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WEAK SEPARATION LATTICES OF GRAPHS 

GERT SABIDUSSI 

1. I n t r o d u c t i o n . In an interesting, but apparent ly largely unknown, paper 
[1] Halin has introduced the concept of a primitive set of vertices of a graph. 
This concept, or ra ther a slight modification of it, seems to provide the key 
to a new approach to the wrell-known and impor tant class of graph-theoretical 
problems centering on the notion of separation. As is well known, if A, B, C 
are sets of vertices of a (non-oriented) graph X, C is said to separate A and B 
if and only if every AB-path in X contains a vertex of C. Holding A fixed, 
let us write C S A B for the fact tha t C separates A and B. This relation of 
separation is easily seen to be a quasi-order on the power set of the vertex-set 
of X. 

In general, ^ A is not a partial order. In order to force it to be one, there is, 
as always, the possibility of passing to the quotient s t ructure associated with 
the canonical equivalence defined by BaAC if and only if B ^ A C and C SA B. 
In the context of separation theory it is, however, more natural to consider 
sets of vertices ra ther then equivalence classes of such sets. The customary 
procedure in such a situation is to search for a "canonical" representat ive of 
each equivalence class modulo aA and to work with these representatives. 
This approach was used by Pym and Perfect [6] in their s tudy of independence 
s tructures associated with separation in (directed) graphs. They were able to 
show ([6, Lemma 7.3]) tha t the set of canonical representatives of aA endowed 
with the relation ^A is a complete lattice. This closely parallels Halin 's result 
([1, Satz 1]) tha t the primitive sets (relative to A) form a complete lattice 
with respect to ^ A. I t should be noted, however, tha t Halin-lattices and 
Pym and Perfect-lattices are not the same thing. 

T h e very fact t ha t complete lattices make their appearance in connection 
with separation is sufficiently striking to merit a detailed investigation. Sur­
prisingly, this was neither carried out by Pym and Perfect nor by Halin. 
Only recently, Pym and Perfect-lattices were systematically studied by 
Polat [5]. 

The present article is inspired by Halin 's approach. We replace the equiva­
lence aA by a larger one, rA, also defined in terms of separation and permit t ing 
the choice of a unique natural representative for each equivalence class in 
such a way tha t , once again, restriction of SA to the set of these representa­
tives produces a complete lattice. In order to see how this can be accomplished, 
let B and C be two sets of vertices with BaAC, and take any x £ B KJ C, say 

Received June 1, 1974 and in revised form, July 15, 1975. 

691 

https://doi.org/10.4153/CJM-1976-069-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1976-069-6


692 GERT SABIDUSSI 

x G B. Let W = (xo, . . . , xm) be an Ax-p&th, i.e., xQ £ A, xm = x. Since 
C SA B there is an mi ^ m such t ha t xmi Ç C. T h u s (x0, . . . , xmi) is an 
^4C-path, hence by B SA C there is an m2 S Wi with xW2 G B. Continuing, 
one obtains a sequence of subscripts w ^ Wi ^ . . . ^ 0 such t h a t the corre­
sponding vertices al ternat ingly belong to B and C. Since one mus t have 
mt = mi+i after a finite number of steps, it follows t h a t xk Ç B C\ C, for some 
k S m, i.e., {Br\C)^AB and (B C\ C) S A C (which, incidentally, is 
equivalent to (B C\ C)aAB and (B P\ C)o-AC). However, one cannot prove 
t ha t B — C. Nevertheless, this simple a rgument shows how to remedy the 
si tuation. If x is the first vertex of B on the pa th W (counting from A), then 
all the subscripts m, mi, . . . must be equal, i.e., x £ C. Thus , if one considers 
only sets all of whose members are " first" vertices on some 4̂ £ - p a t h , one 
will be able to arrange t ha t S A is also ant i -symmetr ic . Hal in 's primit ive sets 
are defined on the basis of this observation. 

In spite of the remarkable fact t ha t the Halin-primit ive sets form a com­
plete lattice, their definition appears to be too narrow. T h e reason is t h a t 
Halin defines pr imit ivi ty in terms of the vertices of the given graph wi thout 
availing himself fully of the amoun t of s t ructure provided by the edges. In 
Section 2 we redefine the notion of pr imit ivi ty in a manner closely parallel to 
t ha t of Halin, bu t based on the edges, and show t h a t these new primit ive sets 
also form a complete latt ice relative to SA- This lat t ice will be called the 
weak separation lattice of (X, A), and will be denoted by Q(X, A). 

