J. Plasma Phys. (2025), vol. 91, E129  © The Author(s), 2025. Published by Cambridge University Press. 1
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence
(https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction,
provided the original article is properly cited. doi:10.1017/S0022377825100706

A parallel-kinetic-perpendicular-moment model
for magnetised plasmas

James Juno!"“, Ammar Hakim'" and Jason M. TenBarge?

Princeton Plasma Physics Laboratory, Princeton, NJ 08543, USA
ZDepartment of Astrophysical Sciences, Princeton University, Princeton, NJ 08544, USA

Corresponding author: James Juno, jjuno@pppl.gov

(Received 4 May 2025; revision received 24 June 2025; accepted 8 July 2025)

We describe a new model for the study of weakly collisional, magnetised plasmas derived
from exploiting the separation of the dynamics parallel and perpendicular to the magnetic
field. This unique system of equations retains the particle dynamics parallel to the mag-
netic field while approximating the perpendicular dynamics through a spectral expansion
in the perpendicular degrees of freedom, analogous to moment-based fluid approaches.
In so doing, a hybrid approach is obtained that is computationally efficient enough to
allow for larger-scale modelling of plasma systems while eliminating a source of dif-
ficulty in deriving fluid equations applicable to magnetised plasmas. We connect this
system of equations to historical asymptotic models and discuss advantages and disad-
vantages of this approach, including the extension of this parallel-kinetic-perpendicular
moment beyond the typical region of validity of these more traditional asymptotic mod-
els. This paper forms the first of a multi-part series on this new model, covering the theory
and derivation, alongside demonstration benchmarks of this approach that include shocks
and magnetic reconnection.
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1. Introduction

Many plasma systems are observed to be in two distinct parameter regimes,
which can have profound impacts on the dynamics of these plasmas: weakly col-
lisional and magnetised. In astrophysical systems, plasmas are routinely observed to
have plasma densities and temperatures that imply the collisional mean free path
is large, while the measured or inferred magnetic field strengths imply the particle
gyroradius is small. Across a diverse array of astrophysical environments, such as
accretion disks around black holes (Quataert 2001; The Event Horizon Telescope
Collaboration et al. 2019a,b, 2021), plasma-filled pulsar magnetospheres (Philippov
& Kramer 2022), the hotter phases of the interstellar (Cox 2005; Humphrey et al.
2011), circumgalactic (Tumlinson, Peeples & Werk 2017), intergalactic (Nicastro
et al. 2005) and intracluster media (Fabian 1994; Peterson & Fabian 2006; Kungz,
Jones & Zhuravleva 2022), or the inner (Marsch 2006; Borovsky & Valdivia 2018)
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and outer heliosphere (Richardson et al. 2022), low collisionality, highly magnetised
plasmas can be found. Closer to home, a variety of terrestrial plasmas, such as
the plasmas confined by diverse fusion reactor concepts (Spitzer 1958; Furth 1975;
Wesson 2011; Imbert-Gerard, Paul & Wright 2020), are constructed to be in this
parameter regime in which the effects of particle collisions happen on longer time
scales and larger length scales than the dynamics of the particles gyrating around the
magnetic field.

When the collisional mean free path is large and the particle gyroradius is small,
the plasma will adjust its dynamics such that motion parallel to the magnetic field is
uninhibited compared with motion perpendicular to the magnetic field. In effect, the
plasma has an easier time transporting momentum and heat parallel to the local mag-
netic field while the transport perpendicular to the field is more tightly constrained.
The particles can traverse large distances before collisions deflect their trajectories
off field lines, while the particle motion perpendicular to the field is mostly limited
to the combination of cyclotron motion as the particle gyrates about the local mag-
netic field and a set of bulk, fluid, drifts that arise due to the local geometry of the
magnetic field, such as the magnetic field curvature (Northrop 1961, 1963).

This dichotomy between parallel and perpendicular motion has further dramatic
impacts on the plasma’s dynamics. In general, the plasma can develop different
temperatures parallel and perpendicular to the magnetic field as a result of these
distinct motions parallel and perpendicular to the magnetic field (Gary et al. 2001;
Kasper, Lazarus & Gary 2002; Hellinger et al. 2006; Schekochihin & Cowley 2006;
Bale et al. 2009; Chen et al. 2016), and a zoo of micro-scale instabilities can be
launched that further modify the plasma’s dynamics (Schekochihin et a/. 2008; Rosin
et al. 2011; Kunz, Schekochihin & Stone 2014), causing viscous stresses (Kunz,
Stone & Quataert 2016; Melville, Schekochihin & Kunz 2016; Squire et al. 2019;
Kempski et al. 2019; St-Onge et al. 2020; Squire et al. 2023) and limiting thermal
conduction (Riquelme, Quataert & Verscharen 2016; Komarov et al. 2016; Roberg-
Clark et al. 2016, 2018; Komarov et al. 2018). Thus, a proper accounting of this
separation between parallel and perpendicular dynamics is required for an accurate
treatment of the transport of momentum and heat in many plasma systems.

On one hand, modelling these weakly collisional, magnetised plasmas can be
achieved in a straightforward manner with kinetic models that solve the Boltzmann,
or Vlasov, equation for the particle dynamics in a six-dimensional phase space.
However, phase-space dynamics are computationally demanding due to both the
high-dimensionality of the equation system and the multiscale nature of kinetic
plasma dynamics, which often require a computational model to resolve very small
length scales and very fast time scales for stability of the scheme. On the other
hand, one can attempt to incorporate the modified parallel versus perpendicular
dynamics in hydrodynamic models. While extensions of magnetohydrodynamics
to include pressure anisotropy and parallel heat conduction are possible (Chew,
Goldberger & Low 1956; Braginskii 1965), these approaches suffer from the dif-
ficulty all fluid modelling must address: the development of a proper closure that
truncates the number of equations being solved and provides an accurate approxi-
mation of the dynamics in the higher moments (Grad 1949). An accurate treatment
of the feedback of micro-scale instabilities on the pressure anisotropy and parallel
heat conduction is particularly challenging, and more rigorous fluid models may be
computationally prohibitive in their own right due to approximations of these
dynamics leading to ‘non-local’ models of the fast parallel transport along the mag-
netic field (Hammett & Perkins 1990; Hammett, Dorland & Perkins 1992; Snyder,
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Hammett & Dorland 1997; Ramos 2003, 2005) or require some sort of artificial
limiting of the instabilities in their feedback on the plasma (Sharma et al. 2006).

It is the purpose of this study to demonstrate an alternative approach to previous
modelling efforts that exploits the dichotomy between parallel and perpendicular
dynamics to construct a new hybrid system of equations, one which remains kinetic
parallel to the magnetic field, while reducing the dynamics perpendicular to the field
in a fluidlike hierarchy. This new parallel-kinetic-perpendicular-moment (PKPM)
model has natural connections to a variety of historical asymptotic approaches,
including Kulsrud’s kinetic magnetohydrodynamics (KMHD) (Kulsrud 1964, 1983)
and the work of Ramos on finite Larmor radius (FLR) corrections to drift kinetics
(Ramos 2008, 2016). But, while the connection to these approaches that leverage
the magnetised nature of the plasma will be made apparent, we emphasise now
that our model is not an asymptotic one involving an expansion in a small param-
eter or parameters, and instead shares a similar construction to recent work in
spectral decompositions of the kinetic equation (Delzanno 2015; Parker & Dellar
2015; Vencels et al. 2016; Roytershteyn & Delzanno 2018; Koshkarov et al. 2021;
Pagliantini ef al. 2023; Issan et al. 2024), especially approaches that combine spectral
expansions in a subset of the velocity degrees of freedom (Schween & Reville 2024,
Schween, Schulze & Reville 2025). In particular, the PKPM model performs a spec-
tral expansion of the distribution function in the perpendicular degrees of freedom,
reducing the six-dimensional Vlasov equation to a set of four-dimensional equations.
The exact number of four-dimensional equations is set by the desired physics fidelity
perpendicular to the magnetic field.

This reduction of the dynamics perpendicular to the field from the spectral expan-
sion gives two key benefits. Firstly, in many magnetised plasma environments, the
plasma remains mostly gyrotropic as the plasma evolves (see, e.g. Marsch et al. 1982;
Marsch 2006). If the plasma remains gyrotropic, the distribution function may be
well approximated by a small number of spectral coefficients in the perpendicu-
lar degrees of freedom, so that significant computational gains can be realised by
reducing the six-dimensional Vlasov equation to just a few four-dimensional kinetic
equations. Of course, a magnetised plasma can develop a certain amount of agy-
rotropy due to cyclotron resonances and other FLR effects, but the framework in
which a plasma is gyrotropic with agyrotropic corrections is the exact framework
in which spectral expansions excel. There have been a number of demonstrations
of spectral decompositions achieving high accuracy with coarse resolution in cases
when the deviations from, e.g. a Maxwellian using a Hermite expansion, are small
(Roytershteyn et al. 2019; Vega et al. 2023), and spectral decompositions are quickly
becoming one of the most efficient ways to solve classic asymptotic models of magne-
tised plasma dynamics such as gyrokinetics as applied to the tokamak core (Mandell,
Dorland & Landreman 2018; Frei et al. 2023a,b; Hoffmann et al. 2023a,b; Mandell
et al. 2024) and edge (Frei et al. 2020, 2024).

Secondly, in cases where we expect such spectral expansions to fail, such as the
presence of sharp gradients in phase space, we can instead choose a different numer-
ical method designed to handle complex phase-space structures because we have
specifically derived the PKPM model to only expand the distribution function in the
perpendicular degrees of freedom. In particular, parallel to the magnetic field we
can expect the plasma to develop a variety of non-trivial phase-space structures that
are typically difficult to represent numerically with a spectral basis such as trapped-
passing boundaries, beams and power-law tails, but which can be easily handled
with previous developments in discontinuous Galerkin (DG) methods for kinetic
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equations (Juno et al. 2018; Hakim & Juno 2020; Mandell et al. 2020). Of course,
these sorts of phase-space structures can arise perpendicular to the magnetic field,
such as the loss cone in the perpendicular degrees of freedom of a magnetic mirror,
but these kinetic structures are so ubiquitous parallel to the local magnetic field, from
field-aligned beams in collisionless shocks to parallel energisation mechanisms in col-
lisionless magnetic reconnection, we are well motivated to take a hybrid approach
that can resolve the plasma’s evolution in phase space with as few degrees of free-
dom as possible. Thus, the reduction in resolution requirements perpendicular to the
field, combined with a numerical method optimised to handle the plasma’s phase-
space dynamics parallel to the field, generates a unique, computationally efficient
model for describing a diverse array of plasmas in weakly collisional, magnetised
regimes.

The rest of the paper is organised as follows. In § 2 we detail the necessary prereq-
uisites for understanding the PKPM derivation, including a discussion of spectral
expansions and coordinate transformation, and difficulties typically encountered
when constructing spectral expansions that motivate the particular form of the
PKPM model. In §4 we derive the PKPM model through a series of coordinate
transformations, first to the local fluid flow frame and then to a coordinate system
aligned with the local magnetic field, followed by a spectral expansion in the perpen-
dicular degrees of freedom. We discuss a number of historical connections in § 5 and
attempt to contextualise the physics content of the PKPM model in comparison to
other models applied to weakly collisional, magnetised plasmas while also drawing
attention to unique features of the model compared with asymptotic models and
other approaches that leverage spectral expansions of the kinetic equation. Most
importantly, the principal goal of §5 is to give context to the reader for why the
PKPM model has been formulated the way it has been: a model that contains the
same physics as many of the historical magnetised, collisionless plasma models, but
which ameliorates many numerical difficulties that prevented easily solving some of
these models with a computer, in addition to other breakthroughs in the spectral
expansion formulation, such as the inclusion of the normalisation of the perpendicu-
lar spectral coefficients without the need for auxiliary equations. We then give a brief
demonstration of the model in § 6 with test cases beyond the regime of applicability
for traditional asymptotic, magnetised plasma models, including a parallel, electro-
static collisionless shock and moderate guide-field magnetic reconnection. Finally,
we conclude the discussion of the theory of the PKPM model in § 7.

This paper forms the first of a multi-part series, with the principal focus of this
paper being the motivation, theory, properties and historical context of this new
system of equations. We defer an in-depth description of the numerical discretisation
of the PKPM model to a future paper, both to keep focus on the details of the
continuous system of equations and its properties, and because of the complexities
that arise in the discrete system to maintain the properties of the continuous system
of equations.

2. Preliminaries on spectral expansions and coordinate transformations

Consider the non-relativistic Vlasov equation,

%+v-vxf+%(E+vxB)-va=C[f], 2.1)

where f = f(x, v, t) is the particle distribution function for the plasma species, ¢
and m are the charge and mass of the plasma species, respectively, E = E(x, t) and
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B = B(x, t) are the electric and magnetic fields, respectively, and C[f] is a gen-
eral operator for modelling discrete particle effects, such as inter-particle collisions.’
Combined with Maxwell’s equations, the Vlasov-Maxwell system of equations pro-
vides a near first-principles description of the vast majority of plasma systems in the
universe. However, this equation system is a formidable nonlinear system of equa-
tions in a six-dimensional, position-velocity, phase space, and direct modelling of
this equation system not only requires handling the high-dimensional nature of the
Vlasov equation, but also the vast array of spatial and temporal scales contained in
said equation. Thus, there is a long history of exploring reductions and simplifica-
tion to the Vlasov equation, both analytically and numerically, to make the study of
plasmas more tractable.

One approach to constructing such approximations to the Vlasov equation is to
assume that the solutions are a small deviation from some symmetry or near sym-
metry. For example, in a highly collisional plasma where the effects of C[f] on the
right-hand side of the Vlasov equation are dominant, the plasma will be close to
thermodynamics equilibrium, and the distribution function will deviate only slightly
from a Maxwellian. In this limit, one can use fluid equations to evolve the lower,
thermodynamic moments, i.c. number density, momentum and pressure, construct-
ing closure relations to determine the higher moments by asymptotic analysis. This
approach leads to the well-known Braginskii equations (Braginskii 1965), in which
non-thermodynamic moments are expressed in terms of thermodynamic moments
and their gradients, and in the magnetised limit, the direction of the local mag-
netic field. The Braginskii equations, or forms of them, are implemented in major
codes both for astrophysical (Hopkins 2016; Berlok, Pakmor & Pfrommer 2019;
Stone et al. 2020) and fusion applications (Sovinec et al. 2004; Giinter et al. 2005;
Ferraro & Jardin 2006; Gunter et al. 2007; Breslau, Ferraro & Jardin 2009; Meier,
Lukin & Shumlak 2010). The generalisation of this approach beyond the near-
equilibrium approximation, in which a larger set of fluid moments is evolved and
then some truncation of the fluid approximation is employed, is well-trod ground
(Hakim, Loverich & Shumlak 2006; Hakim 2008; Wang ef al. 2015; Miller &
Shumlak 2016; Allmann-Rahn, Trost & Grauer 2018; Ng, Hakim & Bhattacharjee
2018; Wang et al. 2020; Ng et al. 2020; Allmann-Rahn et a/. 2024; Kuldinow et al.
2024b) but runs into the classical closure problem of expressing the highest moment
in the fluid truncation in terms of the lower fluid moments (Grad 1949). Along these
lines of inquiry, there is a rich and growing history of leveraging the connection
between spectral representation of the distribution function in Hermite moments
and the fluid hierarchy (Holloway 1996; Delzanno 2015; Parker & Dellar 2015;
Vencels et al. 2016). This approach discretises the Vlasov equation directly with
Hermite moments of some order, in effect creating a more general fluid hierarchy
that converges to the kinetic description and achieving a computationally efficient
approach for problems where only a few Hermite moments are needed to represent
the solution.

Alternative asymptotic approaches that seek to directly reduce the kinetic equation
instead of expressing the kinetic equation as a hierarchy of fluid moments are also
a mature approach to approximating the kinetic dynamics of a plasma. In the limit
the plasma is magnetised, one can obtain a variety of kinetic models that reduce the

!We note that elsewhere in the literature, the inclusion of the collision operator for modelling discrete par-
ticle effects changes the name of this equation to the Boltzmann equation or the Vlasov-Fokker-Planck equation
depending on the form of the collision operator; see Hénon (1982) for a discussion of this linguistic history.
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full six-dimensional phase-space dynamics, such as KMHD (Kulsrud 1964, 1983)
and other flavours of drift kinetics (Frieman, Davidson & Langdon 1966; Hinton &
Wong 1985; Ramos 2008, 2016), and gyrokinetics (Antonsen & Lane 1980; Catto,
Tang & Baldwin 1981; Frieman & Chen 1982; Brizard & Hahm 2007; Cary &
Brizard 2009). All of these approaches average over the fast cyclotron motion to
produce a five-dimensional kinetic equation, with gyrokinetics specifically consider-
ing an ordering in which FLR effects on the fluctuating quantities are retained and,
thus, one can think of reducing the evolution of the particular particle motion to the
evolution of ‘rings’ of charge.

