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A Satake isomorphism in characteristic p
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Abstract

Suppose that G is a connected reductive group over a p-adic field F , that K is a
hyperspecial maximal compact subgroup of G(F ), and that V is an irreducible
representation of K over the algebraic closure of the residue field of F . We establish an
analogue of the Satake isomorphism for the Hecke algebra of compactly supported,
K-biequivariant functions f :G(F )→ End V . These Hecke algebras were first
considered by Barthel and Livné for GL2. They play a role in the recent mod p and
p-adic Langlands correspondences for GL2(Qp), in generalisations of Serre’s conjecture
on the modularity of mod pGalois representations, and in the classification of irreducible
mod p representations of unramified p-adic reductive groups.

1. Introduction

1.1 Statement of the theorem
Let F be a finite extension of Qp with ring of integers O, uniformiser $, and residue field k of
order q. Suppose that G is a connected reductive group over F that is unramified (i.e. quasi-split
and split over an unramified extension) and that K is a hyperspecial maximal compact subgroup.
Fix any maximal split torus S in G such that the apartment corresponding to S contains the
hyperspecial point in the reduced building corresponding to K. Since G is quasi-split, T = ZG(S)
is a maximal torus of G.

With these assumptions, it is known that G extends to a smooth O-group scheme [Tit79,
§ 3.8.1], which we will also denote by G, whose special fibre is a connected reductive group over k
and is such that K =G(O). The tori S and T extend to smooth O-subgroup schemes S ⊂ T of G,
which reduce to a maximal split torus and its centraliser in the special fibre of G. The relative
root systems of S in G in the two fibres are naturally identified with each other. We denote
by Φ⊂X∗(S) the set of roots, by Φ+ a choice of positive roots, and by W the Weyl group.
There is a closed O-subgroup scheme B = T n U of G whose fibres are the Borel subgroups
associated to Φ+.

Suppose that V is an irreducible representation of G(k) over k̄, which we shall also consider
as a representation of K via the reduction homomorphism K =G(O)→G(k). The Hecke
algebra HG(V ) of V is the k̄-algebra of compactly supported functions f :G(F )→
Endk̄ V satisfying f(k1gk2) = k1f(g)k2 for all k1, k2 ∈K and g ∈G(F ), where the multi-
plication is given by convolution. We remark that, by Frobenius reciprocity, it follows
thatHG(V )∼= Endk̄G(F )(c-IndG(F )

K V ), where c-IndG(F )
K V = {ψ :G(F )→ V | ψ(kg) = kψ(g) ∀k ∈

K, g ∈G; supp ψ is compact} is the compactly induced representation (see [BL94, Proposi-
tion 5]).
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It is known that the T (k)-representation V U(k) is one-dimensional (see Lemma 2.5). The
corresponding Hecke algebra HT (V U(k)) consists of T (O)-biequivariant, compactly supported
functions ϕ : T (F )→ Endk̄(V

U(k)) = k̄.

Let ordF : F×� Z denote the valuation of F . For χ ∈X∗(S) and t ∈ T (F ), we define
(ordF ◦χ)(t) to be (1/n) ordF (nχ(t)), where n > 0 is chosen so that nχ extends to an F -rational
character of T . Since X∗F (T )→X∗(S) is injective with finite cokernel, this does not depend on
any choices.

Definition 1.1. Let T− denote the following submonoid of T (F ):

T− = {t ∈ T (F ) : (ordF ◦ α)(t)6 0 ∀α ∈ Φ+}.

Let H−T (V U(k)) denote the subalgebra of HT (V U(k)) consisting of those ϕ : T (F )→ k̄ that are
supported on T−.

Theorem 1.2. Suppose that V is an irreducible representation of G(k) over k̄. Then

S :HG(V )→HT (V U(k))

f 7→
(
t 7→

∑
u∈U(F )/U(O)

f(tu)
∣∣∣
V U(k)

)

is an injective k̄-algebra homomorphism with image H−T (V U(k)).

Note that as f is compactly supported, the sum over U(F )/U(O) has only finitely many
non-zero terms and Sf is compactly supported. Since T (F ) normalises U(F ), the image of Sf
is contained in V U(k).

It is easy to see that λ 7→ λ($) yields an isomorphism X∗(S)→ T (F )/T (O) which sends the
antidominant coweights X∗(S)− = {λ ∈X∗(S) : 〈λ, α〉6 0 ∀α ∈ Φ+} to T−/T (O) (Lemma 2.1).

Corollary 1.3. HG(V ) is commutative and isomorphic to k̄[X∗(S)−]. In particular, it is
noetherian.

At least when G is split and the derived subgroup of G is simply connected, there is another
argument to show that HG(V ) is commutative, which uses an analogue of a Gelfand involution;
see the end of § 2.1.

1.2 Comparison with the classical Satake isomorphism

Recall that the classical Satake isomorphism is given by the formula

C[K\G(F )/K] ∼−−→ C[X∗(S)]W

f 7→
(
t 7→ δ(t)1/2

∫
U(F )

f(tu) du
)
,

where δ is the modulus character of the Borel subgroup and the Haar measure du on U(F )
satisfies

∫
U(O) du= 1 (see [Car79, Gro98]). The relevance of the factor δ1/2 is to make the image

of the Satake transform W -invariant. Leaving it out still yields an algebra homomorphism S ′
into C[X∗(S)], which now also makes sense over Z and is obviously compatible with S when V
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is the trivial representation, as shown in the following diagram.

Z[K\G(F )/K] � � S′ //

��

Z[X∗(S)]

��
HG(1) = k̄[K\G(F )/K] � � S // k̄[X∗(S)]

In this case (when V is trivial), there is a simple explanation of why the image of S is supported
on antidominant coweights. The image of the Satake transform is W -invariant, and the modulus
character is a power of p which, among the W -conjugates of a given coweight, is biggest on the
antidominant one.

The proof of Theorem 1.2 follows the same steps as the classical proof, but there are two
complications. Firstly, it is harder to determine the space of Hecke operators supported on a
given double coset. This requires an argument using the Bruhat–Tits building (Proposition 3.8).
Secondly, for general V it is subtle to prove that the image of S is contained in H−T (V U(k)). We
first show that the image is supported on ‘almost antidominant’ coweights and then use that S is
a homomorphism to conclude. This extra step is really necessary, as one can see by considering
the Hecke bimodule HomG(F )(c-IndG(F )

K V1, c-IndG(F )
K V2) whose support under the Satake map

may extend slightly beyond the antidominant coweights [Her10, § 6].

1.3 Comparison with the p-adic Satake isomorphism
Schneider and Teitelbaum [ST06] constructed p-adic Satake maps, and their p-adic completions,
for the Hecke algebras associated to an irreducible representation of G/F . In Proposition 2.10 we
establish a compatibility between Schneider and Teitelbaum’s p-adic Satake map and the mod p
Satake map S, in the case where V extends to a representation of G/k. (This is satisfied, for
example, if the derived subgroup of G/k̄ is simply connected.) In this case, V is a submodule of
the reduction of a K-stable lattice in some irreducible representation of G/F . Note that V does
not necessarily equal the reduction; in fact, this cannot usually be achieved.

1.4 The W -regular case
The refined Cartan decomposition says that the λ($) for λ ∈X∗(S)− form a system of coset
representatives for K\G(F )/K. We will see in the proof of Theorem 1.2 thatHG(V ) has a natural
k̄-basis {Tλ : λ ∈X∗(S)−}. The Hecke operator Tλ is characterised by having support Kλ($)K
and by Tλ(λ($)) ∈ Endk̄ V being a projection. More obviously (see Lemma 2.1), H−T (V U(k)) has
a k̄-basis {τλ : λ ∈X∗(S)−} where τλ is supported on λ($)T (O) and τλ(λ($)) = 1.

We will say that an irreducible representation V of G(k) over k̄ is W -regular if the ‘extremal
weight subspaces’ wV U(k) ⊂ V for w ∈W are distinct.

Proposition 1.4. Suppose that V is W -regular. Then for each λ ∈X∗(S)− we have STλ = τλ.
In particular, Tλ ∗ Tλ′ = Tλ+λ′ for all λ, λ′ ∈X∗(S)−.

For general V and for λ ∈X∗(S)−, the proof of Theorem 1.2 shows that

τλ =
∑

µ∈X∗(S)−
µ>Rλ

dλ(µ)STµ

where dλ(µ) ∈ k̄ and dλ(λ) = 1. In the classical setting, the work of Lusztig and Kato shows
that the dλ(µ) are Kazhdan–Lusztig polynomials in q = |k| (see [Gro98, HKP10, Kat82]).
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In [Her10, § 5] we use their results to compute dλ(µ) in all cases, at least when G is split and its
derived subgroup is simply connected. It turns out that dλ(µ) does not depend on V but only
on the stabiliser of the subspace V U(k) in W .

