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A. Introduction

The “other” p?g? theorem of Burnside states the following:

Theorem A.l. Let G be a group of order p*q’, where p and q are distinct primes. If
p*>4q’, then 0,(G)#1 unless

(a) pis a Mersenne prime and q=2,

(b) p=2and qis a Fermat prime; or

(c) p=2andq=".

Burnside’s proof [3] was incorrect; he omitted exception (c). However, M. Coates, M.
Dwan and J. Rose gave a correct proof of Burnside’s theorem, see [5]. Independently,
V. S. Monakhov gave a correct proof as well, see [8] and [9]. In [12], T. R. Wolf

proved the following Theorem A.2, which handles the exceptional cases of Theorem A.1
as well.

Theorem A.2. Le# G be a group of order p°q®, where p and q are distinct primes. If
p*> q%/2, where c=(log 32/log9), then 0,(G)#1.

G. Glauberman, see [6], took a different approach. For a finite group G and a
positive integer k, or k=00, let d(k,G) denote the maximum of the orders of all
nilpotent subgroups of G of class at most k. Using this notation, Glauberman’s theorem
states the following:

Theorem A.3. If G is a group of order p’q® and P and Q are p-Sylow and g-Sylow
subgroups of G, respectively, then d(2, P)>d(2,Q) implies that O (G) # 1.

For groups of odd order, the author generalized Glauberman’s theorem and in [1]
proved:

Theorem Ad4. Let G=HK be a group of odd order, where H and K are n-Hall and 7'-
Hall subgroups of G, respectively. Then d(co, H)>d(2, K) implies that O,(G)+ 1.

*This paper forms part of the Proceedings of the conference Groups-St Andrews 1985.
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In the present paper, we continue Glauberman’s approach and prove the following
stronger version of Theorem A.3.

Theorem A.5 (Main Theorem). Let G be a finite group of order pq® and let P and Q
be a p-Sylow subgroup and q-Sylow subgroup of G, respectively. For various primes p and
q, sufficient conditions under which O,(G)# 1 are given below:

(a) d(m, P)>d(2, Q) forp=2and g=2"+1,m=2
(b) d(2, P)>d(2, Q) for p=2and q=3

(©) d(15, P)>d(2, Q) for p=2and q=17

(d) dip—1,P)>d2,Q) for p=2'—1and qg=2

(e) d(co0, P)>d(2,Q) for p and q not as above.

The proof of the above theorem is carried out in two main steps. First, in Section B,
we evaluate d(k, S ,(GL(n, q))) where (p,q)=1 and make use of it to prove a main lemma
about p-groups in GL(n, q). For the structure of S,(GL(n, q)) where (p,q)=1, the reader
is referred to [4] and [11]. The exponent and the nilpotency class of these groups are
used frequently and the reader is referred to [2]. In the second step, we follow
Glauberman [6], and prove a theorem about a product of two nilpotent groups which
can be combined with the main lemma to yield our main theorem.

B. Evaluation of d(k, S,(GL (n, q))) where (p,q)=1 and the main lemma

First we evaluate d(k, S (GL(n, q))) where (p,q)=1 in the general case, excluding the
case p=2 and g=3(mod4). We can assume that plq—l, and let 5,s=1 be such that
P’|lg—1. On the one hand, given a prime p, a power of prime g such that p*||g—1, and
positive integers n and k, we have to find a suitable candidate 4, A<S,(GL(n,q)) for
which class(4) <k. On the other hand, we have to prove that d(k, S,(GL(n, q))) <|A|. If
1=k<(p—1)s+1, then it is natural to define A as a direct product of n cyclic groups of
order p* each, thus |A|=p*™ and class(4)=1. However, if k2(p—1)s+ 1, then there exists
a minimal a,a=1 such that k<((p—1)s+ 1)p* and the construction of A4 is as follows:
Let n=p*t+u where 0<u<p® then we can write the underlying vector space V as a
direct sum V=V,@V,@®--- @V, where dim(V)=p* for 1<i<t and dim(Vy)=u. As
class(S,(GL(u, q))) < class(S,(GL(p% @) =((p—1)s + 1)p* "' <k for a2 1, we define 4 to be
the direct product of S,(GL(V})), 0<i<t and it follows that class(4)=((p—1)s+ 1)p* "' <k
and that |4|=|S,(GL(p" q))|'|S (GL(u, q))|- Now we prove:

Theorem B.1. Let p be a prime and let q be a power of a prime such that p*|lq—1 for
s2 1. Assume that p#2 if g=3(mod 4) and let k and n be positive integers. If k=(p—1)s+1,
then define o, 21 as the minimal integer satisfying k<((p—1)s+ 1)p® and let t and u be
determined by n=p®t+u where 0 Su<p®. Then d(k, S, (GL(n, q))) = f(k,n) where:

fik n)={ps" if k<(p—Ds+1
’ [SAGL(p*, D)|S(GL(w, @)))| i k=(p—1)s+1
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Proof. By the observation which precedes the theorem, it follows that
d(k,S (GL(n,q)))= f(k,n). We will prove that d(k,S,(GL(n,q)))< f(k,n). Consider the
following two properties of f(k,n) which can be easily verified.

(@) f(k,ny)-f(k,ny) < f(k,n, +n,), for all positive integers k, n, and n,.
(b) p (f(L,m)P< f(Ip,mp), for I=(p—1)s+1 and every positive integer m.

Suppose that the theorem does not hold for a certain p and g, and fixing those p and
g, let P<S,(GL(n,q)) be a counterexample for which n+k is minimal. Thus, |P|=
d(k, S (GL(n, g)) and |P| > f(n, k). As

1 if
ClaSS(SP(Gll(n’ Q))) = {(p_ 1)S+ 1 ;f ::Z

the theorem holds for n<p and every positive integer k. Hence we can assume that
n>p. If P is reducible, then it is decomposable and V=V, ® V, where the Vs are non-
trivial P-invariant subspaces of V for i=1,2. It follows that P< P, x P,, where
P, = GL(V) is the projection of P on V,, i=1,2, and hence in view of property (a) of
f(k,n) and minimality of n+k, we obtain a contradiction. Thus we can assume that P is
irreducible and hence n is a power of p.

Suppose that k=1. Then P is abelian and since P is irreducible, it follows that P is
cyclic. But this is impossible since, if P is one of the following: cyclic, dihedral, semi-
dihedral or generalized quaternion, then it is not difficult to derive a contradiction for
an arbitrary k. Indeed, if P is one of the above-mentioned types, and exp(P)=p’, then
|P|<p?*!'. Notice that, in view of the fact that n is a power of p, Proposition B.2 of [2]
implies that n>pf~* and since n>p, it follows that n>max{p? pf~*}. It is not difficult
to show that under these conditions, keeping in mind that p=2 and s=1 is not allowed,
we have p">pf*! Hence, p>pf*'>|P|. But since S, (GL(n q)) contains a direct
product of n cyclic groups which is of order p*, the inequality ps">|P| contradicts
|P|=d(k, 5,(GL(n, ))).

Thus, we can assume that P is irreducible, P does not belong to the four exceptional
families, n>p and k> 1. Now Theorem 19.2 of [10] can be applied, yielding:

(1) P contains a subgroup H such that |P:H |=p.

(2) The underlying vector space V can be written as V=V, @ --@V,, where the
subspace V¥, | £i<p are H-invariant and if xe P\H, then x permutes the Vs in
a p-cycle.