In particular, gyrokinetic theory and the corresponding numerical discretisations
of the gyrokinetic equation are one of the major breakthroughs in plasma physics
in the last few decades (Krommes 2012), and this breakthrough forms the back-
bone of modern research in a variety of contexts, including astrophysical plasmas
(Howes et al. 2006; Schekochihin et al. 2009) and magnetised fusion and turbulence
theory (Abel et al. 2013). We draw particular attention to the numerical discreti-
sation of gyrokinetics in recent works, which has likewise leveraged the connection
between spectral representations of the kinetic equation and fluid hierarchies. For
the case of gyrokinetics, a Hermite-Laguerre representation of the kinetic equation
is directly connected to the gyrofluid moments of the gyrokinetic equation (Dorland
& Hammett 1993). Similar to the works discretising the Vlasov equation directly
with Hermite moments, these spectral expansions have created very computation-
ally efficient methods for solving the gyrokinetic equation (Mandell et al. 2018;
Frei, Jorge & Ricci 2020; Hoffmann et al. 2023b; Frei et al. 2024), as well as other
magnetised models of plasma dynamics, such as the kinetic reduced electron heating
model (Zocco & Schekochihin 2011; Loureiro, Schekochihin & Zocco 2013; Zocco
et al. 2015; Loureiro et al. 2016) and drift kinetics (Parker et al. 2016).

The success of spectral methods along with the perspective afforded by the theo-
retical foundations of magnetised asymptotic models such as KMHD, drift kinetics
and gyrokinetics provides a convenient lens for establishing the basis for the PKPM
model. Consider the velocity space coordinate system employed in these magnetised
plasma models:

v=vb(x,t)+v, cosft(x,1)+ v, sinOt,(x,1). (2.2)

A cylindrical coordinate system, where the unit vector b is the axial direction aligned
with the local magnetic field, the unit vectors 7, 7, define the plane perpendicular
to the local magnetic field and 6 is the velocity gyroangle. Before proceeding fur-
ther, we make two important, related, points on nomenclature. The first is that this
velocity coordinate system is also employed by magnetised models such as gyrokinet-
ics, but in magnetised models such as gyrokinetics, there is a further configuration
space transformation to gyrocentre coordinates. We emphasise that we are not
transforming configuration space here and are maintaining the configuration space
coordinates to be the particle position.2 Furthermore, because we are not transform-
ing configuration space to gyrocentre coordinates, we choose to call the angular
coordinate in our cylindrical velocity space coordinates the velocity gyroangle to
distinguish from derivations of gyrokinetics in which this angle is the gyrophase of

2Note that by particle position, we mean position in an Eulerian sense; we focus exclusively on distribution
function dynamics so the configuration space coordinates correspond to the probability of finding particles at those
specific positions, unlike Eulerian approaches to models such as gyrokinetics, which construct a distribution function
of gyrocentres and, thus, determine the probability of a particles’ gyrocentre being at a particular position.
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the particle along its cyclotron orbit because the configuration space coordinates are
at gyrocentres.

In this coordinate system, an exact spectral representation of the distribution
function could take the form,

&9} [e9] oo . ) _ )
rienn=3 00 30 utenow (S )

j=0 k=0 ¢
S (S N )
8 \/27TT||(x» n (\/2T..<x, T
2
x—" I (m[”““i(x’t)]>e"”, (2.3)
2T (x, 1) 2T (x, 1)

where H; are the physicists’ Hermite polynomials,

m

H,(x) = (—1)mex2%ex2, (2.4)

L, are the Laguerre polynomials,

X m

e’ d 3
Lm(X) = %dx—m(e xx’"), (25)

e’ are the Fourier basis and F ke(x, t) are the spectral coefficients encoding the rep-
resentation of the distribution function in this spectral expansion. We have utilised
uyj, u;, Ty and T, as the notation for a general set of shift and normalisation fac-
tors. We emphasise the choice of notation that u, u,, 7 and T, share symbols with
the flow velocities and temperatures parallel and perpendicular to the local mag-
netic field is deliberate; while these are general shift and normalisation factors in the
Hermite-Laguerre expansion, the optimal Hermite-Laguerre expansion — the spec-
tral expansion whose zeroth, first and second velocity moments are the lowest-order
fluid equations - is the one in which u, u,, T, and T, are the local parallel and
perpendicular flow velocities and temperatures.

This basis representation of Hermite in v, Laguerre in v, and Fourier in 6 for the
distribution function is exact, provided of course that one retains an infinite num-
ber of these Hermite, Laguerre and Fourier basis functions. In the discrete limit, a
truncation of this series expansion is performed to Hermite polynomials, Laguerre
polynomials and Fourier harmonics of some order. As mentioned previously, a par-
ticular choice of shift and normalisation factors such that the shifts, #; and u,, are
the parallel and perpendicular flow velocities and normalisations, 7} and T, are
the parallel and perpendicular temperatures, gives spectral expansion that can be
directly related to the fluid hierarchy. Thus, the spectral expansion is optimised by
this choice of shift and normalisation factors in terms of flow velocities and temper-
atures because we can now guarantee an exact representation of our lowest-order
fluid equations by our truncated spectral expansion. We note that this truncation to
some order corresponding to a fluid hierarchy of some order is the same irrespec-
tive of the details of the spectral expansion so long as the spectral expansion has
these optimised shift and normalisation factors. In other words, a complete Hermite
decomposition of the Vlasov equation or a Hermite-Laguerre decomposition of the
gyrokinetic equation can just as easily be connected to fluid or gyrofluid equations
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provided one makes the right choice of shift and normalisation factors. We also
note that, in general, a spectral representation need only be applied to a subset of
the degrees of freedom, e.g.

o0

o [v, —uy(x, )]
f(x,v,1)= kgo: e;o Free(x, vy, 1) exp (_m UZTL?;(;C) )

y m L (m [v, —uy(x, t)]z) il (2.6)
27T, (x, 1) 2T (x, 1)

for an expansion in only the perpendicular degrees of freedom, v,, 6, or

o]

1 A
f(x, v, t) = Z gﬂ(x, Uy, Ui, t)e’w (27)

{=—00

for an expansion only in the velocity gyroangle, 6.

Two important points are worth emphasising immediately. Firstly, the success
of magnetised models such as drift kinetics and gyrokinetics reveals that with the
right coordinate system about the local magnetic field, certain truncations of these
spectral expansions already contain a significant amount of the physics of magnetised
plasmas. These models, in effect, retain only the £ =0 Fourier harmonic due to the
gyroaveraging and, thus, evolve only the gyrotropic part of the distribution function,
or in the case of gyrokinetics the gyrocentre distribution function. In particular,
spectral gyrokinetic codes that evolve the gyrotropic component of the gyrocentre
distribution function, the £ = 0 Fourier harmonic and a few Laguerre polynomials in
v, have been utilised to study a diverse array of laboratory space, and astrophysical
plasmas (Frei et al. 2023b; Hoffmann et al. 2023a; Mandell et al. 2024; Hoffmann,
Balestri & Ricci 2024; Frei et al. 2024).

Secondly, however, the connection between this Hermite-Laguerre-Fourier spec-
tral expansion and the classical fluid hierarchy of Braginskii and Grad is valid only
for specific choices of shift and normalisation factors. To properly connect our trun-
cated spectral expansion to the fluid hierarchy, the shift factors must be the bulk
flow velocities of the plasma and the normalisation factors must be the temperatures
of the plasma. Thus, the optimised shift and normalisation factors must be tem-
porally and spatially dependent. Unsurprisingly, the use of shift and normalisation
factors, which themselves depend on space and time, introduces significant complex-
ity in constructing the discrete spectral representation, and the deployment of these
methods up to this point has principally focused on constant shift and normalisation
factors. Without proper accounting for these factors, the spectral representation
will degrade in quality and more spectral coefficients may be required to accurately
represent the dynamics of the plasma.

The principal challenge in extending spectral methods to these more general use
cases with time-dependent shift and normalisation factors leads us to a necessary pre-
requisite discussion on coordinate transformations. Discrete spectral representations
are constructed from orthogonality conditions, i.e. in one dimension,

/ ) ¢ H, (x)H,(x) dx =6, (2.8)

o0

for Hermite polynomials, or

/oo eime(-x)Ln(x) dx = 6171)1 (29)
0
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for Laguerre polynomials. Utilising these orthogonality conditions, one can derive
evolution equations for each coefficient of the spectral expansion up to some desired
order.

However, the introduction of time and spatially dependent shift and normalisation
factors complicates our ability to utilise these orthogonality relations to construct
the discrete spectral expansion. These orthogonality relations only hold for fixed
input variables, i.e. two Laguerre polynomials with different shift and normalisation
factors are not orthogonal to each other, so one must be careful when the basis
expansion itself varies in space and time. But, if we instead consider a transformation
to a new variable,

(x,v,t)=v—u(x,t), (2.10)

along with a careful absorption of the normalisation into the variable of integration,
we can rearrange the spectral expansion’s orthogonality condition. For example, the
Laguerre orthonormality condition for the perpendicular velocity in (2.3) can be
rearranged as

*m me? me?
— mgl/ZTLLm - Ln - d
/0 TJ_e (271) (ZTL)Kl =

00 2 2 2
=/ gty (MELN p (MELY g (ALY s Q2.11)
0 ZTL 2TL 2TL

Note that in this rearrangement, we have utilised the fact that the velocity coordinate
transformation in (2.2) modifies the volume element

d’v =v,dvdv, db, (2.12)

but this modification allows us to succinctly construct an orthogonality condition for
our new spatially and temporally dependent coordinate.

Thus, we are well motivated to seek coordinate transformations that themselves
contain the necessary modifications to the spectral basis to optimise the spectral
expansion. While the use of spatially and temporally dependent coordinates is itself
a non-trivial endeavour, through the careful construction of a particular coordinate
system, we can shift the challenge in model discretisation back to the continuum
limit and derive the necessary modifications to the Vlasov equation that can be opti-
mally discretised by a spectral expansion. Importantly, we may transform the velocity
space coordinates and configuration space coordinates independently of each other
in the Vlasov equation, and in fact, we need only transform the velocity space coor-
dinates to optimise our spectral expansions. In general, such a transformation of the
velocity coordinate takes the form,

v=v(v,x', ), (2.13)

where x =x(x’) =x and ¢ =1¢(¢') =¢ remain unchanged by the new coordinate
transformation. The time and spatial derivatives then transform as

oy (2.14)
ar ot ot '
V,=Vy+(V.®7%)-V,. (2.15)
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Note that the breve notation indicates with which index the dot product is per-
formed. In Einstein summation notation, for Cartesian tensors, the spatial derivative
transformation can be written as

0y = 0x + 0y, V' av}. (2.16)

J

We emphasise that the expression in (2.16) is only valid for Cartesian coordinates,
but the general expressions (2.14) and (2.15) are coordinate independent.

The transformations presented below require careful use of coordinate indepen-
dent notation to ensure that the derivations and final expressions are applicable
in arbitrary coordinate systems. This generality is particularly important, for exam-
ple, when using field-aligned or other non-orthogonal coordinates, as commonly
employed in simulations of fusion reactors or when applying the expressions to
plasma problems in non-Cartesian coordinates. Hence, to ensure our expressions
remain coordinate independent, we use an extended form of vector and tensor nota-
tion throughout the remainder of the paper. For a brief description of our notation,
see Appendix A.

3. Coordinate transformations

The following two subsections detail the necessary algebraic steps to manipu-
late the Vlasov equation into a form with equivalent physical content, but which
is amenable to our stated goal of an optimised spectral basis in a subset of the
velocity degrees of freedom. These manipulations of our velocity space coordinate
system to depend upon space and time are well known and utilised extensively in the
derivation of, e.g. Kulsrud’s KMHD (Kulsrud 1964, 1983) or Ramos’ FLR kinetic
theory (Ramos 2008, 2016). Nevertheless, we repeat these derivations within the text
in our preferred notation so that the subsequent section on the optimised spectral
expansion need not repeat any definitions to clarify our notation. Readers familiar
with these kinds of coordinate transformations may comfortably skip to the next
section, § 4, on the spectral expansions, which produce the final model we discretise.

3.1. Transformation to a moving frame

Consider a velocity space coordinate transformation to a frame moving with
velocity u:

v=20+u(x,1). (3.1)
For this transformation, we have
ov’ ou
— = 3.2
ot ot (32
(Vx®i/)'vv’:_(vx®i2)'vv“ (3.3)

Using these in the Vlasov equation, we obtain

af @ _ _ _ _
N 4 Ve 0+ 0 ]~ (Ve @) V- [0+ f1 4 Vi - @ ) =0,
(3.4)
where f= f(x', v, t) and
d=LE+uxB)+LvxB. (3.5)
m m
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Since u(x,t) does not depend on v’, we can rearrange various terms above to
obtain

of :
5+Vx,.[(v +u)f]

9 _

+Vv,.[(_—"—u-vxu—v’-vxu+i(E+uxB)+1v/xB) f]:O.
ot m m

(3.6)

We can simplify this system by choosing u to be the fluid velocity

1 3
u=r—l/vfdv, 3.7

where n is the number density. With this choice, we can use the equations for mass
and momentum conservation,

apu q
7+Vx-[,ouu+P]=—p[E+uxB] — (3.8)
m

ou op q
0 E—i—u-qu +V,-P+u a-l—Vx-(pu) =—p|E+uxB], (3.9
m

=0
to obtain an equation for the velocity evolution
ou

1
A uvau+-v,-P=L E+uxB), (3.10)
at Jol m

where p = mn is the mass density and P is the pressure tensor defined as
P:m/(v—u)@(v—u)fd%:m/v’®v’fd3v/. (3.11)

We can then substitute (3.10) into (3.6) to simplify our transformed Vlasov
equation to
of

— 4+ Vo [V +u)fl+Vy- [(le-P—v’-qu+zv/xB) f_]=0. (3.12)
ot 0 m

We note that because the velocity coordinates of (3.12) have been transformed to
move with the local fluid velocity, we must have the condition that

/v/fd3v’=0. (3.13)

Multiplying (3.12) by v’ and integrating over all velocity space shows that if (3.13)
is satisfied at r = 0 then it will be satisfied for all # > 0, showing that this is an initial
condition constraint on the distribution function.

In addition to solving the transformed Vlasov equation, to close the system of
equations we also need to evolve the equation for the velocity (3.10), or momentum
(3.8), with the pressure tensor determined by the the distribution function (3.11).
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The transformed Vlasov equation coupled to the momentum/velocity equation has
the same physical content as the Vlasov equation in the laboratory frame.

For further reference, we derive the equation for the evolution of the pressure
tensor by multiplying (3.12) with mv’ ® v’, integrating the velocity term by parts and
then using the fact that V,, ® v’ is the metric tensor in velocity space, to find that

%+Vx-[Q+P®ﬁ]+Vx-[u®PC,_)+PC,_)®u]—[u®(Vx-P)

+ (V.- P)®u)]= %[B xP(C, )+BxP(_, )] (3.14)

We can take the trace of this equation and note that Tr(P)=3p to derive an
equation for the total scalar internal energy, 3p/2, as

03 3
- = vV, - Z .Pl=u-[V,-P], 3.15
5Pt P+qu+u ] u-|[ ] (3.15)
where the heat-flux vector is defined as
1 _ 1
q:i/Emv?ﬁfd3’=§TdQL (3.16)

and the trace is over any two of the three slots of the fully symmetric Q. Here, Q is
the third-order heat-flux tensor defined as

Q:m/w®V®vf&w (3.17)

An alternate form of the pressure evolution equation can be derived by moving the
V, «[u - P] term to the right-hand side to write instead

a3 3
—— Ve —pu|=—P:V,yQu. 3.18
oo P [q+-2p } ® (3.18)
In this form, we now recognise that the second moment of the Vlasov equation in
the moving frame (3.12), gives the evolution of the internal energy of the plasma,
and the total energy of the plasma can be reconstructed from the appropriate
manipulation of the momentum equation (3.8) for the evolution of the total kinetic
energy,

a
u-[ﬂ-l—Vx-(puu-l—P)]:u-[n%p(E—i—uxB)]

ot
10 2 1
WML v, | 2plubu| = —u- (Ve P1+ Lpu B, (319)
2 0t 2 m

which when summed with (3.15) gives the identical total energy equation obtained
from the untransformed Vlasov equation.

3.2. Transformation to CGL frame

We now consider a magnetised plasma. The pressure tensor P can be split into
two parts, i.e.

P =P +1I° (3.20)
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where PC is the Chew-Goldberger-Low (CGL) pressure part of the tensor (Chew,
Goldberger & Low 1956) given by

P =pb@b+p (g—bob) (3.21)

and IT° is the trace-free, agyrotropic part, with g the metric tensor in configuration
space. We have defined py=P :b® b= P(b, b), and because I1* is trace free, we
have Tr(P) = Tr(P€) = p, + 2p. = 3p, where p is the scalar pressure. Now, for any
second-order tensor A, A and r are an eigenvalue/eigenvector pair if A(_, r) = Ar.
For the CGL part of the pressure tensor, it is straightforward to see that P€(_, b) =
pyb and P€(_, T)=p, 7 for all b7 =0. Hence, in a frame with orthonormal unit
vectors (b, 7|, T,), where 7, are orthogonal to b and 7, x 7, =b, the CGL part of

the pressure tensor will be diagonal.3 However, in general, these vectors are not the
eigenvectors of the full pressure tensor P. Nevertheless, we can always utilise this
separation into gyrotropic and agyrotropic pressure tensors, and we call the frame
in which the CGL part of the pressure tensor is diagonal the CGL frame.

We now transform the velocity coordinates to a local frame aligned with the
(b, 11, T,) basis vectors. In this frame, we can write the transform

V=0 x" ") =vbx, 1)+ v, =vbx', 1)+ v, cosOT(x', 1)
+ v, sinf0t1,(x', 1), (3.22)
where (w', w?, w?) = (v, vy, #) form cylindrical velocity coordinates in the CGL

frame. In general, the basis vectors depend both on position and time. For this
transform, we can compute the tangent vectors in velocity space, e;, as

a /
6= (3.23)
ow'
These are e, = b,
e, =cosft, +sinbt,, (3.24)
ey=—v,sinft, +v, cosOt,. (3.25)
The dual basis & are &' =&, " =&, and
~8 1 . 1
e =——sinft; + — cosbT,. (3.26)

vy vy

The Jacobian of the transform is simply J, =v,. In terms of e,, we can write
vV, = vJ_‘éJ_.