1.5 Satake parameters
Let ∆⊂ Φ+ denote the set of simple roots. Let Ŝ be the torus dual to S (over k̄). For each subset
J ⊂∆, define the torus ŜJ by the exact sequence

GJm→ Ŝ→ ŜJ → 1,

where the first map is given by
∏
δ∈J δ. The closed points of the ‘toric’ variety SpecHG(V ) have

the following concrete description. Classically, only one torus (Ŝ = Ŝ∅) is needed.

Corollary 1.5. The k̄-algebra homomorphisms HG(V )→ k̄ are parameterised by pairs (J, sJ)
where J ⊂∆ and sJ ∈ ŜJ(k̄).

In [Her10, § 4] we give an alternative parameterisation, analogous to the classical parameter-
isation by unramified characters of T .

1.6 Example: G = GLn

We suppose that S = T is the diagonal torus and that B is the Borel subgroup of upper-triangular
matrices. Then the λi(x) = diag(1, . . . , 1, x, . . . , x) (with i non-trivial entries) generate X∗(S)−,
and we denote by Ti the corresponding Hecke operator Tλi . Theorem 1.2 shows that HG(V ) is
the localised polynomial algebra k̄[T1, . . . , Tn−1, T

±1
n ].

1.7 Previous work
The Hecke algebrasHG(V ) were first calculated by Barthel and Livné in the case where G= GL2;
see [BL94, BL95]. (We follow their strategy for computing HG(V ) as a vector space. However,
they used explicit methods to determine the algebra structure.) This was important for their
(partial) classification of irreducible smooth representations π of GL2(F ) over k̄ that have a
central character, which was completed by Breuil in the case where F =Qp (see [Bre03]) and
which plays a crucial role for mod p and p-adic local Langlands correspondences for GL2(Qp).
In [Her10] we extend the work of Barthel and Livné, giving a classification of irreducible,
admissible representations of GLn(F ) over k̄ in terms of supersingular representations. Our
proofs depend heavily on the methods developed in this paper.

We also remark that Schein independently determined the Hecke algebras for GLn by explicit
methods [Sch09], after we had done this in a similar manner.

In another direction, Gross showed that the classical Satake isomorphism can be defined
over Z[q1/2, q−1/2]; see [Gro98, § 3] and also [Laz99, § 1.2].

1.8 Algebraic modular forms
Suppose that F =Qp and that G arises by base change from a connected reductive Q-group G
such that G(R) is compact. Given a compact open subgroup KA =K ×Kp in G(A∞), we can
consider Gross’s space M(KA, V

∗) of algebraic modular forms of level KA and weight V ∗, the
linear dual of V (see [Gro99]). The Hecke algebra HG(V ) acts naturally on this space, and there
is a simple result concerning compatibility of the action of the Tλ on M(KA, V

∗) with classical
Hecke operators. In forthcoming joint work with Emerton and Gee, we use it to prove strong
new results on the weights in a Serre-type conjecture for rank-three unitary groups.
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1.9 Organisation of the paper
In § 2 we discuss the proofs of the main results. Technical parts of the arguments requiring
buildings are discussed in § 3. We include the proofs of some well-known results since we did not
find an appropriate reference for them.

For a reader who is inexperienced with algebraic groups, we recommend assuming first that
G= GLn or, more generally, that G is split with simply connected derived subgroup. Many
arguments simplify in these settings.

2. Proofs

2.1 The Satake isomorphism for HG(V )
Lemma 2.1. The map ζ : T (F )→X∗(T ) given by

〈ζ(t), χ〉= ordF (χ(t)) for χ ∈X∗(T )

induces isomorphisms of abelian groups

S(F )/S(O) ∼−−→ T (F )/T (O) ∼−−→X∗(S). (2.2)

Moreover, T−/T (O) (see Definition 1.1) corresponds to X∗(S)− under the isomorphism.
A ‘splitting’ of (2.2) is provided by X∗(S)→ S(F ), λ 7→ λ($).

Note that χ(t) ∈ (F nr)× since T splits over an unramified extension, so ordF (χ(t)) ∈ Z.

Proof. We consider the following diagram.

0 // S(O) //
� _

��

S(F ) //
� _

��

X∗(S) //
� _

��

0

0 // T (O) // T (F )
ζ // X∗(T )

Note that ζ lands in the Gal(F/F )-invariant part of X∗(T ), that is, in X∗(S). As T/Onr is split
(see Lemma 3.2), ker ζ = T (F ) ∩ T (Onr) = T (O). All the claims follow immediately. 2

We need to introduce a partial order 6R on X∗(S)R. First, note that X∗(S)R = R〈Φ〉 ⊕
X∗(G/F )R, where X∗(G/F ) = HomF (G/F ,Gm). Since Φ is a root system in R〈Φ〉, for every α ∈ Φ
there is a ‘coroot’ α∨ ∈ (R〈Φ〉)∗, characterised by sα(x) = x− 〈x, α∨〉α. For y, y′ ∈ (R〈Φ〉)∗, we
say that y >R y

′ if y − y′ is a non-negative real linear combination of the positive coroots.

Definition 2.3. Suppose that λ, λ′ ∈X∗(S)R. We say that λ>R λ
′ if λ− λ′ lies in the direct

summand (R〈Φ〉)∗ and λ− λ′ >R 0.

Alternatively, one could use the relative coroots in X∗(S) as defined in [Spr98, § 15.3].

Lemma 2.4. Suppose that λ ∈X∗(S). Then {λ′ ∈X∗(S)− : λ′ >R λ} is finite.

Proof. By the definition of >R we may project onto (R〈Φ〉)∗. The projections λ̄ and λ̄′ lie in
the coweight lattice for the root system Φ in (R〈Φ〉)∗, and λ̄ is antidominant. In this setting the
result is well known. 2

Next, we will study the invariants of an irreducible G(k)-representation V over k̄ under the
unipotent radical of a parabolic subgroup.
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Lemma 2.5. Suppose that V is an irreducible representation of G(k) over k̄. Then V U(k) is one-
dimensional. Suppose that P = LnN is a parabolic subgroup of G/k and denote by P = LnN
the opposite parabolic.

(i) V N(k) is an irreducible representation of L(k).

(ii) The natural map V N(k)→ V → VN(k) is an isomorphism of L(k)-representations.

Assertion (i) was first proved by Smith [Smi82] in the case where G/k is semisimple and
simply connected. Cabanes [Cab84] provided a general proof, using (B, N)-pairs. Below we give
a proof that generalises the proof for the simply connected case found in [Hum06, § 5.10].

Proof. Let us first assume that the derived subgroup of G/k̄ is simply connected. By conjugating,
we may assume that P = LnN is a standard Levi decomposition, i.e. P ⊃B and T ⊂ L. Let G
be the split k-form of G/k̄, and fix a split maximal torus T and a Borel subgroup B containing it.
Let φ ∈Gal(k̄/k) denote the Frobenius element. There is a finite-order automorphism π ∈
Autk(G, B, T) and an isomorphism f :G(k̄)→G(k̄) respecting maximal tori and Borel subgroups
such that f ◦ φ= (π ◦ φ) ◦ f . In particular, G(k) =G(k̄)π◦φ. Let L n N be the parabolic subgroup
of G corresponding to LnN in G.

Since G′ is simply connected, a (slight extension of a) result of Steinberg shows that V
is isomorphic to the restriction to G(k) of an irreducible representation F (ν) of the algebraic
group G whose highest weight ν ∈X∗(T) is q-restricted, i.e. which satisfies 06 〈ν, β∨〉< q for all
simple roots β of G; see [Her09, Proposition A.1.3]. Moreover, V U(k) ∼= F (ν)ν (the weight space
of weight ν) is one-dimensional.

(i) This is [Hum06, Corollary 5.10]. Even though G is assumed to be semisimple in that
reference, the proof goes through word for word. From the proof we see that F (ν)N = F (ν)N(k)

is the sum of weight spaces F (ν)ν′ with ν − ν ′ ∈ Z>0Θ+, where Θ+ denotes the positive roots
of (T, L). This is an irreducible L(k)-representation since ν is also q-restricted for L and L′ is
simply connected (as G′ is simply connected).

(ii) Since (V ∗)N(k) ∼= Homk̄(VN(k), k̄), it follows that VN(k)
∼= ((V ∗)N(k))∗ is irreducible as a

L(k)-representation. It thus suffices to show that V N(k)→ VN(k) is non-zero or, equivalently, that

V N(k) pairs non-trivially with (V ∗)N(k) under the duality V × V ∗→ k̄. By (i), V N(k) contains
the highest-weight space L(ν)ν and (V ∗)N(k) contains the lowest-weight space (L(ν)∗)−ν . Since
these spaces pair non-trivially, this completes the proof. (One can even see directly in this way
that the pairing on V N(k) × (V ∗)N(k) is non-degenerate, i.e. that the map V N(k)→ VN(k) is an
isomorphism.)

We remark that this argument shows that V N(k) is a direct summand of V as a L(k)-
representation, which is also clear from the proof in [Hum06].

