g(L3) = L3 and using g(L i) · g(L4) = L i · L4, we obtain the equations

2 = 0+ 2b + 2c + 2d
2 = 2a + 0+ 2c + 2d
2 = 2a + 2b + 0+ 2d,

implying a = b = c. These equations reduce to 2 = 4a + 2d , or d = 1 − 2a.
Finally, g(L4)

2 = L2
4 = 0 yields a(a + d) = 0. Now a = 0 implies d = 1 and

g = Id, whereas a = −d implies d = −1. But in the latter case, ḡ is not ±Id, a
contradiction. This completes the proof.

COROLLARY 7.5. The stabilizer of the action of G on V is generically trivial.
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Proof. If g = (g1, g2, g3, g4, g5) stabilizes v ∈ V , then each triple (gi , g j ,

gk) gives a linear automorphism of X i jk for each (i, j, k). Therefore, generically
g = 1.

7.3. Reverse construction. We now give the proof of the reverse direction
of Theorem 7.1. We start from the data of a nonsingular K3 surface X with
nonisomorphic line bundles L1, L2, L3, and L4 such that L i · L j = 2(1 − δi j). It
follows from Riemann–Roch that L i or L−1

i is effective, since h0(L i)+h0(L−1
i ) >

2. We assume the former without loss of generality, noting that L i L̇ j = 2 forces
a compatible choice. Consider the multiplication map

µ : H0(X, L1)⊗H0(X, L2)⊗H0(X, L3)⊗H0(X, L4)→ H0(X, L1⊗L2⊗L3⊗L4)

(9)
on sections. The dimension of the domain is 24 = 16. Since

(L1 + L2 + L3 + L4)
2 = 2 · 2 · 6 = 24,

an easy application of Riemann–Roch on X then yields

h0(X, L1 + L2 + L3 + L4) = 1
2 (L1 + L2 + L3 + L4)

2 + χ(OX ) = 24
2 + 2 = 14.

Furthermore, we claim that the map (9) is surjective from repeated applications
of the basepoint-free pencil trick [2, page 126]. We first check that a number of
line bundles have vanishing H1 groups.

LEMMA 7.6. For generic X and for distinct i, j, k, ` ∈ {1, 2, 3, 4}, the
cohomology groups H1(X, L−1

i ), H1(X, L i ⊗ L−1
j ), H1(X, L i ⊗ L j ⊗ L−1

k ),
and H1(X, L i ⊗ L j ⊗ Lk ⊗ L−1

` ) all vanish.

Proof. By symmetry, it suffices to check that H1(X, L−1
1 ), H1(X, L1 ⊗ L−1

2 ),
H1(X, L1 ⊗ L2 ⊗ L−1

3 ), and H1(X, L1 ⊗ L2 ⊗ L3 ⊗ L−1
4 ) all vanish. Note that

Riemann–Roch and Serre duality for each of these line bundles L implies that

h1(L) = h0(L)+ h0(L−1)− 2− (L · L)/2. (10)

First, for L = L−1
1 , it is immediate that H0(X, L−1

1 ) = 0 since L1 is effective
and nonzero, and because h0(X, L1) = 2 and L1 · L1 = 0, we conclude that h1(X,
L−1

1 ) = 0. It also follows that the complete linear system described by any of the
L i is a genus one fibration on X .

Next, for L = L1 ⊗ L−1
2 , we have L2 = (L1 − L2)

2 = −4, so h0(L)− h1(L)+
h2(L) = 0. However, L and−L are not effective by genericity (since L · L1 = −2
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and (−L) · L2 = −2), so h0 and h2 vanish (the latter by Serre duality). Therefore,
h1(L) = 0.

Similarly, L = L1⊗ L2⊗ L−1
3 has L2 = −4, and furthermore (−L) · L3 = −4,

while L · L1 = L · L2 = 0. We can conclude again by genericity that L and −L
are ineffective. So h1 vanishes for this line bundle as well.

Finally, for L = L1 ⊗ L2 ⊗ L3 ⊗ L−1
4 , we have L2 = 0, so in fact L or −L

must be effective. In fact, from equation (8), we see that L = L (123)
5 +∑ Ei , and it

immediately follows that −L is not effective (alternatively, the latter also follows
from (−L) · L i < 0). From the Gram matrices for the Picard groups in each case,
one can see that L ·Ei =−1, which means that Ei lie in the base locus of the linear
system described by L . Therefore, h0(L) = h0(L (123)

5 ) = 2. We obtain h1(L) = 0
from equation (10) above.

REMARK 7.7. We will treat several subvarieties of this moduli space (or rather,
finite covers of them) through the various symmetrizations of the penteract, in
subsequent sections. The comments in Remark 4.8 can be adapted to show that
the genericity assumption of the lemma does not exclude these subvarieties.

The proof of surjectivity of the map (9) follows from three applications of the
basepoint-free pencil trick. Therefore, the kernel of µ in (9) has dimension 2,
and we obtain a penteract as an element of H0(X, L1) ⊗ H0(X, L2) ⊗ H0(X,
L3)⊗ H0(X, L4)⊗ (kerµ)∨, up to the action of G.

Proof of Theorem 7.1. It only remains to show that the two constructions
described above are inverse to one another. Given a nonsingular K3 surface
X with appropriate line bundles L1, L2, L3, and L4 as in the statement of the
theorem, let Y1234 be the natural image of X in P(H0(X, L1)

∨) × P(H0(X,
L2)
∨) × P(H0(X, L3)

∨) × P(H0(X, L4)
∨), and let Yi jk for {i, j, k} ⊂ {1, 2, 3, 4}

be the projection onto the i th, j th, and kth factors.
On the other hand, construct the penteract A ∈ H0(X, L1)⊗H0(X, L2)⊗H0(X,

L3)⊗H0(X, L4)⊗ (kerµ)∨ from (X, L1, L2, L3, L4) as above, and let X1234 and
X i jk be the K3 surfaces constructed from A in the usual way. By the construction
of A as the kernel of µ, we have A(v,w, x, y, · ) = 0 for any point (v,w, x,
y) ∈ Y1234, so Y1234 ⊂ X1234 and Yi jk ⊂ X i jk . We claim that X1234 = Y1234 and
X i jk = Yi jk as sets and as varieties.

At least one of the tridegree (2, 2, 2) polynomials fi jk defining X i jk is not
identically zero; for such a variety X i jk , we have that X i jk and Yi jk are both
given by nonzero tridegree (2, 2, 2) forms and thus must be the same variety,
and similarly for X1234 and Y1234. Moreover, because Y1234 is assumed to be
nonsingular, the tensor A is nondegenerate.
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Conversely, given a nondegenerate penteract A ∈ V1 ⊗ V2 ⊗ V3 ⊗ V4 ⊗ V5,
let X be the nonsingular K3 surface X1234 constructed from A and L1, L2, L3,
L4 be the line bundles on X . Then the vector spaces Vi and H0(X, L i) are
naturally isomorphic for 1 6 i 6 4, and V ∨5 can be identified with the kernel
of the multiplication map µ from above. With these identifications, the penteract
constructed from this geometric data is well defined and G-equivalent to the
original A.

7.4. Automorphisms. Given a nondegenerate penteract A, we may consider
the following composition of the isomorphisms from Section 7.1:

α34,5 : X1234 → X124 → X1245 → X125 → X1235 → X123 → X1234.

Since each map is an isomorphism, the entire composition is an automorphism of
X1234. It is easy to see that it is not the identity, however; in fact, a point (v0, w0,

x0, y0) ∈ X1234 ⊂ P(V ∨1 ) × P(V ∨2 ) × P(V ∨3 ) × P(V ∨4 ) is sent to (v0, w0, x1, y1),
where x0 and x1 are the two solutions for x in the equation det A(v0, w0, x, · ,
· ) = 0 (and similarly for y0 and y1).

We may similarly define automorphisms αkl,m of X i jkl for any permutation {i,
j, k, l,m} of {1, 2, 3, 4, 5} (where the ordering of the indices in the subscript of
α, but not of X , is relevant). For example, the automorphisms αkl,m and αlk,m of
X i jkl are inverse to one another (and actually the same, as described below), but
αkm,l is an automorphism of X i jkm .

A more geometric way to describe these automorphisms is by viewing X i jkl

as a double cover of P(V ∨i ) × P(V ∨j ); then αkl,m switches the two sheets of this
double cover. It is clear that all of these automorphisms have order two, and thus
αkl,m = αlk,m .

Using the relation (7) and its analogues, we may easily compute how αkl,m acts
on the Néron–Severi lattice. For example, the automorphism α34,5 is equivalent to
the action of the matrix 

1 0 0 0
0 1 0 0
2 2 −1 0
2 2 0 −1

 (11)

on NS(X). Conjugating (11) by 4 × 4 permutation matrices yields all six
automorphisms of the form αkl,5 for k, l ∈ {1, 2, 3, 4}.

For very general X , the group Γpent generated by these automorphisms αkl,m

turns out to have index 60 in the orthogonal group O(NS(X),Z) of NS(X), and
therefore also finite index in Aut(X). (We are grateful to Igor Rivin for performing
this interesting computation.) One way to visualize these automorphisms is by
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Figure 2. Some automorphisms of the K3 surface associated to a penteract.

placing each of the five X i jkl on a vertex of the 5-cell (a.k.a. 4-simplex) and by
viewing each edge as the isomorphism from X i jkl to X i jkm through X i jk (again, as
defined in Section 7.1); see Figure 2. Then each αkl,m is the traversal of a triangle
in the 1-dimensional boundary of the 5-cell.

These αkl,m’s may be composed to yield nontrivial automorphisms that are 4-
and 5-cycles on the boundary of the 5-cell. The 4-cycles give automorphisms that
preserve one of the genus one fibrations and act by translation by a section of the
Jacobian fibration (see [16, Section 6.2]). It is easy to check that they have fixed
points on reducible fibers of the fibrations.

An example of a 5-cycle is the automorphism

Φ51234 : X1234 → X2345 → X1345 → X1245 → X1235 → X1234,

which is the composition α34,5 ◦ α23,5 ◦ α12,5. Applying Φ51234 to X induces the
action of the matrix 

−1 0 2 2
−2 1 2 4
−4 2 5 6
−6 2 8 11

 (12)

on Λ in NS(X). By symmetry, all of the 5-cycles that meet all 5 vertices act
in a similar way on NS(X). As we will see in Section 17.4, these 5-cycle
automorphisms of X turn out to be fixed-point-free in general and have positive
entropy.

As mentioned in the introduction, the elements of Γpent are often fixed-point-
free and of positive entropy. One obtains many different quadratic and quartic
Salem polynomials as the characteristic polynomials of these automorphisms. In
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particular, the Néron–Severi lattice NS(X) is isomorphic to U (2) ⊕ A2(2) for a
very general X in our family. Therefore, Aut(X) has finite index in O(U ⊕ A2),
which is commensurable to SL2(Z[ω]) where ω denotes a third root of unity. (We
are grateful to Curt McMullen for pointing out this commensurability.) One way
to see this commensurability is as follows: consider the Hermitian form over Z[ω]
with matrix given by

M =
(

x z − ωw
z − ω2w y

)
. (13)

The discriminant of this form (that is, the determinant of the matrix) is xy −
(z2 + zw + w2), which is half the quadratic form corresponding to the lattice
U ⊕ A2. Therefore, it is enough to show that a finite-index subgroup of the
group SL2(Z[ω]) acts as a group of automorphisms of the Hermitian form (13).
This is readily accomplished by considering the action g · M = gMg†, where
g ∈ SL2(Z[ω]) and g† is the conjugate transpose of g. We omit checking the
standard details, referring the interested reader to, for example, [22, Section 13.9,
page 317]. (We may also see this commensurability geometrically by comparing
the automorphism group of the abelian surface E × E (where E = C/Z[ω] is
the elliptic curve of j-invariant 0) with the automorphisms of its transcendental
lattice U (−1)⊕ A2(−1). See also Aurel Page’s answer in [64], which outlines a
proof that O(U ⊕ A2) is in fact isomorphic to PGL2(Z[ω]).)

The Salem polynomial corresponding to the action of g ∈ SL2(Z[ω]) on the
Hermitian form M is pg(T ) = T 4−ee′T 3+(e2+e′2−2)T 2−ee′T+1,where e =
Trace(g) and e′ is the conjugate of e. The splitting field of this quartic polynomial
has Galois group isomorphic to the dihedral group D4 of order 8, and it is also the
splitting field of

qg(T ) = NormQ(ω)[T ]/Q[T ] det(g − T · Id)
= NormQ(ω)[T ]/Q[T ](T 2 − eT + 1)
= T 4 − (e + e′)T 3 + (2+ ee′)T 2 − (e + e′)T + 1

over Q. In fact, the fields K p and Kq obtained by adjoining a root of pg(T ) and
qg(T ), respectively, to Q are dual D4-quartic fields, that is, they are the fixed fields
of the two subgroups of order 2 (up to conjugacy) in D4 which are interchanged
by the outer involution of D4. In particular, the quadratic resolvent field of K p is
Q(ω).

It is then easy to deduce that the quadratic Salem polynomials of the
automorphism group of X generate all real quadratic fields, while the quartic
Salem polynomials generate all D4-quartic fields whose quadratic resolvent field
is Q(ω). Below, we indicate how to explicitly find automorphisms to prove the
stronger statement in the introduction about specific quadratic Salem polynomials
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of the form x2 − (4n2 ± 2)x + 1 and x2 − (12n2 ± 2)x + 1. A similar analysis
using the unit group of the quartic field Q(ω)[T ]/(T 2− eT + 1) gives the second
half of our assertion.

Let

γ1 = α34,5 ◦ α24,5 =


1 0 0 0
2 −1 2 0
6 −2 3 0
4 −2 2 1

 and γ2 = α13,5 ◦ α12,5 =


1 −2 2 4
0 −1 2 2
0 −2 3 6
0 0 0 1

 .
Then it is easily verified that for k ∈ Z, the automorphism γ k

1 γ2 produces the
Salem polynomial

x2 − (4(2k + 1)2 − 2
)
x + 1. (14)

A positive proportion of the polynomials x2 − (4n2 + 2)x + 1 and x2 − (12n2 ±
2)x + 1 may also be obtained as Salem polynomials of penteract automorphisms
in a similar way:

(a) for γ1 = α34,5 ◦α24,5 and γ2 = α14,5, the Salem polynomial corresponding to
the automorphism γ k

1 γ2 is x2 − (4(2k)2 + 2)x + 1;

(b) for γ1 = α34,5 ◦ α24,5 ◦ α34,5 and γ2 = α23,5 ◦ α12,5, the Salem polynomial
corresponding to the automorphism γ1γ

k
2 is x2 − (12(2k)2 − 2)x + 1;

(c) for γ1 = α12,5◦α34,5 and γ2 = α23,5◦α34,5◦α24,5◦α34,5, the Salem polynomial
corresponding to the automorphism γ1γ

k
2 is x2 − (12(2k + 1)2 + 2)x + 1.