We can again use (2.14) and (2.15) to derive the Vlasov equation in the CGL
frame. First note that

ov” 0

Vv// . _— = —(Vv// . v”) = O (327)
ot ot

3An example coordinate systems in the case that the field is not uniformly pointing in one direction is given

by considering 7| aligned with the magnetic curvature, b - V. b. Another example: in the case when b is a constant

vector, then one can locally align the z axis with the total magnetic field and take the Cartesian basis vectors as
eigenvectors.
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and
Vo [V @0 1=Vu(Vy - 0") =0, (3.28)

because V,» - v” = 3. With these identities, we can write the Vlasov equation in the
CGL frame as
af 1 a -
—f+Vx~-[(v||b—|—vl+u)f]+——, (ULalf):O, (329)
ot vy ow!
where now f = f (x", v, vy.,0,t) and a'=¢& -a’ are the components of the accel-
eration in the CGL frame

" 1
a'=—+ @' +u) - Vo"+ -V, .P—v"-Vu+ Ly« B, (3.30)
at P m
and v =vb+v,.
In the CGL frame, the phase-space incompressibility can be read off from
(3.29) as

1 0 .
Ve e [yb+v, +ul+ ——(v.a)=0. (3.31)
v, ow!

At this point, the physics content of (3.29) combined with the momentum equation
(and Maxwell equations) is the same as the Vlasov—Maxwell system. No information
has been lost in the process of the transformations to the local flow and CGL frames.

4. Spectral expansions in gyroangle and perpendicular velocity

With the Vlasov equation now obtained in the velocity coordinate system mov-
ing with the flow velocity and aligned with the local magnetic field, we are ready
to deploy spectral expansions in velocity gyroangle and perpendicular velocity. As
described above, these velocity coordinates are ideal coordinates to perform the
expansions: the flow velocity is separated out of the coordinates and the coordi-
nate system is locally aligned with the magnetic field. The combination of these
transformations allows arbitrary flows, without any need to split the flow velocity
into individual components parallel and perpendicular to the local magnetic field.
Furthermore, we can accurately capture streaming along field lines while also allow-
ing for a rapidly converging spectral expansion in the perpendicular degrees of
freedom without any need for a time or spatially dependent shift vector.

4.1. Fourier expansion in the CGL frame

We first expand the distribution function in velocity gyroangle using the Fourier
series (dropping primes on x)

f(xv vHa Uy, 99 t) = f_‘()(xa U”, vy, t)

+Z [f_,f(x, v, vy, 1) cosnf + f1(x, vy, v, 1) sinnf]. (4.1)

n=1

Here f, is the gyrotropic part and f* are the agyrotropic parts of the distribution
function. These are given by

_ 1 . _
fOZE/ fx,v,v.,0,1)do 4.2)
0
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and

_ 1 ¥ _
fi(x, vy, vl,t)=—/. f(x, v, v, 6, t)cosnb db, (4.3)
T Jo

_ 1 ¥ _
fix,v,v,t)=— / f(x, v, v.,0,t)sinnd do, (4.4)
T Jo

for n > 0.

We can derive equations for each of the Fourier harmonics. However, to illustrate
the approach, we focus on the gyrotropic distribution function f,. We can derive
the equation for the zeroth harmonic by integrating (3.29) over gyroangles to get

—af° + Ve (b +uw) fol + V.- M,
1 9 1 [ 1 9 | Y
+ —— (vl—/ fd9>+—— (vl—/ aifd<9>:0. 4.5)
vy dyy 21 Jo v, 0v; 21 J
Here,

1 2 _
MJ_(x,U”, vy, t)=_/ vJ_f(x,U”, vy, 9’ t)de
2 Jy

I _
= % [flc(x, vy, Vg, I)Tl + fls(x, vy, vy, l’)Tz] (46)
is the contribution to the streaming term from agyrotropy of the distribution

function.
We can compute al =& -a” =b-a’ as

b 1
a'=v, . [E +(wb+v, +u)- be} + ;b Ve Pl=b-[(vb+v.)-V.u],

4.7
from which we find that
1 meo 1 - ob
— a'fdd=b-|-V,-P—vb-Vou|fo+M,-| —+@b+u)-V.b
21 J 0 at
_b'[ML'qu]+FJ_J_:Vx®ba (48)
where
1 2 _
F, (x,v,v.,1)= 3 / (v ®v)f(x,v,v.,0,1)do 4.9)
0

is a second-order symmetric tensor. Using the Fourier expansion of the distribution
function, we get

.
vzf (g —bRb)+ L2 sz

F, (x,v,v,,1)= (T1®1T1—1,071>)

+ == sz (T®T,+1,871), (4.10)
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where we used g =17, Q1+ 1>, ® 7> + b ® b to rewrite the first term. Using this
result, we can compute

2 r 2 rc
FM:Vx(XJb:vlszVx-b—%b-(tl-Vrl—tz-Vtz)
2 rs
—%b-(rl-wﬁrz-vn). @.11)

The first term in this expression is the contribution to the parallel acceleration from
the gyrotropic part of the distribution function, and the remaining two terms are the
contributions from the agyrotropy of the distribution function. An alternate form of
the first term can be obtained, since we can replace

B 1 1 1
V., b=V,-—=—V,.-B+B-V,—=——V,B, (4.12)
B B B B

where V,=b-V,.
.. ~1
Similarly, we can compute a* =¢é~ -a” as

~ ab 1
(1L = el . |:—U||E — U”(U”b +v, + u) . be + ;Vx -P— (U“b + vJ_) . qu] .

(4.13)

Since v, " =v,, we find that
| b 1
V) — a fdQZML’ —vH——v”(v”b—l-u)-be—{——Vx-P—v”b-qu
2w Jo ot P

—Fll:(U”Vx ®b+Vx®u) (414)

Though the first term of the velocity gyroangle integrated perpendicular acceleration
has only agyrotropic contributions arising from the coupling to the first Fourier
harmonic, M |, the F,, term in a* does have a gyrotropic contribution as well -
see (4.10) and the term proportional to f,. Putting all these expressions together, we
finally obtain the equation for the gyrotropic distribution function:

3 fo . 3 1 I _
a—]:O +V,- [(Uub + u)fo] + 8_11” |:b . (;Vx -P—vb- qu) fo+ %Vx . bf0:|
1 9 [v] _
+ —— |:— (b Ab-V,u} -V, -{vb+ u}) f0:| +AG=0. (4.15)
V| 8UL 2

Here AG are the agyrotropic terms, which involve the first and second Fourier
harmonics of the distribution function. The expressions for these terms are given
in Appendix C. We note that to determine the coupling of f; to the agyrotropic
terms, further equations would be needed; for example, evolution equations for M |
and F,, can be derived by multiplying the Vlasov equation in our transformed
coordinates, (3.29), by v, and v; ® v, and integrating over the velocity gyroangle.
In fact, this procedure of determining equations for, e.g. M, and F,,, provides
a natural procedure for the determination of higher Fourier harmonics, at least
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through the second Fourier harmonic, because the coupling to the f,; coefficients
of the Fourier expansion appears only through these vector and tensor combinations
of Fourier coefficients and plane perpendicular to the magnetic field, 7 .

In terms of the Fourier expansion, various velocity moments can be determined
through integration over v and v, . For example, the number density is

n=27r/‘oovldvl/C>o defO, (4.16)
0 —00
and the CGL pressure tensor components can be computed as
py =27 /00 v, dv, /00 dv“mvffo, (4.17)
0 —00
pL=2n/vadefm dv”%mvifo. (4.18)
0 —00

Thus, the gyrotropic part of the distribution function contains the total density and
total internal energy. The agyrotropic part of the pressure tensor is

H“=27‘[m/ UJ_dUJ_/ dv||x|:v(b®MJ_—|—MJ_®b)
0 _

U2 rec 'U2 rs
L—fz('l'1®'l'1—‘l'z®‘t'2)+ LS

+ 4 4

(71®T2+‘52®T1)i|- (4.19)

Clearly, both the first and second Fourier harmonics contribute to IT1°. In the
gyrotropic limit, it follows that we must have IT* = 0.
The heat-flux vector defined in (3.16) is

q=(q +q)b+2n /0'00 v, dv, f: dy, %m(vﬁ + vi)Ml, (4.20)

where
q=2m /000 v, dv, /_: dy, %mvﬁfo, (4.21)
q.=2n /0 ) v, duy / N dv, %mv” v? fo (4.22)

are the parallel components of the parallel and perpendicular heat fluxes, respec-
tively. These components are determined fully from the gyrotropic distribution
function. On the other hand, the components of the heat-flux vector perpendicular
to the magnetic field are determined from the first Fourier harmonic.

The characteristic velocities for the evolution of the gyrotropic distribution
function can be read off from (4.15) with AG =0 as

1 2

oy =b- <—Vx -P—vb- qu) + %Vx +b, (4.24)
0

i)l:% [b-1b-V.u) =V, -{vb+u)]. (4.25)

https://doi.org/10.1017/50022377825100706 Published online by Cambridge University Press


https://doi.org/10.1017/S0022377825100706

18 J. Juno, A. Hakim and J.M. TenBarge

Furthermore, integrating the phase-space incompressibility condition (3.31) over all
angles gives
.0V 1 0
Vet — 4+ ——(v,0,) = (4.26)
av UV av V]
I

Hence, in the gyrotropic limit, the evolution of the gyrotropic distribution function
does not violate phase-space incompressibility. For reference, the portion of the
parallel acceleration coming from the pressure tensor can be rewritten in a more
familiar form as

lb-[Vx-P]=lbonpH+va-b+lb-[vx-H"],
p P p P
1 1
=2 [Vi-(pb) — pLVi-b]+ ;b (Ve -m]. (4.27)

4.2. Reduction to the parallel-kinetic-perpendicular-moment system

We now expand the gyrotropic distribution function in a Laguerre series in

v, as
mv;
folx, vy, Vi, 1) = ,,20: F,(x, v, )Gy (vy, TYL, <2TL ) (4.28)
where L, (x) are Laguerre polynomials of order n and
m
Gu(ve, T =5 — e ML/TL, (4.29)
1

In these expressions, T, = T (x, t) is the perpendicular temperature, in terms of
which the perpendicular pressure is p; =nT,. The derivation of the equations for
the Laguerre coefficients F; is complicated by the fact that 7|, depends on position
as well as time. Typically, in this expansion, 7, would need to be determined from
another equation, such as an equation for the perpendicular pressure.

The Fi(x, vy, t) coefficient of this series is

2

Fk(x, vy, l‘) :27T/ V| dUJ_Lk <’Z; ) f()(x V), Uy, f) (430)
0

The number density and the parallel pressure (see (4.16) and (4.17)) are completely
determined from the zeroth Laguerre coefficient of the gyrotropic distribution

function:
n:/ F() dU”, (431)
pH =/ mUﬁFo dU”. (432)
The parallel components of the heat flux are
~1
= / S Fy du, (4.33)
LIL:TL/ U”(FO — F])dl)“, (434)
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which are determined from just the first two Laguerre coefficients of the gyrotropic
distribution function. Finally, the constraint (3.13) on the v moment of the
distribution function shows that we must have

/ vy F() dUH = 0, (435)
/ V) va_ / de MJ_ =0. (436)
0 —00

4.2.1. Some preliminaries
To derive the equations for F; for k > 0 (recall that L, =1), we need to account
for the fact that T, depends both on space and time. To do this derivation then, we

write
mvl\ df, @ mvl\ - ~ 0 mv?
()t () ] A L)) e
Now, using (B.5) we get
b (5 o (3) e ()] o
Also,
mv? _ mvd\ -
L, ( o, ) Ve [mb+uw) fo]=V.- [(v”b +u)L; < oT, ) o]

- mv?
—fo{(v”b—l—u)-Vx |:Lk ( L>:|} . (4.39)
2T,
where, as above, we can write

mv? 1 mv? mv?
V. |L L) =——V,T kL L) —kL,_ L]. 4.40
[ k(2T¢>i| T, L|: k(2T¢> k1<2TL>] (440

4.2.2. The equation for Fy,
We can multiply (4.15) by L;(mv? /2T, ) and integrate over all v, to obtain

0F; 0 1
? + Vx . [(’U”b + u)Fk] + a_v” |:b . (;Vx . P — U”b . qu) Fk

T
+[QRk+D)F —kF_y — (k + DF"“]ELV" . b]
=SkT(X, vy) + Sk(x, v)). (4.41)

The source S; appears because 7, depends both on space and time. Using the
expressions derived in the previous section, we can write this source term as

1 [oT
SkT(x, UH) = _E |:a_;_ + (U”b + u) . VxTJ_:| (ka — ka,I). (442)
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The source S, results from the integration by parts of the perpendicular velocity
derivative. Calculating this term, we get

Scx,v)=[b-(b-V.u)— V.- (b+u)] (kF, —kFi_y). (4.43)

At this point we have all the equations we need to evolve the Laguerre coefficients
of the gyrotropic distribution function. The number of Laguerre coefficients one will
need will depend on the structure of the distribution function in the perpendicular
coordinate. One yet undetermined quantity in these equations is 7,. We can derive
an explicit equation for this quantity; however, we can also pursue an alternate
approach that will completely eliminate the need for an auxiliary equation for 7.

4.3. The first two Laguerre coefficients and perpendicular temperature
The evolution of the first two Laguerre coefficients of the gyrotropic distribution
can be determined by first setting k = 0 in (4.41). This substitution gives

dF
8_[0 —+ Vx . [(va + u)F()]

ad 1
+ [b - (—Vx .P—ub- qu> Fy+ GV, -b} —0, (4.44)
vy P

where we have defined
T
G= ZL(FO — F). (4.45)

Furthermore, setting k =1 in (4.41) gives

oF
8_t1 +V,- [(Uub + u)Fl]

a 1 T,
+—1b- —VX‘P—UHb'qu F1+(3F1—F0—2F2)—Vx'b
avu 1Y m

1 [aT
=—— | ==+ @b +u) - VT [ (Fi = F) + 51(x, v)), (4.46)
T, | ot
Subtracting the second equation from the first, and multiplying throughout by T, /m,
we get
g

m +V,- [(Uub + u)g]

ad 1 2T T
+— [b . (—Vx “P—vb- qu> G+ (4g + Z5F - F0}> v, -b]
8v|| 1Y m m

=[b-b-V.u)—V,-(vb+uw]G. (4.47)

Instead of solving the equation for F;, we can solve this equation for G. The advan-
tage of this approach is that the source S} (x, v;) due to the temporal and spatial
variation of T, does not appear, avoiding the need to compute the time and spatial
derivatives of T, . Furthermore, we claim that

pL:nTl:TL‘/ F() dUH :/ TL(F()—Fl) dU”:m/ gdU”, (448)

—00 o0
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thus eliminating the need to evolve an explicit equation for the perpendicular

temperature.
As a consistency check, we integrate (4.47) over all velocities to obtain
d
% +Vi-lgb+piul=pb-[b-Viul —q,Vi-b—p,V,-u (4.49)

Likewise, multiplying (4.44) by 1/2 mvﬁ and integrating over all velocities we get an
evolution equation for the parallel pressure:

1
55 TV [qb + EPM] =—pb-[b-Viul+q.V,-b (4.50)

If we add (4.49) and (4.50), we obtain

Jd [1 1
Y, Epll+pl + Ve | (g +4qL) b+ EP\\+PL u

=((pL—pPb-b-Vul—p,V,-u. (4.51)
Recall that in the gyrotropic limit,
P=P°=pb®b+p.(g—bob) (4.52)
which implies that
(pr—pPb-[b-Viul—p,Vi-u=—-P:V,Qu. (4.53)

Thus, utilising the fact that 3p/2 = p,/2+ p,, we obtain the gyrotropic limit of
(3.18) from the second moment of the F; equation and the zeroth moment of the G
equation.

The statement that we evolve the perpendicular pressure p,; by evolving G is non-
trivial. In effect, we have absorbed the T, normalisation of the Laguerre expansion
that appears in our fundamental ansatz (4.28) into the evolution of G, even though
this normalisation must typically be determined independently and not depend on
Laguerre coefficients. Thus, our spectral expansion in Laguerres can fully leverage
the optimised spatially and temporarily dependent 7| normalisation without the need
for auxiliary equations. Note this formulation of the equation for G indicates that
we must have the constraint

f Fy dv, =0, (4.54)
From (4.46), can show that this is an initial-value constraint: that we must ensure
(4.46) is true at r = 0 for it to be satisfied for all ¢ > 0.