Let us now reduce the general case to the previous one. For ease of notation we will be
writing G for its special fibre G×O k, and similarly for S, T , etc. We pick a z-extension of G.
This is an exact sequence

1→R→ G̃
π−−→G→ 1 (2.6)

of affine algebraic k-groups, where G̃ is reductive with G̃′ simply connected and R a central torus
(even an induced torus). Exactness means that the first map is a closed embedding, the second
map is faithfully flat, and the first map is the kernel of the second. The notion of a z-extension
goes back to Langlands in the characteristic-zero case; for the general case, see [Col08, § 3.1].
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By [Bor91, Theorem 22.6] we have that: (a) T̃ = π−1(T ) is a maximal torus of G̃; (b)
the maximal split subtorus S̃ ⊂ T̃ satisfies π(S̃) = S; (c) X∗(S) ↪→X∗(S̃) induces a bijection
α 7→ α̃= α ◦ π on relative roots; and (d) Uα̃ maps isomorphically to Uα for any α ∈ Φ. Let Θ⊂ Φ
be the set of roots of (S, L). Since L̃= 〈T̃ , Uα̃ : α ∈Θ〉 and Ñ ∼=

∏
Φ+−Θ+ Uα̃ (in any fixed order),

and similarly for L and N , the map π induces

1→R→ L̃→ L→ 1, Ñ
∼−−→N.

As R is connected, H1(Gal(k̄/k), R(k̄)) = 0 by Lang’s theorem, so that

G̃(k)�G(k), L̃(k)� L(k), Ñ(k) ∼−−→N(k).

Thus V is an irreducible representation of G̃(k) on which R(k) acts trivially. The result now
follows from the previous case. 2

The following technical lemma is crucial in controlling the support of the image of the Satake
map. Let Φnd denote the set of non-divisible roots in Φ. Recall that for any root β ∈ Φnd, there
is a root subgroup Uβ over F whose Lie algebra is the sum of weight spaces for the positive
multiples of β. It extends to a smooth O-subgroup scheme of G (see § 3).

Lemma 2.7. Let α be a simple root (so that α ∈ Φ+
nd).

(i) The product map
∏
β∈Φ+

nd,β 6=α
Uβ → U is an isomorphism of O-schemes onto a closed

subgroup scheme U ′. It is normal in U and independent of the order of the factors in
the product. The product map induces an isomorphism of O-group schemes Uα n U ′→ U .

(ii) Suppose that A is an abelian group and that φ : U(F )/U(O)→A is a function with finite
support. Then ∑

U(F )/U(O)

φ(u) =
∑

uα∈Uα(F )/Uα(O)

∑
u′∈U ′(F )/U ′(O)

φ(uαu′).

(iii) Suppose that λ ∈X∗(S) and α ∈ Φnd are such that 〈λ, α〉> 1. Let t= λ($). Suppose that A
is an abelian group of exponent p. Suppose that ψ : Uα(F )/tUα(O)t−1→A is a function
with finite support such that ψ is left invariant under ker(Uα(O)→ Uα(k)). Then∑

uα∈Uα(F )/tUα(O)t−1

ψ(uα) = 0.

Proof. We will prove (i) and (iii) at the end of § 3. Part (ii) follows immediately from (i).
Note, however, that when G is split, the proof is easier. In that case, there are O-group

isomorphisms xα :Ga
∼−−→ Uα such that for t ∈ T we have txα(a)t−1 = xα(α(t)a) and for all α

and β with α 6=−β, [xα(a), xβ(b)] =
∏
i,j>0 xiα+jβ(ci,jaibj) (in some order) with ci,j ∈ O;

see [Jan03, II.1.2]. Then (iii) is obvious since Uα is abelian and tUα(O)t−1 is a proper subgroup
of ker(Uα(O)→ Uα(k)) of p-power index. Part (i) follows as in the general case, except that
instead of Bruhat–Tits theory one can appeal to [Jan03, II.1.7]. 2

Proof of Theorem 1.2. We will use the refined Cartan decomposition (Lemma 3.5)

G(F ) =
∐

λ∈X∗(S)−

Kλ($)K.

Step 0. Let f ∈HG(V ). Since K is compact open in G(F ), f is supported on a finite number of
cosets in G(F )/K. By the Iwasawa decomposition (Lemma 3.4), f is supported on a finite number
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of cosets in B(F )/B(O). Thus Sf is supported on a finite number of cosets in T (F )/T (O), and
for each t ∈ T (F ) the sum

∑
u∈U(F )/U(O) f(tu)|V U(k) is zero outside a finite number of terms.

As T normalises U , it follows that the image of
∑

u∈U(F )/U(O) f(tu)|V U(k) is contained in V U(k).
It is clear that S is k̄-linear.

Step 1. We show that the space of functions in HG(V ) supported on any single double coset is
one-dimensional. The argument is analogous to that for [BL94, Lemma 7] but requires technical
input from Bruhat–Tits theory. Suppose that f ∈HG(V ) is supported on the double coset KtK
with t= λ($) for some λ ∈X∗(S)−. Let Pλ = Lλ n Uλ denote the parabolic subgroup of G/k
defined by λ ∈X∗(S) (see [Spr98, 13.4.2, 15.4.4]). Note that Lλ = L−λ and that P−λ = Lλ n U−λ
is the opposite parabolic subgroup. It follows immediately from the definitions that the possible
values for f(t) consist of all the φ ∈ Endk̄ V such that

k1φ= φk2 whenever k1, k2 ∈K and k1t= tk2.

Note that k1 ∈K ∩ tKt−1, k2 ∈K ∩ t−1Kt and k1 = tk2t
−1. Proposition 3.8 implies that,

equivalently, φ has to factor through an Lλ(k)-equivariant map VUλ(k)→ V U−λ(k), and Lemma 2.5
shows that the space of such φ is one-dimensional (Schur’s lemma).

Again by Lemma 2.5, there is a function in HG(V ) that is supported on KtK and maps t to
the endomorphism

V � VUλ(k)
∼←−− V U−λ(k) ↪→ V. (2.8)

We denote it by Tλ. Obviously, it is a projection.

Step 2. Let us verify that S is a homomorphism. This imitates the classical argument. Suppose
that fi :G(F )→ Endk̄ V (i= 1, 2) are elements of HG(V ). Let v ∈ V U(k). Then

S(f1 ∗ f2)(t)v =
∑

u∈U(F )/U(O)

∑
g∈G/K

f1(tug)f2(g−1)v

=
∑

u∈U(F )/U(O)

∑
b∈B(F )/B(O)

f1(tub)f2(b−1)v

=
∑

u∈U(F )/U(O)

∑
τ∈T (F )/T (O)

∑
ν∈U(F )/U(O)

f1(tuτν)f2(ν−1τ−1)v

=
∑

τ∈T (F )/T (O)

∑
ν∈U(F )/U(O)

∑
u∈U(F )/U(O)

f1(tτν)f2(ν−1τ−1u)v

=
∑

τ∈T (F )/T (O)

∑
ν∈U(F )/U(O)

∑
u∈U(F )/U(O)

f1(tτν)f2(τ−1u)v

=
∑

τ∈T (F )/T (O)

∑
ν∈U(F )/U(O)

f1(tτν)(Sf2)(τ−1)v

=
∑

τ∈T (F )/T (O)

(Sf1)(tτ)(Sf2)(τ−1)v

= (Sf1 ∗ Sf2)(t)v.

Note that when we sum over quotients, the summand does not depend on the representative cho-
sen provided that we respect the stated order of summation. The first and the last three equalities
come from the definitions, the second comes from the Iwasawa decomposition G(F ) =B(F )K
(Lemma 3.4), and the third follows from the fact that B = T n U . For the fourth equality, we
replaced (τ−1uτ)ν by ν, and for the fifth we replaced (τν−1τ−1)u by u.
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Step 3. We show that (STλ)(µ($)) = 0 for µ ∈X∗(S) unless µ>R λ and that (STλ)(λ($)) = 1.
The argument is the classical one. By Lemma 3.6, Kλ($)K ∩ µ($)U 6=∅ implies µ>R λ
and Kλ($)K ∩ λ($)U = λ($)U(O). Since U−λ(k)⊂ U(k) and Tλ(λ($)) is a projection onto
V U−λ(k), we see that (STλ)(λ($)) = 1.

Step 4. We show that (Sf)(µ($)) = 0 if 〈µ, α〉> 1 for some simple root α. Let t′ = µ($). By
Lemma 2.7(i) and (ii), U = Uα n U ′ for some normal O-subgroup scheme U ′ and, for v ∈ V U(k),

(Sf)(t′)v =
∑

uα∈Uα(F )/Uα(O)

∑
u′∈U ′(F )/U ′(O)

f(t′uαu′)v

=
∑

uα∈Uα(F )/t′Uα(O)t′−1

( ∑
u′∈U ′(F )/U ′(O)

f(uαt′u′)v
)
.