Let dim(V))=m, for 1 <i<p (thus n=mp) and let H; = GL(V)) be the projection of H
on ¥V, for 1<i<p. The direct product H,x--- xH, is a group in which H can be
embedded and if H#H, x :-- x H,, then by the minimality of n+k, we can apply the
theorem to the H/s with parameters k and n and, in view of property (a) of f(k,n), it
follows that |P|=p|H|<|H,|? <(f(k,m))’< f(k, n), a contradiction. Thus, we can assume
that H=H, x --- x H,. Now we consider two cases:

Case (a). Assume that k<(p—1)s+ 1. As [P|=d(k, GL(n, g)), the scalar transformations
are contained in P and since p’||p—1, it follows that Z(P) contains a scalar transfor-
mation y of order p°. By (2) ye Z(H) and hence its projections on the H;’s belong to
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Z(H,;) for 1 <i<p and are of order p°. Take xe P\H and consider the group generated
by yi,...,y, and x. It follows that <y,,...,y,, x)=C,~C, and Proposition B.3(b) of
[2] implies that class({y,,...,y, x))=(p—1)s+1 and hence class(P)2(p—1)s+1
contradicting our assumption that class(P)Sk<(p—1)s+1.

Case (b). Assume that k=(p—1)s+ 1. Let class(H,)=/I, hence by Proposition B.3(a)
of [2], it follows that k =class(P)=Ip. The minimality of n+k yields |H1|§f(l, m) and
hence in view of property (b) of f(k,n), it follows that |P|=p|H,[?<p(f(l,m)’<
f(p, mp) < f(k, n), a contradiction, and Theorem B.1 is proved. O

Now we evaluate d(k,S,(GL(n,q))) in the case p=2 and g=3(mod4). As in the
previous case, on the one hand, given a power of a prime g, g=3(mod 4), and positive
integers k and n, we have to find a suitable candidate 4, A < S,(GL(n, q)), for which
class(4)<k. On the other hand, we have to prove that d(k, Sy(GL(n,q))) <|A| If k<s,
where 2‘||q2— 1, it is natural to define A as the direct product of [n/2] cyclic groups of
order 2° each, and to join to the product a cyclic group of order 2 if n is odd. Thus
class(4)=1 and |A|=25"21*=" where gn)=0 if n is even and en)=1 if n is odd.
However, if k>s, then there exists a minimal a,a=1, such that k<s2% and the
construction of A4 is as follows: Let n=2%+u where 0<u<2?% then we can write the
underlying vector space V as V=V,@V,®---@ V, where dim(},)=u and dim(V})=2*
for 1Zi<t. As class(S,(GL{u, 9))) <class(S,(GL(2% q)))=s2*"1 <k for a>1, we define A
to be the direct product of S(GL(V)), 0Li<t, and it follows that class(4)=s2*"'<k
and that |4|=|S,(GL(2% 9))|'|S.(GL(u, q))|. Before stating and proving the theorem we
need a certain lemma.

Lemma B.2. Let n be a positive integer and let q be a power of a prime such that
g=3(mod4) and 2°||q— 1. Suppose that y is a positive integer, 2<y<s, and suppose that
P is a 2-subgroup of GL(n,q), which is of maximal order among all 2-subgroups A of
GL(n, q), which satisfy the following conditions:

(a) exp(A4)=2"; (b) class(A)Zy—1.

0 if nis even.

— vIn/2)+e(n) —
Then |A|—2 where s(n)—{l if nis odd,

Proof. By taking a direct product of [n/2] cyclic groups of order 2” each and joining
to the product a cyclic group of order 2 if n is odd, we get that |P|>2""21*<®_Thuys, it
suffices to prove the opposite inequality. Suppose that the lemma does not hold for a
certain ¢ and fixing that g let p be a counterexample for which n+y is minimal. As
S,(GL(1,q)) is of order 2 and as S, (GL{(2, q)) is semidihedral of order 2°*!, it follows by
[7, p. 191] that the lemma holds for n=1,2 and every y,2<y<s.

Thus we can assume that n>2. If P is reducible, then it is decomposable and V=
V,® V, where the Vs are nontrivial P-invariant subspaces of V for i=1,2. It follows
that P< P, x P,, where P, and P, are the projections of P on V, of dimensions n,,
i=1,2. The minimality of n+y yields that |P;|<2""/21*<tn) for j=1,2, hence

lpl < |p1 | IPZI = ¥n1/2]1+ &) . Yyln2/2) +en2) < 2¥in/2]+e(m)

https://doi.org/10.1017/50013091500017946 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500017946

ON THE OTHER p*¢ THEOREM OF BURNSIDE 45

Thus, we can assume that P is irreducible and hence n is a power of 2. If y=2, then P is
abelian and since it is irreducible, it is cyclic.