4.4. The lowest-order PKPM system of equations

We define the lowest-order PKPM system as the zeroth Fourier harmonic and the
first two Laguerre coefficients, with the truncation that all higher Fourier harmonics
and all higher Laguerre coefficients are zero. With these approximations, we are left
with the following two coupled four-dimensional kinetic equations:

daF,

? + Vx . [(U”b —+ u)F()]

d 1
+ FY [b . (—Vx <P —vyb- qu) Fo+GV, - b] =0, (4.55)
Y p
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B
a—f + V.- [(vb +w)G]

d 1 T, 1T
+ — [b . (—Vx -P—vb- qu) G+ [4g - 2—lF0} =V, -b}
v 0 m m

=[b-(b-V.u)—V,.-(vb+u]G. (4.56)

The system is closed via the solution of an equation for the flow velocity, #, which
comes from conservation of momentum,

apu q
?+Vx-[pu®u+P]=pE[E+uxB], (4.57)
P=pbRb+p(g—bRb), (4.58)
py=m / UﬁFo dvy, (4.59)
pL=m / G dv, (4.60)
plus Maxwell’s equations for the evolution of the electromagnetic fields,

oB
— + V., x E=0, (4.61)

ot

oE
EOMOW —VexB=—uod, (4.62)
v,.E=2 (4.63)

€0

V.-B=0, (4.64)

with the coupling to the electromagnetic fields arising directly from the momentum
equation through the plasma currents,
J=S"% ) u, (4.65)
my

s

5. An interlude on historical context

Having derived the PKPM model utilising velocity coordinate transformations
to the local flow frame and frame aligned with the local magnetic field, followed
by the spectral expansions in both velocity gyroangle and perpendicular velocity,
it is worthwhile to place this system of equations in the larger historical context,
with a focus on the lowest-order PKPM system of equations consistenting of the
zeroth Fourier harmonic and the first two Laguerre coefficients. Our principal goal
throughout this discussion is two-fold: connect the physical content of the PKPM
model to equation systems a reader may be more familiar with and simultaneously
describe numerical difficulties that are ameliorated with the approach in the PKPM
model. The discussion of numerical difficulties in certain asymptotic models is the
principal motivation for this section, as our central ambition of the PKPM model is
to leverage the same intuition that informed this long history of developing models
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for magnetised, collisionless plasmas, but with an eye towards avoiding the dif-
ficulties that have prevented some of these analytical breakthroughs from being
easily numerically integrable and, thus, leveraged for efficient modelling of these
systems.

5.1. Connection to Kulsrud’s KMHD and Ramos’ FLR kinetic theory

One of the most foundational models in the theory of magnetised plasmas is
KMHD, often referred to as Kulsrud’s KMHD (Kulsrud 1964, 1983). Kinetic
magnetohydrodynamics is a hybrid fluid-kinetic model that transforms the kinetic
equation in an identical fashion as the PKPM derivation outlined here, first trans-
forming velocity coordinates to a bulk fluid frame, specifically the E x B frame,
and then transforming the velocity coordinates to a field-aligned coordinate system
(vy, vy, 0). However, following these transformations, an asymptotic expansion is
performed with small parameter € =m /e or simply € = 1/e, where m is the species
mass and e is the elementary charge. Because the bulk fluid flow being utilised is
only the E x B velocity, this asymptotic expansion yields an immediate dynamical
consequence: the parallel electric field is also O(e) smaller than the perpendicular
electric field, and to lowest order the distribution function is gyrotropic.

In this limit, the gyrotropic distribution function evolves as

0 -
a_J;O + Vx . [(va + UE) fo]

a oU, s
+_|:<—b‘ —b'{Ue'Ver}'i‘q_EH
aU“ ot my

2
—b-{vb-Ver}—i-%Vx-b) fo]

2
[”—i b-6-V.U}—V,.-{vb+U.}) fo}zo, (5.1)

where

U E x B 59
£=gm (5.2)
is the E x B velocity, and we have transformed the perpendicular velocity derivative
from 1/v,d,, to a derivative on the variable v /2 for convenience since everywhere
the perpendicular velocity appears in this equation it appears as v? /2. Note that
typically, a further coordinate transformation is performed from v?/2 to the mag-
netic moment u =v? /(2B), where B = |B]| is the magnitude of the magnetic field,
to further simplify the kinetic equation by eliminating the derivative in v? /2 since
the magnetic moment is conserved by the dynamics of this equation. Irrespective of
whether one utilises v, , v} /2 or w as a velocity coordinate, (5.1) is often referred to
as the drift-kinetic equation (Frieman et al. 1966; Hinton & Wong 1985).

At first glance, it would seem that the only difference between this approach and
the PKPM approach, at least when keeping only the zeroth Fourier harmonic, i.e.
the gyrotropic component of the distribution function, is which particular hydro-
dynamic velocity is utilised for the initial velocity coordinate transformation. The
characteristics of the particles in all the dimensions are identical save for a variable
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substitution of Uy — u and a subsequent manipulation of the parallel forces to
utilise conservation of momentum,

Rl 1
_b._u_b.[u.qu]-q-iE:b-[—Vx-P] (5.3)
at m P

Indeed, we expect on scales larger than the gyroradius and in plasmas where the
bulk velocity is dominated by the E x B velocity that the PKPM model contains all
the physics of KMHD.

The differences between the PKPM approach and the classical approach of
Kulsrud are made more salient when considering how the system is closed. To
close the KMHD system, the kinetic equation in (5.1), for each species, is coupled
to a set of bulk fluid equations for the evolution of the total mass density and total

momentum,
3
2 V.- [pU]=0, (5.4)
o1
apU
7+Vx-[pU®U+ZS:PS]=JxB, (5.5)

where p is the total mass density, often approximated as simply the ion mass density,
and U is the centre-of-mass velocity, often approximated as simply the ion bulk
velocity. Here, P, is the pressure tensor of species s,

P,=p,b@b+p, (g—bRb), (5.6)
2 Ui
Pl =/ms(v —uy,)” fedvd 5 ) (5.7)
V2 v?
Pl :/mxffsdv”d (i) , (5.8)

where we have reintroduced the species index to the mass, parallel velocity and
distribution function for clarity. We can see that P, is the same gyrotropic pressure
tensor we defined earlier for the lowest-order PKPM system, but with a different
means of computing the parallel pressure and assuming the only bulk perpendicular
velocity is E x B; in other words, there is an implicit ordering that the remaining
guiding centre drifts, such as V, B and curvature drifts, are all smaller than E x B.
The forces on the bulk motion after summing over all species only require J, the
current density of the plasma, usually given simply by

J= ivx x B, (5.9)

Mo

if one also assumes non-relativistic flows, though generalisations of the KMHD
approach to relativity are possible via the relativistic generalisations of guiding centre
theory (Vandervoort 1960; Ripperda et al. 2018; Bacchini et al. 2020; Trent et al.
2023, 2024). Finally, the time evolution of the magnetic field is given by Faraday’s
equation

oB

2 _v,xE, 5.10
a7 X (5.10)
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and in the commonly employed non-relativistic limit an Ohm’s law for the electric
field gives the electric field

E=U x B. (5.11)

So, up to the coupling to the pressure tensor of each evolved species, the fluid
equations, Faraday’s law and the Ohm’s law for the electric field are exactly the
same equations as those of ideal MHD. It is only the closure — how the pressure
is determined for the evolution of the momentum - that is affected by the kinetic
response of the plasma.

Immediately we note two subtleties to the evolution of the KMHD system: the
total momentum equation permits the development of perpendicular motions that
are not E x B, but these bulk motions do not explicitly feedback on the kinetic
response of the plasma, and the parallel electric field is as yet unspecified by the
Ohm’s law. Firstly, the bulk motions drive perpendicular currents such as

Vo= |V (E7) 5 }

V. (X, py)x B (b V.b) x B

(5.12)

diamagnetic
curvature

which we have labelled as the diamagnetic and curvature-driven perpendicular cur-
rents, respectively. However, as we noted earlier, the form of the kinetic equation in
KMHD assumes that there are no further contributions of perpendicular bulk flows
to the computation of the perpendicular pressure. Thus, for example, any diamag-
netic currents that should modify the equilibrium pressure profile are not correctly
captured by KMHD in its current form, at least dynamically, because the response of
the kinetic equation does not include how the particles react to the presence of other
perpendicular flows. These perpendicular currents do implicitly modify the local
magnetic field, which itself may modify the plasma pressure through, e.g. adiabatic
heating and cooling, but the interplay between the development of perpendicular
flows and heating of the plasma is not contained in the KMHD system as written.
Importantly, these sorts of time-dependent interplays between different components
of the system, while subdominant in the asymptotics, may be a critical component
of well-behaved numerical discretisations of time-dependent partial differential equa-
tions, as including the interplay allows the system to relax to the desired equilibrium
instead of trying to satisfy potentially stiff constraint equations.

Furthermore, to obtain an equation for the parallel electric field, we must go to
higher order in our expansion to find the parallel force balance equation from the
evolution of the electron momentum

1
b * Vx ° Pe7
en,
(5.13)

e 866 1
EH:_m b'|: nlt +Vx'(neue®ue)+_vx"Pei|%_

en, ot m,

assuming that the electron mass is small and, thus, the electron inertia is ignorable.
Unfortunately, (5.13) is only a steady-state equation, and thus, its application to
solving a time-dependent partial differential equation poses a non-trivial numerical
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difficulty. It need not be the case that (5.13) holds instantaneously, and enforcing
that it does may be impossible without some sort of numerical operator that diffuses
spurious fluctuations in the parallel electric field.

Similar to the feedback of perpendicular currents on the particle dynamics, while
the equilibrium is contained at the desired order in the derivation of the equation
system, the relaxation to this equilibrium is not. In the case of solving this constraint
equation for the parallel electric field, in the physical system there will be the devel-
opment of parallel currents due to a parallel electric field, which then must relax to
a state of J; &~ 0 and a parallel electric field supported by the parallel pressure force.
But then in a time-dependent partial differential equation, we may develop spurious
fluctuations in the parallel electric field caused by non-zero parallel currents since
this equation system contains a kinetic equation for every evolved species. We are
thus not guaranteed to satisfy the identity J; =0 and (5.13) instantaneously in time
as each species independently develops parallel flows.

These two subtleties, the lack of feedback of the other guiding centre drifts on the
kinetic response of the plasma and the parallel electric field equation only arising
due to a steady-state parallel force balance equation, were principal motivations for
the work of Ramos (2008) and Ramos (2016) and the derivation of what Ramos
(2008) referred to as FLR kinetic theory. By transforming to the total bulk flow
frame, irrespective of the make up of that bulk flow, whether large parallel flows
exist or all the guiding centre drifts are comparable in magnitude, all of the benefits
of the KMHD formalism can be realised while eliminating the ambiguities of how to
couple the fluid-kinetic system of equations. Not only the perpendicular electric field,
but the parallel electric field too, are both eliminated from the kinetic equation via
conservation of momentum. Furthermore, with a Fourier expansion in the velocity
gyroangle, we can clearly identify both the evolution of the gyrotropic component
of the distribution function and how the gyrotropic component couples to each
subsequent Fourier harmonic as well as the impact of FLR effects on the plasma’s
evolution.

In this regard, the PKPM formalism is the realisation of the formalism outlined
in Ramos (2008) to transform the velocity coordinates to the total flow frame but,
to our knowledge, never numerically implemented anywhere. By transforming the
velocity coordinates of each distribution function to their particular bulk flow frame
and determining that bulk flow from conservation of momentum of that partic-
ular plasma species, the difficulties in handling the macroscopic parallel electric
fields, parallel currents and the evolution of the equilibrium magnetic field due
to, e.g. diamagnetic effects, are all self-consistently captured by the interplay and
coupling of Maxwell’s equations with each species’ momentum equations. Where
the PKPM approach diverges from the approach outlined in Ramos (2008) is the
avoidance of any asymptotic ordering of our transformed Vlasov equation, and we
instead reduce the number of velocity degrees of freedom compared with the full
Vlasov—-Maxwell system through the spectral expansions in velocity gyroangle and
perpendicular velocity. In lieu of expanding the transformed Vlasov equation in
powers of € = p, /L, where p, is the plasma species’ gyroradius and L is the gradient
scale length, to include FLR effects to some order in €, the PKPM model can simply
add Fourier harmonics to some desired order, and we consider it likely that even the
first Fourier harmonic is thus a super-set of the physics contained in the approach
outlined in Ramos (2008). This argument is not to say that the PKPM model cannot
benefit from asymptotic reductions; for example, if desired and appropriate, fur-
ther numerical savings can be straightforwardly attained by employing reductions
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of Maxwell’s equations, such as the Darwin approximation to eliminate the speed
of light as the fastest time scale in the problem (Schmitz & Grauer 2006; Pezzi
et al. 2019), because the field-particle couplings are entirely contained within the
momentum equation.

The fact that the PKPM model as constructed can handle the interplay between
all of the guiding centre drifts and develop macroscopic parallel electric fields from
the self-consistent evolution of the kinetic equation and corresponding momentum
equation can be contrasted with other KMHD-like models in the literature. For
example, KMHD-like models such as the kglobal model (Arnold et al. 2019;
Drake et al. 2019) avoid the numerical difficulties associated with the macroscopic
parallel electric field by leveraging physics intuition about how the system attempts
to restore parallel pressure balance and zero net parallel current, introducing a ‘cold’
electron fluid to instantaneously maintain quasi-neutrality and provide the expected
return current that balances the local parallel flow of the ‘hot’, kinetic electrons. A
total parallel pressure balance equation can then be defined to give the instantaneous
parallel electric field similar to an Ohm’s law prescription for the perpendicular
electric field. In reality of course, because one is solving a kinetic equation this
return current should be self-consistently contained as a sub-population of electrons
in the electron distribution function. So, while kglobal does successfully apply the
KMHD formalism, this formalism is leveraged only under a prescribed model for
how the system maintains net zero parallel current.

The approach in models like kglobal has been highly successful (Arnold et al.
2021, 2022), a clear demonstration for why it has arguably been frustrating his-
torically that KMHD resisted such easy discretisation. We thus argue the PKPM
formalism presents a step forward in applying the same intuition that guided Kulsrud
(1964) and later Ramos (2008) to a diverse array of plasma systems. The dynamical
interplay of the guiding centre drifts with the kinetic response of the plasma, the
evolution of the macroscopic electromagnetic fields including macroscopic parallel
electric fields, and the self-consistent treatment of the distinct particle populations
that may arise to, e.g. drive the parallel currents to zero, are all handled by the
PKPM formalism at reduced computational cost compared with solving the Vlasov
equation in full generality.

5.2. Comparison to other (hybrid) spectral method approaches

Given the widespread popularity of spectral methods for velocity space discretisa-
tions of kinetic equations, from fully kinetic (Holloway 1996; Delzanno 2015; Parker
& Dellar 2015; Vencels et al. 2016; Roytershteyn & Delzanno 2018; Koshkarov et al.
2021; Pagliantini et al. 2023; Issan et al. 2024; Schween & Reville 2024; Schween
et al. 2025) to gyrokinetics (Mandell et al. 2018; Frei et al. 2020; Hoffmann et al.
2023b; Frei et al. 2024) to drift kinetics (Parker ef al. 2016) and other reduced
kinetic models (Zocco & Schekochihin 2011; Loureiro et al. 2013; Zocco et al.
2015; Loureiro et al. 2016), it is worth discussing how the PKPM approach com-
pares to these other techniques for discretising velocity space. The key differences
are three-fold: the direct optimisation of the spectral basis with our coordinate trans-
formations that avoids the difficulty in handling time and spatially dependent shift
and normalisation factors, the hybrid nature of the PKPM approach, which does not
perform a spectral expansion in all the velocity degrees of freedom, and the lack of
transformation of configuration space coordinates that distinguishes the gyroangle
Fourier harmonic expansion from the gyroaveraging procedure in spectral gyroki-
netic codes. All of these differences arise due to specific goals of the PKPM model;

https://doi.org/10.1017/50022377825100706 Published online by Cambridge University Press


https://doi.org/10.1017/S0022377825100706

28 J. Juno, A. Hakim and J. M. TenBarge

for example, as discussed in the beginning, we anticipate a spectral basis in v, can
perform quite poorly on the phase-space structures that typically arise in magnetised
plasma dynamics, such as field-aligned beams or trapped particle distributions.
Likewise, we focused in § 2 on why we pursued a path of transforming the velocity
coordinates of the Vlasov equation to optimise the spectral basis. We reiterate that
not only do we avoid any assumptions on the temporal or spatial variation of the
flow velocity with our coordinate transformation to move with the local flow veloc-
ity, but that the linear combination of Laguerre coefficients to produce the second
kinetic equation for G, (4.47), in § 4 eliminates the need for an auxiliary equation for
the time and spatially dependent Laguerre normalisation. Thus, we avoid the restric-
tion in other spectral approaches that commonly assume a fixed and/or uniform
shift and normalisation in the spectral expansion (Vencels et al. 2016; Koshkarov

et al. 2021; Frei et al. 20235, 2024).4 Furthermore, we show in § 6 test cases that
illustrate the utility of not performing the spectral expansion in v, due to the non-
trivial structure that can arise in a variety of magnetised systems, such as magnetic
reconnection, similar to other groups use of a hybrid approach mixing spherical
harmonics with finite element methods to optimise their simulations of cosmic ray
transport (Schween & Reville 2024; Schween et al. 2025).

We thus use this section to draw a particular contrast between the spectral gyroki-
netic approach and the PKPM model for the handling of the Laguerre expansion.
There is an important consequence from the transformation from particle position to
gyrocentre position in spectral velocity representations of the gyrokinetic equation:
the Laguerre representation of the Bessel function utilised to perform the gyroaver-
aging of various quantities, such as in the electrostatic potential, requires a sum over
Laguerres (Zocco et al. 2015):

(K2 p2/4)"
Jo (kipvy) =e 300y %Ln (v?). (5.14)
n=0
Here, J, is the zeroth-order Bessel function of the first kind, k, is the wavenumber
perpendicular to the magnetic field and p; is the ion gyroradius. An accurate treat-
ment of gyroaveraging for large k, p; thus requires an increasing number of Laguerre
coefficients; see Appendix B of Mandell et al. (2018). While accuracy improvements
for low Laguerres have been utilised in the gyrofluid approach (Dorland & Hammett
1993), and a number of nonlinear calculations have shown reasonable results in the
fusion context, with works such as Hoffmann et al. (2023a) and Mandell ef al. (2024)
utilising as few as 3-4 Laguerres, in other cases such as the unstable entropy mode
in Hoffmann et al. (2023b), more Laguerre resolution is needed to properly account
for the FLR effects impact on the transport.