In Section 10 we compare the two notions of pr imit ivi ty. We show tha t 
every Halin-primitive set is primitive in the new sense, and t h a t for a rooted 
graph (X, {a}) the weak separation latt ice Q(X, {a}) is isomorphic to the 
separation latt ice in the sense of Halin of the line graph dX relative to a sui tably 
chosen subset of V(dX). T h u s when considering classes of lattices the theory 
we are developing in this paper may be viewed as a special case of the theory 
of Halin. However, for a given individual pair (X,A) exactly the opposite 
is the case; the weak separat ion latt ice Q(X,A) is in general much richer 
than the corresponding Halin-latt ice. 

One aspect of the assignment of separat ion lattices to pairs (X,A) (in 
whatever sense: weak, Halin, or P y m and Perfect) is t h a t it is ftinctorial. In 
order to make this a meaningful s t a t ement suitable morphisms between pairs 
have to be defined. For weak separat ion lattices the appropr ia te mappings 
(called rim stable maps) are introduced in Section 4. We denote the resulting 
category by Gn m . In Section 5 we establish t ha t Q is a con t ravar ian t functor 
from G r J m to the category of complete lattices and complete meet-preserving 
maps. In Section 6 we characterize the latt ice of primit ive sets of a rooted 
tree and show t h a t in this case the latt ice is always dis t r ibut ive. Section 8 
deals with the closure system associated with the complete latt ice Q(X, A)} 

providing a geometric description of the corresponding closure operator. 
Finally, in Section 9 we show tha t for 3-connected graphs the latt ice Q(Xy A) 
is always coatomic. 
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Fur ther papers will deal with the relationships between Q(X,A) and the 
weak separation lattices of the contractions of X, the question of the existence 
of adjoints of the functor Q, as well as with certain geometric lattices related 
to weak separation lattices (which in general are not semi-modular and hence 
not geometric) , thus providing a framework in which the vas t theory of 
geometric lattices can be brought to bear on problems in separation. 

For a graph X we denote the vertex-set by V(X), the edge-set by E(X). 
Thus , E(X) is an irreflexive, symmetric binary relation on V(X). F is a 
subgraph of X if V(Y) C V(X) and E(Y) C E(X); it is a restriction of X if 
it is a subgraph and x, y G V(Y), [x, y] G E(X) always implies [x, y] G E(Y) 
(i.e., Y is a, full subgraph) . If Y C X we denote by X\Y the least subgraph 
of X whose edge-set is E{X) — E(Y). X — Y will denote the restriction of X 
to V(X) - V(Y).¥orx G V(X) we put V(x;X) = {y G V(X) : [x,y] G E(X)} 
and E(x;X) = {[x, y] : y G V(x;X)}, i.e., V(x;X) is the set of neighbors of x, 
and £ ( x ; X ) the set of edges incident with x. 

A path W = (xo, . . . , xn) is a graph with F ( IF ) = {xo, . . . , xn) (all xt 

dist inct) and E(W) = {[x*-i, x j : i = 1, . . . , n}. 
Throughout this paper, X will denote a connected graph {unless otherwise 

stated). 
We conclude this section with an impor tan t result concerning the relation 

<rA. For a graph X we shall denote by ^3X the complete lattice of all subsets 
of V(X) with union and intersection as operations. 

1.1. T H E O R E M . Every aA-class is a complete sublattice of tyx-

Because it will be useful.later we state first the following obvious (and 
well-known) result. 

1.2 LEMMA. Let A, Bu i G I, be subsets of V(X), and put C = {JieiBi. 

Then B rg A C if and only if B ^ABi for each i G L 

Proof (of Theorem 1.1). Let B, Bh i G / , be subsets of V(X), and pu t 
C = {JiçiBi, D — C^i£IBi. We have to show tha t if BaABt for each i G I, 
then BaAC and BaAD. 

T h a t a A is compatible with arbi t rary unions can be seen as follows. By 
1.2, B rgA C. On the other hand, C ^A B is a consequence of Bt C C since 
each ^413-path contains a vertex of B t. 