Now (a) implies that |P|<4<2?"? for n>2, thus we can also assume that y>2. If P
is one of the following: cyclic, dihedral, semidihedral or generalized quaternion, then
|P|<27*1 <27 for n>2 and 3<y<s. Thus we can assume that P does not belong to
one of the four exceptional families and Theorem 19.2 of [10] can be applied yielding:

(1) P contains a subgroup H such that |P:H|=2. .

(2) The underlying vector space V can be written as V=V,®V, where the
subspaces V,, i=1,2 are H-invariant and if xe P\H, then x interchanges V; and
V2~

Let dim(V))=m (thus n=2m) and let H; be the projection of H on V, i=1,2. If
H#H, x H,, then by the minimality of n+7y we can apply the lemma with parameters
m and y to H, and H,, yielding its validity for n and y. Thus we can assume that
H=H,x H,, where H;=2""? for i=1,2. The minimality of n+y implies that either
exp(H;))=2" or class(H))=7y—1. We deal with the two cases separately.

(1) Assume that exp(H,)=2. If H, is abelian, then since it is irreducible, it is cyclic,
and hence by the Proposition B.3(b) of [2], it follows that class(P) =y + 1, contradicting
(b). If H, is not abelian, then since it contains-a cyclic subgroup of order 27 at least, it
follows by [7, p. 193] that H, contains one of the following subgroups: Dihedral,
semidihedral or generalized quaternion of order 2'*! at least. Thus HZ! contains a
subgroup of class y at least and it follows that class(P) =7, contradicting (b) again.

(2) Assume that class(H,)=y—1. By Proposition B.3(a) of [2], it follows that
class(P)=2y—2>vy—1, contradicting (b). Thus, our lemma is proved. O

Theorem B.3. Let n and k be positive integers. Let q be a power of a prime such that
g=3(mod4) and 2‘||q2—1. If k=s define «=1 as the minimal integer satisfying k<s2*
and let t and u be determined by n=2%t+u, where 0 Su<2"

Then d(k, S,(GL(n, q))) =g(k, n) where

2s[n/2]+s(n) lf k<s

gl m)= {|S2(GL(2“, Ol |SAGLw.a)| ¥ kzs

where e(n)=0 if n is even and e¢(n)=1 if n is odd.

Proof. The proof is similar to that of Theorem B.l. By the observation which
precedes Lemma B.2, it follows that d(k,S,(GL(n,q)))=g(k,n). We will prove that
d(k,S,(GL(n, q))) = g(k,n). Consider the following two properties of g(k,n) which can be
easily verified.

(a) g(k,n,)-g(k,n;)<g(k,n, +n,) for all positive integers k, n, and n,.
(b) 2(g(l, m))> <g(21,2m) for I=s and every positive integer m.

Suppose that the theorem does not hold for a certain g and fixing g, let P = S,(GL(n, q))
be a counter-example for which n+ k is minimal.
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Thus, |P[=d(k,S,(GL(n,q))) and |P| > g(k,n). As