By Lemma 2.7(iii), this sum is zero since 〈µ, α〉> 1, k̄ is of characteristic p, and the function
of uα defined by the expression in parentheses is left invariant under ker(Uα(O)→ Uα(k)).

Step 5. We show that (STλ)(µ($)) = 0 if µ 6∈X∗(S)−. Suppose that this is not the case. Let
Mλ = {µ ∈X∗(S) : (STλ)(µ($)) 6= 0}. Note that this is a finite set by Step 0. Label the simple
roots as (αi)ri=1 so that 〈µ, α1〉> 0 for some µ ∈Mλ. Define a homomorphism of abelian groups

o :X∗(S)→ Zr

µ 7→ (〈µ, αi〉)ri=1.

Note that this is injective on Mλ: if o(µ1) = o(µ2) for µi ∈Mλ, then µ1 − µ2 ∈X∗F (G)⊥ (as
µi >R λ by Step 3) and µ1 − µ2 ∈ (R〈Φ〉)⊥, so µ1 = µ2. Let µ be the element of Mλ such
that o(µ) is greatest in the lexicographic order of Zr. In particular, 〈µ, α1〉> 0. We show that
S(T 2

λ ) = (STλ)2 is non-zero on 2µ($). Consider

(STλ)2(2µ($)) =
∑

µ′∈X∗(S)

STλ(µ′($))STλ((2µ− µ′)($)).

If the term indexed by µ′ is non-zero, then µ′, 2µ− µ′ ∈Mλ and hence o(µ′)6 o(µ) and
o(2µ− µ′)6 o(µ). But since the sum of these inequalities yields an equality, it follows easily
that µ′ = µ. So (STλ)2(2µ($)) = ((STλ)(µ($)))2 6= 0. Since 〈2µ, α1〉> 1, we get a contradiction
by Step 4 with f = T 2

λ .

Step 6. It remains to show that S is injective and maps onto H−T (V U(k)). This is again classical.
By Step 1 the Tλ, λ ∈X∗(S)−, form a k̄-basis of HG(V ), and by Lemma 2.1 the τµ, µ ∈X∗(S)−,
form a k̄-basis of H−T (V U(k)). By Step 3, we may write STλ =

∑
µ>Rλ

aλ(µ)τµ with aλ(µ) ∈ k̄ and
aλ(λ) = 1. Since {µ ∈X∗(S)− : µ>R λ} is finite by Lemma 2.4, the claims follow. 2

Suppose now that G is split and that G′ is simply connected. We give a sketch of a simpler
proof that HG(V ) is commutative. By [Jan03, II.1.16], there is a ‘transpose’ involution τ :G→G
that induces the identity on T . (When G= GLn, one can take the usual transpose map.) Let
τV be the dual Homk̄(V, k̄) with G(k)-action (gψ)(v) := ψ(τg · v). Since G′ is simply connected,
V extends to a representation of the algebraic group G/k̄. By using a weight-space decomposition
of V , it follows that V and τV are isomorphic as G(k)-representations [Jan03, II.2.12(2)]. Fix a
G(k)-linear isomorphism κ : V ∼−−→ τV .

An element ϕ ∈ Endk̄ V induces an endomorphism of τV and hence an endomorphism
τϕ ∈ Endk̄ V by means of κ. Given f ∈HG(V ), we define f∗ :G→ Endk̄ V by f∗(g) := τf(τg).
It is easy to check that f∗ ∈HG(V ) and that f∗1 ∗ f∗2 = (f2 ∗ f1)∗. It remains to show that ∗ acts
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trivially or, equivalently, that T ∗λ = Tλ for all λ ∈X∗(S)−. As τ preserves K =G(O) and λ($),
it follows that T ∗λ has the same support as Tλ. Moreover, it is clear that T ∗λ (λ($)) is a linear
projection. Hence T ∗λ = Tλ.

2.2 Comparison with the p-adic Satake map
We will explain a result concerning compatibility with the p-adic Satake isomorphism of Schneider
and Teitelbaum [ST06, § 3]. It will be convenient to state the result of Schneider and Teitelbaum
in a slightly different form. To keep the notation simple, let us assume in this subsection that
G/F is split (just as in [ST06]).

Let E be the (absolutely) irreducible representation of G/F of highest weight ν ∈X∗(T ). Then
EU(O) is the highest-weight space of E; in particular, it is one-dimensional and T (O) acts on it
via ν. (This is because EU(O) ⊂ Eu , where u = Lie U(O) = Lie U(F ) = Lie(U/F ); but Eu = EU

since U/F is connected.) Consider the p-adic Hecke algebra

H̃G(E) = EndG(F )(c-IndG(F )
K E),

which we again think of as an algebra (under convolution) of functions f :G(F )→ EndF (E)
with compact support such that f(k1gk2) = k1f(g)k2 for all k1, k2 ∈K and g ∈G(F ).

Lemma 2.9 [ST06, Lemma 1.4]. The map

ι : H̃G(1)→ H̃G(E)

with (ιφ)(g) = φ(g)g ∈ EndF (E) is an algebra isomorphism.

The point is that for f ∈ H̃G(E) and g ∈G(F ), we have g−1f(g) ∈ EndF (E)K∩g
−1Kg =

EndF (E)G = F by considering the action of the Lie algebra as above. Note that the lemma
depends crucially on E being a representation not just of K but of G(F ), thus the analogue does
not work for the characteristic p Hecke algebras.

Fix a K-stable norm ‖ · ‖E on E such that ‖E‖E = |F |. Equivalently, this corresponds to
a choice of K-stable O-lattice E0 ⊂ E given by E0 = {x ∈ E : ‖x‖E 6 1}. Then H̃G(E) carries a
submultiplicative sup-norm, where EndF (E) is given the operator norm with respect to ‖ · ‖E .
Similarly, we have the Hecke algebra H̃T (EU(O)), likewise equipped with a sup-norm. The p-adic
Satake map is then the following isometric isomorphism of normed F -algebras:

S̃ : H̃G(E) ∼−−→ H̃T (EU(O))W,∗

f 7→
(
t 7→

∑
U(F )/U(O)

f(tu)
∣∣∣∣
EU(O)

)
.

To define the right-hand side, let δ :B(F )→ qZ ⊂ R× be the modulus character of the Borel
subgroup. (Note that our δ is inverse to the one in [ST06].) Then H̃T (EU(O))W,∗ is the subalgebra
of those ϕ ∈ H̃T (EU(O)) for which ϕν−1δ1/2 : T (F )/T (O)→ F is W -invariant. This condition
does not depend on the choice of square root of δ (see [ST06, Example 2 in § 2]). To prove
that S̃ is an algebra isomorphism, one reduces to the E = 1 case by applying Lemma 2.9 to both
sides, in which case it is equivalent to the classical Satake isomorphism. That S̃ is an isometry
follows from Lemma 3.6. For details, see [ST06, § 3]. Note that the map Sν : H̃G(1)→ F [X∗(S)]
in [ST06, p. 653] is related to the one above via Sν(ψ) =$ord νν−1S̃(ιψ).

From now on, suppose that E0 is a G/O-stable O-lattice and that E0 ⊗O k̄ contains F (ν), the
irreducible representation of G/k̄ of highest weight ν, as a subobject. For example, we could take
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the dual Weyl module E0 =H0
O(λ), in the notation of [Jan03, II.8.6(1)] (see also [Jan03, II.8.8(1),

II.2.4]). Suppose, moreover, that ν is q-restricted, i.e. that 06 〈ν, α∨〉< q for all simple roots α.
Then F (ν) is irreducible as a representation of G(k), and we denote it by V . (See the proof
of Lemma 2.5; if (G/k̄)

′ is not simply connected, this follows by a z-extension argument.) Let
H̃G(E)0 ⊂ H̃G(E) denote the elements with sup-norm at most 1. In particular, im(f)⊂ EndO(E0)
for f ∈ H̃G(E)0, and we can consider the reduction f :G(F )→ Endk̄(E0 ⊗ k̄). Similarly, we have
H̃T (EU(O))W,∗0 ⊂ H̃T (EU(O))W,∗. By considering the weight-space decomposition of E0, it is clear
that E0 ∩ EU(O) reduces to V U(k) ⊂ E0 ⊗O k̄.

Proposition 2.10. With the above notation, we have the following commutative diagram.

H̃G(E)0 ∼̃
S //

α

��

H̃T (EU(O))W,∗0

β
��

HG(V ) ∼
S // H−T (V U(k))

Here (αf)(g) = f(g)|V and (βϕ)(t) = ϕ(t). The vertical maps are well-defined and induce
isomorphisms after base-extending from O to k̄.