Obtaining the Salem polynomials of the form (14) is sufficient to deduce that
all real quadratic fields occur as the splitting fields of Salem polynomials of
automorphisms of general K3 surfaces in our penteract family. To see this, for
each discriminant D of a real quadratic field, we wish to show the existence of a
pair (m, n) of positive integers with m = 2k+1 such that Dn2 = (4m2−2)2−4 =
16m2(m2 − 1), or equivalently, the existence of a pair (m, n′) of positive integers
with m odd such that m2 − Dn′2 = 1 (for we may then set n to be 4mn′). The
latter Brahmagupta–Pell equation is well known to have infinitely many positive
integer solutions (m, n′) for every discriminant D, even with the restriction that
m is odd, proving the claim.

8. Doubly symmetric penteracts: 2 ⊗ 2 ⊗ 2 ⊗ Sym2(2)

We now consider doubly symmetric penteracts, namely elements of V = V1 ⊗
V2 ⊗ V3 ⊗ Sym2V4 for 2-dimensional F-vector spaces V1, V2, V3, and V4, with an
action of the group GL(V1) × GL(V2) × GL(V3) × GL(V4). Since the space of
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doubly symmetric penteracts maps naturally into the space of all penteracts from
Section 7 after the identification of V4 and V5, one may understand the orbits of
doubly symmetric penteracts by using constructions from Theorem 7.1. We find
that these orbits correspond to certain K3 surfaces of Picard rank at least 9 over F :

THEOREM 8.1. Let V = V1 ⊗ V2 ⊗ V3 ⊗ Sym2V4 for 2-dimensional F-vector
spaces V1, V2, V3, and V4. Let G ′ = GL(V1) × GL(V2) × GL(V3) × GL(V4)

and let G be the quotient of G ′ by the kernel of the natural multiplication map
Gm ×Gm ×Gm ×Gm → Gm sending (γ1, γ2, γ3, γ4) 7→ γ1γ2γ3γ

2
4 . Let Λ be the

lattice whose Gram matrix is

0 2 2 2 0 0 0 0 0
2 0 2 2 0 0 0 0 0
2 2 0 2 0 0 0 0 0
2 2 2 0 1 1 1 1 1
0 0 0 1 −2 0 0 0 0
0 0 0 1 0 −2 0 0 0
0 0 0 1 0 0 −2 0 0
0 0 0 1 0 0 0 −2 0
0 0 0 1 0 0 0 0 −2


, (15)

and let S = {e1, e2, e3, e4}. Then the G(F)-orbits of an open subset of V (F) are
in bijection with the F-points of an open subvariety of the moduli space MΛ,S of
K3 surfaces X lattice-polarized by (Λ, S).

Many of the constructions in Section 7 apply, but there are some important
differences. For a general penteract, the ten different K3 surfaces in P1 × P1 × P1

are nonsingular. For a doubly symmetric penteract A, however, the locus of (r, s,
t) where A(r, s, t, · , · ) is identically zero is 0-dimensional and of degree 6, as it
is given as the intersection of three (1, 1, 1) forms on P(V ∨1 ) × P(V ∨2 ) × P(V ∨3 ).
Therefore, the K3 surface X123 defined by det A(r, s, t, · , · ) = 0 will have, in
general, 6 isolated (rank) singularities over F . These singularities of X123 are
blown up by the map X1234 → X123, and while these singularities may not be
individually defined over F , the entire degree 6 subscheme is defined over F . It is
easy to check that all of the other X i jk coming from A are generically nonsingular.

8.1. Néron–Severi lattice. To compute the Néron–Severi group of the
nonsingular K3 surface X1234 here, we observe that there still are line bundles
L i on X1234 coming from pulling back OP(V∨i )(1) to X1234 for 1 6 i 6 4. In
addition, over F , there are six exceptional fibers Ei for 1 6 i 6 6, coming from
the blow-ups of the 6 singularities in X123; the sum of these Ei is a divisor defined
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over F . It is easy to compute all of the intersection numbers: the only nonzero
ones are L i · L j = 2(1− δi j), L4 · Ei = 1 for 1 6 i 6 6, and E2

i = −2.
Recall from Lemma 7.2 that there is a relation among the line bundles; here, it is

slightly simplified because of the symmetry (that is, L4 and L123
5 are isomorphic):

L1 + L2 + L3 = 2L4 +
6∑

i=1

Ei . (16)

We thus expect the Néron–Severi group to generically have rank 9, and in fact,
the intersection matrix of all of these divisor classes may be reduced to the matrix
(15), which is the intersection matrix for L1, . . . , L4, E1, . . . , E5. Note that the
lattice they span has discriminant 28.

PROPOSITION 8.2. For a very general X in this family of K3 surfaces, NS(X) is
spanned over Z by L1, L2, L4, and the Ei , i = 1, . . . , 6.

Proof. Since the moduli space here has dimension 8 · 3 − 13 = 11, the Picard
number of a very general X is at most 9. It is enough to check that the lattice L
spanned by these divisors is 2-saturated. Computation of the discriminant group
shows that any element of the dual lattice may be written as

D = 1
2
(c1 L1 + c2 L2 + c4 L4)+ 1

4

∑
di Ei ,

with ci , di integers. First, by Lemma 2.3, no divisor of the form (
∑

ei Ei)/2, with
ei integers, can be in NS(X), unless all the ei are even. It follows that in the
expression for D, all the di must be even, as 2D − c1 L1 − c2 L2 − c4 L4 would
otherwise be a counterexample to the above observation. So we may assume that
D has the form

D = 1
2

(
c1 L1 + c2 L2 + c4 L4 +

6∑
i=1

ei Ei

)
. (17)

Intersection with Ei shows that c4 is an even integer, so we may assume it is zero.
If c1 and c2 are even, then we get a contradiction to Lemma 2.3 as above. At
least one of c1 and c2 is odd, and if both are not odd, we may construct a divisor
D′ ∈ NS(X) by reversing the roles of L1 and L2, by symmetry. Then D + D′ has
the same shape as (17), with both coefficients c1 and c2 odd. So we may assume
c1 = c2 = 1 and all ei ∈ {0, 1} by subtracting an element of L .

The self-intersection of D is 1 −∑ e2
i /2 and is then even, so

∑
e2

i = 2 or
6. If exactly two of the ei are 1, say E1 and E2, then by symmetry each of the
divisors (L1+ L2+ Ei + E j)/2 is in NS(X). Subtracting two of these, we see that
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(E1+E2+E3+E4)/2 is in NS(X), which contradicts Lemma 2.3. Finally, if all six
ei are 1, then another application of symmetry shows that D′ = (L1+L3+

∑
Ei) ∈

NS(X). Therefore, D − D′ = (L1 − L3)/2 ∈ NS(X), which is impossible since
it has odd self-intersection.

COROLLARY 8.3. The divisors L1, . . . , L4, E1, . . . , E5 form a basis for NS(X),
for X very general.

8.2. Moduli problem. We now complete the proof of Theorem 8.1.

Proof of Theorem 8.1. The constructions in both directions almost exactly follow
those for Theorem 7.1. Given a doubly symmetric penteract, we obtain the
K3 surfaces X i jk and X i jkl with the divisor classes (and intersection matrix) as
described above.

On the other hand, given such a K3 surface X lattice-polarized by (Λ, S), we
must show that the penteract A constructed by the reverse map of Section 7.3 is
doubly symmetric under an identification of two of the vector spaces. Let L1, L2,
L3, and L4 be line bundles corresponding to the four elements of S (in order).
These are the line bundles used to construct the penteract A ∈ H0(X, L1)⊗H0(X,
L2)⊗H0(X, L3)⊗H0(X, L4)⊗ (kerµ)∨, where µ is the multiplication map (9).

Note that A in turn gives rise to isomorphic K3 surfaces and line bundles, as
well as a fifth line bundle, say L (123)

5 , via the map from X1234→ X123 99K X1235→
P(kerµ). In addition, from the intersection matrix (15), we see that there are
six singularities on X123 which are blown up in X1234 (whose exceptional fibers
correspond to the last six rows/columns of the intersection matrix). Thus, using
the relation (8) and the intersection matrix (15), we find that L4 and L (123)

5 are in
fact isomorphic. Therefore, we may identify the vector spaces V4 := H0(X, L4)

and V5 := (kerµ)∨.
With this identification, the maps from X123 to P(V ∨4 ) and P(V ∨5 ) are identical

and given in the usual way by taking the appropriate kernels of A(v,w, x, · ,
· ) ∈ V4 ⊗ V5 for (v,w, x) ∈ X123. The remaining key idea is very simple to
check (for example, explicitly) in this case: for a rank-one element ζ ∈ V ⊗ V
for a 2-dimensional F-vector space V , if ζ(v, · ) = 0 and ζ( · , v) = 0, then ζ
is in fact in the symmetric subspace Sym2V of V ⊗ V . Since X123 spans the
ambient space P(H0(X, L1)

∨) × P(H0(X, L2)
∨) × P(H0(X, L3)

∨), the penteract
A is in fact symmetric, that is, an element of H0(X, L1) ⊗ H0(X, L2) ⊗ H0(X,
L3)⊗ Sym2H0(X, L4), as desired.

8.3. Automorphisms. The automorphisms αi j,k defined in Section 7.4 are
again automorphisms of the K3 surfaces obtained from doubly symmetric
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penteracts. Of course, because of the symmetry in this case, some of these are
the same automorphism, for example, α14,2 = α15,2.

Moreover, the action of the 5-cycles on the Néron–Severi lattice is different,
since we now have to take the exceptional divisor classes into account. To
compute this action for the generic K3 surface in this family, we employ the
same methods as for the doubly symmetric Rubik’s revenge, namely, repeated
applications of the relation (8) and computations of intersection numbers. For
example, the action of

Φ54321 : X1234 → X1235 → X1245 → X1345 → X2345 → X1234

on NS(X) here is given by the matrix

5 2 −4 6 0 0 0 0 0
2 1 −2 4 0 0 0 0 0
2 0 −1 2 0 0 0 0 0
1 1 −1 1 0 0 0 0 0
1 0 −1 2 1 0 0 0 0
1 0 −1 2 0 1 0 0 0
1 0 −1 2 0 0 1 0 0
1 0 −1 2 0 0 0 1 0
1 0 −1 2 0 0 0 0 1


. (18)

We will look at this automorphism again in Section 17.4.
By symmetry, all of the 5-cycles that meet all five models X i jkl are either

analogous to Φ54321 above or to Φ53421. In the latter case, the induced action
on the line bundles L i is similar to that of Φ in the penteract case (from which
the action on the divisors E j may be immediately deduced). These two types of
automorphisms will be shown in Section 17.4 to be fixed-point-free in general
and of positive entropy.

9. Triply symmetric penteracts: 2 ⊗ 2 ⊗ Sym3(2)

Suppose we now have a penteract that is symmetric in the last three coordinates.
We prove that the general orbits of such tensors correspond to certain K3 surfaces
with Picard rank at least 14 over F :

THEOREM 9.1. Let V = V1 ⊗ V2 ⊗ Sym3V3 for 2-dimensional F-vector spaces
V1, V2, V3. Let G ′ = GL(V1) × GL(V2) × GL(V3) act on V , and let G be the
quotient of G ′ by the kernel of the map Gm × Gm × Gm → Gm sending (γ1, γ2,

γ3) 7→ γ1γ2γ
3
3 . Let Λ be the lattice whose Gram matrix is
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0 2 2 2 0 0 0 0 0 0 0 0 0 0
2 0 2 2 0 0 0 0 0 0 0 0 0 0
2 2 0 2 0 1 0 1 0 1 0 1 0 1
2 2 2 0 1 0 1 0 1 0 1 0 1 0
0 0 0 1 −2 1 0 0 0 0 0 0 0 0
0 0 1 0 1 −2 0 0 0 0 0 0 0 0
0 0 0 1 0 0 −2 1 0 0 0 0 0 0
0 0 1 0 0 0 1 −2 0 0 0 0 0 0
0 0 0 1 0 0 0 0 −2 1 0 0 0 0
0 0 1 0 0 0 0 0 1 −2 0 0 0 0
0 0 0 1 0 0 0 0 0 0 −2 1 0 0
0 0 1 0 0 0 0 0 0 0 1 −2 0 0
0 0 0 1 0 0 0 0 0 0 0 0 −2 1
0 0 1 0 0 0 0 0 0 0 0 0 1 −2



, (19)

and let S = {e1, e2, e3, e4}. Then the G(F)-orbits of an open subset of V (F) are
in bijection with the F-points of an open subvariety of the moduli space MΛ,S of
K3 surfaces X lattice-polarized by (Λ, S).

9.1. Néron–Severi lattice. Note that a triply symmetric penteract is also
doubly symmetric in any two of the last three coordinates. This implies, from
Section 8, that the K3 surface X123 (= X124 = X125) has at least six rank
singularities (over F ), and a numerical example shows us that generically there
are no other singularities. Meanwhile, the other surfaces X134 and X234 are
generically nonsingular, as are all the X i jkl .

The maps of the type X1234 → X123 blow up the six singular points on X123,
and thus X1234 contains six lines; call the associated divisor classes Pi for 1 6
i 6 6. There is also a map X1234 → X124, defined by the identical equations after
switching the 3rd and 4th coordinates, so there are at least twelve lines in X1234;
call the six lines coming from this map Qi for 1 6 i 6 6. These twelve lines occur
in pairs, say (Pi , Qi) for 1 6 i 6 6, which are flipped by the birational involution
X123 99K X1234 → X124 = X123.

Recall that there are line bundles L1, L2, L3, and L4 on X1234 coming from the
pullback of OP(V∨i )(1), and by Lemma 7.2, we have the relations

L1 + L2 + L3 = 2L4 +
6∑

i=1

Pi and L1 + L2 + L4 = 2L3 +
6∑

i=1

Qi .

Each of the six pairs of lines (Pi , Qi) determines a single point of intersection.
Explicitly, if the associated singular point on X123 is (v,w, x) ∈ P(V ∨1 )×P(V ∨2 )×
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P(V ∨3 ), then the intersection point is (v,w, x, x) ∈ P(V ∨1 ) × P(V ∨2 ) × P(V ∨3 ) ×
P(V ∨3 ). These are the only six intersection points among all of the Pi and Q j , as
(
∑

Pi) · (∑ Q j) = 6.
Another way to see that each of these pairs of lines intersect once (and do not

intersect any other lines) is to view X123 as a double cover of P(V ∨1 ) × P(V ∨2 ),
branched along a bidegree (4, 4) curve. One computes that there are exactly six
A2 singularities on that curve.

The map from X1234 to P(V ∨1 ) is a genus one fibration whose discriminant as a
binary form on V1 has degree 24, and it factors as the cube of a degree six form
times an irreducible degree six form. Therefore, the genus one fibration has six
reducible fibers of type I3 (in the sense of Kodaira [43, 44]). These reducible fibers
each consist of three lines in a ‘triangle’; a distinguished pair of these lines in each
triangle together give us the six pairs of lines described previously.