Concerning intersections, let W = (x0, . . . , xn) be an ^4^-path, and 
m S n the least subscript with xm G B. Since Bt ^ A B for each i, there is 
an Ki ^ m with xri G B. If rt < m, application of B èABtto the ABrpa.th 
(XQ, . . . ,xri) produces an st ^ rx with xSl G B, contradicting the minimality 
of m. Thus , rt = m for each i G / , i.e., xm G D. Therefore D ^A B. On the 
other hand, B SA D is trivial, since every ^4Z}-path is also an ^ 4 ^ r p a t h for 
each i G / . Hence BaAD, completing the proof. In fact, it is easy to show tha t 
every o-^-class is an interval in tyx-
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Theorem 1.1 indicates how a canonical representat ive of each o\4-class can 
be obtained. In principle there are two choices, either to take the greatest 
element of aA[B], i.e., {JaA[B], or the least element, C]aA[B]. Since in separa­
tion theory the emphasis is on minimal separators, one adopts the second 
al ternat ive. This leads to the sets first introduced by Pym and Perfect and 
studied in detail by Polat [5]. Polat calls them primitive bu t it should be 
observed tha t his notion of pr imit ivi ty coincides neither with t ha t of Halin 
nor with our own. 

T h e author is indebted to the referee for having pointed out an error in the 
formulation of Theorem 1.1 and for having shortened its proof, as well as for 
numerous other remarks and suggestions. 

2. Primitive sets. 

2.1 Definition. Let A, B C V(X). An AB-accessibility path in X is a pa th 
W = (x0, . . . , xn) C X such t ha t 

xo G A and x0, . . . , xn_i g B 

(the vertex xn may or may not belong to B). xn will be called an AB-accessible 
vertex. By $&AB

 w e denote the set of all 4̂ i>-accessibility pa ths in X, and we 
set 

XAB = U SB A*. 

In the following we will keep A fixed whereas B is allowed to range over all 
subsets of V(X). With this in mind we say tha t XAB is the accessibility graph 
determined by B. These graphs correspond to (but are not identical with) 
wha t is called V erb indu ngs graph in [1, p. 35]. In the terminology jus t intro­
duced a Verbindungsgraph X(A —* B) in the sense of Halin is the restriction 
of X to V(XAB), and might thus be called a. full accessibility graph (see also 
Section 10). 

I t is clear from Definition 2.1 t ha t no ^^-access ib i l i ty pa th can contain 
two vertices of B. 

Figure 1 shows an example of an accessibility graph (A = {a}, 
B = {1,2, 3 ' , 4'}) on the left according to our definition, on the right the 
corresponding full accessibility graph. 

In any graph X, if x Ç A then (x) is an Ai^-accessibility pa th for any 
B C V(X). Hence A C V(XAB). 

If A = 0 there are no A ^-accessibil i ty pa ths . This means t ha t X$B is 
always empty . Since this is an uninterest ing case we will henceforth assume that 
A 5 / 0 . 

If B = 0, then clearly every patli in X which has one endpoint in A is an 
^4£>-accessibility pa th . Consequently, XA$ = X. 

2.2 L E M M A . C ^ A B implies 3BA C C $&AB, and hence XAC C XAB. 
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a a 

FIGURE 1 

Proof. Let W = (x0, . . . , xn) be an A C-accessibility pa th . If xr 6 B for 
some r < n, then (xo, . . . , xr) is an AB-path, whence by C SA B there is an 
s, 0 S s S r, with xs £ C, a contradiction. Hence x0, . . . , xn_i $ B, i.e., TF is 
an ^^-access ib i l i ty pa th . 

Under very slight hypotheses concerning X the converse of 2.2 is also true. 

2.3 LEMMA. If no vertex belonging to B is of degree 1, and if %&AC C SSAB, 
//tew C ^ A B. 

Proof. Suppose $QAC C $&AB and let W = (x0, . . . , xn) be an ^45-path, 
i.e., Xo £ -4, xn £ B. Suppose, moreover, t ha t x0, . . . , xn d C, and consider 
an arbi t rary vertex y adjacent to xn. If y £ V(W), then W = (x0, . . . , xn, y) 
is an A C-accessibility path , hence by hypothesis, W £ 28AB- This means in 
part icular t ha t xn £ B, a contradiction. If, on the other hand, y = xm with 
m S n — 2, then W7" = (x0, . . . , xm, xn, xn-\) is an A C-accessibility path , and 
hence belongs to %&AB- Once again this yields xn £ B. I t follows t ha t xn-i is 
the only vertex adjacent to xn, i.e.,-xn is of degree 1. 