No such coupling of Laguerres occurs in the PKPM model because we have kept
the configuration space coordinates untransformed; we obtain the distribution func-
tion at the particle position, not the gyrocentre position. In the PKPM formalism,
each successive Fourier harmonic in velocity gyroangle will have its own Laguerre
expansion. We can thus identify the physics of each Fourier harmonic Laguerre
coefficient by Laguerre coefficient. For example, the first Fourier harmonic gives

4We draw a distinction here between spectral methods utilised in 8§ equations, such as those used to discretise
the 8f gyrokinetic equation (Mandell ez al. 2018; Hoffmann ez al. 2023b) compared with ‘full’ f discretisations of
either the Vlasov equation or gyrokinetic equation since in a §f approach it is very natural to assume a fixed shift
and normalisation to the spectral basis either in both space and time or just time.
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the evolution of M, and the zeroth Laguerre coefficient of M, can be utilised to
obtain the component of the agyrotropic pressure tensor proportional to M, in
(4.19). Likewise, the first Laguerre coefficient of M, can be utilised to obtain the
heat flux of the perpendicular temperature perpendicular to the magnetic field in
(4.20), the v M| term. We defer a systematic comparison of the accuracy of FLR
effects in the PKPM approach compared with a spectral gyrokinetic code to a future
publication, but we note for now that because the PKPM model does not transform
configuration space coordinates to gyrocentre coordinates or perform any gyroaver-
aging, the Laguerre couplings remain local at every &, , and thus, there is no obvious
need for large Laguerre resolution at large £, in the PKPM approach. What specific
impact this representation of the distribution function in perpendicular velocity and
gyroangle, instead of gyrocentre, perpendicular velocity and gyrophase, has on the
physics of, e.g. the entropy cascade (Schekochihin et al. 2009; Tatsuno et al. 2009)
is as yet undetermined, but at an initial glance the couplings that can require high
Laguerre resolution are not present in the PKPM approach.

6. A brief demonstration of the model

We now seek to demonstrate the new PKPM model in a handful of non-trivial
nonlinear problems that clearly show the utility of the approach. We emphasise here
that the following benchmarks are merely meant to exhibit the successful numerical
implementation of the model, and we defer a systematic comparison to theory and
fully kinetic simulations to the second paper in this two-part series. Nevertheless,
it is the goal of this section to illustrate that the significant reduction in the num-
ber of degrees of freedom yields a cost-effective model for understanding plasma
systems that are inaccessible with traditional asymptotic approaches. The PKPM
model is implemented within the Gkeyll simulation framework utilising a DG
finite element method (Reed & Hill 1973; Cockburn & Shu 1998, 2001; Hesthaven
& Warburton 2007) for the spatial discretisation of all components of the system:
the kinetic equations for the F, and G distribution functions, (4.55) and (4.56),
the conservation of momentum equation coupled to the pressure tensor computed
from these kinetic equations, (4.57)-(4.60), and Maxwell’s equation. Time integra-
tion is handled with an explicit strong stability preserving third-order Runge-Kutta
method (Shu 2002). These choices of spatial discretisation and time integration fol-
low exactly the same procedures as other Gkey11 kinetic equation implementations
(Juno et al. 2018; Hakim & Juno 2020; Mandell ez al. 2020). All the simulations
performed in these demonstrations of the model also utilise the same DG method
for a conservative Lenard-Bernstein operator for self-collisions — the extension
of the Lenard-Bernstein collision operator for the PKPM model is given here in
Appendix D, and the numerical details of discretising the collision operator can be
found in Hakim et al. (2020).

6.1. Parallel electrostatic shock

Shock waves, specifically collisionless shock waves, are omnipresent in our uni-
verse. In astrophysical systems where the collisional mean free path is large, the
dynamics of the nonlinear wave steepening and rapid conversion of bulk kinetic
energy into other forms of energy such as particle acceleration and heating in
these shock waves are not mediated by collisions, but a myriad of collisionless pro-
cesses such as wave-particle interactions and kinetic instabilities. To demonstrate
the PKPM model, we consider the case of a parallel shock, where the incoming
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supersonic flow is aligned with the local magnetic field. In this shock geometry, on
short time scales, there is the potential for electrostatic shocks driven by nonlinear
steepening of ion acoustic modes, but only up to a critical Mach number (Forslund
& Shonk 1970; Sorasio et al. 2006). If the incoming flows are sufficiently large,
there will be no slow down of the supersonic flow, and the fast plasma can propa-
gate freely, smoothly transitioning around obstacles or interpenetrating the ambient
medium through which the plasma is propagating.

To demonstrate that the PKPM model reproduces this transition from shocked
flows to interpenetrating flows and, thus, contains a complete description of the
collisionless physics of electrostatic shocks, we perform two simulations of colliding
plasma flows, similar to previous studies of electrostatic shocks. We initialise an
electron—proton plasma in a box of length L, = 35844, where Ap = v, /@, 1S the
electron Debye length, v,,, = +/7./m, is the electron thermal velocity and w,, =

Jverny/egm, is the electron plasma frequency. Here, T, is the electron temperature,
m, is the electron mass, ¢ is the elementary charge, ny is the reference electron
density and ¢, is the permittivity of free space. For the purposes of these simulations,
all of these quantities are normalised to values of 1.0 so that all length scales are
normalised with respect to the electron Debye length, all velocities are normalised
with respect to the electron thermal velocity, and all time scales are normalised with
respect to the inverse electron plasma frequency. This electron—proton plasma is
initialised with Maxwellian distributions and a supersonic flow for both species in the
negative x direction towards a reflecting wall at x = 0, which leads to a shock wave or
interpenetrating plasma propagating in the positive x direction. A continuous supply
of plasma is provided with a copy boundary condition at x = L.’ in exact analogy
to the ‘reflecting wall’ set-up commonly employed in particle-in-cell simulations of
collisionless shocks and identical to the initial conditions of previous continuum
simulations of collisionless shocks.

Specific shock parameters are as follows: we utilise the real proton-electron mass
ratio m,/m, = 1836, a proton—-electron temperature ratio 7,/ 7T, = 0.25, a reference
magnetic field strength B = Byx = X so the magnetic field points in the x direction
the entirety of the simulation on the time scale of the electrostatic dynamics, and
an electron-electron collisionality v,, = 10‘6a)pe, with the ion-ion collisionality com-
mensurately decreased by the square root of the mass ratio and temperature ratio
to the 3/2 power. We consider two Mach numbers, one below and one above the
critical Mach number, where M, =u,,/c, is the Mach number, u,, is the magnitude
of the upstream flow velocity and ¢, = /T,/m, is the sound speed. The two simula-
tions have upstream Mach numbers of M, =3.0 and M, = 5.0. We choose to utilise
a colder proton population to reduce the ion acoustic damping and, thus, generate
stronger shock waves in the cases when the plasma produces a shock. The critical
Mach number is M, ~ 3.0, but we note that this critical Mach number was deter-
mined for plasmas with only one-velocity dimension (Forslund & Shonk 1970), and
the PKPM model is constructed to be three dimensional in velocity space. As such,
we expect with this definition of the sound speed, without any additional O(1) factors
for the adiabatic index of the plasma, that the M, = 3.0 simulation will shock, while

SWithin Gkey11, this boundary condition corresponds to copying all quantities: both PKPM distribution
functions Fp and G and momentum pu for both species, as well as the electromagnetic fields, in the grid cell just
abutting the boundary, the ‘skin’ cell, into the ghost or halo layer of cells. In this case, because the momentum is
initialised in the negative x direction, we then have a continuous injection of plasma from the boundary at x = L.
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the M, = 5.0 simulation will not shock.’ This subtlety of the conditions under which
a one-velocity dimensional plasma shocks compared with a three-velocity dimen-
sional plasma has already been proven to be a use case for the PKPM model, as an
early version of the PKPM model was utilised to understand measurements of shock
formation, and lack of shock formation compared with fluid model predictions, in
the plasma-Jet driven magneto-inertial fusion experiment (Cagas et al. 2023).

The final input file specifications are our velocity space extents, grid resolutions
and polynomial orders for the DG finite element method we utilise. The velocity
grid extents are [—8vy,, 8vy, ] for the electrons and [—64v,;,,, 64v,,,] for the protons
for the M, = 3.0 simulation and [—128v,;,, 128v,;,] for the protons for the M, = 5.0

simulation.” We utilise N, = 1792 grid points in configuration space, Ax = 2\ p, with
linear polynomials in configuration space, and Av; = 0.0625v,,, for both species with
quadratic polynomials in velocity space, so that the electrons have N, =256 and the
protons have N, =2048 and N, =4096 velocity grid points for the M; =3.0 and
M, = 5.0 simulations, respectively. These simulations utilised 32 56-core compute
nodes on the Frontera cluster at the Texas Advanced Computing Center; the M, =
3.0 ran for half an hour for a total of 16 node hours, while the M, = 5.0 used an
hour of computing time for a total of 32 node hours.

Currently we utilise large velocity space extents for the protons in shock simula-
tions due to the significant transient generated by the large du,/dx at early times,
since with this reflecting wall set-up du,/dx is infinite at r =0, x =0. The result
of this large du,/dx is the generation of a small amount of reflected particles at
very high velocity in the hydrodynamic frame that propagate upstream and have
no bearing on the evolution of the plasma. Once the transient has relaxed, the vast
majority of the plasma is contained in a velocity space volume a quarter to an eighth
in size, and we consider it worthwhile future work to explore an optimised initial
set-up of shock simulations in this model to reduce the need to resolve this transient
high velocity reflection. Nevertheless, we wish to emphasise that the fact that this
numerical implementation can successfully evolve this transient stably is evidence of
the robustness of this implementation, and thus, suggests that the PKPM model is
not by any means a numerically brittle model despite its complexity.

We show in figure 1 the evolution of the fluid moments at r = 1500w, for the two
upstream Mach numbers. All fluid moments are normalised to their upstream values
to facilitate cross-comparison between the M; = 3.0 and M, = 5.0 simulation since
the upstream flows and energies are different for these two simulations. We note the
key features of the M, = 3.0 indicative of a shock: a sudden density pile-up, a sharp
stagnation of the flow in conjunction with this density pile-up, rapid electron heating
with the electron parallel pressure increasing by nearly a factor of 15 compared
with the density increasing by a factor of 3, and a commensurate decrease in the
total ion energy and ion pressure corresponding to the conversion of ion energy into
electron heating and electromagnetic energy. In contrast, the M; = 5.0 simulation

For a plasma with three-velocity dimensions, the sound speed in the cold ion limit is formally ¢; = \/y.T,/m s
where y, =5/3. With this definition of the sound, our two simulations have upstream Mach numbers of M, =
3.0/4/5/3~2.32 and My =5.0/+/5/3 ~ 3.87. Because our protons are colder than the electrons, even if we include
the contribution to the sound speed from the ion temperature, ¢, = \/ YeTe +viTi)/mp = J25/12\/ T./mp, the
Mg =3.0//25/12 ~2.04 and M, =5.0/+/25/12 ~ 3.46, we still satisfy the conditions for the two simulations being
below and above the critical Mach number.

"Note that because this simulation is electrostatic and the only coupling between the plasma and electro-
magnetic fields is Ampere’s law in one dimension where V, x B =0, we do not need to specify vy, /c for how
non-relativistic the simulation is, as there are no light waves in this simulation.
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FIGURE 1. Electron (left column) and proton (right column) mass density (top row), momentum
density (middle top row), total energy density (middle bottom row) and parallel pressure (bottom
row) at t = ISOOa)Ije1 for upstream Mach numbers M; = 3.0 (black) and M; = 5.0 (red). All
quantities are normalised to their upstream values for ease of comparison between the My = 3.0
and M; = 5.0 cases since their upstream flows and energies are different. The characteristics of
a shock wave are clearly identifiable in the M = 3.0 simulation: a sharp pile-up of the density,
a rapid stagnation of the flow, significant electron heating over the same length scale and a
decrease in the ion energy from the rapid conversion of ion energy into both electron heating and
electromagnetic energy. On the other hand, the M = 5.0 case exhibits no such sharp transitions,
with a smooth gradient up to a total mass density p ~ 2 and total momentum pu, ~ 0.0 for both
the electrons and protons, corresponding to two interpenetrating beams of plasma.
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shows a smoother transition to the downstream region that is more characteristic
of two interpenetrating beams of plasma: the mass density and ion energy density
downstream are p; ~ 2, £, ~ 2, and so the two colliding plasma beams are simply
adding their density and energy.

We can see further evidence of the shocked versus unshocked flows examining
the distribution functions for these two upstream Mach numbers, specifically the
Fy coefficient corresponding to integrating the distribution function over both v,
and 6. We plot in figure 2 the electron and proton F, distribution functions in
both the local fluid flow frame provided by the numerical solution of the PKPM
model, and in the lab frame as would traditionally be obtained from the solution
of the Vlasov—-Maxwell system of equations; see, for example, Juno et al. (2018)
for simulations of electrostatic shocks with Gkey11’s Vlasov—Maxwell solver. Note
that these distribution function plots are normalised to their respective maximum
values on the grid, e.g. Fy, = F,,/ max(Fy,). For the M; = 3.0 simulation, we can
more clearly identify the characteristics of a shock, specifically the trapping of both
electrons and protons in the downstream region around x ~25Ap. On the other
hand, the M, = 5.0 simulation shows no significant broadening of the electron dis-
tribution function. Furthermore, the proton distribution function in the M; =5.0
simulation is simply two interpenetrating beams of protons at close to the upstream
flow velocity of u,, = 10v,,,. We draw particular attention to the local fluid flow
frame distribution functions for the protons as evidence of the successful non-trivial
numerical implementation of this model. We observe that as the reflected population
propagates upstream, the fluid flow frame distribution function naturally adjusts due
to the pressure forces to produce an approximately even distribution function with
only high odd moments, such as heat fluxes. The first moment of the F; distribution
function thus remains 0 as we expect.

This initial electrostatic evolution only couples the F, and G kinetic equations
through the collision operator; and in both of these simulations, but especially the
M, =3.0 case where a true shock develops, a significant temperature anisotropy
develops, with 7| > T, . Therefore, as the shock propagates, electromagnetic insta-
bilities can be excited that will generate large transverse fluctuations and change
the shock from being a purely parallel shock to a quasi-parallel, or even locally
quasi-perpendicular, shock. The fastest growing modes in this case, such as the elec-
tron firehose and Alfvén ion cyclotron instabilities, require FLR effects to properly
capture their growth and saturation, and thus, only retaining the zeroth Fourier har-
monic is inadequate for accurately simulating the transition from an electrostatic to
an electromagnetic parallel shock (Gary ef al. 2001). Nevertheless, recent work using
extended fluid models to model the proton parallel firehose instability suggests that
accounting for the agyrotropic components of the pressure tensor provides an accu-
rate model for these temperature anisotropy-driven instabilities via the FLR effects
approximated by evolving the full pressure tensor (Walters ef al. 2024). Thus, adding
one, or at most two, Fourier harmonics will be sufficient to capture the necessary
FLR effects to simulate both where in wavenumber space the fastest growing modes
exist and their overall saturation due to the generated magnetic field structure, mak-
ing the PKPM approach a potentially powerful tool for modelling of collisionless
shocks in these particular parameter regimes.

We note that at higher Mach numbers where significant particle acceleration
occurs due to processes such as shock-drift acceleration (Paschmann et al. 1982;
Sckopke et al. 1983; Anagnostopoulos & Kaliabetsos 1994; Anagnostopoulos et al.
1998; Ball & Melrose 2001; Anagnostopoulos, Tenentes & Vassiliadis 2009) and
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FIGURE 2. The Fj distribution function in the local fluid flow frame for the electrons (left column) and protons (left middle column), and the Fj
distribution function in the lab frame for the electrons (right middle column) and protons (right column) for the My = 3.0 (top row) and My = 5.0
(bottom row) simulations. In the lab frame, the incoming proton beam is centred at the upstream velocity, uy, = 6.0vy,, and uy, = 10.0, as we expect,
and the characteristics of the shock with the trapped electron and ion populations are identifiable in the M = 3.0 simulation, while the My = 5.0
simulation shows only two distinct ion beams propagating through each other. We also draw attention to the form of the proton distribution function
in the local fluid flow frame and emphasise that these are the distribution functions that are directly solved for by the numerical method. As expected,
the distribution function adjusts in the local fluid flow frame to preserve the identity that the first moment is zero. Note that these distribution function
plots are normalised to their respective maximum values on the grid, e.g. Fo, = Fp, / max(Fj,).
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diffusive shock acceleration (Fermi 1949, 1954; Blandford & Ostriker 1978; Ellison
1983; Blandford & Eichler 1987; Decker 1988; Malkov & Drury 2001), the PKPM
model is likely to be inefficient for representing the kinetic response of the plasma.
The particle distribution functions that result from these shock acceleration pro-
cesses are typically highly agyrotropic, and would thus necessitate a large number
of Fourier harmonics and Laguerre coefficients to resolve. But, we emphasise that
in the case considered here, at relatively low Mach number, the relative inexpensive-
ness of these simulations means that, once the necessary FLR effects are included
for correctly modelling the saturation of the excited temperature anisotropy insta-
bilities, the multiscale nature of these subcritical, collisionless shocks that transition
from electrostatic to electromagnetic shocks will be possible with the PKPM model.
Furthermore, because the PKPM model is ultimately defined per species, with
the transformation of the velocity coordinates to move with the local flow veloc-
ity employing that particular species flow velocity, we can imagine unique hybrid
modelling approaches where a fully kinetic proton treatment could be coupled to a
PKPM clectron treatment, thus reducing the computational expense of modelling
electrons at modest Mach numbers where the electrons stay magnetised through the
shock.