1 if n=1

class(S,(GL(n, q)))={s if n=23

the theorem holds for n=1,2,3 and every positive integer k. Thus we can assume that
n>3. If P is reducible, then it is decomposable and V=V, ® V,, where the Vs are P-
invariant subspaces for i=1,2. It follows that P< P, x P,, where P, and P, are the
projections of P on V, i=1,2. Hence, in view of property (a) of g(k,n) and the
minimality of n+k, we derive a contradiction. Thus, we can assume that P is
irreducible and hence n is a power of 2. Suppose that k=1, then P is abelian and since
P is irreducible, it follows that P is cyclic. But this is impossible since if P is one of the
following: cyclic, dihedral, semidihedral or generalized quaternion, then it is not difficult
to derive a contradiction for an arbitrary k. Indeed, if P is one of the above-mentioned
types and exp(P)=2%, then |P|<2f*!. Notice that in view of the fact that n is a power
of 2, Proposition B.2 of [2] implies that (n/2)=2¢"° and since n>3, it follows that
(n/2)2max{2,2%75}. 1t is not difficult to show that under these conditions, keeping in
mind that s>2, we have 252 > 28*1 But since S,{(GL{n, g)) contains a direct product of
n/2 cyclic groups which is of order 25™2), the inequality 2*»>|P| contradicts |P|=
d(k,S,(GL(n,q))). Thus we can assume that P is irreducible, P does not belong to any
of the exceptional four families, n>3 and k>1. Now Theorem 19.2 of [10] can be
applied, yielding:

(1) P contains a subgroups H such that |P:H|=2.

(2) The underlying vector space V can be written as V, @ V,, where the subspaces V,
i=1,2 are H-invariant and if x e P\H, then x interchanges V, and V,.

Let dim(V))=m for i=1,2 (thus n=2m), and let H; = GL(V)) be the projection of H on
V; for i=1,2. The direct product H, x H, is a group in which H can be embedded, and
if H#H, x H,, then by the minimality of n+k, we can apply the theorem to the H/s
with parameters k and m, and in view of property (a) of g(k,n), it follows that |P|=
2|H|<|H,|* <(g(k,m))* <g(k, n), a contradiction. Thus we can assume that H=H, x H,.
Now we consider two cases:

Case (a). Assume that k<s. By the minimality of n+k, it follows that |H,|=25"2
and applying Lemma B.2, we get that either exp(H,)=2° or class(H,)=s—1. As in the
corresponding part of the proof of Lemma B.2, each of the above two inequalities
implies that class(P) = s, contradicting our assumption that class(P) <k <s.

Case (b). Assume that k=s. Let class(H,)=1, hence by Proposition B.3(b) of [2], it
follows that k>class(P)=2l. The minimality of n+k yields |H,|<g(l,m) and hence, in
view of property (b) of g(k,n), it follows that |P|=2|H,|* < 2(g(l, m))* < g(2l, 2m) < g(k,n), a
contradiction, and Theorem B.3 is proved. O

Now we state and prove our main lemma.
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Lemma B.4 (Main Lemma). Let p and q be two distinct primes and let k and n be
positive integers.

(a) If p=2 and q=2™+1 where m=2, then d(k, S,(GL(n, g))) £ q" for every niffk<m.

(b) If p=2 and q=3, then d(k, S,(GL(n, q))) < 3" for every niffk <2.

(¢) If p=2 and q=1, then d(k, S,(GL(n, q))) < 7" for every n iff k<15.

(d) If p=2'—1 and q=2, then d(k, S (GL(n, 2))) £2" for every n iff k<p—1.

(e) If p and q are not as above, then d(k, S (GL(n, q))) < q" for every n and k.

Proof. Case (e) is exactly Burnside’s Lemma whose corrected version appears in [5]
and will not be proved here. Case (b) follows from Glauberman’s Lemma [6], but for
completeness, we shall prove it.

(a) As 2"||g—1 Theorem B.1 implies that d(m, S,(GL(n,g)))=2""<g". On the other

hand, dim+1,5,(GL(2,q))) =2"*'>(2"+ 1) =q¢>.

(b) As 23||32—1 Theorem B.3 implies that d(2, S,(GL(n, q)))=21"1*" <23%2 < 3" On

the other hand, d(3,S,(GL(2,3)))=2%>32
(c) As 2*||7*—1 Theorem B.J3 implies that d(15,S,(GL(n,7)))=2321*Ialvem <
211714 <77 On the other hand, d(16, S,(GL(8, 7))) =223> 78

(d) As S,(GL(n,2))=S,(GL([n/],2")) Theorem B.1 implies that d(p—1,S,(GL(n,2)))=
d(p—1,S,([n/1],2))=p"M=(2'~1)""<2" On the other hand, d(p,GL(p,2))=
p* 1 p2l> 3P, '

This completes the proof of Lemma B.4. O

C. Proof of the Main Theorem

In this section, we use the notation of A, for the p-Sylow subgroup of A in the case
where A is a nilpotent group. The Fitting subgroup of G and the Frattini subgroup of G
are denoted by F(G) and ®(G), respectively. We need the following theorem.