T h e following is now obvious: 

2.4 PROPOSITION. / / X is a graph without vertices of degree 1, then C SA B 

if and only if $&Ac C $&AB-

Extremely simple examples show tha t 2.3 is false in the presence of vertices 
of degree 1. One may even have $8AB = SSAC for two sets B and C which are 
incomparable with respect to S A. 

2.5 Definition. Let X be any graph (no connectedness assumed here), 
Y a subgraph of X. By the rim of Y relative to X is meant the set 

9JF = {3/ £ V(Y) : E(y;X) <£ E(Y)} = F ( F H X\Y). 
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A vertex y G 9 Î F is called a rim vertex of F, int Y = V(Y) — dlY is called 
the interior of F, and a vertex y G int F is an interior vertex of F. By In t F 
we denote the restriction of F to int F. If A C F ( X ) , the rim of the restriction 
of X to A is called the boundary of 4̂ and is denoted by 23.4. T h a t is, 

23,4 = {a G A : F ( a ; X ) <£ 4 } . 

For F C X we define « F to be 2 3 7 ( F ) . 

Clearly 23 F C 9t F. Equal i ty holds if and only if 3> G 9Î F implies 
£ ( j ; X ) (^ -E(F) , where F is the restriction of X to F ( F ) . In part icular , 
$ 7 = 9f F if F is a restriction of X . 

2.6 LEMMA, (i) E(x;XAB) = E(x;X) for each x G F ( X ^ S ) - B. 
(ii) 9 i X A B C B {rim relative to X). 

(iii) If x, y G F ( X A 5 ) Zm£ wo£ &0£& x, 3/ G 9?X A 5 , and e = [x, y] G E(X), 
then e G E(XAB). In particular, In t X A 5 is a restriction of X. 

(iv) If x,y £ B C\ V(XAB), then [x,y] G E(XAB). Hence if two vertices 
x, y of B C\ V(XAB) are adjacent in X, then x, y G SIXAB. In other words, if 
two vertices in B are adjacent in X, then neither of them belongs to int XAB. 

Proof, (i) x G V(XAB) — B implies the existence of an AB-accessibility 
pa th W = (XQ, . . . , xn) with xn = x and F ( I F ) disjoint from B. T a k e any 
e = [x, y] G E(x;X). If 3/ G F ( I F ) , then IF U (e) is an ^ - a c c e s s i b i l i t y pa th , 
whence e G E(XAB). If 3/ G F ( I F ) , i.e., y = xm,m < n, then (x0, . . . , xw) W (e) 
is an y4_£>-accessibility pa th , so t ha t again e G E(XAB). 

(ii) is an immediate consequence of (i). 
(iii) is trivial since e belongs to E(x\X) as well as E(y;X). Hence if 

e G E{XAB), then x, y G $iXAB. 
(iv) is equally trivial, for if e = [x, y] G E(XAB), then e is an edge of some 

^^-access ib i l i ty pa th W. Bu t no accessibility pa th contains two vertices of B. 

2.7 L E M M A . Let BQ = dlXAB. Then XABo = XAB. 

Proof. BQ C B implies t ha t every A ̂ -accessibil i ty pa th is also an ^ I n ­
accessibility pa th , i.e., %£AB C $&ABO, and hence XAB C XABQ. 

We show next t ha t V{XAB) = V(XABo). Suppose x G V(XAB). Then any 
^4x-path (XQ, . . . , x„), where xw = x, meets B. Let r be the least subscript 
with xr G B. Then (x0, . . . ,xT) is an AB-accessibility pa th , hence xr G F ( X A B ) . 
Let 5 be the largest subscript such t ha t xs G V(XAB). Clearly r ^ s < n since 
x„ = x G F ( Z A B ) . By maximali ty of s, xs+x G F ( X 4 B ) , hence xs G 9 ÎX^ B = £ 0 . 
I t follows t h a t no ^Ix-path is an /4 ^ -access ib i l i ty pa th , i.e., x G V(XABo). 