As a consequence, the Néron–Severi lattice (over F ) has rank at least 2 ·6+2 =
14. It is straightforward to compute the intersection numbers of all of the known
divisor classes (the four line bundles from pulling back OP(V∨i )(1) for 1 6 i 6 4
and the two distinguished lines in each of the six triangles). The only nonzero
intersection numbers are

L i · L j = 2 for i 6= j, L3 · Qi = 1, L4 · Pi = 1,

P2
i = Q2

i = −2, Pi · Qi = 1.

Taking the basis {L1, . . . , L4, P1, Q1, . . . , P5, Q5}, one obtains the lattice with
Gram matrix (19). This lattice has discriminant −324.

PROPOSITION 9.2. For a very general X in this family of K3 surfaces, NS(X) is
spanned over Z by L1, L2, L4, and the exceptional classes Pi , Qi , i = 1, . . . , 6.

Proof. A dimension count shows that the moduli space in this case has dimension
4 · 4 − 10 = 6, so the Picard number of a very general X is at most 14. Let Λ
be the lattice spanned by the above classes. First, note that Λ is already spanned
by L1, . . . , L4 and the ten classes Pi , Qi , for i = 1, . . . , 5, since we may solve
for P6 and Q6 from the above relations. Since these remaining fourteen classes
are linearly independent (they have a nonsingular intersection matrix), they form
a basis for Λ.

Let Z i = Pi − Qi . Computing the inverse of the Gram matrix shows that any
element of the dual lattice has the form

D = 1
2
(c1 L1 + c2 L2)+ 1

3

5∑
i=1

di Z i
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where ci and di are integers. Suppose D ∈ NS(X). Then 3D ∈ NS(X), from
which it follows that D′ = (c1 L1 + c2 L2)/2 ∈ NS(X). We claim both c1 and c2

are even. If c1 and c2 are odd, then D′2 is odd, a contradiction. So at least one of
c1 and c2 is even. If one is odd and one is even, we can find another divisor (by
symmetry) with the parities reversed, and adding them will give us an element
with both coefficients odd, a contradiction. Therefore, we may assume

D = 1
3

5∑
i=1

di Z i .

We may assume each di ∈ {−1, 0, 1}. But note that Z 2
i = −6 and Z i · Z j = 0 for

i 6= j . Hence, D2 = −2(
∑

d2
i )/3, and since this must be an (even) integer, we see

that exactly three of the di must be ±1. Suppose without loss of generality that
(Z1 + Z2 + Z3)/3 ∈ NS(X). Then by symmetry any (Z i + Z j + Zk)/3 ∈ NS(X).
Therefore,

1
3 (Z1 + Z2 + Z3)− 1

3 (Z1 + Z2 + Z4) = 1
3 (Z3 − Z4) ∈ NS(X),

which is impossible, since exactly three of the di are ±1.

9.2. Moduli problem. We now complete the proof of Theorem 9.1.

Proof of Theorem 9.1. The above discussion describes how to construct a K3
surface lattice-polarized by (Λ, S) from a triply symmetric penteract. It remains
to show that from such data, the penteract A constructed as in Section 7.3 is in fact
triply symmetric. That is, starting from X lattice-polarized by (Λ, S), let L1, L2,
L3, and L4 be the line bundles corresponding to the elements of S. Then we obtain
a penteract A ∈ H0(X, L1) ⊗ H0(X, L2) ⊗ H0(X, L3) ⊗ H0(X, L4) ⊗ (kerµ)∨,
where µ is the usual multiplication map on sections.

The rest of the proof builds on that of Theorem 8.1. In particular, that proof
immediately shows that A must be doubly symmetric, that is, symmetric in the
fourth and fifth tensor factors. (Note that this argument relies on (8) with the
exceptional fibers Pi .) By switching the roles of the indices 3 and 4 in that
argument, and using the Qi for (8), we also see that A is symmetric in the third and
fifth factors. In other words, there are simultaneous identifications of the vector
spaces H0(X, L3), H0(X, L4), and (kerµ)∨ such that A is triply symmetric in
these three factors, that is, under these identifications, we may think of A as an
element of H0(X, L1)⊗ H0(X, L2)⊗ Sym3H0(X, L3).

9.3. Automorphisms. As in the previous penteract cases, we may again
consider many automorphisms of the form αi j,k . All the 5-cycles meeting all five
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X i jkl are equivalent (up to reordering) to one of the following two:

Φ54123 : X1234 → X1235 → X2345 → X1345 → X1245 → X1234

Φ54132 : X1234 → X1235 → X2345 → X1245 → X1345 → X1234.

Using the same techniques as in previous sections, namely, applying Lemma
7.2 and computing intersection numbers, we obtain the action of Φ54123 on the
Néron–Severi lattice of the K3 surface XF arising from a general triply symmetric
penteract as the matrix

−1 0 2 2 0 0 0 0 0 0 0 0 0 0
−2 1 2 4 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0
−1 1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 −1 0 0 0 0 0 0 0 0
−1 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 −1 0 0 0 0 0 0
−1 0 1 1 0 0 1 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 −1 0 0 0 0
−1 0 1 1 0 0 0 0 1 1 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 −1 0 0
−1 0 1 1 0 0 0 0 0 0 1 1 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 −1
−1 0 1 1 0 0 0 0 0 0 0 0 1 1



. (20)

The induced action of the other automorphism Φ54132 on the line bundles L i and
the exceptional divisors Pj is the same (up to reordering) as the action of Φ54321

on L i and E j in the doubly symmetric penteract case, and the induced action on
the Q j may also be immediately computed.

10. Doubly doubly symmetric penteracts: 2 ⊗ Sym2(2) ⊗ Sym2(2)

Suppose we have a penteract A that is symmetric in the second and third
coordinates, and also in the last two coordinates. Then we may use the theorems
from Sections 7 and 8 to study the associated orbit problem. We prove that the
general orbits of such tensors correspond to certain K3 surfaces with Picard rank
at least 12 over F :

THEOREM 10.1. Let V = V1 ⊗ Sym2V2 ⊗ Sym2V3 for 2-dimensional F-vector
spaces V1, V2, V3. Let G ′ be the group GL(V1)×GL(V2)×GL(V3), and let G be
the quotient of G ′ by the kernel of the multiplication map Gm ×Gm ×Gm → Gm
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given by (γ1, γ2, γ3) 7→ γ1γ
2
2 γ

2
3 . Let Λ be the lattice whose Gram matrix is

0 2 2 2 0 0 0 0 0 0 0 0
2 0 2 2 0 1 0 0 1 0 0 1
2 2 0 2 0 1 0 0 1 0 0 1
2 2 2 0 1 0 1 1 0 1 1 0
0 0 0 1 −2 1 0 0 0 0 0 0
0 1 1 0 1 −2 1 0 0 0 0 0
0 0 0 1 0 1 −2 0 0 0 0 0
0 0 0 1 0 0 0 −2 1 0 0 0
0 1 1 0 0 0 0 1 −2 1 0 0
0 0 0 1 0 0 0 0 1 −2 0 0
0 0 0 1 0 0 0 0 0 0 −2 1
0 1 1 0 0 0 0 0 0 0 1 −2



, (21)

and let S = {e1, e2, e3, e4}. Then the G(F)-orbits of an open subset of V (F) are
in bijection with the F-points of an open subvariety of the moduli space MΛ,S of
K3 surfaces X lattice-polarized by (Λ, S).

10.1. Néron–Severi lattice and moduli problem. In order to study the orbits
of doubly doubly symmetric penteracts, we may use the geometric construction
from Section 8, since an element of V1⊗ Sym2V2⊗ Sym2V3 is also an element of
V1⊗V2⊗V2⊗Sym2V3 and V1⊗Sym2V2⊗V3⊗V3. Thus, the K3 surfaces X123 and
X145 each have at least six (rank) singularities over F , and a numerical example
shows us that they generically have exactly six singular points. Meanwhile, for a
generic orbit, all of the other X i jk (namely, X124, X234 and X345) are nonsingular,
and the maps of the type X1234 → X123 blow up the six singular points.

The nonsingular K3’s—which are all naturally isomorphic—thus contain two
sets of six mutually nonintersecting lines, namely the exceptional fibers in X124

coming from the blow-ups X124
∼→ X1234 → X123 and X124

∼→ X1245 → X145.
Let Pi and Qi for 1 6 i 6 6 denote these exceptional fibers from X123 and X145,
respectively. As explained below, each of the six lines in any one set intersects
exactly two lines in the other set.

The map X1234 → P(V ∨1 ) is a genus one fibration whose discriminant as a
binary form on V1 is of degree 24 and factors as the product of a fourth power
of a cubic form times an irreducible degree twelve form. Thus the fibration has
three reducible fibers of type I4, that is, each of these reducible fibers consists of
four lines forming a ‘rectangle’. Each set of six lines in the previous paragraph
contains one pair of parallel lines from each of the three rectangles. That is, with
choices of indices, each rectangle is made up of the lines corresponding to Pi , Qi ,
Pi+1, and Qi+1 for i = 1, 3, 5.
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To explicitly see this correspondence among the twelve lines, we note that if
r0 ∈ P(V ∨1 ) is a point giving a singular fiber in the genus one fibration, then it
yields two rank singularities (r0, a, b) and (r0, b, a) on X123. The map X124 →
X123 blows up these singularities to the lines (r0, a, ∗) and (r0, b, ∗), where we
use ∗ to mean that the coordinate in P(V ∨3 ) may vary freely. Similarly, each such
r0 gives two rank singularities (r0, c, d) and (r0, d, c) on X145, and under X124 →
X145, these blow up to lines (r0, ∗, c) and (r0, ∗, d) for any ∗ ∈ P(V ∨2 ). Therefore,
the latter two lines each intersect each of the former two lines in a single point,
giving the four intersection points (r0, a, c), (r0, a, d), (r0, b, d), and (r0, b, c) in
X124.

The usual line bundles L i for 1 6 i 6 4, given as the pullbacks of OP(V∨i )(1) to
X1234, satisfy:

L1 + L2 + L3 = 2L4 +
∑

i

Pi (22)

and

2L1 − L2 − L3 + 2L4 =
∑

i

Qi . (23)

Of course, (22) is clear from Lemma 7.2, and the second relation (23) comes from
repeated applications of that lemma along each step of the composition X1234 →
X124 → X1245 → X145.

To determine the Néron–Severi lattice (over F ) of the K3 surface associated
to a generic doubly doubly symmetric penteract, we use the explicit geometry
and the relations described above in (22) and (23) to compute the intersection
numbers between the divisor classes. The only nonzero intersection numbers are
as follows:

L i · L j = 2 for i 6= j, L2 · Q j = L3 · Q j = 1,

P2
i = Q2

i = −2, L4 · Pj = 1,
Pi · Qi = Pi · Qi+1 = Pi+1 · Qi+1 = Pi+1 · Qi = 1 for i ∈ {1, 3, 5}.

The rank of the intersection matrix is 12, and the span of the divisors is a sublattice
of NS(X) of discriminant 256. A basis for the Néron–Severi lattice is {L1, L2, L4,

P1, Q1, P2, P3, Q3, P4, P5, Q5, P6}, and the corresponding Gram matrix is given
by (21).

PROPOSITION 10.2. For a generic X in this family of K3 surfaces, NS(X) is
spanned over Z by the L i for i = 1, . . . , 4 and the exceptional classes Pi and Qi

for i = 1, . . . , 6.
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Proof. The moduli space of these K3s has dimension 2 · 3 · 3 − 10 = 8, so the
Picard number of the generic surface in this space is at most 12. Let Λ be the
rank-12 lattice spanned by the above divisors (equivalently, with basis {L1, L2,
L4, P1, Q1, P2, P3, Q3, P4, P5, Q5, P6}). Since the discriminant of Λ is 256, it is
enough to show that it is 2-saturated. Suppose a divisor class

D = α1 L1 + α2 L2 + α4 L4 +
6∑

i=1

βi Pi + γ1 Q1 + γ3 Q3 + γ5 Q5

is in NS(X) for some collection of rational numbers αi , β j , γk whose
denominators are powers of 2. Then by symmetry, so is the divisor D′ obtained
by replacing L2 by L3. Then D − D′ = α2(L2 − L3) ∈ NS(X), which forces α2

to be an integer, since the self-intersection −4α2
2 of this divisor must be an even

integer. So we may assume α2 = 0, and similarly, α4 = 0. Therefore, D has the
form

D = α1 L1 +
6∑

i=1

βi Pi + γ1 Q1 + γ3 Q3 + γ5 Q5.

Again by symmetry, the divisor D′′ = α1 L1+
∑6

i=1 βi Pi+γ1 Q2+γ3 Q4+γ5 Q6 is
also in NS(X). Then D − D′′ ∈ NS(X) forces all the γi to vanish, by Lemma 2.3
(since the Qi are all disjoint (−2)-curves). Hence D = α1 L1 +

∑6
i=1 βi Pi . Then

D′′′ = α1 L1 + ∑4
i=1 βi Pi + β6 P5 + β5 P6 is also in NS(X) by symmetry, and

considering D− D′′′ shows that β5 and β6 are equal modulo Z. Similar symmetry
arguments force all the βi to be equal to each other. Hence D = αL1 + β(

∑
Pi).

Then D2 = −6β2 is an even integer, which forces β ∈ Z. Subtracting β(
∑

Pi) ∈
Λ, we may assume αL1 ∈ NS(X). In fact, this forces α ∈ Z as well, since L1 is the
class of an elliptic fiber and cannot be a nontrivial multiple of another divisor.

We now complete the proof of Theorem 10.1.

Proof of Theorem 10.1. The above geometric constructions explain how to obtain
a (Λ, S)-polarized K3 surface from a doubly doubly symmetric penteract. On
the other hand, given such a K3 X , let L1, L2, L3, and L4 be line bundles
corresponding to the elements of S. Then we may use these line bundles as
in Section 7.3 to produce a penteract A ∈ H0(X, L1) ⊗ H0(X, L2) ⊗ H0(X,
L3) ⊗ H0(X, L4) ⊗ (kerµ)∨, where µ is the usual multiplication map; we now
show that it has the appropriate symmetry.

By the argument in the proof of Theorem 8.1, and using Lemma 7.2, we
immediately see that there is an identification of H0(X, L4) and (kerµ)∨ such
that A is doubly symmetric in those coordinates.
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Similarly, we may switch the roles of the indices 2 and 3 with those of 4 and
5, respectively, to obtain the second symmetry. For example, we may use A to
construct K3 surfaces X1245 and X145 (with the divisor classes in Λ). The line
bundles Mi coming from pulling back OP(Vi )∨(1) to X1245 via projection for i = 1,
2, 4, 5 may be used to make another penteract B, which is GL5

2-equivalent to A (by
the proof of Theorem 7.1). (Note that in fact Mi and L i are isomorphic for i = 1,
2, 4.) Then the same argument as in Theorem 8.1 shows that the line bundle M2 is
isomorphic to the line bundle M (145)

3 , and in fact, the corresponding vector spaces
may be identified so that B is symmetric in those two directions.

Therefore, via the above identifications of vector spaces, our penteract A
may be viewed as an element of the tensor space H0(X, L1) ⊗ Sym2H0(X,
L2)⊗ Sym2H0(X, L4), as desired.