6.2. Moderate guide-field magnetic reconnection

Equally ubiquitous to collisionless shocks as a mechanism by which plasma’s rear-
range their energy budget is the phenomenon of magnetic reconnection, whereby
magnetic fields change their topology to a lower energy state and transfer this excess
energy to the plasma. In collisionless plasma systems where the resistivity is very
small, the onset of magnetic reconnection is considered to be a fundamentally kinetic
process. The plasma can only break field lines at microscopic length scales where the
plasma demagnetises and the plasma particles are no longer constrained to follow
the magnetic field.

Importantly though, magnetic reconnection is commonly observed componen-
twise; many plasma systems are undergoing what is referred to as ‘guide-field’
reconnection. In the geometry of these systems, we can divide the dynamical fields
into a set of planar reconnecting components and a component perpendicular to the
plane known as the guide field that the plasma particles will still try to ‘stick’ to even
as the in-plane reconnecting components vanish at the point of magnetic reconnec-
tion where the magnetic field is changing its topology. We can thus ask: even with
retaining only the zeroth Fourier harmonic and thus constraining the plasma to be
gyrotropic, how well does the PKPM model capture guide-field reconnection?

A number of studies have shown gyrokinetic models of reconnection compare
favourably to fully kinetic simulations in the limit that the guide field is strong
(TenBarge et al. 2014; Muioz et al. 2015), B, > B,, where B, is the magnitude of
the guide field and B, is the magnitude of the reconnecting field. Alternatively, one
can think of this limit as the § B/ B <« 1 limit — a natural limit for standard derivations
of gyrokinetics that assume a strong background field and only weak perturbations.
But, we have continually emphasised that the PKPM approach is not an asymptotic
one, and thus, we need not restrict ourselves to a strong guide-field limit. So long
as there is a guide field of at least modest strength, do the plasma particles stay
magnetised through the layer? The answer to this question is yes: a number of studies
(Swisdak et al. 2005; Le et al. 2013; Egedal, Le & Daughton 2013) have shown that
even at B, ~0.1-0.2B,, or § B/ B ~ 5—10, the electrons are still magnetised through
the reconnection layer, provided the electrons are sufficiently light and a realistic
proton-—electron mass ratio is utilised.
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We consider two moderate guide-field cases: B, =B, and B,=0.5B), or
8B/B,=1 and §B/B,=2. We initialise a force-free current sheet in 2XI1V,
(x, y, vy), geometry of the form

_ By _tanh(y/wo)sech’ (y/wo)

J, = : 6.1)
W0 [(B,/Bo)* + sech’(y fwy)
B
J, = —2sech? (l) , (6.2)
Wo Wo
B, = — B, tanh (l) : (6.3)
Wo

B2
B, =B,/ [ =£ ) +sech’ X , (6.4)
By Wo

where current is given entirely to the electrons to satisfy Ampere’s law. A ~ 1%
Geospace Environmental Modelling (GEM)-ike perturbation is utilised (Birn et al.
2001), along with perturbations to the first 20 wave modes with ~ 1% noise in
By, By, and J, to break the symmetry of the GEM-like perturbation and accelerate
the development of the reconnection, similar to TenBarge et al. (2014). These simula-
tions utilise the standard GEM reconnection challenge proton-electron temperature
ratio 7,/ T, = 5, a realistic proton—electron mass ratio, m,/m, = 1836, and a similar
box size as the original GEM reconnection challenge: L, =8nd,, L, =4nd,, where
d, =c/w,, is the proton inertial length and w,, = /e?ny/€ym,, is the proton plasma
frequency.

Other parameters are as follows: B, =2un,T,/B} =1/6 defined in terms of the
upstream in-plane magnetic field, velocity space extents [—8v;,,, 8v;,,] for both the
electrons and protons, v, /c =1/16, v,, = 10’2.(26,,, where §2., =eBy/m, is the pro-
ton cyclotron frequency defined in terms of the upstream in-plane magnetic field
strength. v,, is commensurately smaller by the square root of the mass ratio.”
We show the results of three different simulations, B, = B, and B, =0.5B, both
with N, x Ny x N, =896 x 448 x 32 corresponding to Ax ~ 1.2d,, Avy = 0.5v,,,,
and one higher resolution simulation with B, =0.5B, and N, x N, x N, =1792 x
896 x 32, corresponding to Ax ~ 0.6d,. We utilise periodic boundary conditions in
x, a reflecting wall for the plasma and conducting walls for the electromagnetic fields
in y, and zero-flux boundary conditions in v;. Like the parallel electrostatic shock
simulations, these simulations also utilise linear polynomials in configuration space
and quadratic polynomials in velocity space. We employ a small amount of hyper-
diffusion in the momentum equation on scales comparable to the electron inertial
length, vy, = 1072d? for the lower resolution simulations and vy,, = 1073d} for the
higher resolution simulation. The total cost of these simulations is relatively modest;
the 896 x 448 resolution simulations required 24 hours on 128 56-core nodes on the
Frontera cluster at the Texas Advanced Computing Center, ~3000 node hours in

8Note that the proton-proton collision frequency should also formally be (7,/ Tp)(3/ 2 smaller, but these
collisionalities are chosen principally to provide some velocity space regularisation for finite velocity space resolution
without modifying the collisionless dynamics and so this additional factor is ignored.
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FIGURE 3. Evolution of the out-of-plane current density, J;, with contours of the in-plane
magnetic field superimposed by computing A, the out-of-plane vector potential, from the in-
plane B, and B, for the B, = By (left) and B, = 0.5By (right) lower resolution simulations. We
observe morphologies of the current layer consistent with Le et al. (2013), which found at lower
electron B, a transition from a regime at a lower guide field in which an extended current layer
forms from the magnetised electrons developing strong anisotropy and driving a perpendicular
current across field lines, to a regime in which the magnetic tension in the guide field causes
the current and density to peak near the diagonally opposed separator field lines and negate the
impact of the electron anisotropy on the magnetic field’s overall tension (see figure 5). This
contrast is especially clear at t = 20!2;1 and 30.{20_1.1 as the reconnection rate reaches its peak
values (see figure 7) and we can see a more concentrated current layer in the B, = By simulation
compared with the extended current layer in the B, = 0.5B simulation.

total, and the higher resolution simulation cost the expected ~25 000 Frontera node
hours from the doubling of the resolution and halving of the size of the time step.
We show in figure 3 the evolution of the out-of-plane current density J, with
contours of the in-plane magnetic field superimposed by computing A,, the out-
of-plane vector potential, from the in-plane B, and B, for the lower resolution
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FIGURE 4. Zoom in of the By =0.5B( simulation with lower resolution and larger hyper-
diffusion (left), and higher resolution and smaller hyperdiffusion (right). While the mode is
identifiable in the lower resolution simulation, the secondary instability is especially prominent
at increased resolution.

896 x 448 simulations for the two guide fields. Irrespective of the guide field, we
observe the typical reconnection morphology from the thinning of the current layer:
the magnetic field lines pinch towards a centrally located X point where the field is
reconnecting, and the lower energy state of the field’s rearranged topology leads to
an acceleration of the plasma on either side of the X point. In fact, the B, =0.5B,
simulation also seems to be developing a secondary instability in the current sheet,
and we plot in figure 4 a zoom in of the current sheet at both the lower resolution,
896 x 448, larger hyperdiffusion simulation and the higher resolution, 1792 x 896,
smaller hyperdiffusion simulation.

We draw particular attention to details of the reconnection morphology in
figures 3 and 4, which are consistent with previous fully kinetic simulations of guide-
field reconnection at realistic mass ratio: at a lower guide field the current layer is
extended into the exhaust (Le et al. 2013). The explanation for this extended exhaust
in the B, =0.5B, simulation compared with the more peaked current density in
the B, = B, simulation is identical to the physics of the fully kinetic simulations in
Le et al. (2013), as we show in figure 5. While both simulations self-consistently
develop a reasonably large temperature anisotropy in the layer, the temperature
anisotropy in the lower guide field, B, =0.5B,, simulation is large enough that,
combined with the lower magnitude guide field, the magnetic tension at the X
point is reduced, driving a large perpendicular current that broadens the layer into
the exhaust, J, ~ (p. — p;)V b x B/|B|*, where V; =b - V,. We observe that the
electron parallel firehose criterion (Li & Habbal 2000)

Bi. (TvL
A irehose = 1 — < — 1 s 65
fireh TS T, (6.5)

where B, =2uon.T),/|B|* = 2uopy,/|B|* is the electron parallel plasma B, is much
closer to marginal stability, A /j,enese ~ 0 in the B, = 0.5B, simulation. On the other
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FIGURE 5. Comparison of the electron parallel temperature normalised to the initial electron
temperature (top), electron perpendicular temperature normalised to the initial electron tempera-
ture (middle top), electron temperature anisotropy (middle bottom) and electron firehose criteria
(bottom) at t =202 ! for the By = By simulation (left) and B, = 0.5B¢ simulation (right). In
both cases, a significant electron anisotropy from an excess of parallel pressure develops in the
current layer, but a depletion of electron perpendicular pressure in the B, = 0.5B¢ simulation
further increases the electron anisotropy in the layer. Combined with the lower guide field and,
thus, a weaker magnetic field at the X point, the electron firehose criteria is much closer to
marginal stability Afepose ~ 0 for the B, = 0.5B¢ simulation. Thus, the electrons more signif-
icantly modify the tension in the magnetic field at the reconnecting X point compared with the
higher guide-field simulation, driving a perpendicular current that spreads the current layer into
the exhaust.

https://doi.org/10.1017/50022377825100706 Published online by Cambridge University Press


https://doi.org/10.1017/S0022377825100706

40 J. Juno, A. Hakim and J. M. TenBarge

0.03 T T 0.03 T T ‘ T
— guide — 0.5 — —— 896 x 448, vy, = 1072 =
0.02 === guide = 1.0 7 1 0.02+ ___ 1792 x 896, i1y, = 10-3 /,7
0.01 =Tl 0.01 4
S 000 e EnEE 0.00 - —
~ | — AE, \\'\ | — AE \
oy —0.01 - ~0.01
— AKE,. \ Mo — AKEu. \
<A —0.02+— ar,. R T —0.02 1 — a1E, \
—— AKEin N T--- —— AKEin N
—0.037 — arp,. N —0.037 — arp,. N
0044 AEp N 004t AEp el
’ — AFp T ' — AEp T
—0.05 +——+—— —0.05 F——t—!
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
29" 2929

FIGURE 6. Evolution of the different components of the energy normalised to the total energy
at t =0 including the total kinetic energy, ps|us|>/2, for the electrons and protons, the total
internal energy, 3ps/2 = p,/2+ p.,, for the electrons and protons, the electric field energy,
€0l E|?/2, and the magnetic field energy, | B|?/20, comparing both different guide fields (left)
and different resolutions for the B, = 0.5By simulation (right). We observe a conversion of mag-
netic energy into initially proton kinetic energy at the onset of magnetic reconnection, followed
by heating of the plasma as both the electron and proton internal energies increase. Consistent
with Shay et al. (2014), we observe that the overall electron internal energy increase is relatively
insensitive to the guide-field strength, and consistent with Rowan et al. (2019), we observe that
the relative heating of the protons versus the electrons is reduced at a larger guide field, as less
magnetic energy is converted to plasma energisation in a stronger guide field for the moderate
plasma B case considered here.

hand, the modest values observed in the B, = B, simulation correspond to only
minor modifications of the magnetic tension due to the electron anisotropy; the
larger guide field is able to maintain the overall tension in the field in the exhaust.

The exact transition to this extended current layer when the firehose criterion
becomes sufficiently small, but not necessarily unstable, is consistent with other
studies that have examined the impact of proton pressure anisotropy on the overall
magnetic field tension and the propagation of Alfvén waves in anisotropic plas-
mas (Bott et al. 2021, 2025). In these studies, an effective Alfvén speed must be
defined, which decreases with increasing pressure anisotropy, corresponding to a
reduced capability of the magnetic field to regulate the motion of a magnetised
plasma and enhanced perpendicular transport, usually modelled as a Braginskii-like
viscous stress (Squire et al. 2017b). In fact, at a lower guide field, we would likely
observe an analogous phenomena to the nonlinear interruption of Alfvén waves
(Squire, Quataert & Schekochihin 2016, 20174), but from the electrons destabilising
themselves due to the enhanced anisotropy in the extended layer. Such simulations
could potentially extend the results of previous studies that have found the firehose
criterion to be a constraint on the outflows in fully kinetic simulations of low guide-
field reconnection (Haggerty et al. 2018) into regimes of even moderate guide field
where, as we find, the electrons are still magnetised through the current layer. We
emphasise though that, as with the results of the parallel electrostatic shock, at least
the first Fourier harmonic would be required to approximate the FLR effects that
govern the saturation of firechose modes.

We next examine the macroscopic evolution of these simulations, plotting the
overall energy evolution and reconnection rate in figures 6 and 7, respectively,
for different guide fields and resolutions. The energy evolution of these moderate
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FIGURE 7. Reconnection rate as a function of time computed from the time rate of change of
the out-of-plane vector potential, dA;/dz, at the location of maximum parallel electric field,
E| = E - b. Regardless of resolution or guide field, we observe a steady peak value of ~0.1 in
the standard normalised units dividing dA,/d¢ by the initial, upstream in-plane magnetic field
strength multiplied by the initial, upstream in-plane Alfvén speed (Shay ef al. 1999; Liu et al.
2017; Cassak et al. 2017; Liu et al. 2022).

guide-field simulations is consistent with previous fully kinetic simulations: the over-
all heating of the electrons has only a weak dependence on guide-field strength (Shay
et al. 2014), and as the guide-field strength increases, the amount of energy that
the protons receive relative to the electrons decreases (Rowan, Sironi & Narayan
2019). The reconnection rate, computed as the time rate of change of the out-of-
plane vector potential, dA,/dz, at the location of the maximum parallel electric field,
E,=E - b, peaks at the expected normalised value of ~ 0.1 (Shay ez al. 1999; Liu
et al. 2017; Cassak, Liu & Shay 2017; Liu ef al. 2022), where the normalisation is
defined in the standard way to the initial upstream, in-plane magnetic field strength
multiplied by the initial upstream, in-plane Alfvén velocity. Additionally, outside of
a slightly faster reconnection onset in the higher resolution B, =0.5B, simulation,
we find no sensitivity to our results with increasing resolution and lowering of the
hyperdiffusion, suggesting that the kinetic response of the plasma is not modified
by the hyperdiffusion model and the macroscopic dynamics of the reconnection are
insensitive to this hyperdiffusion.

To further determine how accurately the PKPM model captures the kinetic
response of the plasma at the X point, we can determine the physics of the out-
of-plane electric field that governs the reconnection dynamics by rearranging the
electron momentum equation:

E, =— X, Ve -
T | o T Ty T

o By — (uxe B, —u,, Bx) .

—_—
Hall

m, | du,, du., du,, l[aPm BPW]
= 2

Inertia

(6.6)

Here, we have labelled components of this generalised Ohm’s law that correspond
to the electron inertia and Hall terms (Vasyliunas 1975). Note that because the
reconnection is fairly steady at r = 209;,‘ (see figure 7) we will ignore du,,/d¢ in
our analysis, as we expect this term to be small if the reconnection rate is relatively
constant. We confirm in figures 8 and 9 the expected behaviour for this generalised
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FIGURE 8. Comparison of the reconnecting electric field, E,, and the individual components
of the generalised Ohm’s law (6.6) for the B, = By (left) and B, = 0.5By (right) simulations
att = 20.{2;[,1 at a cut in x through the current sheet approximately where the current density
peaks in figure 3. As expected, the Hall term supports the electric field away from the current
sheet, but the Hall term goes to zero neat the X point where both u,, and uy, go to zero from the
stagnation of the flow. The reconnecting electric field’s dynamics is then governed by derivatives
of the off-diagonal pressure tensor, which in this case is the gyrotropic electron pressure tensor.
The combination of electron pressure anisotropy and the changing magnetic field geometry drive
perpendicular currents that break the frozen-in condition as the electrons are no longer advecting
with the magnetic field, thus allowing for the conversion of magnetic energy to plasma energy.
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FIGURE 9. A zoom in of the By = 0.5By simulations with lower resolution and larger hyper-
diffusion (left), and higher resolution and lower hyperdiffusion (right). We note that the overall
layer width is only marginally affected by resolution and hyperdiffusion, A ~ 0.2d, ~ 8.5d.,
where the proton and electron inertial lengths are defined with respect to the initial uniform
density. The physics of the reconnecting electric field is completely unchanged qualitatively;
the competition between 0y Py, and 0y Py, ultimately governs the reconnecting electric field
evolution.
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Ohm’s law following the results of previous guide-field reconnection studies (Swisdak
et al. 2005; Le et al. 2013; Egedal et al. 2013).