Proof. For λ ∈X∗(S)−, consider T̃λ ∈ H̃G(E) defined by: (i) supp T̃λ =Kλ($)K; and (ii)
T̃λ(λ($)) =$−〈λ,ν〉λ($). We claim that the T̃λ form an O-basis of H̃G(E)0 and that α(T̃λ) = Tλ.
On the ν ′-weight space of E, for ν ′ 6 ν, $−〈λ,ν〉λ($) acts as the scalar $〈λ,ν

′−ν〉. Thus T̃λ(λ($))
is the linear projection onto the ν ′-weight spaces of E0 ⊗k k̄ for the weights ν ′ satisfying
〈λ, ν ′ − ν〉= 0. Thus it preserves any G/k̄-subrepresentation and, in particular, V . By (2.8) and
the description of V U−λ(k) given in the proof of Lemma 2.5, the claim follows and we see that α
is well-defined.

Similarly, for λ ∈X∗(S)−, consider τ̃λ ∈ H̃T (EU(O))W,∗ defined by: (i) T− ∩ supp τ̃λ =
λ($)T (O); and (ii) τ̃λ(λ($)) = 1. We claim that the τ̃λ form an O-basis of H̃T (EU(O))W,∗0 and
that β(τ̃λ) = τλ. Recall that δ1/2(µ($)) = q−〈µ,ρ〉 for µ ∈X∗(S), where ρ= 1

2

∑
Φ+ α (see [Gro98,

(3.3)]). Thus, for ϕ ∈ H̃T (EU(O))W,∗,

ϕ(w(λ($))) = ϕ(λ($))$〈wλ−λ,ν〉q〈wλ−λ,ρ〉 for all w ∈W.

Since wλ>R λ and the second exponent is positive if wλ 6= λ, it follows that supp(ϕ)⊂ T−
whenever ‖ϕ‖6 1. By the same reasoning, ‖τ̃λ‖6 1. The claim follows and we see that β is
well-defined.

This completes the proof, since the diagram obviously commutes. 2

Remark 2.11. Note that this argument yields another proof that im(S)⊂H−T (V U(k)) in the
case where V arises from a representation of G/k̄ (which does not always happen if (G/k̄)

′ is not
simply connected), after the surjectivity of the map α has been established.

2.3 The W -regular case
For the proof of Proposition 1.4 we will need a lemma. Let Φ denote the set of absolute roots
of G/k̄ with respect to T/k̄. Since G/k is quasi-split, W is a subgroup of the absolute Weyl
group W and the restriction homomorphism X∗(T/k̄)�X∗(S/k̄) is W -equivariant. Moreover, Φ
maps onto Φ under this map; in particular, Φ+ determines a system of positive roots Φ+ in Φ.
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Lemma 2.12.

(i) Suppose that η ∈X∗(T/k̄)+ and w ∈W . There are simple reflections si ∈W such that

η 
 s1η 
 · · ·
 sl · · · s2s1η = wη. (2.13)

(ii) Suppose that η ∈X∗(T/k̄)+ and α ∈ Φ is simple. If η − sαη > 0, then η − sα is the sum of

simple roots βi ∈ Φ such that βi|S = α.

Proof. (i) Let us write w = sl · · · s1 as a reduced product of simple reflections in W . We will
show that

η > s1η > · · ·> sl · · · s2s1η = wη, (2.14)

which implies (2.13) since every time there is an equality, the corresponding simple reflection si
can be omitted. We claim that `W (w) =

∑
`W (si), where `W denotes the length in W . Once we

establish this, we are done: by writing each si as a reduced product of simple reflections in W ,
we are reduced to proving the analogue of (2.14) in W , where it is easy and well known.

Recall that the length of w in W (respectively, W ) equals the number of non-divisible positive
roots α in Φ (respectively, Φ) such that w(α)< 0 (see, for example, [Bou02, §VI.1.6, Corollary 2]).
In particular, a simple reflection sα ∈W stabilises Φ+ − {α}. Say αi ∈ Φ is the simple root
corresponding to si ∈W . Since w = sl · · · s1 is of length l in W , it sends precisely the following l
non-divisible positive roots of Φ to a negative root: α1, s1α2, . . . , s1 · · · sl−1αl. Letting Ai = {β ∈
Φ+ : β|S ∈ Z>0αi}, we see that w sends precisely the following positive roots of Φ to a negative
root: A1 ∪ s1A2 ∪ · · · ∪ s1 · · · sl−1Al. Clearly, `W (si) = |Ai|, which implies the claim.

(ii) Write η − sαη = β1 + · · ·+ βr with βi ∈ Φ simple. Now restrict to S. On the left-hand
side we get an integer multiple of α and on the right-hand side a sum of simple roots βi|S in Φ.
Thus βi|S = α for all i. 2

Proof of Proposition 1.4. By Step 3 of the proof of Theorem 1.2, we know that (STλ)(λ($)) = 1.
It thus suffices to show that for any given µ ∈X∗(S)− {λ}, each term in the sum defining
(STλ)(µ($)) vanishes.

Let t′ = µ($) and t= λ($). Choose 0 6= v ∈ V U(k).

Step 1. We will show that if Tλ(g)v 6= 0, then g ∈KtI, where I = red−1(B(k)) is an Iwahori
subgroup. Let Wλ 6W be the Weyl group of (S/k, Lλ) (generated by simple reflections associated
to simple roots α ∈ Φ with 〈λ, α〉= 0). For each w ∈W , choose a representative ẇ ∈N(S)(k)
and a lift of it, ẇ ∈G(O) =K. Then

G(k) =
∐

Wλ\W

Pλ(k)ẇB(k)

by [Bor91, 21.16(3)]. By Proposition 3.8,

K =
∐

Wλ\W

(K ∩ t−1Kt)ẇI

and thus

KtK =
∐

Wλ\W

KtẇI.

So if Tλ(g)v 6= 0, then g = ktẇi for some k ∈K, w ∈W and i ∈ I. Thus Tλ(t)ẇv 6= 0. We will show
that w ∈Wλ. Recalling the definition of Tλ in (2.8), we may, by the proof of Lemma 2.5, reduce
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to the case where (G/k̄)
′ is simply connected. (The lifted Levi subgroup equals L

λ̃
for any lift

λ̃ ∈X∗(S̃) of λ. We can lift ẇ since the Weyl group of (S/k, G/k) and that of its lift (S̃, G̃) can be
naturally identified with each other by [Bor91, 22.6].) Since (G/k̄)

′ is simply connected, there is a
q-restricted weight ν ∈X∗(T )+ such that V ∼= F (ν) as G(k)-representations. But we saw in the
proof of Lemma 2.5 that Tλ(t) is the projection onto the weight spaces for ν ′ ∈X∗(T ) such that
ν − ν ′ is a sum of simple roots of (T/k̄, Lλ/k̄), i.e. a sum of simple roots β ∈ Φ such that 〈β, λ〉= 0.
Since Tλ(t)ẇv 6= 0, it follows that ν − wν is a sum of simple roots β ∈ Φ such that 〈β, λ〉= 0.

By Lemma 2.12(i), there are simple reflections si ∈W corresponding to simple roots αi ∈ Φ
such that

ν 
 s1ν 
 s2s1ν 
 · · ·
 sl · · · s1ν = wν.

By Lemma 2.12(ii), the ith and (i+ 1)st term in this sequence differ by a sum of simple roots
βij ∈ Φ such that βij |S = αi. Thus 〈αi, λ〉= 〈βij , λ〉= 0. It follows that si ∈Wλ for all i. Since V
is W -regular, we see that w = sl · · · s1 ∈Wλ and g ∈KtI.

(We remark that we actually used only the fact that StabW (ν)⊂Wλ.)

Step 2. We show that KtI ∩ t′U(F ) =∅. Suppose not. We use the Iwahori decomposition

I = (I ∩ U(F ))(I ∩ T (F ))(I ∩ U(F )),

where U is the unipotent radical of the opposite Borel subgroup (Lemma 3.10). Since t contracts
I ∩ U(F ), we find that tIt−1 ⊂ IU(F ). Thus

∅ 6= (KtI ∩ t′U(F ))t−1 ⊂KU(F ) ∩ t′t−1U(F ).

Therefore K ∩ t′t−1U(F ) 6=∅ and so t′t−1 ∈ T (O), which contradicts the assumption that
µ 6= λ. 2

2.4 Satake parameters

Proof of Corollary 1.5. By Corollary 1.3, we need to classify algebra homomorphisms θ :
k̄[X∗(S)−]→ k̄, i.e. monoid homomorphisms X∗(S)−→ k̄ where k̄ is considered with its
multiplicative structure. Then M := θ−1(k̄×) satisfies

λ1 + λ2 ∈M ⇐⇒ λ1 ∈M and λ2 ∈M. (2.15)

Let X∗(S)0 := {λ ∈X∗(S) : 〈λ, α〉= 0 ∀α ∈ Φ}. Since this is a subgroup of X∗(S)−, we have that
X∗(S)0 ⊂M . For δ ∈∆, choose λδ ∈X∗(S)− such that 〈λδ, δ′〉 is zero if δ′ ∈∆− {δ} and negative
if δ′ = δ.