10.2. Automorphisms. We may again consider the automorphisms αi j,k for
doubly doubly symmetric penteracts. By symmetry, to understand the 5-cycles
passing through all five X i jkl , which are all compositions of three αi j,k’s, it suffices
to understand the following three:

Φ53214 : X1234 → X1245 → X1345 → X2345 → X1235 → X1234,

Φ53421 : X1234 → X1245 → X1235 → X1345 → X2345 → X1234,

or Φ53241 : X1234 → X1245 → X1345 → X1235 → X2345 → X1234.

We first study the 5-cycle Φ54321. Applying Lemma 7.2 and determining
intersection numbers, we compute the action of the automorphism Φ54321 on
NS(X) arising from a general doubly doubly symmetric penteract as the matrix

1 4 −2 2 0 0 0 0 0 0 0 0
0 2 −1 2 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
1 1 −1 1 0 0 0 0 0 0 0 0
0 1 0 0 −1 0 0 0 0 0 0 0
1 1 −1 1 0 −1 0 0 0 0 0 0
0 1 0 0 0 0 −1 0 0 0 0 0
0 1 0 0 0 0 0 −1 0 0 0 0
1 1 −1 1 0 0 0 0 −1 0 0 0
0 1 0 0 0 0 0 0 0 −1 0 0
0 1 0 0 0 0 0 0 0 0 −1 0
1 1 −1 1 0 0 0 0 0 0 0 −1



(24)

with respect to the basis {L1, L2, L3, L4, P1, Q1, P2, P3, Q3, P4, P5, Q5}.
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The induced action of the automorphism Φ53421 on the L i is the same (up to
reordering) as in the usual penteract case (and it is thus simple to compute the
action on the exceptional divisors). For the automorphism Φ53241, the induced
action on the L i and the exceptional divisors Q j are the same (up to reordering)
as the induced action of Φ54321 in the doubly symmetric penteract case.

11. Doubly triply symmetric penteracts: Sym2(2) ⊗ Sym3(2)

We now study penteracts that are symmetric in the first two coordinates and
also symmetric in the last three coordinates. We prove that the orbits of the space
of doubly triply symmetric penteracts are related to certain K3 surfaces with
Néron–Severi rank at least 15 over F . Note that these penteracts also have an
interpretation as bidegree (2, 3) curves in P1 × P1, which can be used to connect
the moduli space below with the universal Picard scheme Pic1

M2
over the moduli

space of genus 2 curves.

THEOREM 11.1. Let V = Sym2V1⊗ Sym3V2 for 2-dimensional F-vector spaces
V1 and V2. Let G ′ be the group Gm×GL(V1)×GL(V2), and let G be the quotient
of G ′ by the kernel of the multiplication map Gm × Gm × Gm → Gm given by
(γ1, γ2, γ3) 7→ γ1γ

2
2 γ

3
3 . Let Λ be the lattice whose Gram matrix is

0 2 2 2 0 0 0 0 0 0 0 0 0 0 1
2 0 2 2 0 0 0 0 0 0 0 0 0 0 1
2 2 0 2 0 1 0 1 0 1 0 1 0 1 0
2 2 2 0 1 0 1 0 1 0 1 0 1 0 0
0 0 0 1 −2 1 0 0 0 0 0 0 0 0 1
0 0 1 0 1 −2 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 −2 1 0 0 0 0 0 0 1
0 0 1 0 0 0 1 −2 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 −2 1 0 0 0 0 0
0 0 1 0 0 0 0 0 1 −2 0 0 0 0 1
0 0 0 1 0 0 0 0 0 0 −2 1 0 0 0
0 0 1 0 0 0 0 0 0 0 1 −2 0 0 1
0 0 0 1 0 0 0 0 0 0 0 0 −2 1 0
0 0 1 0 0 0 0 0 0 0 0 0 1 −2 0
1 1 0 0 1 0 1 0 0 1 0 1 0 0 −2



(25)

and let S = {e1, e2, e3, e4}. Then the G(F)-orbits of an open subset of V (F) are
in bijection with the F-points of an open subvariety of the moduli space MΛ,S of
K3 surfaces X lattice-polarized by (Λ, S).
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11.1. Néron–Severi lattice and moduli problem. By exploiting the double
symmetry in the first two coordinates and triple symmetry in the last three
coordinates, we may apply the constructions in all of the previous penteract
sections! That is, the space Sym2V1⊗Sym3V2 is a subspace of doubly symmetric
penteracts V1 ⊗ V1 ⊗ V2 ⊗ Sym2V2 or V2 ⊗ V2 ⊗ V2 ⊗ Sym2V1, triply symmetric
penteracts V1 ⊗ V1 ⊗ Sym3V2, and doubly doubly symmetric penteracts V2 ⊗
Sym2V1 ⊗ Sym2V2.

Given an element of Sym2V1⊗ Sym3V2, using the usual notation, we construct
K3 surfaces X123 (= X124 = X125) and X345 that have at least six rank singularities
(over F ). A numerical example shows us that generically there are exactly six
singularities on each of X123 and X345. Meanwhile, the other K3 surfaces (X134,
X1234, and X1345) are generically nonsingular and isomorphic, and the maps
X134 → X1234 → X123, X134 → X1234 → X124, and X134 → X1345 → X345 blow
down sets of six lines to each of the corresponding sets of six singular points.
The nonsingular K3 surface X1234 contains at least three sets of six lines; call the
divisors corresponding to these lines Pi , Qi , and Ei , respectively, for 1 6 i 6 6.
Their intersection numbers are computed below, by using the various genus one
fibrations.

Either projection map from X1234 to P(V ∨1 ) is a genus one fibration whose
discriminant is a degree 24 binary form on V1 that factors as the cube of a
degree six form and an irreducible degree six form (as a special case of the
triply symmetric penteract). Thus the fibration has six reducible fibers of type
I3. Each of these reducible fibers consists of three lines in a ‘triangle’; in each of
the six triangles, there are two distinguished lines that correspond to Pi and Qi ,
respectively, for 1 6 i 6 6.

Either projection map from X1234 to P(V ∨2 ) is a genus one fibration with three
reducible fibers of type I4 (as a special case of the doubly doubly symmetric
penteract). That is, each of the three reducible fibers is a rectangle, and two of the
opposite sides of each rectangle are the 6 lines Ei from the 18 described above.
The other two parallel sides in each rectangle are given by P2 j−1 and P2 j for
1 6 j 6 3, for the projection π3 to the third factor of P1; for the projection π4, we
get a similar picture, but with the P’s replaced by the Q’s.

We explicitly list these 18 lines in X1234. For 1 6 j 6 3, let (r j , s j) ∈ P(V ∨1 )×
P(V ∨2 ) be distinct images of singular points on X123 under the projection π12 to
P(V ∨1 ) × P(V ∨1 ), where r j 6= sk for any 1 6 j, k 6 3. Then the other singular
points will project to (s j , r j) for 1 6 j 6 3, so the six singular points on X123 will
be, for 1 6 j 6 3, given by (r j , s j , t j) and (s j , r j , t j) for some t j ∈ P(V ∨2 ). Thus,
we obtain four lines in X1234 for each j :

P2 j−1 = (r j , s j , t j , ∗) Q2 j−1 = (r j , s j , ∗, t j),

P2 j = (s j , r j , t j , ∗) Q2 j = (s j , r j , ∗, t j),
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where we again use ∗ to mean that the coordinate varies freely in the appropriate
P1. These are the six pairs of lines in the reducible I2 fibers in the projection
X1234 → P(V ∨1 ), and it is clear that they are the blow-ups of the singular points
from X123 and X124.

Using these explicit points in projective space, we also see that the six singular
points in X345 are just the points (ti , t j , tk) for the permutations {i, j, k} of {1, 2, 3}.
Therefore, the surface X1234 contains six lines of the form

Ei = (∗,�, t j , tk), Ei+3 = (∗,�, tk, t j)

for (i, j, k) ranging over cyclic permutations of (1, 2, 3), where ∗ and � are
varying coordinates connected by a (1,1) equation. These are the six lines Ei

described above.
The line bundles L i obtained from pulling back OP(V∨i )(1) to X1234, for 1 6 i 6

4, satisfy the following relations with the exceptional lines:

L1 + L2 + L3 = 2L4 +
6∑

i=1

Pi , (26)

L1 + L2 + L4 = 2L3 +
6∑

i=1

Qi , (27)

and

−L1 − L2 + 2L3 + 2L4 =
6∑

i=1

Ei . (28)

These are obtained from repeated applications of Lemma 7.2. The nonzero
intersections between all these divisors are as follows:

L i · L j = 2 for i 6= j, L1 · Ei = L2 · Ei = 1,
L3 · Qi = 1, L4 · Pi = 1, Pi · Qi = 1,

P1, P2 intersect E3, E5, P3, P4 intersect E1, E6, P5, P6 intersect E2, E4,

Q1, Q2 intersect E2, E6, Q3, Q4 intersect E3, E4, Q5, Q6 intersect E1, E5,

where ‘intersect’ means has intersection number 1. As a consequence, the Néron–
Severi lattice of (X1234)F has rank 15 and discriminant 108. A basis for the
lattice consists of the divisors L1, L2, L3, L4, P1, Q1, . . . , P5, Q5, E3, and the
corresponding Gram matrix is (25).

PROPOSITION 11.2. For a very general X in this family of K3 surfaces, NS(X)
is spanned over Z by L i , i = 1, . . . , 4, and the exceptional classes Pi , Qi , Ei ,
i = 1, . . . , 6.
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Proof. Let Λ be the rank-15 lattice spanned by the L i , Pi , Qi , Ei as in the
statement of the proposition. Consider the elliptic fibration π : X → P(V ∨1 ).
Taking the class of the zero section to be

O = −L1 − L2 + 2P1 + Q1 + 2P2 + Q2 + P3 + 2Q3 + P4 + 2Q4 + 3E3,

we see that {P1, Q1}, . . . , {P6, Q6} give the nonidentity components of the six
I3 fibers. The curve E1 gives a section Q of height 4/3, whereas the class of
L3− L2+ L1+O is a 3-torsion section T . The discriminant of the lattice spanned
by these sections and the components of the fibers is 4/3 · 36/9 = 108, so it is all
of Λ. We must now show that generically, Λ is all of NS(X).

For a very general X in this family of K3 surfaces, the rank of NS(X) is at most
15, since the dimension of the moduli space is 3 ·4−7 = 5. Since the discriminant
ofΛ is 108= 22·33, we just need to check thatΛ is 2- and 3-saturated. We observe
from the configuration of fibers that there cannot be a 2-torsion section, and that
Q cannot be twice a section Q ′, since this would force the height of Q ′ to be 1/3,
which is impossible. This checks 2-saturation. For similar reasons, Q cannot be
thrice a point, and there cannot be a 9-torsion point. So we just need to check that
the elliptic surface does not have full 3-torsion. Observe that if T ′ were another
3-torsion section, independent of T over F3, then to have height 0 = 4 − 6(2/3),
both T and T ′ must intersect nonidentity components of each of the six I3 fibers.
But then at least one T + T ′ or T − T ′ cannot satisfy the same property, and yet
it is a 3-torsion point. This gives a contradiction.

We now complete the proof of Theorem 11.1.

Proof of Theorem 11.1. The above discussion explains how to construct a K3
surface lattice-polarized by (Λ, S) from a doubly triply symmetric penteract.
Given such a K3 surface X , let L1, L2, L3, and L4 be line bundles on X
corresponding to the elements of S. As in the previous cases, we use the
construction from Section 7.3 to build a penteract A ∈ H0(X, L1) ⊗ H0(X,
L2)⊗ H0(X, L3)⊗ H0(X, L4)⊗ (kerµ)∨. The proof of Theorem 9.1 shows that
there is a simultaneous identification of H0(X, L3), H0(X, L4), and (kerµ)∨ that
shows that A is triply symmetric with respect to those coordinates, that is, we can
think of A as an element of H0(X, L1)⊗ H0(X, L2)⊗ Sym3H0(X, L3).

To show the last symmetry, we use an argument similar to that in the proof
of Theorem 10.1. That is, we switch the roles of the indices 1 and 2 with 4 and 5
and apply the proof of Theorem 8.1. Using the intersection matrix (25), combined
with Lemma 7.2, shows that the vector spaces H0(X, L1) and H0(X, L2) may be
identified and A is symmetric in those two coordinates.

Thus, we obtain a penteract A in the space Sym2H0(X, L1)⊗ Sym3H0(X, L3),
as desired.
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11.2. Automorphisms. The automorphisms αi j,k again arise for doubly triply
symmetric penteracts. The 5-cycles through all five X i jkl are all equivalent to
either

Φ53214 : X1234 → X1245 → X1345 → X2345 → X1235 → X1234

or Φ52413 : X1234 → X1345 → X1235 → X2345 → X1245 → X1234.

Applying Lemma 7.2 and computing intersection numbers, we find that the action
of the first automorphism Φ53214 on NS(X) arising from a general doubly triply
symmetric penteract is given by the matrix

2 −1 0 2 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 −1 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 0 0 −1 −1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 −1 −1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0 −1 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0 0 0 −1 −1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 0 0 0 0 −1 −1 0
−1 −1 0 1 1 0 1 0 1 1 1 1 0 0 1



(29)

with respect to the basis {L1, L2, L3, L4, P1, Q1, . . . , P5, Q5, E3}. Also, the
induced action of the 5-cycle Φ52413 on the L i and the Q j is the same (up to
reordering) as the induced action of Φ54321 in the doubly symmetric penteract
case, and as in previous cases, expressions for the divisors Φ∗52413 Pj and Φ∗52413 E j

follow immediately. These two types of 5-cycles will be shown in Section 17.4 to
be fixed-point-free in general and have positive entropy.

12. Quadruply symmetric penteracts: 2 ⊗ Sym4(2)

Suppose we now have a penteract that is symmetric in the last four coordinates;
we will show that such penteracts give rise to K3 surfaces with Néron–Severi rank
at least 17 over F . Note that such tensors may also be viewed as pencils of binary
quartic forms, whose invariant theory was worked out in [72].
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THEOREM 12.1. Let V = V1 ⊗ Sym4V2 for 2-dimensional F-vector spaces V1

and V2. Let G ′ be the group GL(V1)×GL(V2), and let G be the quotient of G ′ by
the kernel of the multiplication map Gm × Gm → Gm given by (γ1, γ2) 7→ γ1γ

4
2 .

Let Λ be the lattice whose Gram matrix is

0 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 2 2 1 0 0 1 0 1 0 0 1 0 1 0 0
2 2 0 2 0 1 0 0 1 0 1 0 0 1 0 1 0
2 2 2 0 0 0 1 0 0 0 0 1 0 0 0 0 1
0 1 0 0 −2 1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 1 −2 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 1 −2 1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 1 −2 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 1 −2 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 −2 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 1 −2 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 1 −2 1 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 1 −2 1 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 1 −2 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 −2 1 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 −2 1
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 −2



(30)

and let S = {e1, e2, e3, e4}. Then the G(F)-orbits of an open subset of V (F) are
in bijection with the F-points of an open subvariety of the moduli space MΛ,S of
K3 surfaces X lattice-polarized by (Λ, S).