Theorem C.1. Let p and q be distinct primes and let k satisfy d(k, S (GL(n, q))) <q" for
every n. Moreover, let G be a {p,q}-group and let A be a nilpotent subgroup of G of
maximal order among all nilpotent subgroups C of G satisfying:

(1) class(C,) <k,

(2) class(Cj)<2.

If B is a nilpotent subgroup of G normalized by A, then AB is nilpotent.

Proof. Let G be a counterexample and choose G and B such that '|G]+|B{ is
minimal. Clearly, we can assume that G=AB. We proceed in three steps.

(a) We prove that B=[G, A,] and class(B)<2. By the minimality of |B| it follows
that A, centralizes every proper subgroup of B which is normalized by A. In particular
®(B) is such subgroup, so A, operates on V = B/®(B). It follows from Theorem 5.3.2 [7,
p. 177] that V=C(A,) x [V, A,]. By the minimality of B, it follows that V' cannot be A-
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decomposable. If V'=C,(4,), then AB is nilpotent, so C,(4,)=1 and V=[V, A,] yielding
B=[B, A,]. As B’ is a proper A-invariant subgroup of B, it is centralized by 4,. Using
the three subgroups lemma we get from [B,B,4,]=1 and [A4, B,B]=1, that
[B,A,, B]=1. But B=[B, 4,], so it follows that class(B) <2.

(b) We prove that 4, centralizes B. Consider the group A,V which is an extension of
V by A,. Since A,V is a g-group, by a known property of nilpotent groups it follows
that [V, 4,1+ V. Since [V, A,] is A-invariant, it follows by the minimality of IBI that 4,
centralizes [V, 4,]. We have proved that C,(A,)=1, hence [V, A,] is trivial yielding
[B, A,] = ®(B). Applying the three subgroups lemma again, we get from [B, A, A,]1=1
and [A4,, A,, B]=1 that [4,, B, A,]=1. But [4,, B]=B, so A4, centralizes B.

(c) We derive a contradiction. Define A=A/C,(B). If |V|=|B/®(B)|=4q", then
A<= GL(n,q). By (b) A is a p-group and by the definition of A, we have class(A4) <k,
hence |A|<d(k,S,(GL(n, q)))<q"=|V| Define A*=C,(B)B. Since A* is nilpotent
satisfying class(4}) <k and class(A4}) <2, we have |A*|<|A|. On the other hand, it will
be shown that |A*|>|A| Indeed, since ((BnC,(B))®(B))/®(B) is an A-invariant
subgroup of V, it follows by an argument used in (b) that BN C,(B) < ®(B) and finally

we get:
|A*| =|C 4(B)B|=|B: B C 4(B)||C (B)| 2| B/®(B)||C (B)|
=|VI|CAB)|>|A[|CB)|=]|A|
Thus the proof of Theorem C.1 is complete. O

Proof of the main theorem. The five cases will be proved simultaneously. We use k
to denote m, 2, 15, p—1 and oo in case (a), (b), (c), (d), (¢), respectively. If 0,(G)=1, then
F(G)=0,G)#1. Let A be a nilpotent subgroup of G of maximal order among all
nilpotent subgroups C of G satisfying class (C,)<k and class(C;)<2. By Lemma B.4
d(k,S,(GL(n, q))) <q" and therefore we can apply Theorem C.1 with F(G) being B, the
subgroup of G normalized by A. We obtain that A0,(G) is nilpotent. Since
d(k, P)>d(2, Q), the definition of A4 implies that 4 is not a g-group. Hence, there is a
non-g-element in A which centralizes 0,(G)= F(G) contradicting that C(F(G)) € F(G) for
a solvable group G. . O
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