The electrons stay magnetised through the layer and, thus, provide the neces-
sary support for the reconnection electric field through the electron’s off-diagonal
pressure tensor components, P, = (p; — p.)b.b, and Py, = (p, — p.)b,b.. In this
case, the off-diagonal pressure tensor components that have historically been found
to be the important components do not come from complex particle orbits but
simply from the changing magnetic geometry and anisotropy of the electrons that
develops as they stay magnetised through the layer.9 Instead of the fundamental agy-
rotropy that develops in the zero or low guide-field case (Hesse ef al. 2018), it is the
gyrotropic electron pressure tensor that can break the frozen-in condition (Egedal
2002). In other words, the electrons no longer simply advect with the magnetic field,
but directly change the magnetic field due the perpendicular currents driven by the
gyrotropic electron pressure tensor. We note that this change in the field driven by
perpendicular currents is not necessarily true field line ‘breaking’. figure 9 shows
that while the overall current sheet width is relatively insensitive to resolution and
hyperdiffusion, there is a region in which the sum of these various components of
Ohm’s law and the reconnecting electric field diverge that does become smaller with
increasing resolution. Thus, there is a region inside the current layer where the final
field line topology changes, b, = b, =0, which is not captured in the lowest-order
PKPM model with no Fourier harmonics.

Importantly, while a number of fluid models have been developed to exploit this
fact that electron anisotropy can break the frozen-in condition and determine the
current sheet morphology (Le et al. 2009; Ohia et al. 2012; Cassak et al. 2015),
we reiterate that this PKPM model employed here is fundamentally kinetic. The
results of, e.g. how the electron anisotropy develops and affects the current sheet
morphology are handled self-consistently without the need for any artificial limiters
on the electron firchose condition (Ohia et al. 2015), and recent studies such as
Walters et al. (2024) suggest that with only one or two Fourier harmonics, a self-
consistent saturation of firechose modes can be included with this approach. As it
is, we can clearly identify the impact of the kinetic physics by examining higher
velocity moments than typically included in fluid models, such as the total parallel
heat flux plotted in figure 10 for electrons and protons, normalised to the initial
thermal streaming values ,osvfhs, for the higher resolution, 1792 x 896, B, =0.5B,
simulation at  =20£2_".

These heat fluxes are plotted componentwise so that we can separate the flow of 7
due to g and T, due to g, in the x versus y direction. These heat fluxes are not small
compared with thermally streaming particles, especially g, for both the electrons and
ions. In other words, these collisionless heat fluxes are likely strongly influencing the
dynamical evolution of 7} for each species. More importantly, ¢;, and g,, are the
opposite signs, towards the X point and away from the X point, respectively, in the
extended current layer of this B, = 0.5B, simulation. These oppositely directed heat
fluxes, in addition to the conservation of magnetic moment p, o< 7, /B in the layer
where the electrons are magnetised, further explain why there is a cooling in T,
observed in figure 5 and that this cooling is more pronounced in the lower guide-
field case where the magnetic field strength decreases more at the X point. Thus, the

9We refer readers to Liu e al. (2025) for a recent review of Ohm’s law analysis in simulations, laboratory
experiments and spacecraft observations.
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FIGURE 10. Comparison of the different components of the parallel heat flux normalised to the
initial values of a thermally streaming plasma, pevfhe, for both the electrons (left) and protons
(right). We multiply both heat fluxes by the individual components of the magnetic field unit
vector to separate the flow of 7)) due to g and 7| due to g, in the x versus y direction. We
draw particular attention to how large the values of g, are, suggesting that the exact evolution
of T, is strongly influenced by collisionless heat fluxes, and the fact that ¢, and g, are the
opposite sign in the current layer, which further explains the heightened temperature anisotropy
in the By = 0.5By simulation. Furthermore, as large as the electron heat fluxes are, the ion heat
fluxes compared with thermal streaming are not small either, with significant energy fluxes in
the exhaust as the ions mix and heat in the outflows.

collisionless heat fluxes are enhancing the very temperature anisotropy in the layer
that is modifying the tension in the magnetic field and driving the extended current
layer.

In addition, at this same time of 1 = 20.{26;1, we plot in figure 11 the zoom in of the
out-of-plane current density, now with superimposed vectors denoting the direction
of the in-plane flow, to examine the secondary instability that we observed to be
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FIGURE 11. Zoomed-in out-of-plane current density for the By = 0.5B) simulation with super-
imposed vectors denoting the direction of the in-plane flow direction and corresponding plots
of the electron and proton distribution functions at the peak of the current density and inside
one of the excited fluctuations from the secondary instability in the extended current sheet. Note
that the distribution functions are plotted in their respective flow frames, so the Fy distribution
functions have a zero first moment, and any skewness or multi-modality to the Fy distribution
functions are manifestations of heat fluxes or counter-streaming field-aligned flows. While we
need the sign of the magnetic field unit vector to determine which direction the vector heat flux
points, we can clearly identify from the overall structure of the electron’s Fy and G distribution
functions that g, and g, point in opposite directions, consistent with figure 10. In both cases,
for the electrons, there is a depletion of Fj relative to G for negative vl’| particles and an excess
of Fy relative to G for positive vl’| particles. Likewise, in the location of the excited secondary
instability we have counter-streaming super-thermal beams along the field line, in addition to
vortical structures in the in-plane flow velocity, which suggests that the electrons are unstable to
a shearing instability. We identify this instability as the electron Kelvin—Helmholtz mode from
its wavelength kd, ~ 1 and its similarity to previous reconnection studies that excited secondary
Kelvin—Helmholtz instabilities in the layer (Fermo et al. 2012).

developing in the extended current sheet in figure 4. We also show in figure 11 one-
dimensional plots of the velocity distribution function within both the peak current
density and one of the fluctuations of the secondary instability in the extended cur-
rent layer. We identify this secondary instability now from its wavelength, kd, ~ 1,
the vortical structure present in the in-plane velocity, and the counter-streaming
superthermal electron beams as the electron Kelvin—-Helmholtz instability. This insta-
bility has been previously measured in fully kinetic simulations at a larger guide
field, B, = 2B,, and lower proton-electron mass ratio, m,/m, =25 (Fermo, Drake
& Swisdak 2012). The exact conditions under which this Kelvin-Helmholtz instabil-
ity can be excited are likely a consequence of both mass ratio and guide field, as
the excitement of this secondary instability seems most prevalent in these extended
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magnetised current layers and did not show up in the B, = B, simulation with our
chosen realistic proton-electron mass ratio.

The distribution function structure observed in this B, = 0.5B, simulation includes
a number of other interesting features. While we need the sign of the magnetic field
unit vector to obtain the sign of the vector heat flux, the depletion of negative velocity
particles in F, compared with G, and likewise the excess of positive velocity particles
in F, compared with G, easily explains the fact that ¢, and g, have the opposite
sign in figure 10. Furthermore, the broadened electron distribution function at the
X point is consistent with trapped electron distribution functions in past studies of
electron energisation in guide-field reconnection (Egedal et al. 2013). Finally, the
proton distribution functions also show clearly how the protons develop non-trivial
heat fluxes, even if these heat fluxes are appreciably smaller than the electron heat
fluxes.

Thus, even with a moderate guide field, because the electrons stay magne-
tised through the layer, the PKPM model provides a powerful cost-effective
tool for kinetic simulations of magnetic reconnection. Self-consistent temperature
anisotropies and parallel heat fluxes can develop that modify the current layer mor-
phology in agreement with previous fully kinetic simulations. Secondary instabilities
that may be excited via field-aligned beams are likewise included in this approach.
Given the sensitivity of the kinetic evolution of the electrons to the proton-electron
mass ratio, the PKPM model may provide a breakthrough in understanding the
dynamics of guide-field reconnection, even in regimes beyond which magnetised
models such as gyrokinetics can be applied.

7. Summary

In this paper we have derived a novel approach to modelling kinetic plasmas
based on classical intuition about collisionless, magnetised plasma dynamics. This
PKPM model separates the parallel and perpendicular motion to the local magnetic
field through the combination of coordinate transformations and optimised spectral
expansions in these transformed coordinates. Via velocity space coordinate transfor-
mations to the Vlasov equation, first to velocity coordinates moving with the local
flow and then to field-aligned velocity coordinates, we can reduce the number of
degrees of freedom needed to model magnetised plasma with a truncated Laguerre—
Fourier spectral expansion in the perpendicular velocity coordinates, both v, and
velocity gyroangle, 6. In this regard, the six-dimensional Vlasov—-Maxwell dynamics
were reduced to some number of four-dimensional equations for spectral coeffi-
cients in x, y, z configuration space and the remaining v velocity coordinate, where
the exact number of equations solved dictates the amount of perpendicular velocity
space resolution one expects to need for the problem of interest.

The final equations, even in their simplest form where two kinetic equations for
the zeroth Fourier harmonic and zeroth and first Laguerre coefficient are retained,
contain a multitude of physics. While this lowest-order PKPM system only evolves
the gyrotropic component of the distribution function, by virtue of how we con-
structed our Laguerre basis, we have significantly more flexibility than other spectral
approaches to kinetic equations that discretise the untransformed Vlasov equation.
Indeed, there are no assumptions made on the strength of the flow velocity or the
variation of the perpendicular temperature; the PKPM model as implemented han-
dles supersonic flows and large, O(1) variations in the perpendicular temperature
as well as the resulting temperature anisotropies that develop self-consistently from
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this perpendicular temperature variation. By transforming the velocity coordinates
to the local flow frame, the restriction of a general shift vector in a spectral expan-
sion is avoided, and we do not need to assume spatially or temporally independent
background flows. By defining the second kinetic equation in terms of a linear com-
bination of Laguerre coefficients, we can absorb the Laguerre normalisation into
the second kinetic equation and avoid the need for an auxiliary equation for the
perpendicular temperature.

We have demonstrated this flexibility and the underlying physics fidelity of the sim-
plest PKPM model on two non-trivial, nonlinear problems: a parallel electrostatic
collisionless shock and moderate guide-field reconnection. The PKPM model han-
dles the transition between shocked and unshocked flows when the inflowing plasma
sonic Mach number is sufficiently large that no nonlinear steepening of ion acous-
tic waves occurs to trap electrons. Likewise, the PKPM model correctly accounts
for the impact of magnetised electrons in moderate guide-field reconnection, where
electron pressure anisotropy can break the frozen-in condition for the electrons and
convert the stored magnetic energy into plasma energy, both kinetic and internal.
The uniqueness of the PKPM model is thus immediately apparent: to the authors’
knowledge there are no implementations in any codes of asymptotic, magnetised,
kinetic models that can handle supersonic flows or §B/B ~ 1 fluctuations. Yet the
PKPM model is leveraging the same physics intuition that has informed these histor-
ical asymptotic models. For example, it is because the electrons continue to follow
field lines, even if there is O(1) variation in the magnetic field, that the PKPM
model compares favourably with past fully kinetic simulations of moderate guide-
field reconnection, including the self-consistent generation of extended current layers
due to the electrons reducing the field line tension via temperature anisotropy and
driving macroscopic perpendicular currents.

We reiterate that this paper is but the first part of a multi-part series, as we have
not yet discussed how we discretise even the simplest PKPM model with a DG
finite element method. Preserving the properties of the continuous PKPM system,
most especially minimising errors in the conservation of energy from the coupling
of the bulk kinetic energy from the momentum equation with the evolution of the
internal energy given by the kinetic equations, are non-trivial endeavours, and for
maximum clarity of the narrative, we have elected to separate the theoretical and
numerical discussions. Still, we emphasise the demonstration of the PKPM model in
§ 6 is not only meant to communicate the physics fidelity of the PKPM model, but
the successful numerical implementation of this unique hybrid discretisation strategy
mixing a Laguerre-Fourier spectral expansion with DG. Indeed, while philosophi-
cally similar hybrid discretisations using a combination of spherical harmonics and
DG in ‘test-fluid’ approaches that do not feedback on the flow velocity and mag-
netic field evolution have been derived and implemented (Schween & Reville 2024,
Schween et al. 2025), the demonstration of the PKPM model is the first use of this
kind of hybrid discretisation utilising an optimised Laguerre-Fourier spectral basis
for magnetised plasma dynamics.

The successful numerical implementation and demonstration of the PKPM model
here is also in one respect the culmination of the theoretical work that inspired the
PKPM approach, but has resisted easy numerical discretisation. Kinetic magneto-
hydrodynamics (Kulsrud 1964, 1983) and FLR kinetic theory (Ramos 2008, 2016)
both transform the velocity coordinates of the Vlasov equation to velocity coordi-
nates that are both field aligned and moving at a local flow velocity, the E x B
velocity in the case of KMHD and the total flow velocity in the case of FLR kinetic
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theory. However, the stiff constraint equations that these models derive, such as
the E, equation in KMHD, may not be satisfied at any given instant in time if
one evolves kinetic equations for each individual plasma species that thus gener-
ate non-zero parallel currents. Therefore, while there have been recent successes in
KMHD-like approaches that leverage physics intuition and add fluid equations that
instantaneously satisfy equilibrium relations, such as cold electron return currents
that balance the currents driven by the kinetic species (Drake et al. 2019; Arnold
et al. 2019, 2021, 2022), the PKPM model self-consistently handles the relaxation
to these constraint equations by dynamically evolving, e.g. parallel currents. As a
result, in simulations of phenomena such as magnetic reconnection, the distribu-
tion functions naturally develop distinct particle populations that can then evolve to
states predicted by these asymptotic models, or on the other hand, drive secondary
instabilities from these counter-streaming kinetic populations.

We emphasise at this stage that this paper constitutes only the beginning of a
larger program of research with this PKPM model. A systematic convergence study
in Laguerre resolution of subcritical collisionless shocks, guide-field reconnection or
other phenomenon such as turbulence and transport in laboratory and astrophysi-
cal plasmas, is of immediate interest. For example, how accurately this optimised
Laguerre basis in v, resolves the loss cone of a magnetic mirror across a range
of mirror force strengths will inform rules of thumb of how many Laguerre spec-
tral coefficients are needed for a variety of applications. Furthermore, there will
likely be cases in which the amount of Laguerre resolution needed for the physics
of interest is different in different regions of configuration space, and may even be
different per-species. We can thus imagine further optimisation of this approach to
refine our perpendicular resolution only where we need it. And in cases where one
plasma species may be poorly modelled by the PKPM approach, such as in a high-
Mach-number collisionless shock where we often observe the protons to be highly
agyrotropic due to reflection off the compressed magnetic field while we observe
that the electrons stay mostly gyrotropic through the shock, significant computa-
tional gains could still be realised by a flexible coupling of the full Vlasov model in
Gkeyll (Juno et al. 2018; Hakim & Juno 2020) to the PKPM model presented
here.

Perhaps most important for examining the physics fidelity of the PKPM model
as more perpendicular moments are added is the impact of the Fourier harmonics
on the model. As we showed in §4 with (4.19) and discussed in § 6, the first two
Fourier harmonics give the self-consistent evolution of the remaining off-diagonal
pressure tensor components, in addition to other higher moments such as the heat
fluxes perpendicular to the field. Indeed, the fact that adding only one or two Fourier
harmonics confers this increased physics is a direct consequence of the fact that this
approach does not transform to gyrocentre coordinates and instead keeps the config-
uration space coordinates at the particle position. Adding a few Fourier harmonics
thus allows the PKPM model to directly connect to the success of multi-fluid models
that include the full pressure tensor (Wang et al. 2015; Ng et al. 2015; Wang et al.
2018; Dong et al. 2019; Ng et al. 2019; TenBarge et al. 2019; Allmann-Rahn et al.
2021; Walters et al. 2024; Kuldinow et al. 2024a). With just a few more equations,
we would obtain a hybrid fluid-kinetic approach with all of the higher-order fluid
effects of the cutting edge of extended fluid modelling for the dynamics perpendicu-
lar to the local magnetic field, with a complete kinetic description parallel to the field
capable of handling a myriad of kinetic phenomena: parallel heat fluxes, field-aligned
beams, trapped particles and more.
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In fact, we consider it likely that the inclusion of the first one or two Fourier
harmonics to be not just a sweet spot in terms of the physics fidelity of this reduced
approach, but optimal computationally as well. The evolution of the first two Fourier
harmonics can be encoded in the evolution of the vector M, and tensor F, |, given
by (4.6) and (4.10), respectively, and the evolution of these quantities can be deter-
mined by multiplying the Vlasov equation in our transformed coordinates, (3.29), by
v, and v; ® v, and integrating over the velocity gyroangle. These evolution equa-
tions for M| and tensor F,, could then be expanded in our Laguerre basis in v,.
So, for example, a ‘lowest-order’ approach that was extended to the first Fourier har-
monic through the M| equation would go from solving kinetic equations for F and
G to include M, and N, = T.,/m(M,,— M, ), where M, are the zeroth and
first Laguerre coefficients of M |, respectively, and N, is the linear combination of
the first and zeroth Laguerre coefficients that would appear similar to the G term in
our PKPM expansion - a modest increase from two total kinetic equations to eight
total kinetic equations. Higher Fourier harmonics could become burdensome to rep-
resent as tensors of increasing rank, especially in combination with the Laguerre
expansion in v;, and we defer a careful examination of computational efficiency
and physics fidelity with increasing Fourier harmonics and Laguerre coefficients to
future work.