12.1. Néron–Severi lattice and moduli problem. Since quadruply
symmetric penteracts are also triply symmetric in, say, the last three coordinates,
we may use our constructions from Section 9 to help us analyze these. In
particular, the K3 surface X123 (= X1i j for any 2 6 i < j) has at least
six rank singularities (over F ), and a numerical example shows that it then
generically has exactly six singular points. Meanwhile, the K3 surfaces X i jk for
2 6 i < j < k 6 5 and all X i jkl are generically nonsingular, and the maps from
X1234 to X1i j for 2 6 i < j 6 4 blow down lines to the six singular points on X1i j .
We thus have at least 18 lines on X1234. Denote the lines coming from X123, X124,
and X134 by E`4, E`3, and E`2, respectively, for 1 6 ` 6 6.

The map X1234 → P(V ∨1 ) is a genus one fibration whose discriminant as a
binary form on V1 is of degree 24 and factors as the sixth power of a degree three
form times an irreducible degree six form. An argument similar to the doubly
doubly symmetric case shows that this fibration indeed has three reducible fibers
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of type I6, that is, these reducible fibers each consist of six lines in a ‘hexagon’.
These three sets of six lines, yielding a total of 18 lines, correspond exactly to the
18 lines in the previous paragraph (each set of six lines in the previous paragraph
contains one pair of parallel lines from each of the three hexagons).

These lines can be written down very explicitly. Let ri for 1 6 i 6 3 be the
three points in P(V ∨1 ) over which the fibration has reducible fibers. Then the six
singular points in X123 are of the form (ri , si , ti) and (ri , ti , si) for 1 6 i 6 3, and
each hexagon in X1234 consists of the lines (in cyclic order)

Ei,4 = (ri , si , ti , ∗), Ei,3 = (ri , si , ∗, ti), Ei,2 = (ri , ∗, si , ti),

Ei+3,4 = (ri , ti , si , ∗), Ei+3,3 = (ri , ti , ∗, si), Ei+3,2 = (ri , ∗, ti , si).

The three projections X1234→ P(V ∨2 ) are genus one fibrations with six I3 fibers,
that is, triangles of lines. Two of the lines in each triangle come from our 18 lines.
For example, for the projection to the second factor, the triangles contain the pair
(ri , si , ti , ∗) over si and (ri , si , ∗, ti), or the pair (ri , ti , si , ∗) and (ri , ti , ∗, si) over
ti .

If L1, L2, L3, and L4 denote the pullbacks of OP(Vi )∨(1) to X1234 via the
projection maps, we obtain relations like in Lemma 7.2:

L1 + L2 + L3 = 2L4 +
6∑
`=1

E`4,

L1 + L2 + L4 = 2L3 +
6∑
`=1

E`3,

and

L1 + L3 + L4 = 2L2 +
6∑
`=1

E`2.

The nonzero intersections of these divisors are as follows:

L i · L j = 2 if i 6= j,
L i · E`i = 1,

Ei, j · Ei ′, j ′ = 1 if i = i ′ and | j − j ′| = 1,
or if |i − i ′| = 3 and | j − j ′| = 2.

Thus, the Néron–Severi lattice of (X1234)F has rank 17 = 3 · 5 + 2 and
discriminant 96. A basis for the lattice is given by the divisor classes L1, L2,
L3, L4, E12, E13, E14, E42, E43, E22, E23, E24, E52, E53, E31, E32, E33, and the
corresponding Gram matrix is in (30).
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PROPOSITION 12.2. For a very general X in this family of K3 surfaces, NS(X)
is spanned by the above divisors.

Proof. We give a proof using elliptic fibrations. Let e1, . . . , e22 be the divisor
classes L1, . . . , L4, E12, . . . , E62, E13, . . . , E63, E14, . . . , E64, and f1, . . . , f17 the
basis chosen. Consider the elliptic fibration with fiber class e2 = f2 (that is,
projection to P(V ∨2 )). A section is given by Z = 2 f2 − f5 + f6 + 2 f8 + f9,
which we take to be our zero section. Then {e6, e7}, {e9, e10}, {e12, e13}, {e15, e16},
{e18, e19}, {e20, e21} are the nonidentity components of the six I3 fibers. A 3-torsion
section is given by − f1 + f2 + f4 + F . The sections e8, e11, e17 have Néron–Tate
height pairing 

8
3

4 4

4
20
3

6

4 6
20
3

 .

The determinant of this matrix is 32/27, and therefore the discriminant of the
lattice spanned by these sections and the fibers is (32/27) ·36/32 = 96. Therefore,
it is equal to the lattice Λ spanned by e1, . . . , e22.

We now have to show that Λ is equal to NS(X) for a very general such K3
surface. As usual, the ranks agree (because the dimension of the moduli space here
is 2 · 5− 7 = 3), so we only need to show Λ is saturated. Since the discriminant
is 96 = 25 · 3, we merely need to show that it is 2-saturated. This can only fail
to happen if there is a 2-torsion section (which is not possible because of the
fiber configuration), or if the Mordell–Weil lattice is larger. A direct calculation
(by checking all 23 − 1 representatives) shows that a representative of a nonzero
class in Λ∗/Λ would have height m/3, for m an odd number. But the height of a
section P equals 4+ 2(P · O) minus the sum of the contributions from the fibers,
which are 0 or 2/3, and hence is an even number divided by 3. It follows that Λ
is saturated.

Proof of Theorem 12.1. The above discussion shows that a quadruply symmetric
penteract gives rise to a K3 surface lattice-polarized by (Λ, S). For the reverse,
the proof is an obvious generalization of that of Theorem 9.1. The main argument
within (coming from the proof of Theorem 8.1) needs to be repeated three
times to show that the constructed penteract is symmetric with respect to three
transpositions, for example, (25), (35), and (45), of the tensor factors (under
identifications of the corresponding vector spaces).
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12.2. Automorphisms. The automorphisms αkl,m and Φi jklm also apply in
this case. All of the 5-cycles, by the symmetry, act in equivalent ways, and in
particular, Φ54321 induces the action of the matrix



−1 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 −1 −1 −1 −1 −1 0 0 0 0 0 0 0 0
−1 0 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 1 0 0 0 −1 −1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 −1 −1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 −1 −1 −1 −1 −1 0 0 0
−1 0 1 0 0 0 0 0 0 0 1 1 1 1 0 0 0
0 1 0 0 0 0 0 0 0 0 −1 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 −1 −1 0 0 0 0
−1 1 1 −2 1 1 0 1 1 1 1 0 1 1 0 0 −1
1 −1 0 2 −1 −1 0 −1 −1 −1 −1 0 −1 −1 −1 0 1
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 −1


on the divisors {L1, L2, L3, L4, E12, . . . , E62, E13, . . . , E63, E14, . . . , E64} in
NS(X). This automorphism has order 4 and is fixed-point-free; it will be
discussed further in Section 17.3. Note, however, that the square of Φ54321 is
an involution but not fixed-point-free over F (see Section 13.2 for a detailed
explanation, which also applies to this case).

13. Quintuply symmetric penteracts: Sym5(2)

Let us now consider a quintuply symmetric penteract. We will prove that the
general orbits of such tensors correspond to certain K3 surfaces with Picard rank
at least 18 over F . Note that such penteracts also have an interpretation as binary
quintic forms, that is, degree 5 subschemes of the projective line.

THEOREM 13.1. Let V = Sym5V1 for a 2-dimensional F-vector space V1. Let
G ′ be the group Gm × GL(V1) and let G be the quotient of G ′ by the kernel of
the multiplication map Gm × Gm → Gm given by (γ1, γ2) 7→ γ1γ

5
2 . Let Λ be the

lattice whose Gram matrix is
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−2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1
0 −2 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0
0 0 −2 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0
0 0 0 −2 0 0 0 0 0 1 0 0 0 0 0 1 0 0
0 0 0 0 −2 0 0 0 0 0 1 0 0 0 1 0 1 0
0 0 0 0 0 −2 0 0 0 0 0 1 0 0 0 0 1 0
1 0 0 0 0 0 −2 0 0 0 0 0 1 0 0 1 0 0
0 1 0 0 0 0 0 −2 0 0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 −2 0 0 0 0 1 0 0 1
0 0 0 0 1 0 0 0 0 0 −2 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 0 0 −2 0 0 0 1 0 0
0 0 1 0 0 0 1 0 0 0 0 0 −2 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0 0 0 0 −2 0 0 0 1
0 0 0 0 1 0 0 0 0 1 0 0 0 0 −2 0 0 0
0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 −2 0 0
0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 −2 0
1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 −2


(31)

and let S = {e1, e2, e3, e4}. Then the G(F)-orbits of an open subset of V (F) are
in bijection with the F-points of an open subvariety of the moduli space MΛ,S of
K3 surfaces X lattice-polarized by (Λ, S).

13.1. Néron–Severi lattice and moduli problem. As before, we may use
the constructions from previous sections; in particular, a quintuply symmetric
penteract is also quadruply symmetric in any four coordinates. By the results
of Section 12, all the K3 surfaces X i jk (for any 1 6 i < j < k 6 5) has at
least six rank singularities (over F ), and it is easy to check numerically that X i jk

generically has exactly six singular points. Meanwhile, the K3 surfaces X i jkl for
1 6 i < j < k < l 6 5 are generically nonsingular, and for 1 6 i < j < k 6 4,
the projections X1234 → X i jk blow up the six singular points lying on each of the
four surfaces X i jk , yielding 24 lines on X1234.

For {i, j, k,m} = {1, 2, 3, 4}, we denote the six lines coming from the blow-
up X1234 → X i jk by Eσ , for the permutations σ in the symmetric group S4 with
σ−1(1) = m. Let L i denote the pullback of the line bundle OP(V∨i )(1) to X1234 via
the projection. By Lemma 7.2, we have

L i + L j + Lk = 2Lm +
∑
σ∈S4

σ−1(1)=m

Eσ . (32)
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Figure 3. The intersection graph as a Cayley graph of S4 (also known as the Nauru
graph [33]). Each vertex is given by an element σ ∈ S4 (represented by the string
σ(1) . . . σ (4)), and the blue, green, and red edges correspond to the actions of the
transposition (12), (13), or (14), respectively.

Because of the symmetry, if (a, b, c) is one of the singular points in X123,
then the other five singular points are just permutations of the three coordinates.
Therefore, the 6 lines Eσ in X1234 obtained from blowing up the six singular
points in X123 are given by {(τ (a), τ (b), τ (c), ∗)} ⊂ X1234, for each permutation
τ ∈ S3, where ∗ means that any point of P1 may be used. More generally, the
24 lines are given by the permutations of (a, b, c, ∗). Each line intersects exactly
one of the lines in the other three sets of 6, namely when two of their non-∗
coordinates coincide. If we view these 24 lines as vertices of a graph, with the
edges corresponding to the 36 intersection points, this graph is the generalized
Petersen graph on 12 vertices.

To relate the graph in Figure 3 to the lines in our K3 surface X1234, note that the
vertex corresponding to σ ∈ S4 represents the line given by the action of σ on the
ordered set (∗, a, b, c). For example, the bottom vertex is the line (∗, a, b, c) and
intersects the lines (a, ∗, b, c), (b, a, ∗, c), and (c, a, b, ∗).

Each of the projections πi : X1234→ P(V ∨1 ) to the i th factor, for 1 6 i 6 4, is a
genus one fibration whose discriminant as a binary form on V1 is again of degree
24 and factors as the sixth power of a degree three form times an irreducible
degree six form. An argument similar to the quadruply symmetric case shows that
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this fibration indeed has three reducible fibers of type I6, that is, these reducible
fibers each consist of six lines in a ‘hexagon’. These account for 18 of the 24
lines encountered earlier, namely the Eσ for σ−1(1) 6= i ; the other 6 lines, via this
projection πi , in fact cover the entire P(V ∨1 ). Thus, the intersection of the 24 lines
with one of the reducible fibers is exactly a hexagon of lines and 6 distinct points.

The intersections among all these divisors can be described as follows:

L i · L j = 2(1− δi j), L i · Eσ = δi,σ−1(1), E2
σ = −2,

Eσ · Eσ ′ =
{

1 if there is an edge between the corresponding vertices
0 otherwise.

The intersection matrix has rank 18, and the lattice generated by these divisors
has discriminant 20, so the Néron–Severi lattice of (X1234)F has Gram matrix (31)
and has rank 18. A basis for the lattice is given by L1, L2, L3, L4, E4321, E4312,
E4231, E4132, E4213, E3421, E3412, E2431, E1432, E2413, E3241, E3142, E3214 and E2134.

PROPOSITION 13.2. Let Λ be the lattice spanned by the classes of the above
divisors Eσ . Then for the K3 surface X arising from a very general quintuply
symmetric penteract, we have NS(X) = Λ.

Proof. First, note that the dimension of the moduli space of quintuply symmetric
penteracts is 6− 4 = 2, so the rank of NS(X) for a very general X is 18, which is
the rank of Λ.

Consider the elliptic fibration X → P(V ∨1 ). Generically, the root lattice formed
by the nonidentity components of the reducible fibers is A3

5. Since E(1) = E1234

intersects the fiber class in 1, it follows that the elliptic fibration has a section. The
root sublattice has rank 15 and discriminant 63. We check that the (Jacobian of) the
elliptic fibration has a 3-torsion section, in fact defined over the ground field, and
since the Picard number is 18, the only possibility is to have a nontorsion section
of height 20/(216/9) = 5/6 = 4− 5/6− 5/6− 9/6. We can also check directly
that there are no 2-torsion sections, even over the algebraic closure. For the Picard
group to be any larger, it would have to have discriminant 5, and a Mordell–Weil
generator of height 5/24, which is impossible with the fiber configuration.

Proof of Theorem 13.1. The above discussion shows that a quintuply symmetric
penteract produces a K3 surface that is lattice-polarized by (Λ, S). For the other
direction, like for Theorem 12.1, the proof is a straightforward generalization of
the proof of Theorem 9.1. We construct a penteract from this data, and applying
the argument from Theorem 8.1 four times shows that all five vector spaces related
to the penteract may be identified and that the penteract is symmetric with respect
to any two.
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13.2. Automorphisms. Given a K3 surface X coming from a quintuply
symmetric penteract, the visible automorphisms of X may be described quite
easily.

Because of the symmetry in this case, all the automorphisms of the form αkl,m

on X i jkl act in similar ways. As always, each αkl,m is an involution of the K3
surface X i jkl switching the kth and lth coordinates, for example, α34,5 sends (a,
b, c, d) ∈ X1234 to (a, b, d, c). Thus, these generate a group of automorphisms
isomorphic to S4. Note that the automorphism Φi jklm introduced in Section 7.4 is
an order 4 element, as the composition of three of these transpositions.

While Φi jklm is fixed-point-free for the general X in this family (see
Section 17.2 or simply observe that the diagonal P1 in (P1)4 does not generally
intersect X ), note that its square is an involution but not fixed-point-free (over
F ). For example, the P1 × P1 of points (a, b, a, b) ∈ (P1)4 on X1234 will be
fixed under Φ2

i jklm ; in particular, for the general X in this family, there will be 8
fixed points over F , namely the intersection of X with this diagonal P1 × P1 in
(P1 × P1)× (P1 × P1).