We claim that M = J⊥ ∩X∗(S)− (a ‘facet’ of X∗(S)−), where J = {δ : λδ 6∈M}. (Note that J
is independent of the choice of the λδ, since X∗(S)0 ⊂M .) Suppose that λ ∈X∗(S)−. Then
there is an n ∈ Z>0 such that nλ=

∑
nδλδ + λ0 for some nδ ∈ Z>0 and some λ0 ∈X∗(S)0.

Then, from (2.15), we see that λ ∈M if and only if nδ 6= 0 implies δ 6∈ J if and only if λ ∈ J⊥.

Next, we show that the subgroup of X∗(S) generated by M equals J⊥. One inclusion
being obvious, suppose that λ ∈ J⊥. Then λ+ n

∑
δ 6∈J λδ is in X∗(S)− (and hence in M =

J⊥ ∩X∗(S)−) for some n ∈ Z>0, which implies that λ is in the subgroup generated by M .

As k̄× is a group, θ|M extends uniquely to a group homomorphism θ̃ : J⊥→ k̄×. Taking
character groups in the exact sequence defining ŜJ , we find that X∗(ŜJ) = J⊥. Thus θ̃
corresponds to an element of X∗(ŜJ)⊗ k̄× ∼= ŜJ(k̄).
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All pairs (J, sJ) with sJ ∈ ŜJ(k̄) are obtained in this way, because J⊥ ∩X∗(S)−
satisfies (2.15), which allows us to extend a homomorphism J⊥ ∩X∗(S)−→ k̄ by zero to a
monoid homomorphism X∗(S)−→ k̄. 2

3. Buildings arguments

The main goal of this section is to prove Proposition 3.8 and Lemma 2.7. We also justify some
basic results about unramified groups using the work of Bruhat and Tits [BT72, BT84]. Although
most of these results are well known, we could not find a good reference for their proofs.

In what follows, references to [BT72] (Bruhat–Tits part I) and [BT84] (Bruhat–Tits part II)
will be given in the form I.4.4.4 or II.5.1.40, for example.

We will keep as much as possible to the notation of [BT72, BT84]. In particular, K now
denotes the p-adic field and K its residue field, N denotes N(S), Z denotes the centraliser Z(S)
of S in G, and vW denotes the Weyl group. Group schemes over O are denoted by fraktur
letters (G, T, . . . ), their generic fibres by the corresponding roman letters (G, T, . . . ), and their
special fibres by overlined characters (G, T, . . . ). Note that ‘fixer’ is a synonym for ‘pointwise
stabiliser’. An O-group scheme is said to be connected if its two fibres are connected. The
connected component of a smooth O-group scheme is defined fibrewise (II.1.2.12). As in § 2, we
are assuming that the valuation ordK surjects onto the integers.

Let I denote the reduced building of G. The general construction in I.6 and I.7 produces I
starting with a valuation of the ‘root datum’ (T (K), (Ua(K))a). Such a valuation is constructed
for quasi-split groups by descent from the split case (II.4.2) and in general by étale descent from
the quasi-split case (II.5.1). The apartment A of S is an affine space under the vector space V
which is the quotient of X∗(S)R dual to R〈Φ〉 ⊂X∗(S)R.

Lemma 3.1. Suppose that G is a smooth O-group scheme with generic fibre G. Then G×K is
reductive if and only if G∼= G0

x for some hyperspecial point x. In this case, G is unramified and
G×K is connected.

Recall that a point x ∈ I is hyperspecial if G splits over Knr and x is a special point inside
the building of G×Knr (see [Tit79, 1.10]).

Proof. The first statement is II.5.1.40. (Note that in II.5, the superscript \ refers to the objects
over the base field; the other objects live over the strict henselisation of the base field.)

Let us show that G is quasi-split. Without loss of generality, assume that x lies in the
apartment of S. The canonical extension S of S (the split torus over O with generic fibre S) is a
closed subscheme of G0

x, and its reduction S is a maximal K-split torus in G
0
x (see II.5.1.11). The

Lie algebra Lie G0
x is a free O-module of finite rank (since G0

x is a smooth group scheme), and we
can consider its decomposition under S. Note that the character groups X∗(S), X∗(SK) and
X∗(S) are naturally isomorphic. Since K is a finite field, G

0
x is quasi-split and

rank G
0
x = dimK(Lie G

0
x)S =1 = dimK(LieG)S=1 = dim Z > rankG.

(Here ‘rank’ denotes the absolute rank of an algebraic group.) On the other hand, any split torus
in the special fibre of G0

x ×Onr can be lifted to a split torus in the generic fibre, as explained in
the proof of II.4.6.4, so that rank G

0
x 6 rankG. Thus equality holds, and so Z is a maximal torus

of G, i.e. G is quasi-split.
The connectedness of G×K follows from base change to the strict henselisation and II.4.6.22. 2
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Assume, from now on, that G∼= G0
x for some hyperspecial point x. Then K := G0

x(O) is a
hyperspecial maximal compact subgroup of G(K).

Let us summarise some results in II.4.6 on the structure of G∼= G0
x. Fix an apartment A of I

containing x. Let S be the corresponding maximal split torus of G and let T = Z (a maximal
torus, since G is quasi-split). Let Φ be the set of roots of (G, S), and let Φred denote the
subset of non-divisible roots. For a ∈ Φ, let Ua denote the corresponding root subgroup. In
particular, U2a ⊂ Ua whenever {a, 2a} ⊂ Φ. Fix a Steinberg–Chevalley valuation ϕ= (ϕa)a∈Φ of
the ‘root datum’ (T (K), (Ua(K))a∈Φ), as constructed in II.4.1–4.2. Here ϕa : Ua(K)→ R ∪ {∞};
it yields a filtration of each root subgroup, Ua,k = {u ∈ Ua(K) : ϕa(u)> k} (see II.4.3.1(1)).
Let Γa = ϕa(Ua − {1}) and Γ′a = {ϕa(u) : u ∈ Ua − {1}, ϕa(u) = max ϕa(uU2a)} ⊂ Γa; these are
discrete subsets of R.

By II.4.4.18, there are smooth prolongations S of S (the split torus over O with generic
fibre S) and T of T (denoted there by TR). Then S is a closed subgroup scheme of T.

Lemma 3.2. T is connected (i.e. its special fibre is connected).

Proof. Let Knr be the maximal unramified extension of K with ring of integers Onr. Since
T ×Knr is split, it has a canonical prolongation Tnr to Onr (the split torus over Onr with generic
fibre T ×Knr). As remarked in II.5.1.9 (top of [BT84, p. 149]), Tnr descends to the torus T

defined in II.4.4. Since Tnr is connected, this completes the proof. To justify that remark in
II.5.1.9, one uses the last item in II.4.4.12(i) and the fact that Tnr is étoffé (II.1.7) to see that
O[T] = {f ∈K[T ] : f(Tnr(Onr))⊂Onr}=O[T′], where T′ is the torus descended from Tnr. 2

From II.4.6.4 it follows that S is a maximal split torus of G
0
x and that T is the centraliser

of S (a maximal torus, as G
0
x ×K is quasi-split). By considering the Lie algebra of G0

x, we see
that the root systems of (S, G) and (S,G0

x) are naturally identified with each other.
Recall that G0

x is the smooth O-group scheme G0
f with generic fibre G associated to the

optimal, quasi-concave function f : Φ→ R defined by

f(a) = min{k ∈ Γ′a : a(x− ϕ) + k > 0}

(see II.4.6.26). For all non-divisible roots a ∈ Φ, there is a smooth O-group scheme Uf,a with
generic fibre Ua (see II.4.5), which we denote by Ux,a. It is a closed subgroup scheme of G0

x, and
Ux,a is the root subgroup of a in G

0
x (see II.4.6.4). The product map

∏
a Ux,a→G0

x, where a
runs over all positive, non-divisible roots in any order, is an isomorphism onto a closed subgroup
scheme U+ (see II.4.6.2). Let U+ denote its generic fibre. By II.4.4.19, T normalises each Ux,a,
and the product map yields an isomorphism of the semidirect product Tn U+ onto a closed
subgroup scheme of G0

x whose fibres are the Borel subgroups associated to Φ+. (Note that this
is stated in II.3.8.2 only for a group scheme whose connected component is G0

x, but it implies
the assertion here: the scheme T× U+ is connected because it is the product of connected group
schemes [Gro70, Exp. VIA, Lemme 2.1.2].)

Lemma 3.3. Suppose that F is a facet of A whose closure contains the hyperspecial point x.
Then ĜF = G0

F . In particular, Ĝx = G0
x.

Note that ĜΩ (of II.4.6.26) equals Gpr−1
ss (Ω) in the notation of [Tit79, 3.4].