Even still, the utility of the PKPM approach has already been demonstrated
in studies as diverse as the feasibility of novel fusion configurations that require
collisionless shock generation to compress the target fuel (Cagas et al. 2023), to
novel energisation studies of electromagnetic waves that utilise the PKPM perspec-
tive to understand how different kinetic populations of particles ultimately lead
to heating via ‘pressure work’ (Conley et al. 2024). Furthermore, the success of
the PKPM model in modelling moderate guide-field reconnection with a realistic
proton-electron mass ratio suggests it is an ideal model for kinetic studies of new
reconnection regimes, such as shear-flow suppression of the tearing mode (Mallet
et al. 2025h,a). With the necessary modifications to the PKPM model to solve
the equations in curvilinear coordinates, further direct modelling of fusion reactor
geometries could be performed as well. Given recent discoveries in the importance
of kinetic effects as reactor-relevant temperatures are simulated (Shukla et al. 2025),
we may yet find benefit in transport and macrostability modelling with this approach
for self-consistent simulations all the way to the plasma-material interface, where the
fact that this model includes the physics of the plasma sheath will allow for more
detailed analysis of the heat deposition on the plasma-facing components. We con-
clude that the PKPM model derived in this paper has widespread applicability and
its cost effectiveness in even its simplest form presents unique opportunities for
modelling diverse weakly collisional, magnetised plasma systems.
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Appendix A. Coordinate-free tensor notation

Throughout this paper we have used a coordinate-free notation based on an
extended form of the notation adopted in Thorne & Blanford (2017). In this
appendix we present an overview of our notation for ease of following the derivations
in the main text of the paper.

We work in flat three-dimensional space and denote the vector space as V. Given
two or more vectors in V, we denote their tensor product with the ® symbol. For
example, given u, v € V, we can write their tensor product as u @ v. The tensor
product creates a multilinear mapping from n vectors, where n is the number of
vectors in the product, to a real number. Given u ® v, the mapping is u @ v:V X
Y — R, and we can evaluate it for the vectors @ and b as

(u®v)a,b)=(u-a)(v-b). (A.1)

A tensor of rank # is a multilinear function that takes n vectors and maps them to a
real number. For example, a second-order tensor T (a, b) will take two input vectors
(a and b in this case) and produce a single scalar. As the mapping is multilinear, we
have

T(xa+6d,b)=aT(a,b)+6Td,Db). (A.2)

In this sense, a scalar is a rank-0 tensor, that simply evaluates to itself. A vector u is
a rank-1 tensor mapping an input vector a to

ul@@)=u-a. (A.3)

Defined in this manner, rank-n tensors (including vectors) are geometric quantities,
hence, independent of the basis vectors used to represent them.

We can introduce a set of basis vectors e;, i =1, 2, 3, for V. These basis vectors
need not be orthogonal (or even unit) vectors. Given these basis vectors, we can
construct a set of dual basis e’ defined such that e, - e/ = /. In flat space we can
always introduce a set of orthonormal basis o;, with i =1, 2, 3. These orthonormal
basis are their own duals.
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Now, if we feed a vector with one of the basis e; or €', we get
ule)=u-e =u;, (A.4)
ue)=u-e =u'. (A.5)

Hence, with the basis as an input, the vector mapping produces the component of
the vector along that basis. Analogously, we define the components of a higher rank
tensor as the real numbers produced when the input vectors are the basis. So

T,,=T(e,e,), (A.6)
TV =T(e, e’). (A.7)

Since tensors are multilinear mappings, in a specific basis, we can write them as
linear combinations of the tensor products of the selected basis. For example,

T=T"e,®e;=T(e, e)e,Qe;, =T, e’ =T(e;,e;)e Qe’. (A.8)

Hence, using the components, we can write an explicit formula for the evaluation of
the multilinear form in terms of its components as

T@a, b)=T"(a-e)®- e;) = Tijaibj =Ta- e)b-e')= T}jaibj. (A.9)

Note that throughout we are using the Einstein summation convention: repeated
upstairs/downstairs indices are to be summed.

We can also compute the partial evaluation of the tensor by filling up one or
more of its slots with vectors. The resulting function (taking fewer input parameters)
is also a tensor, but a lower rank tensor. For example T (a, _) results in a vector
(rank-1 tensor). In a specific representation,

T(a, )=T"a-(&®e;)=T"(a-e)e,, (A.10)

where we have used the ‘breve’ marker on the e; to indicate with which of the vectors
making up the tensor product the dot product must be taken. Similarly,

T(,a)=T"a-(e;®¢;))=T"e;(a-e,). (A.11)

Of course, we do not need to use the tangent or their reciprocals to represent tensors.
As they are geometric objects, any basis will do, for example, the normalised tangent
vectors. Once the components are known in one set of basis, we can simply compute
them in another basis by evaluating, for example,

T (&, 8;)=Ti;=T,u(é; - €")(@; - €"). (A.12)
The trace of a tensor product is a linear operator defined as, for example,
Tra®@v)=u-v. (A.13)

For products with more than two vectors, we need to indicate the pair of vectors on
which the trace operator acts. For example,

Tr@ Qv w)=(u-w)v. (A.14)
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Here, we used the ‘breve’ marker on the vectors we wish to participate in the trace.
Just like partial evaluation, the trace operator is also a rank reducing operation: the
resulting object has two ranks lower than the original tensor.

The dot-product operator can be extended to act on a pair of tensors. To define
this operation, consider we want to compute the dot product between a vector # and
a second-order tensor T. We first need to select the slot of the tensor with which
we wish to take the product. For example, we denote the dot product with the first
slot as u - T (C, _) and define this to be just the partial evaluation T (u, _). Similarly,
u-T(,H)=TC,u).

The metric tensor is a special bilinear mapping

g(a,b)=a-b. (A.15)

From this definition, we see that the partial evaluation of the metric tensor is
particularly simple:

a-gC,)=ga,_)=a. (A.16)
We can compute the components of the metric tensor as

gle,e))=e -, =g, (A.17)

g, e)=é -e/ =g". (A.18)

There are two useful alternative expressions for the metric tensor: first in terms of
the basis and their duals as

g=e¢,Re =€ Qe; (A.19)
and the second useful expression is
g=Vorx, (A.20)

where V is the vector derivative operator and x is the position vector in space. Note
that all these expressions are independent of dimensions and applicable to not just
three-dimensional space. These expressions also show that, for Euclidean space,

Tr(g):ZD:e[ -e":isg‘:D, (A.21)
i=I i=1
where D is the dimension of the space.
Now consider any vector u# and write
u=u-e=-e)e -e)=g"u;. (A.22)
Similarly, we have
ui=u-e,-=(u-ej)(ej-e,-):g,juj. (A.23)

This process is sometimes called raising and lowering of indices, and extends to
tensors of any rank. In fact, we can also easily show that

¢ =gle,, (A.24)
e = g,'jej. (A25)
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These expressions are useful to replace the basis vectors for their reciprocals (and
vice versa).

Note that we must distinguish between a tensor T, its definition, for example,
T =u ® v, and its evaluation T (a, b). It is helpful to think of tensors as functions
in a programming language: there, also one must distinguish between the name, the
definition, and its evaluation.

Finally, we remark that tensors are a very special, but important, class amongst
general scalar-valued functions. In general, an arbitrary function f :) — R need not
be linear. For example, f(u) =u - u is a quadratic function of its input vector and,
hence, is not a tensor.

Second-order tensors, also called dyads, appear frequently in mathematical
physics. We define a dyadic product as follows. Let T' be a second-order tensor
and u and v be vectors. Then the dyadic product is denoted by the ‘:’ symbol and is
defined as

T:uQv=T(u,v). (A.26)
In particular, if 7 =a ® b then
a@b:uxv=(@-u)b-v). (A.27)

Now, let T and G be two dyads. Then the above definitions can be used to write the
dyadic product in term of the dyad representation in a particular basis as

T:G=T: G,’jei X ej = T(ei, ej)Gij = TijG,‘j. (A28)

This operation also shows that T : G = G : T. The dyadic product is a rank reducing
operator: it takes two second-order tensors and produces a scalar.

From the definitions, we can also see that the dyadic product with the metric
tensor is particularly simple:

g: T =Tr(T). (A.29)

From this result, it follows that g:g = D, where, as defined before, D is the
dimension of the space.

Besides the dot product (valid in a space of any dimension), we can also define
the cross-product in three dimensions as follow. The cross-product of two vectors is
denoted by b x ¢ and results in a vector. Here we consider a different approach to
the cross-product by defining a third-order tensor &(a, b, c¢) as

ela,b,c)=a- (b xc). (A.30)
The partial evaluation of this tensor with two of its slots filled gives
e(_,b,c)=bxc, (A.31)

that is, the resulting vector has the same components as the cross-product of b and
¢. Hence, the second-order tensor that results from filling in the last slot, e(_, _, ¢),
has the property that

b-e(_, ,c)=e(,b,c)=bxc. (A.32)

We have thus written the cross-product as a dot product between a vector and a
special second-order tensor. As with the dot product, we can take the cross-product
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between tensors. For example, consider the cross-product between a vector u and a
second-order tensor @ ® b. We need to specify which of the vectors making up the
second-order tensor we wish to cross. For example,

ux@b)=Wwxa)Qb (A.33)
is the cross-product with the first slot of the tensor and
ux@®b)=a® u xb) (A.34)

is the cross-product with the second slot of the tensor. Applying this operation to a
general second-order tensor P, we can write

uxP(C, )=P"uxe, Qe,. (A.35)

Note that the cross-product of a vector with a second-order tensor is a second-order
tensor. If P is symmetric then the second-order tensor

uxP(C, )+uxP(,)) (A.36)

is also symmetric.
Appendix B. Useful relations for Laguerre polynomials

We use normalised Laguerre polynomials, for which the orthogonality
relation is

/‘00 e *L,(x)L,(x)dx =34,,. (B.1)
0

The first few Laguerre polynomials are

Lo(x)=1, (B.2)
Li(x)=1—x, (B.3)
2
A useful relation is
dLn
X =nL,(x) —nL,_(x). (B.5)
dx

The recurrence relation for the polynomial is
(m+ DLy (x)=C@n+1—=x)L,(x) —nL,_(x). (B.6)

Appendix C. The agyrotropic terms in the evolution of the gyrotropic distribution
function

For completeness, we list below the agyrotropic terms in the evolution of the
gyrotropic distribution function. These terms are denoted by AG in (4.15). One
would need to include these terms to add the effects of agyrotropy in the lowest-
order PKPM system. However, we note that in the examples given in this paper,
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we do not include these terms, leaving the implementation of these terms for future
work. We have

19 L 19 [
AG=V, M, +—— |vi— | alfdo)+——viz— [ a;fdo).
UJ_GUH 21 0 UJ_a'UJ_ 21 0
(C.1)

Here, we have defined

1 2 _ 8b
_/ a[‘,‘fd9=ML' —+b+u)-Vyb|—b-[M, -V,u]
21 Jo ot

2 fc 2 fs
B UJ‘4f2 b-(t,-Vr,—1,-V1,) — UJ_4f2 b-(z;-Vr,+1,- V1))
(C.2)

and

| b 1
Ul—/ ClalfdQZML' —UH——vH(va—{—u)-be—}——Vx-P—va-qu
21 Jo at Jo

v2 re U2 s
- |: L4f2 (T1®TI — 1,071, + L4f2 (11 Q71 +T2®T1):|
(Vi ®b+V,.Qu). (C.3)

Note that the first two Fourier harmonics appear in the agyrotropic terms. Hence,
to get the lowest-order agyrotropic effects, we would need to evolve additional
equations, one for each of the f;"; along with evolution equations for the plane
perpendicular to the magnetic field through 7, and 7,. Alternatively, as we argue
in the main text, we could evolve a vector equation for M, and tensor equation
for F,, to fold in the evolution of 7; and t, directly into the evolved quantities.
The procedure for obtaining equations for M, and F,; would involve multiply-
ing the Vlasov equation in our transformed coordinates, (3.29), by v, and v; ® v,
and integrating over the velocity gyroangle. These evolution equations for M, and
F | could then be further expanded in the Laguerre basis in v, to obtain the final
coupled system of equations.

Appendix D. The PKPM Dougherty collision operator

For the simulations shown here, we use the Dougherty-Fokker-Planck (D-FPO)
collision operator as presented in Lenard & Bernstein (1958), Dougherty (1964)
approximates the collisions as a combination of drag and diffusion in velocity space.
However, unlike the Rosenbluth-Landau Fokker-Planck collision operator, the col-
lision frequency in the D-FPO is independent of velocity. Though this assumption
of velocity-independent collision frequency is an approximation, the essential fea-
tures of a collision operator, i.e. particle, momentum and energy conservation, an
H-theorem, and balance between drag and diffusion, are contained in the D-FPO;
see Hakim et al. (2020) and Juno (2020) for the theory of the D-FPO in the context
of the numerical discretisation of this operator.

The D-FPO operator for self-collisions is

C[f]=vVv-[(v—u)f+%va], D.1)
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where v is the velocity-independent collision frequency, usually taken to be a constant
or the Spitzer collisionality (Braginskii 1965), and as before, we are suppressing
species subscripts. To manipulate this collision operator into a form that can be
included in the PKPM model, we first transform the velocity coordinates to the
local flow frame,

- T - _ T _
Clfl=vVy- |:(v’+u—u)f+;V,,/fi|=vV,,/. (v’f+ZV,,/f). (D.2)

Furthermore, if we focus exclusively on the gyrotropic piece of the distribution
function, £ =0, the transformation to (v, v,,#) coordinates is also reasonably
straightforward,

~ D _ Taf 3 _ Taf
C[f] —Va_vH (vllf+ Z%) +V£ (25 |:f+ T_J_EiD , (D.3)

where we have transformed the perpendicular velocity derivative to & =mv] /2T,
the coordinates of the Laguerre expansion. This coordinate transformation in the
perpendicular velocity is very similar to the transformation to the coordinate u
utilised in gyrokinetic variations of the D-FPO (Francisquez et al. 2020).

With the orthogonality of Laguerre polynomials, the first term evaluates to

simply
0 - T 0 _
Cy[F.0l= / dé§ exp (—§) Ua_v” [ULn & f+ EB_UHL" (é) fi| ,
0 Tk
= VaU” (an,O —+ " avH ) . (D4)

The second term can be integrated by parts to obtain

y / d& exp(—&) L, ()~ <2s [f iﬁ]) ,

& T, 0¢
_ o L@ [ TS
-2 [ aremp-pe o [ 7o L2
_ Taf
— 2 f dg exp(—§) (L, (§) — nL,—((£)) [f + T—a—] :
| 9§
a T -
=—2nv |:(Fn,0 - Fn—l,O) - / dg exp(_é)a_ (Ln(s) - Ln—l(g)) _f:| s
§ T,
T
=—2nv [(Fn,o —Fo 10+ T n—1,0i| ) (D.5)
1
so that the collision operators for the lowest-order PKPM system are
a T 0F,
C[Fo] =V— (U”F() + ——) y (D6)
aUH m aU”
m aUH m aU”
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We can take the 1/2 mvz‘ moment of (D.6) and the mass-weighted zeroth moment
of (D.7) to determine how the collision operators affect the evolution of p

and p,,
1 dp r
fljud ol QU - , D.8
2 ot ”(pm p) D-8)
d T
P2 (o). (D.9)
ot m
which when summed to obtain the total internal energy equation is
a (3 T
—\|sp)=Vv|3p——p —2p.|=v(@Bp—3p)=0, (D.10)
ar \ 2 m

as expected.

Note that this expression does not imply PKPM lacks viscosity and viscous heat-
ing. In the high collisionality limit, the D-FPO in these velocity coordinates will
modify the pressure tensor, which then couples to the momentum equation. This
equation merely implies that there is no additional heating due to the collision
operator in these velocity coordinates, only scattering between p; and p, .

We can also include cross-species collision of the form

Clfls=vVor[v—u) f+v,,, V. f], (D.11)

where the subscript rs denotes the collisions of species s, the species we are evolving,
with species r. Here, the intermediate flow u,, and intermediate thermal velocity
squared v;,; are determined from the constraints that energy and momentum are
conserved, along with the relaxation rates such as the Morse relaxation rates (Morse
1963). For the purposes of inclusion in the PKPM model, these two parameters
can be any of the forms derived in previous works (Greene 1973; Francisquez et al.
2022) and need not be specified at this stage.

Two important changes arise due to the inclusion of cross-species collisions.
The first is that cross-species collisions include the effects of momentum exchange
between the two species, i.e. the first velocity moment of the cross-species collision
operator is

/mst[f]m dv= / mv, V- [(v—u,) f+v;,, V. f] &,
=V, (05U, — pslt) . (D.12)

Thus, in the boost to the local flow frame, the previous substitution of the pressure
forces must be modified to

q ou 1
—(E+uxB)———u-Vu=-V.:-P—v,(u,—u). (D.13)
m at 0

In addition, this collision operator’s velocity coordinates also need to be transformed
to the local flow frame,

Clfls=vVo[(vV+u—u,) f+v;, Vof]. (D.14)
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Thus, there is a cancellation of the forces arising due to the momentum exchange
such that

\ [(lV P —v. {u,,— u}) f} =1,V - [(v’ +u— u”) f+ vf’”V,,/f] ,

s

\ [(lv . p) f} =v,Vy - (vV'f+v],Vof). (D.15)

S

The inclusion of cross-species collisions using the D-FPO only requires the sum
over collision frequencies and intermediate thermal velocities. The same substitu-
tion of the divergence of the pressure tensor cancels the momentum exchange, and
therefore, as we expect, the momentum exchange from cross-species collisions is
contained solely in the momentum evolution.
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