14. 2 ⊗ 2 ⊗ 2 ⊗ 4

In this section, we study the space of 2× 2× 2× 4 matrices and classify their
orbits in terms of certain K3 surfaces of rank at least 13 over F :

THEOREM 14.1. Let V = V1 ⊗ V2 ⊗ V3 ⊗ U, where V1, V2, and V3 are 2-
dimensional F-vector spaces and U is a 4-dimensional F-vector space. Let
G ′ = GL(V1) × GL(V2) × GL(V3) × GL(U ), and let G be the quotient of G ′

by the kernel of the multiplication map G4
m → Gm . Let Λ be the lattice whose

Gram matrix is

4 4 4 4 0 0 0 0 0 0 0 0 0
4 0 2 2 0 0 0 1 1 1 1 1 1
4 2 0 2 1 1 1 0 0 0 1 1 1
4 2 2 0 1 1 1 1 1 1 0 0 0
0 0 1 1 −2 0 0 0 0 0 0 0 0
0 0 1 1 0 −2 0 0 0 0 0 0 0
0 0 1 1 0 0 −2 0 0 0 0 0 0
0 1 0 1 0 0 0 −2 0 0 0 0 0
0 1 0 1 0 0 0 0 −2 0 0 0 0
0 1 0 1 0 0 0 0 0 −2 0 0 0
0 1 1 0 0 0 0 0 0 0 −2 0 0
0 1 1 0 0 0 0 0 0 0 0 −2 0
0 1 1 0 0 0 0 0 0 0 0 0 −2



, (33)
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and let S = {e1, e2, e3, e4}. Then the G(F)-orbits of an open subset of V (F) are
in bijection with the F-rational points of an open subvariety of the moduli space
MΛ,S of K3 surfaces X lattice-polarized by (Λ, S).

14.1. Construction of K3 surfaces. Given an element A ∈ V (K ), we
construct a K3 surface X with Picard number at least 13 as follows. We will
show that the intersection of the varieties defined by the equations

A(v1, v2, · , u) ≡ 0 (34)
A(v1, · , v3, u) ≡ 0 (35)
A( · , v2, v3, u) ≡ 0 (36)

in P(V ∨1 ) × P(V ∨2 ) × P(V ∨3 ) × P(U∨) is a K3 surface X . The projection XU of
X to P(U∨) is then a quartic surface with 12 singularities over F (to be described
below).

The projection X123 of X to P(V ∨1 ) × P(V ∨2 ) × P(V ∨3 ) is cut out by a single
tridegree (2, 2, 2) form f (v1, v2, v3). In order to explicitly describe this form, let
us write A as a quadruple (A1, A2, A3, A4) of trilinear forms on V ∨1 × V ∨2 × V ∨3
(by choosing a basis for U ), and consider the determinant

D(v1, v
′
1, v2, v

′
2, v3, v

′
3)

:=

∣∣∣∣∣∣∣∣∣
A1(v1, v2, v3) A2(v1, v2, v3) A3(v1, v2, v3) A4(v1, v2, v3)

A1(v
′
1, v2, v3) A2(v

′
1, v2, v3) A3(v

′
1, v2, v3) A4(v

′
1, v2, v3)

A1(v1, v
′
2, v3) A2(v1, v

′
2, v3) A3(v1, v

′
2, v3) A4(v1, v

′
2, v3)

A1(v1, v2, v
′
3) A2(v1, v2, v

′
3) A3(v1, v2, v

′
3) A4(v1, v2, v

′
3)

∣∣∣∣∣∣∣∣∣ (37)

for vectors v1, v
′
1 ∈ V ∨1 , v2, v

′
2 ∈ V ∨2 , v3, v

′
3 ∈ V ∨3 . Then we observe that if (v1,

v2, v3, v4) ∈ V ∨1 × V ∨2 × V ∨3 ×U satisfies equations (34)–(36), then u ∈ U∨ lies
in the (right) kernel of the matrix in (37). Furthermore, since the determinant D
vanishes if v1 = cv′1, v2 = cv′2, or v3 = cv′3 for any constant c ∈ K , we see that the
polynomial D(v1, v

′
1, v2, v

′
2, v3, v

′
3) is a multiple of det(v1, v

′
1) det(v2, v

′
2) det(v3,

v′3). The tridegree (2, 2, 2) form

f (v1, v2, v3) := D(v1, v
′
1, v2, v

′
2, v3, v

′
3)

det(v1, v
′
1) det(v2, v

′
2) det(v3, v

′
3)

(38)

is then easily checked to be irreducible and thus defines the projection X123 of X
onto P(V ∨1 )× P(V ∨2 )× P(V ∨3 ).

One checks that generically X123 is smooth, and thus X and X123 are isomorphic.
Moreover, for {i, j, k} = {1, 2, 3}, we have that X123 is a double cover of
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P(V ∨i ) × P(V j)
∨ branched over a genus 9 curve, given by a bidegree (4, 4)

equation (namely, the discriminant of f viewed as a quadratic form on P(V ∨k )).
Let XU be the image of X under the fourth projection to P(U∨). Then u ∈ XU

if and only if there exists (v1, v2, v3) ∈ P(V ∨1 ) × P(V ∨2 ) × P(V ∨3 ) such that the
equations (34)–(36) are satisfied, which occurs if and only if the 2 × 2 × 2 cube
A( · , · , · , u) = A(u) has discriminant 0. (Recall that 2×2×2 cubes have a single
SL2 × SL2 × SL2-invariant of degree four called the discriminant, which is the
discriminant of each of the three binary quadratics that arise from the determinant
construction on the cube. If this discriminant vanishes, the cube is called singular,
and in this case, all three of the binary quadratics are multiples of squares of
linear forms, that is, have double roots in P1.) We conclude that XU is given by
the vanishing of the quartic polynomial disc A(u).

We may also give the following alternative description of XU . Let Y12, Y13, and
Y23 denote the threefolds in P(V ∨1 )× P(V ∨2 )× P(U∨), P(V ∨1 )× P(V ∨3 )× P(U∨),
and P(V ∨2 )× P(V ∨3 )× P(U∨) defined by (34), (35), and (36), respectively. Then
for (i, j) ∈ {(1, 2), (1, 3), (2, 3)}, we have that XU is the ramification locus of the
double cover Yi j → P(U∨) given by projection. To see this, fix u ∈U∨; then A(v1,

v2, · , u) = 0 has generically two solutions (v1, v2) ∈ P(V ∨1 ) × P(V ∨2 ), for there
are generically two choices for v1 as the root of the associated binary quadratic
on V ∨1 , and then a uniquely determined choice for v2 given v1 (namely, v2 is the
left kernel of the bilinear form A(v1, · , · , u)). If this binary quadratic form on
V ∨1 has only one root (which occurs when disc A(u) = 0), then there will thus
be only one (v1, v2) giving A(v1, v2, · , u). Hence XU is the ramification locus
of the double cover Y12 → P(U∨), and similarly is the ramification locus of the
double covers Y13 → P(U∨) and Y23 → P(U∨). It follows, in particular, that the
preimage X i jU of XU in Yi j is the projection of X onto P(V ∨i )× P(V ∨j )× P(U∨)
and is isomorphic to XU .

14.2. Singularities and exceptional divisors. We claim that XU generically
has 12 singularities; these are closely related to certain special sets Si of four
points in each P(V ∨i ). To construct this set S1 of four points in P(V ∨1 ), we consider
the 2 × 2 × 4 box A(v1, · , · , · ) = A(v1) attached to a given point v1 ∈ P(V ∨1 ).
It has a natural SL(V2)× SL(V3)× SL(U )-invariant—in fact, an SL(V2 ⊗ V3)×
SL(U )-invariant—of degree four, namely the determinant of A(v1) when viewed
as an element of (V2 ⊗ V3)⊗U . That is, with a choice of basis, this is simply the
determinant of A(v1) viewed as a 4 × 4 matrix. This invariant gives a degree 4
form on P(V ∨1 ), which then cuts out our set S1 of four points in P(V ∨1 ) over F .
The sets Si for i = 2, 3 are constructed in the analogous manner.

The sets Si have a further significance. Consider the projection π1 : X123 →
P(V ∨1 ). The fiber over any point v1 ∈ V ∨1 is then the curve in P1(V ∨2 ) × P1(V ∨3 )
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defined by the bidegree (2, 2)-form f (v1, · , · ). We thus see that X123
∼= X is

a genus one fibration over P(V ∨1 ), where each genus one fiber is described as a
bidegree (2, 2) curve in P1(V ∨2 ) × P1(V ∨3 ). A fiber in this fibration is singular
precisely when the discriminant of this bidegree (2, 2) form, which is a binary
form of degree 24 on P1(V ∨1 ), is zero. Using indeterminate entries for A, one
checks that this degree 24 binary form factors as the square of a binary quartic
form times an irreducible binary form of degree 16. Thus, generically, we have
16 nodal fibers, while the remaining four fibers turn out to be banana curves, that
is, they have as components two rational curves intersecting in two points, as we
now show.

In fact, we claim that S1 gives precisely the set of four points over which the
fibers for the map π1 : X → P(V ∨1 ) are banana curves. Indeed, for v1 ∈ S1, by
construction there exists a (generically unique) point u ∈ P(U∨) such that A(v1,

· , · , u) ≡ 0. Then the points (v2, v3) ∈ P(V ∨2 ) × P(V ∨3 ) such that (v1, v2, v3,

u) ∈ X are cut out by the single equation A( · , v2, v3, u) ≡ 0, which is a bidegree
(1, 1)-form on P(V ∨2 )×P(V ∨3 ). It follows that the bidegree (2, 2)-form that defines
the fiber of π1 over v1 factors into two (1, 1) forms, as claimed.

Let E j for 1 6 j 6 12 denote these twelve rational (1, 1) curves on X as
constructed in the previous paragraph (1 6 j 6 4 for i = 1, 5 6 j 6 8 for i = 2,
and 9 6 j 6 12 for i = 3). Recall that each of these E j must intersect the other
rational curve in its fiber in two points. To obtain the other component, we note
that for r ∈ S1, the space of 2 × 2 matrices spanned by Ai(r, · , · ), i = 1, . . . , 4
is (generically) 3-dimensional, by the definition of S1. So there is a plane conic
which describes the linear combinations which are of rank 1. With choices of
bases for the vector spaces Vi and their duals, suppose such a rank-1 matrix is
Zs,t = ( s2t2 −s2t1−s1t2 s1t1 ); then (s1, s2) ∈ V ∨2 and (t1, t2) ∈ V ∨3 give a point (r, s, t) on
the fiber over r (the U component may be computed uniquely, and is the linear
combination above). The locus of these (s, t) ∈ P(V ∨2 ) × P(V ∨3 ) is given by a
determinantal condition which says that Zs,t is linearly dependent with the Ai ,
hence a (1, 1)-form.

As we have already noted, the projection X → X123 is an isomorphism. The
map X → XU is, not, however: the 12 rational curves E j are blown down to
12 singularities (recall that, for each j , the elements of E j all have the same U -
coordinate u). Meanwhile, the other rational curves map to nodal curves.

14.3. Néron–Severi lattice. We thus have a number of divisors on XF : the
E j for j = 1, . . . , 12, as well as H (the pullback of OP(U∨)(1)) and the L i

(the pullbacks of OP(V∨i )(1)) for i = 1, 2, 3. We now compute their intersection
numbers.

First, note that L1·L2 = 2 since X ↪→ P(V ∨1 )×P(V ∨2 )×P(V ∨3 ) is cut out by a (2,
2, 2)-form. Intersecting X with the zero loci of (1, 0, 0) and (0, 1, 0) forms, we get
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an intersection number of 2, corresponding to the fact that X → P(V ∨1 )× P(V ∨2 )
is a double cover. By symmetry, L i · L j = 2 for all i 6= j .

Next, we show that L i · H = 4. The geometric meaning of the intersection
number L3 · H is as follows. We fix a point (r1, r2) ∈ P(V ∨3 ), that is take a
fixed (generic) linear combination of the front and back faces of our 2 × 2 × 2
cube of linear forms, yielding a 2 × 2 matrix of linear forms. Intersection with
H means that we restrict the forms to a generic hyperplane in P(U∨). We look
for the number of points in this plane for which the matrix is singular, and such
that (r1, r2) is the unique linear combination of the faces which is singular. For
simplicity, assume that (1, 0) is not one of the four special points in P(V ∨3 ) over
which X has a reducible fiber. Then, due to the GL(V3) action, we may compute
the intersection number when (r1, r2) is (1, 0). The constraint that the front face(

a b
c d

)
of our cube is singular describes a conic in the plane V (H)⊂ P(U∨). On the other
hand, for (1, 0) to be the unique linear combination of the faces which makes the
matrix singular, if (

e f
g h

)
denotes the back face of our cube, then we also need the mixed determinant

ah + ed − f c − bg,

to vanish, and this also describes a plane conic. Generically, these two conics
intersect in four points, proving our assertion.

The nonzero intersections among the divisors H, L1, . . . , L3, E1, . . . , E12 are
given by

H 2 = H · L i = 4, H · Ei = 0, L i · L j = 2,
L1 · Ei = 1 for i ∈ {5, . . . , 12},
L2 · Ei = 1 for i ∈ {1, 2, 3, 4, 9, 10, 11, 12},
L3 · Ei = 1 for i ∈ {1, . . . , 8}.

Next, we determine the Néron–Severi group of the generic K3 surface in this
family.

PROPOSITION 14.2. For a generic X in this family of K3 surfaces, NS(X) is
spanned over Z by H, E1, . . . , E12 and L1, L2, L3.
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Proof. We have already demonstrated that NS(X) contains H, E1, . . . , E12, with
H 2 = 4 , H · Ei = 0 and Ei · E j = −2δi j . Therefore the rank is at least 13. On
the other hand, the moduli space has dimension 2 · 2 · 2 · 4− (22− 1) · 3− 42 = 7.
Hence the dimension of NS(X) for generic X must be exactly 13.

Since L i ·H = 4 and L i ·E j = 0 if j ∈ {4i−3, 4i−2, 4i−1, 4i}, by comparing
intersection numbers, we obtain

L1 = H − (E5 + . . . E12)/2,
L2 = H − (E1 + · · · + E4 + E9 + · · · + E12)/2,
L3 = H − (E1 + · · · + E8)/2.

Note that L1 + L2 + L3 is already in ZH + ZE1 + · · · + ZE12.
The discriminant of the lattice M spanned by H , the three L i , and the twelve

E j is 4·212/24 = 210 = 1024. Since this discriminant is a power of 2, if the Néron–
Severi lattice is larger than M , there exists an element D ∈ QH+QE1+ . . .QE12

where all the denominators are powers of 2.
In that case, we claim that 2D ∈ ZH + . . .ZE12. Let 2e be the largest power

of 2 in a denominator of a coefficient of Ei in D. If e > 2, then 2e−2 D · Ei is
not an integer, since E2

i = −2. Also, we cannot have D = m H/2e + (c1 E1 +
. . . c12 E12)/2 with ci integers, e > 2 and m odd, for then 2e−1 D = m H/2 +
2e−2(c1 E1 + . . . c12 E12) is in NS(X), and so is m H/2. But this is impossible,
since (m H/2)2 = m2 is odd while the intersection pairing is even. Without loss
of generality (by subtracting integer multiples of H and Ei ), we may thus assume
that D = (c1 E1 + · · · + c12 E12)/2 or D = (H + c1 E1 + · · · + c12 E12)/2, where
ci ∈ {0, 1}.