Proof. First, we show ĜF = GF by showing that N̂1
F =N1

F (see II.4.6.26). Let G(K)1 = {g ∈
G(K) : ordK(χ(g)) = 0 ∀χ ∈X∗K(G)}. Note that ker ν ∩G(K)1 =H1 ⊂N1

F ⊂ N̂1
F (by II.4.6.3),
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so it suffices to show that ν(N1
F ) = ν(N̂1

F ). Identify A and V using the special point x as origin.
Then N̂1

F is identified with a subgroup of vW , namely the subgroup of elements fixing F . It is
generated by those basic reflections ra of vW such that F is contained in the hyperplane through x
which is defined by a ∈ Φ. But I.7.1.3 shows that ν(N1

F ) has the same description. (The point is
that Γa = Γ′a ∪ 1

2Γ2a (see I.6.2.1) and that ra = r2a.)
Finally, GF = G0

F since T is connected (II.4.6.2). (This is the only part that uses the
assumption that x is hyperspecial, not just special.) 2

Lemma 3.4 (Iwasawa decomposition [Tit79, 3.3.2]).

G(K) = T (K)U+(K)K.

Proof. We use the description of the building in terms of an affine Tits system. Associated to the
valuation ϕ of the ‘root datum’ (T (K), (Ua(K))) we have the apartment A, the set of affine roots
αa,k (a ∈ Φ, k ∈ Γ′a), the affine Weyl group W generated by the set of reflections in the boundary
hyperplanes of the affine roots, and ν :N(K)→Aff(A) giving the action on the apartment with
kernelH (see I.6.2). LetN ′ = ν−1(W ), T ′ =N ′ ∩ T (K), andG′ = 〈N ′, Ua(K)〉a∈Φ. Fix a chamber
C ⊂A. Let B =HUC and let S be the set of reflections in the walls of C. By I.6.5, (G′, B, N ′, S)
is a saturated Tits system of affine type such that the inclusion G′→G(K) is (B, N ′)-adapted
of connected type and such that the condition G′ = BN ′B in I.4.4(1) holds with B = T ′U+(K).

Then I is naturally isomorphic to the building constructed out of this Tits system, whose
facets are the ‘parahoric’ subgroups of (G′, B, N ′, S) (see I.2 and I.7.4.2). Let K ′ be the fixer
of x in G(K), so that K =K ′ ∩G(K)1 by Lemma 3.3. By I.4.4.5, K ′ = (ν−1(V̂ ) ∩K ′)K, where
V̂ consists of the translations in Ŵ = ν(N(K)). As x is special, K ′ is a good maximally
bounded subgroup of G(K) (see I.4.4.6(i)) so that G(K) = B̂K ′ = B̂(ν−1(V̂ ) ∩K ′)K. The
result follows from using the facts that B̂ = ν−1(V̂ )B (by I.4.1.5) and that ν−1(V̂ ) = T (K)
(by I.6.2.10(i) and I.6.1.11(ii)). 2

Lemma 3.5 (Cartan decomposition [Tit79, 3.3.3]).

G(K) =
∐

λ∈X∗(S)−

Kλ($)K.

Proof. We keep the notation of the previous proof. Let D be the ‘Weyl’ chamber in V
corresponding to Φ+ and let V̂D = V̂ ∩D. By I.4.4.3(2), G(K) =K ′ν−1(V̂D)K ′ and the set of
double cosets biject with V̂D. Since ν−1(V̂ ) ∩K ′ = ker ν =H, we have K ′ =HK and G(K) =
Kν−1(V̂D)K. Besides, G(K)1 �G(K) and H ⊂ T (K). Using these facts, it is easy to see that for
t1, t2 ∈ ν−1(V̂D)⊂ T (K), Kt1K =Kt2K if and only if t1t−1

2 ∈H ∩G(K)1 = ker ν1 where ν1 is
the action map of N(K) on the extended apartment (II.4.2.16). It follows that the set of double
cosetsK\G(K)/K bijects with V̂ 1

D = ν1(ν−1(V̂D)) (the analogue of V̂D for the extended building).
By I.4.2.16(3), 〈ν1(t), c〉=−(ordK ◦ c)(t) for t ∈ T (K) and c ∈X∗K(T )R =X∗(S)R. By

Lemma 2.1, ν1(t) =−ζ(t), where ζ : T (K)→X∗(S) was defined there. The result follows from
that lemma. 2

Lemma 3.6. Suppose that λ ∈X∗(S)− and λ′ ∈X∗(S).

(i) If Kλ($)K ∩ λ′($)U+(K) 6=∅, then λ′ >R λ.

(ii) Kλ($)K ∩ λ($)U+(K) = λ($)U+(O).

Note that (i) is claimed without proof in [Car79, p. 148].
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Proof. We keep the notation of Lemmas 3.4 and 3.5.
(i) For t ∈ T (K) and a ∈ Φ we have 〈ν(t), a〉=−(ordK ◦ a)(t) (see I.4.2.7(3)). Applying this

with t= (λ− λ′)($), we see that the image of λ′ − λ ∈X∗(S)R in the quotient space V ∼= (R〈Φ〉)∗
is ν((λ− λ′)($)).

Suppose that Kλ($)K ∩ λ′($)U+(K) 6=∅. On the one hand, K ′λ($)K ′ ∩HU+(K)λ′($)
K ′ 6=∅. This implies that ν((λ− λ′)($))>D 0 by I.4.4.4(i), i.e. λ̄′ >R λ̄. (Note that B̂

0
=HB0 =

HU+(K) by I.4.1.5 and I.6.5.) On the other hand, as K and U+(K) are contained in G(K)1,
(λ′ − λ)($) ∈G(K)1, i.e. λ′ − λ ∈X∗K(G)⊥R . The assertion follows from the definition of 6R
(Definition 2.3).

(ii) Note that the left-hand side is contained in

(K ′λ($)K ′ ∩HU+(K)λ($)K ′) ∩ λ($)U+(K) = λ($)K ′ ∩ λ($)U+(K)

by I.4.4.4(ii). As U+(K)⊂G(K)1, this is contained in λ($)K ∩ λ($)U+(K) = λ($)U+(O). The
opposite containment is obvious. 2

Lemma 3.7. If y ∈A is hyperspecial, then a(ϕ− y) ∈ Γ′a for all a ∈ Φ.

Proof. We consider the G(K)-equivariant injection of buildings j : I → Ĩ, where Ĩ is the building
of G over Knr (see II.5.1.24), or even just the restriction of j to apartments A→ Ã corresponding
to S (respectively, T ). Let Φ̃ denote the set of roots of (T, G). For a ∈ Φ, let us say that an ‘a-wall’
is the boundary of an affine root defined by a in A. Similarly, we have the notion of an ‘ã-wall’ in Ã
for ã ∈ Φ̃. By II.5.1.20, the affine roots in A are precisely the intersections with A of the affine
roots in Ã.

As y is hyperspecial, for each ã ∈ Φ̃ there is an ã-wall passing through j(y). By intersecting
with A, we see that there is an a-wall passing through y for each a ∈ Φ. Since the affine roots in A
are defined to be the αa,k = {z ∈A : a(z − ϕ) + k > 0} for a ∈ Φ and k ∈ Γ′a, the lemma follows. 2

As in the proof of Theorem 1.2, we denote by Pλ = Lλ n Uλ the parabolic subgroup of G×K
determined by λ ∈X∗(S) =X∗(S).

Proposition 3.8. Suppose that λ ∈X∗(S). Let t= λ($) ∈ S(K) and let red : G(O)→G(K)
denote the reduction map. Then

red(G(O) ∩ t−1G(O)t) = Pλ(K).

Moreover,

{(red(g), red(tgt−1)) : g ∈G(O) ∩ t−1G(O)t}
= {(g+, g−) ∈ Pλ(K)× P−λ(K) : [g+] = [g−] ∈ Lλ(K) = L−λ(K)}, (3.9)

where [ · ] denotes the projection to the Levi subgroup.

Note that this is actually obvious when G = GLn.

Proof. Let Ω = {x, t−1x} ⊂A. By Lemma 3.3, G(O) ∩ t−1G(O)t is the fixer of Ω in G(K)1; thus
it equals N̂1

ΩUΩ by I.7.4.4 and II.4.6.26.

Let us first show that ν(N̂1
Ω) is naturally isomorphic to vWλ = {w ∈ vW : wλ= λ}. As x is

special, ν(N̂1
x) is isomorphic to vW via the forgetful map Aff(A)→GL(V ) (see I.6.2.10). Suppose

n ∈ N̂1
x and let w = vν(n). Then n ∈ N̂1

Ω if and only if w fixes x− t−1x ∈ V . By II.4.2.7(3),
〈x− t−1x, a〉=−ordK(a(t)) for a ∈ Φ. So w fixes x− t−1x if and only if λ− wλ ∈ 〈Φ〉⊥. But for
all w ∈ vW , λ− wλ ∈X∗K(G)⊥. Thus λ− wλ ∈ 〈Φ〉⊥ is equivalent to λ= wλ.
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Next, we show that red(N̂1
Ω) equals the K-points of the normaliser of S in Lλ. Note that N̂1

Ω ⊃
G(K)1 ∩ ker ν = T(O) (by II.4.6.3(3)). Also, N̂1

Ω ⊂N(K) ∩G(O). If n ∈N(K) ∩G(O), then by
considering the Onr-points of S we see that red(n) ∈N(S) and that red(n) induces the same
Weyl element on X∗(S) as n on X∗(S). From the previous paragraph, red(N̂1

Ω)/T(K)∼= vWλ,
which is precisely the Weyl group of S in Lλ.