In the first case, we note that
∑

ci ∈ {0, 8, 16} by Lemma 2.3. Now
∑

ci =
16 is impossible, while

∑
ci = 0 is trivial. Therefore, we need to show that if∑

ci = 8, then D is one of H− L i . If not, then D · L3 ∈ Z shows that c1+· · ·+c8

is even. It must be at least 4 (otherwise
∑

ci = (c1 + · · · + c8) + c9 + · · · + c12

would be less than 8) and cannot be 8 (otherwise D = H − L3). Finally, it cannot
be 6 (otherwise, subtracting H − L3 would lead to a divisor y = (∑ di Ei)/2 with
di ∈ {0, 1} and

∑
di = 4, which is impossible). We conclude that c1+· · ·+c8 = 4.

Similarly c1 + · · · + c4 + c5 + · · · c12 = 4 and c5 + · · · + c12 = 4. Adding yields∑
ci = 6, which is a contradiction.

An easy discriminant calculation shows:

COROLLARY 14.3. For a generic X in this family of K3 surfaces, NS(X) has a
basis given by H, L1, L2, L3, E1, E2, E3, E5, E6, E7, E9, E10, and E11.
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14.4. Reverse map. Starting from the data of a K3 surface X with line bundles
L1, L2, L3 and H coming from a 2 × 2 × 2 × 4 box A, we show how to recover
the box. Consider the map

H0(L1)⊗ H0(L2)⊗ H0(H)→ H0(L1 ⊗ L2 ⊗ H). (39)

The dimension of the domain is 2 · 2 · 4 = 16. The dimension of the image can be
computed by the Riemann–Roch formula, after noting that

(L1 + L2 + H)2 = 0+ 0+ 4+ 2 · 2+ 2 · 4+ 2 · 4 = 24.

Since L1 + L2 + H is the class of a big and nef divisor, an easy application of
Riemann–Roch on the K3 surface X yields

H0(L1 + L2 + H) = 1
2 (L1 + L2 + H)2 + χ(OX ) = 24

2 + 2 = 14.

Therefore, the kernel (which we will soon identify with V ∨3 ) of (39) has dimension
2, and we obtain a 2× 2× 2× 4 box B ∈ V1⊗ V2⊗ V3⊗U , where V1 = H 0(L1),
V2 = H 0(L2), and U = H 0(H).

Let X (B) ∈ P(V ∨1 )×P(V ∨2 )×P(V ∨3 )×P(U∨) denote the K3 surface associated
to B. To see that B is in fact the desired box A (once V ∨3 is correctly identified
with the kernel of (39)), it suffices to show that X (B)12U is in fact equal to X12U

as sets in P(V ∨1 ) × P(V ∨2 ) × P(U∨). It is equivalent to show that the threefold
Y (B)12 associated to B is the same as the threefold Y12 in P(V ∨1 )×P(V ∨2 )×P(U∨),
since X (B)12U (and X12U ) is then recovered as the ramification locus of Y (B)12 =
Y12→ P(U∨). (In other words, if two 2×2×2×4 boxes yield the same threefold,
then they must be the same box!) Now the equality Y12 ⊂ Y (B)12 is true by the
very construction of B, yielding X12U ⊂ X (B)12U . Then XU ⊂ X (B)U , but since
both are defined by quartics, we have XU = X (B)U , and then X12U = X (B)12U

and also Y12 ⊂ Y (B)12, as desired.
We have proved Theorem 14.1.

15. 2 ⊗ 2 ⊗ Sym2(4)

In this section, we study the orbits of V1 ⊗ V2 ⊗ Sym2V3, where V1, V2, and V3

are F-vector spaces of dimensions 2, 2, and 4, respectively. We show that these
orbits correspond to K3 surfaces lattice-polarized by a rank-2 lattice:

THEOREM 15.1. Let V1, V2, and V3 be F-vector spaces of dimensions 2, 2, and
4, respectively. Let G ′ = GL(V1)× GL(V2)× GL(V3), and let G be the quotient
of G ′ by the kernel of the multiplication map Gm × Gm × Gm → Gm sending
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(γ1, γ2, γ3) to γ1γ2γ
2
3 . Let Λ be the lattice whose Gram matrix is(

0 4
4 4

)
(40)

and let S = {e1, e2}. Then the G(F)-orbits of an open subset of V (F) are in
bijection with the F-rational points of an open subvariety of the moduli space
MΛ,S of K3 surfaces X lattice-polarized by (Λ, S).

15.1. Construction of K3 surfaces. From a general element A ∈ V1 ⊗ V2 ⊗
Sym2(V3), we obtain several natural surfaces. We view A as a tridegree (1, 1, 2)
form, denoted by A( · , · , · ), on V ∨1 × V ∨2 × V ∨3 . First, define the quartic surface
X3 := {z ∈ P(V ∨3 ) : det A( · , · , z) = 0}. If X3 is nonsingular or has only rational
double point singularities, then X3 is a K3 surface. We call such A nondegenerate,
and we will only consider such A. Now let

X13 := {(x, z) ∈ P(V ∨1 )× P(V ∨3 ) : A(x, · , z) = 0}
X23 := {(y, z) ∈ P(V ∨2 )× P(V ∨3 ) : A( · , y, z) = 0}.

These are each cut out by two bidegree (1, 2) forms in P1 × P3. Note that there
are natural projections X i3 → X3 for i = 1 or 2, and any isolated singularities on
X3 will be blown up by these maps. Finally, we let

X123 := {(x, y, z) ∈ P(V ∨1 )× P(V ∨2 )× P(V ∨3 ) : A(x, · , z) = A( · , y, z) = 0}.
The surface X123 projects to X i3 for i = 1 or 2, and we see that all of these surfaces
are birational.

The projection of X123 to P(V ∨1 )× P(V ∨2 ) has degree 8. For any point (x, y) ∈
P(V ∨1 ) × P(V ∨2 ), the preimage in X123 is the intersection of a P2 of quadrics in
P(V ∨3 ).

For {i, j} = {1, 2}, another way to construct X i3 is to view a general element of
V j⊗Sym2(V3) as giving a genus one curve of degree 4 in P(V ∨3 ), namely the base
locus of the pencil of quadrics in P(V ∨3 ). Then an element v of Vi⊗V j⊗Sym2(V3)

gives a pencil over P(V ∨i ) of genus one curves, and the discriminant has degree
24 and is irreducible. This gives X i3 as a genus one fibration over P(V ∨i ) with
generically only nodal reducible fibers.

Although it will not be directly relevant to the moduli problem, yet another
K3 surface Y may be obtained by viewing v as a symmetric matrix of bilinear
forms on V ∨1 × V ∨2 . The determinant of this matrix is thus a bidegree (4, 4) curve
in P(V ∨1 ) × P(V ∨2 ), and the double cover of P(V ∨1 ) × P(V ∨2 ) ramified at this
bidegree (4, 4) curve is a K3 surface. It is also a genus one fibration over both
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P(V ∨1 ) and over P(V ∨2 ). Indeed, as a fibration over P(V ∨i ), the smooth irreducible
fibers are genus one curves of degree 2 (namely, double covers of P(V ∨j ) ramified
at a degree 4 subscheme of P(V ∨j )).

15.2. Néron–Severi lattice. The K3 surface X123 corresponding to a very
general point in the moduli space has rank 2, since it is a genus one fibration
without any extra divisors. The Néron–Severi lattice is spanned by L1, L2, and L3

(the pullback of hyperplane divisors from P(V ∨1 ), P(V ∨2 ) and P(V ∨3 )) which have
the intersection numbers L2

i = 0 and L i · L3 = 4 for i = 1 or 2, L1 · L2 = 8,
and L2

3 = 4. It is easily seen that 2L3 = L1 + L2, so the lattice spanned by their
classes in the Néron–Severi group has a basis {L1, L3}, with intersection matrix(

0 4
4 4

)
.

In fact, it must be the entire Néron–Severi lattice. To prove this, it suffices to show
that the three classes L1/2, L3/2 and (L1 + L3)/2 do not arise from divisors on
the surface. The first assertion is immediate, since L1 is the class of an elliptic
fiber, and therefore not multiple. The other two Q-divisor classes have odd self-
intersection, so they cannot come from divisors, either.

15.3. Moduli problem. To prove Theorem 15.1, we need to construct an
element of V1 ⊗ V2 ⊗ Sym2(V3) from a K3 surface X with divisors L1 and L3

that have intersection matrix (40).

Proof of Theorem 15.1. First, the natural multiplication map Sym2H0(X, L3)→
H0(X, 2L3) is an isomorphism by a dimension count (each has dimension 10). We
consider the multiplication map

µ : H0(X, L1)⊗Sym2H0(X, L3)
∼=→ H0(X, L1)⊗H0(X, 2L3)→ H0(X, L1+2L3).

(41)
The dimension of the domain is 20, and h0(X, L1 + 2L3) = 1

2 (L1 + 2L3)
2 +

χ(OX ) = 16+ 2 = 18. We claim that (41) is surjective, in which case the kernel
is 2-dimensional and will give the desired tensor.

The surjectivity of µ follows directly from the basepoint-free pencil trick and
the fact that H1(X, L−1

1 ⊗ L⊗2
3 ) is 0. This last vanishing may be obtained by

computing χ(L−1
1 ⊗ L⊗2

3 ) = 2, h0(X, L−1
1 ⊗ L⊗2

3 ) = 2 (because the bundle is
nef and semiample), and h2(X, L−1

1 ⊗ L⊗2
3 ) = 0 by Serre duality. Note that the

basepoint-free pencil trick also gives an isomorphism of the kernel of µ with
H0(X, L−1

1 ⊗ L⊗2
3 ).
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The usual argument (for example, see the proofs of Theorems 4.1 and 7.1)
shows that these two constructions are inverse to one another.

16. Sym2(2) ⊗ Sym2(4)

Finally, just as in the Rubik’s revenge and penteract cases, we may consider a
symmetric linear subspace of the previous case of 2⊗2⊗Sym2(4). Specifically, let
V = Sym2(V1)⊗ Sym2(V2), where V1 and V2 are F-vector spaces of dimensions
2 and 4, respectively. Then the general orbits of V under linear transformations
on V1 and V2 correspond to certain K3 surfaces of rank at least 9 over F :

THEOREM 16.1. Let V1 and V2 be F-vector spaces of dimensions 2 and 4,
respectively. Let G ′ = Gm × GL(V1) × GL(V2) and let G be its quotient by the
kernel of the multiplication map Gm × Gm × Gm → Gm sending (γ1, γ2, γ3) to
γ1γ

2
2 γ

2
3 . Let Λ be the lattice whose Gram matrix is

0 4 1 1 1 1 1 1 1
4 4 0 0 0 0 0 0 0
1 0 −2 0 0 0 0 0 0
1 0 0 −2 0 0 0 0 0
1 0 0 0 −2 0 0 0 0
1 0 0 0 0 −2 0 0 0
1 0 0 0 0 0 −2 0 0
1 0 0 0 0 0 0 −2 0
1 0 0 0 0 0 0 0 −2


(42)

and let S = {e1, e2}. Then the G(F)-orbits of an open subset of V (F) are in
bijection with the F-rational points of an open subvariety of the moduli space
MΛ,S of K3 surfaces X lattice-polarized by (Λ, S).

We view this vector space as a subspace of V1 ⊗ V1 ⊗ Sym2(V2). Then the
K3 surfaces in this case are constructed in the same way as in Section 15.
However, for a general element A ∈ Sym2(V1)⊗ Sym2(V2), we obtain eight rank
singularities (over F ) on the surface X3 ⊂ P(V ∨2 ); they are exactly the points
where the symmetric 2×2 matrix of quadratic forms A( · , · , z) is identically zero,
namely the intersection of three quadrics in P3. These singularities are blown up
in the other surfaces X12, X13, and X123 described in Section 15, all of which
are isomorphic nonsingular K3 surfaces for the general A. Let Ei for 1 6 i 6 8
denote these exceptional divisors on X := X123.

The symmetry also shows that the line bundles L1 and L2, defined as pullbacks
of OP(V∨1 )(1) to X , are the same. We thus have the relation
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2L3 = 2L1 +
∑

i

Ei (43)

where L3 is the pullback of OP(V∨2 )(1) to X . Computing the intersection numbers
of L1, L3, and the Ei in the usual way gives the intersection matrix (42) (with
respect to the basis L1, L3, E1, . . . , E7). The lattice spanned by these divisors has
rank 9 and discriminant 256. To check that it is all of NS(X), we observe by direct
calculation that any element of the dual lattice has the form

D = cL3

4
+ 1

2

7∑
i=1

di Ei .

First, observe that c cannot be odd; otherwise, 2D and hence cL3/2 would be in
NS(X), which is impossible since it has odd self-intersection. We can therefore
write

D = cL3

2
+ 1

2

7∑
i=1

di Ei .

Then by symmetry,

D′ = cL3

2
+ 1

2

6∑
i=1

di Ei + d7 E8

is also in NS(X). Subtracting, we get d7(E7 − E8)/2 ∈ NS(X), which is
impossible by Lemma 2.3, unless d7 is even. Similarly, all the di are even,
resulting in D = cL3/2, which is impossible by the argument above.

To complete the proof of Theorem 16.1, we check that a K3 surface X whose
Néron–Severi lattice contains the lattice (42) may be obtained from an element of
our vector space V . The construction in the proof of Theorem 15.1 applies here,
and we only need to check that the resulting element A is symmetric in the two
2-dimensional vector spaces. This is by the same argument as in the symmetric
penteract cases: by Theorem 15.1, the tridegree (1, 1, 2) form A in U1 ⊗ U2 ⊗
Sym2(U3) gives a K3 surface whose two projections to P(U∨1 ) and P(U∨2 ) are
identical (under some identification φ : U2 → U1). Therefore, if A is viewed as a
2×2 matrix B = (bi j) of quadratic forms on the 4-dimensional space U3, we must
have that b12 = b21 identically, or in other words, the image of A under Id⊗φ⊗Id
is an element of Sym2(U1)⊗ Sym2(U3).

17. Applications and connections

In this section, we prove Theorems 1.5 and 1.6, as well as several related results,
by using hyperdeterminants and the automorphisms of the K3 surfaces discussed
in earlier sections.
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17.1. Definition of hyperdeterminant. The hyperdeterminant of a
multidimensional matrix is a natural analogue of the determinant of a square
matrix. It was first introduced by Cayley [24, pages 80–94], while a detailed
study was carried out in the important work of Gelfand et al. [35].