To determine red(UΩ), let us compute fΩ : Φ→ R. By II.4.6.26, for a ∈ Φ we have

fΩ(a) = fx(a) + max(a(x− t−1x), 0)
= fx(a) + max(−〈a, λ〉, 0).

As x and its translate t−1x are hyperspecial, f ′Ω = fΩ and f ′x = fx by Lemma 3.7.
Recall that UΩ = 〈UfΩ,a〉a∈Φred (from II.4.6.3). Let us show that red(UfΩ,a) is trivial if

〈a, λ〉< 0 and equals Ux,a(K) otherwise. Note that f∗x(a) = fx(a)+ ∈ R̃ for any a ∈ Φ, in the
notation of II.4.6.9. If 〈a, λ〉< 0, then fΩ(b)> f∗x(b) for b ∈ {a, 2a} ∩ Φ, so that UfΩ,a ⊂ Uf∗x ,a
and red(UfΩ,a) = {1} as G

0
x is reductive (see II.4.6.10(ii)). Otherwise, UfΩ,a = Ufx,a = Ux,a(O) so

that red(UfΩ,a) = Ux,a(K).
Putting this all together, we see that red(G(O) ∩ t−1G(O)t) = Pλ(K) by the rational Bruhat

decomposition [Bor91, 21.15] applied to Lλ(K).
To prove the final assertion, note first that tUfΩ,at

−1 = UfΩ′ ,a where Ω′ = {x, tx}. We
show that the left-hand side of (3.9) is contained in the right-hand side. It suffices to show
that t centralises N̂1

Ω and UfΩ,a whenever a ∈ Φred and 〈a, λ〉= 0. If n ∈ N̂1
Ω with vν(n) = w,

then ntn−1 = nλ($)n−1 = (wλ)($) = λ($) = t by the above. It is a standard fact that im(λ)
centralises Ua ⊃ UfΩ,a if 〈a, λ〉= 0 (see, e.g., [Spr98, 15.4.4]).

To prove the opposite containment in (3.9), it is enough to show that the left-hand
side contains (g+, 1) for all g+ ∈ Uλ(K). But this is clear since we have shown above that
red(UfΩ,a) = Ux,a(K) and red(Uf ′Ω,a) = {1} if a ∈ Φred and 〈a, λ〉> 0. 2

Lemma 3.10 (Iwahori decomposition). Let I ⊂G(O) be the inverse image of T(K)U+(K) under
the reduction map. Then I is an Iwahori subgroup and the product map (I ∩ U−(K))× (I ∩
T (K))× (I ∩ U+(K))→ I is a bijection, for any chosen order of the factors. Moreover, T− (see
Definition 1.1) contracts I ∩ U−(K) and expands I ∩ U+(K).

Proof. By II.4.6.33, there is a chamber C ⊂A with x ∈ C such that I = G0
C(O). Thus I is an

Iwahori subgroup. We will use the notation of II.4.6.3. By II.4.6.7(i), I = P 0
f =H0Uf where

f = f ′C . Also,H0 = T(O) as T is connected. Note thatNf ⊂ Uf ⊂G(K)1. Since C is not contained
in any walls, Nf 6H (see the proof of Lemma 3.3). Thus Nf ⊂G(K)1 ∩H = T(O).

From I.6.4.9(iii), I =H0Uf = T(O)U+
f U
−
f . Note that T(O)⊂H = ker ν normalises each Ua,k

and therefore U±f : this follows from the definitions in I.6.2. The product map is injective
since U− × T × U+→G is an open immersion (the big cell). For the final claim, note that
U−f is generated by the Ua,f(a), a ∈ Φ−, and that tUa,kt

−1 ⊂ Ua,k for t ∈ T− and a ∈ Φ−

(see II.4.2.7(2)). 2

Proof of Lemma 2.7. (i) Let Ψ = {b ∈ Φ+ : b 6∈ Za} ⊂ Φ. Since a is simple, Ψ is closed. Thus∏
b∈Φ+

nd,b6=a
Ux,b→ U+ is an isomorphism (as O-schemes) onto a closed subgroup scheme U′

of U+ (by II.4.6.2). Now, U′ being normal in U+ means that the conjugation map U+ × U′→ U+

factors through U′, which can be checked on the generic fibre owing to the O-flatness of U+ × U′

(see II.1.2.5). But there it is clear from [Ub, Uc]⊂ 〈Urb+sc : r, s > 0〉 (condition (DR2) in I.6.1.1).
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The product map Ux,a × U′→ U+ is an isomorphism of O-schemes (II.4.6.2). As U′ is normal, it
is an isomorphism of O-group schemes Ux,a n U′→ U+.

(iii) First, note that Γ′b = Z for all b ∈ Φ. This is clear when G is split (II.4.2.1), and the
general case follows either by étale descent (II.5.1.19) or by quasi-split descent (II.4.2.21).

By II.4.5.1, Ux,a(O) = Ua,fx(a)U2a,fx(2a), and this equals Ua,fx(a) as fx(2a) = 2fx(a) (see
condition (V4) in I.6.2.1). Next, from ϕa(tut−1) = ϕa(u) + (ordK ◦ a)(t) (see II.4.2.7(2)) it follows
that tUa,fx(a)t

−1 = Ua,k where k = fx(a) + 〈λ, a〉. Let l = fx(a) + 1 so that k, l ∈ Γ′a and k > l.

Then red(Ua,l) = {1} since f∗x(a) = fx(a)+ ∈ R̃, G
0
x is reductive, and l > fx(a) (by II.4.6.10(ii)).

Suppose first that 2a 6∈ Φ. Then Ua(K) is abelian and∑
Ua(K)/Ua,k

ψ(ua) =
∑

Ua,l\Ua(K)

∑
Ua,k\Ua,l

ψ(u2u1).

We claim that Ua,k ⊂ Ua,l is a proper subgroup of p-power index. This will finish the proof,
since ψ is left Ua,l-invariant and the codomain A of ψ has exponent p. Since k, l ∈ Γ′a and k > l,
it follows that Ua,k ( Ua,l. From II.4.3.2 we see that Ua(K) is isomorphic to the additive group of
a finite (unramified) extension L of K. Under this isomorphism, for any r ∈ Γa, Ua,r corresponds
to the OL-lattice {x ∈ L : ordK(x)> r}. Thus the index [Ua,l : Ua,k] is a power of p.

Now suppose that 2a ∈ Φ. We know that U2a(K) is central in Ua(K) with abelian quotient
(condition (DR2) in I.6.1.1). Moreover, from the definitions, U2a,2r = U2a(K) ∩ Ua,r for all r ∈ R.
Note that ∑

Ua(K)/Ua,k

ψ(ua) =
∑

Ua(K)/Ua,kU2a(K)

ψ′(u′a) (3.11)

where ψ′(u′a) =
∑

Ua,kU2a(K)/Ua,k
ψ(u′au), which is left invariant by Ua,l. Since Ua(K)/U2a(K) is

abelian, left and right cosets of Ua,kU2a(K) in Ua(K) coincide and we can rewrite (3.11) as∑
Ua,lU2a(K)\Ua(K)

∑
Ua,kU2a(K)\Ua,lU2a(K)

ψ′(u2u1).

We claim that Ua,kU2a(K)⊂ Ua,lU2a(K) is a proper subgroup of p-power index. As in the previous
case, this will finish the proof.

To see that Ua,kU2a(K)( Ua,lU2a(K), we show that Ua,kU2a,2l ( Ua,l. Since l ∈ Γ′a, we may
pick u ∈ Ua(K) such that ϕa(u) = l and ϕa(u) = max ϕa(uU2a(K)). It follows that u ∈ Ua,l −
Ua,kU2a,2l. The index of Ua,kU2a(K) in Ua,lU2a(K) equals the index of Ua,k/U2a,2k in Ua,l/U2a,2l.
The group Ua(K)/U2a(K) is isomorphic to the additive group of a finite-dimensional K-vector
space, and for any r ∈ Γ′a, Ua,r/U2a,2r corresponds to an O-lattice under this isomorphism (by
II.4.3.7 and II.4.3.5 with k = r, l = 2r ∈ Γ′2a). Thus the index of Ua,kU2a(K) in Ua,lU2a(K) is a
p-power. 2
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BL94 L. Barthel and R. Livné, Irreducible modular representations of GL2 of a local field, Duke
Math. J. 75 (1994), 261–292; MR 1290194(95g:22030).
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