We may define the hyperdeterminant as follows (see [35] for more details). Let
F be a field, and let T : V1⊗· · ·⊗Vr → F be a linear map, where V1, . . . , Vr are
F-vector spaces having dimensions k1+ 1, . . . , kr + 1, respectively. By choosing
bases for V1, . . . , Vr , we may view T as a (k1 + 1) × · · · × (kr + 1) matrix. The
kernel ker(T ) of T is defined to be

{v = v1⊗· · ·⊗vr ∈ V1⊗· · ·⊗Vr : T (v1, . . . , vi−1, ·, vi+1, . . . , vr ) = 0 for all i}.

By definition, a hyperdeterminant det(T ) of the multidimensional matrix T is a
polynomial of minimal degree in the entries of T whose vanishing is equivalent to
T having a nontrivial kernel. If it exists, the hyperdeterminant is then well defined
up to a scalar multiple.

The necessary conditions on the dimensions of the matrix T for the existence
of hyperdeterminants was determined by Gelfand et al. [35, Ch. 14]:

THEOREM 17.1 [35]. Assume without loss of generality that kr > k1, . . . , kr−1.
Then hyperdeterminants exist for (k1 + 1)× · · · × (kr + 1) matrices if and only if
kr 6 k1 + · · · + kr−1.

For example, when r = 2, hyperdeterminants exist if and only if k1 = k2, that
is, the matrix is square. By definition, we see that a square matrix T has vanishing
hyperdeterminant if and only if T has a nontrivial left (equivalently, right) kernel.
Thus the hyperdeterminant in this case coincides with the usual determinant.

17.2. Interpretations in terms of fixed-point-free automorphisms.
Although interpretations of the determinant of a square matrix (for example, as a
volume) have been known for centuries, interpretations for the hyperdeterminant
for higher-dimensional matrices have been less forthcoming.

In [8], an interpretation of the hyperdeterminant in the case of a 2 × 2 × 2
matrix was given, namely, as the discriminant of an associated quadratic algebra.
Analogous interpretations for the hyperdeterminant of a 2×3×3 matrix—namely,
as the discriminant of an associated cubic algebra—were given in [9]. In the
works [4, 14, 16], orbits on multidimensional matrices of various dimensions were
shown to be in bijection with certain data involving algebraic curves, and in these
cases the hyperdeterminants are equal to the discriminants of the corresponding
curves. Thus the nonvanishing of the hyperdeterminant in these cases corresponds
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to the nondegeneracy of the associated rings and the nonsingularity of the
associated curves, respectively.

For the orbit parametrizations of K3 surfaces by multidimensional matrices
that we have studied in this paper, we find that the hyperdeterminant does not
coincide with the discriminant, but only divides it. This raises the question as to
the interpretation of the hyperdeterminant in these cases. In the cases of 4× 4× 4
and 2×2×2×2×2 matrices, we showed that the generic orbits of such matrices
correspond to K3 surfaces with at most isolated double point singularities that are
(Λ, S)-polarized for some pair (Λ, S). Moreover, these K3 surfaces are naturally
equipped with birational automorphisms Φ, which lift to automorphisms of the
nonsingular models; these birational automorphisms are in fact automorphisms
whenever the associated K3 surfaces have no rank singularities.

The interpretation of the hyperdeterminant locus that we obtain in this case is
then as follows:

THEOREM 17.2. Let T be a 4 × 4 × 4 matrix, and suppose that the associated
K3 surfaces X1, X2, X3 via Theorem 4.1 have no rank singularities. Then the
hyperdeterminant of T vanishes if and only if the associated automorphism Φ of
X = X1 has a fixed point.

Proof. Suppose the hyperdeterminant of T vanishes, and let v1⊗v2⊗v3 ∈ ker(T ).
For each i ∈ {1, 2, 3}, let v̄i denote the image of vi in P(Vi). Then v̄i is a point
on X i . By the definition of Φ and the fact that there are no rank singularities on
the X i , we see that ψ12(v̄1) = v̄2, ψ(v̄2) = v̄3, and ψ(v̄3) = v̄1; hence Φ(v̄1) = v̄1,
yielding a fixed point of Φ on X1, as desired.

If some of the X i have isolated rank singularities, then the maps ψi j : X i 99K
X j are not isomorphisms but birational maps. These maps lift uniquely to
isomorphisms ψ̃i j : X̃ i → X̃ j between the nonsingular models X̃ i and X̃ j of
X i and X j , respectively (see, for example, [3, Theorem 10.21]). We thus obtain
an automorphism Φ̃ = ψ̃31 ◦ ψ̃23 ◦ ψ̃12 of X = X1. In this case too, we may still
use the hyperdeterminant to detect fixed points of Φ̃:

THEOREM 17.3. Let T be a 4×4×4 matrix, and suppose that the associated K3
surfaces X1, X2, X3 via Theorem 4.1 have only isolated double point singularities.
If the associated automorphism Φ̃ of the nonsingular model X̃ = X̃1 of X1 has a
fixed point, then the hyperdeterminant of T vanishes.

Proof. Suppose ṽ1 on X̃1 is a fixed point of Φ̃. Let ṽ2 = ψ̃12(ṽ1) and ṽ3 = ψ̃23(ṽ2),
so that ṽ1 = ψ̃31(ṽ3). Let v1, v2, v3 denote the images of ṽ1, ṽ2, ṽ3 in X1, X2, X3,
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respectively. We claim that v1⊗ v2⊗ v3 ∈ ker(T ). Indeed, the nonsingularization
map X̃1 → X1 factors through

X12 = {(x, y) ∈ P(V ∨1 )× P(V ∨2 ) : A(x, y, · ) = 0}.

(In fact, X12 is isomorphic to X̃1 when X1 only has simple isolated rank
singularities.) It follows that T (v1, v2, · ) = 0. Similarly, T ( · , v2, v3) = T (v1,

· , v3) = 0. This is the desired conclusion.

In particular, if the hyperdeterminant is nonzero, then the automorphism Φ̃ of
X has no fixed points.

Similarly, we have:

THEOREM 17.4. Let T be a 2 × 2 × 2 × 2 × 2 matrix, and suppose that the
associated K3 surfaces X i jk via Theorem 7.1 have no rank singularities. Then the
hyperdeterminant of T vanishes if and only if one (equivalently, every one) of the
associated automorphisms Φabcde of X i jk has a fixed point.

THEOREM 17.5. Let T be a 2 × 2 × 2 × 2 × 2 matrix, and suppose that
the associated K3 surfaces X i jk via Theorem P7.1 have only isolated double
point singularities. If, for any i, j, k, the associated automorphism Φ̃abcde of the
nonsingular model X̃ = X̃ i jk of X i jk has a fixed point, then the hyperdeterminant
of T vanishes.

The proofs are similar to those of Theorems 17.2 and 17.3.
In Sections 17.3 and 17.4, we use these theorems about hyperdeterminants

vanishing to exhibit fixed-point-free automorphisms of finite order and of positive
entropy, respectively, for most of the K3 surfaces in some of the families we
consider (namely, those where the hyperdeterminant does not vanish).

17.3. Fixed-point-free automorphisms of finite order. We may use
Theorems 17.3 and 17.5 to find fixed-point-free automorphisms of finite order for
most of the K3 surfaces in some of the symmetric Rubik’s revenge and penteract
families.

For the doubly symmetric Rubik’s revenge case, the automorphism Φ of
a general member X of the family of K3 surfaces gives an involution of X
(as described in Section 5.3). When the hyperdeterminant does not vanish, by
Theorem 17.3, this involution is fixed-point-free. Such an involution produces an
Enriques surface, so the moduli space of the K3s in this family also correspond to
(an open part of the) moduli space for certain Enriques surfaces.
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Similarly, for the triply symmetric Rubik’s revenge, the automorphism Φ is a
fixed-point-free involution for the general Hessian quartic surface; this involution
is studied in [32].

For quadruply and quintuply symmetric penteracts, recall from Sections 12.2
and 13.2 that the 5-cycles Φi jklm are order 4 automorphisms. By Theorem 17.5,
these automorphisms are fixed-point-free. As discussed in Sections 12.2 and 13.2,
the square of each of these automorphisms is an involution but no longer fixed-
point-free.

Note that we have previously constructed other automorphisms for the
penteract (and symmetric penteract) cases with finite order but which are not
fixed-point-free. For example, for the triply symmetric penteracts, the four-cycles

α23,5 ◦ α34,5 : X1234 → X1235 → X1245 → X1345

and α13,5 ◦α34,5 are order 3. Viewing the K3 surface X1234 as a genus one fibration
over P(V ∨1 ) (respectively, P(V ∨2 )), the automorphism α23,5 ◦ α34,5 (respectively,
α13,5 ◦α34,5) is given by translation by a 3-torsion section of the Jacobian fibration
(see [16, Section 6.3.2]). The reducible fibers of the genus one fibration have
fixed points, however. Similar automorphisms (corresponding to translations by 3-
torsion sections of the Jacobian fibrations) appear for the doubly triply, quadruply,
and quintuply symmetric penteracts as well.

17.4. Fixed-point-free automorphisms of positive entropy. We show
that many of the automorphisms that we have constructed in earlier sections
have positive entropy and are fixed-point-free for the general member
of the corresponding family. Specifically, we obtain such fixed-point-free
automorphisms with positive entropy for the cases from lines 6, 9, 11, 13,
15, and 16 of Table 1.

In each of these cases, by the parametrization theorems in this paper, the Néron–
Severi lattice of the K3 surfaces X (over F) in the families contain a given
lattice Λ; the Néron–Severi lattice of the very general member of the family will
be exactly Λ. We will describe the action of a particular automorphism Φ on
X (defined over F); we find that Φ∗ acts on Λ by a matrix M , which has an
eigenvalue λ of norm larger than 1. Since the action of Φ∗ on NS(X) ⊗ R has
at most one eigenvalue of modulus larger than 1 (see [21, Section 2.3.2]) and M
fixes the subspace Λ⊗ R in NS(X)⊗ R, the spectral radius of Φ∗ is exactly λ.

In other words, for each of these cases, we find that the entropy of the
automorphism for each K3 surface is the logarithm of the norm of the
largest eigenvalue λ of M . The theorems from Section 17.2 imply that these
automorphisms are fixed-point-free for the general member of the family,
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specifically when the hyperdeterminant of the corresponding element does not
vanish.

Rubik’s revenge. As mentioned in Section 4.4, for each K3 surface X arising from
a Rubik’s revenge, there exists an automorphism Φ whose induced action on (the
known part of) NS(X) is given by the matrix(−3 −8

8 21

)
.

The characteristic polynomial of this matrix is λ2 − 18λ + 1, and the largest
eigenvalue is λRR = 9 + 4

√
5. The entropy of the automorphism Φ is thus

6 log (1+√5)/2, and by Theorem 17.2, this automorphism is also fixed-point-
free if the hyperdeterminant of the Rubik’s revenge does not vanish. This gives
the proof of Theorem 1.5, an extension of Oguiso’s result from [61].

Penteracts. Recall from Section 7.4 that we defined an automorphismΦ51234 (as a
certain 5-cycle along the 1-dimensional boundary of a 5-cell), and Φ51234 induces
the action of the matrix 

−1 0 2 2
−2 1 2 4
−4 2 5 6
−6 2 8 11


on (the known part of) NS(X). The characteristic polynomial of this matrix is
λ4− 16λ3+ 14λ2− 16λ+ 1, and the maximum eigenvalue λpent is approximately
15.1450744834468. Therefore, the entropy of Φ51234 is log λpent ≈ 2.717675362.
The same numerics occur for all of the other 5-cycles, by symmetry.

By Theorem 17.4, the automorphism Φ51234 will be fixed-point-free if the
hyperdeterminant of the penteract does not vanish. Thus, we have produced
a family of K3 surfaces whose general member has several fixed-point-free
automorphisms with positive entropy, giving the proof of Theorem 1.6.

Recall that for the penteract (and the symmetric) cases, one may also consider
automorphisms that are 3- or 4-cycles along the boundary of the 5-cell; these
all have zero entropy. There are also infinitely many other automorphisms (for
instance, by taking arbitrary words in the generators) with positive entropy (see
Section 7.4). This is also true for the symmetric penteract cases below.

Doubly symmetric penteracts. Recall from Section 8.3 that the automorphism
Φ54321 on a K3 surface X here induces the action of the matrix (18)
on (the known part of) NS(X), which has characteristic polynomial
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(λ− 1)6(λ+ 1)(λ2 − 6λ+ 1) and largest eigenvalue 3 + 2
√

2. The entropy
of Φ54321 here is thus log (3+ 2

√
2) = 2 log (

√
2+ 1).

In addition, the entropy of Φ53421 is log λpent, since its action on NS(X) is
similar to the action of the penteract case. The 5-cycles thus have entropy either
2 log (

√
2+ 1) or log λpent.

By Theorem 17.5, we thus find that the general member of this family of K3
surfaces has many fixed-point-free automorphisms with positive entropy.

Triply symmetric penteracts. In Section 9.3, for the general member X of the
family of K3 surfaces related to triply symmetric penteracts, we found an
automorphism Φ54123 whose action on (the known part of) NS(X) is given by the
matrix (20). This matrix has characteristic polynomial (λ+1)2(λ2−λ+1)5(λ2−
3λ+ 1) and largest eigenvalue (3+√5)/2 = ((√5+ 1)/2)2.

As before, some of the other 5-cycles have the same numerics (by symmetry).
The other 5-cycles (likeΦ54132) have entropy at least log(3+2

√
2), as their action

on Néron–Severi is much like that of Φ54321 in the doubly symmetric penteract
case.

Thus, applying Theorem 17.5, we have that the general member of this
family of K3 surfaces has fixed-point-free automorphisms with entropy
2 log ((

√
5+ 1)/2) and 2 log (

√
2+ 1).

Doubly doubly symmetric penteracts. In Section 10.2, we described a 5-cycle
automorphism Φ53214 on the general member of the family of K3 surfaces arising
from doubly doubly symmetric penteracts. Its action on (the known part of)
NS(X) is given by (24), with characteristic polynomial (λ + 1)12(λ2 + 1)(λ2 −
4λ+ 1) and largest eigenvalue 2+√3.

Therefore, Theorem 17.5 implies that the general member of this family of
K3 surfaces has a fixed-point-free automorphism with entropy log (2+√3). In
addition, from the automorphisms Φ53421 and Φ53241 (and other analogous 5-
cycles), we also obtain fixed-point-free automorphisms with entropy equal to
log λpent and 2 log (

√
2+ 1), respectively.

Doubly triply symmetric penteracts. The automorphismΦ53214 from Section 11.2,
applied to the general member X of the family of K3 surfaces coming from
doubly triply symmetric penteracts, acts on (the known part of) NS(X) by (29).
It has characteristic polynomial (λ − 1)3(λ + 1)(λ2 − 3λ + 1)(λ2 + λ + 1)8 and
largest eigenvalue (3+√5)/2 (just as in the triply symmetric penteract case). The
same argument shows that this gives fixed-point-free automorphisms with entropy
2 log ((

√
5+ 1)/2). Moreover, the automorphism Φ52413 is fixed-point-free with

entropy 2 log (
√

2+ 1).
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