T o complete the proof take any ^ ^ - a c c e s s i b i l i t y pa th IF = (v0, . . . , yp). 
By wha t has jus t been shown V(W) C V(XAB). Hence if some edge 
e = [yuyi+i] does not belong to E(XAB), then yt G dlXAB = B0, a con­
tradiction. T h u s W C XAB. 
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I t should be observed tha t in general 2BAZ?0
 an<^ %&AB are different. For 

example, if X is a (finite) circuit, and a, b are two distinct vertices of X, then 
the afr-accessibility paths are precisely those which s tar t a t a and do not 
contain b as an interior point. Thus Xab = X, whence BQ = 9?Xa& = 0. Bu t 
this means tha t 2BaJ5o consists of all pa ths s tar t ing a t a, i.e., 2BQB0 is properly 
larger than 2Ba6. 

In the light of 2.6 (ii), which says tha t $IXAB C B for any B C V(X), we 
now define the basic concept of this paper. 

2.8 Definition. A set B C V(X) is primitive (or, more precisely, A-primitive) 
if and only if $IXAB = B. 

The introduction of primitive sets is motivated by the observation tha t for 
them, separation is a partial order. 

2.9 PROPOSITION. Let B be an A-primitive set, C any subset of V(X). Then 
C ^kAB if and only if XAC C XAB. 

Proof. In view of 2.2 we only have to prove sufficiency. Assume XAC C XAB. 
Let x £ B, W an ^4x-path, and assume tha t W does not meet C. Then W is an 
AC-accessibility path and x (? C, i.e., x £ V{XAC) — C. By 2.6 (i), 
E(x\XAC) = E(x\X). Since X A C C ^ A B this gives E(x;XAB) = E(x;X), 
whence x d diXAB = B, a contradiction. 

T o recapitulate: by 2.2 we have tha t BaAC implies XAB — XAC for arbi­
t ra ry B, C C V(X). In other words, if we define BrAC by XAB = XACl then 
O"A C TA- By 2.6 (ii) and 2.7 we have tha t every set B C V(X) contains an 
A -primitive subset which is equivalent to B modulo TA, viz. ^iXAB. Moreover, 
$IXAB is the smallest set (relative to inclusion) which is rA-equivalent to B. For 
if XAB = XAC, then $IXAB = %IXAC C C by 2.6 (ii). Thus the ^ -p r imi t ive 
sets can be characterized as the (unique) smallest representatives of each 
equivalence class modulo rA. They may thus be considered as canonical 
representatives, and it is in this sense tha t they were alluded to in the intro­
duction. Incidentally, it follows from 2.7 tha t any set C with dlXAB C C C B 
belongs to the same equivalence class modulo rA as B. As for aA (see 1.1) this 
permits one to prove tha t every rA-class is closed under arbi t rary intersections. 

By Q(X, A) we denote the set of all A -primitive subsets of V(X). I t follows 
from 2.9 together with the definition of A -primitive sets t ha t the restriction of 
the quasi-order ^A to Q(X, A) is a partial order. 

As a consequence of Lemma 2.7 we have the existence of a mapping 
PA - tyx —> Q(X, A) (tyx = power set of V(X) partially ordered by inclusion) 
defined by 

fiAB = dtXAB. 

fiA is order-inverting. For if B C B' C V(X), then clearly XAB 3 XAB>, bu t 
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XAB = XAC,XAB> = XAC., where C = PAB,C = $ABf. Hence fiAB = A$AB'. 
The following corresponds to Halin 's Satz 1. 

2.10 T H E O R E M . Q(X, A) is a complete lattice relative to the order —~ A> This 
lattice is called the weak separation lattice of (X, A). 

Proof. I t suffices to show tha t every family (Bi)iei of A -primitive sets has 
an infimum. We will show tha t 

inf B{ = (3AB, where B = U Bu 
zç i tei 

Abbreviate 0AB by B0. For 1=0 we have 5 = 0, whence XAB = X, i.e., 
0 is the greatest element of Q(X, A). 

Since fiA : tyx ~^ Q(X, A) inverts order, wre have tha t for each i (z I, 

BiCB=^Bi = (3ABt ^A/3AB = B0. 

Hence B0 is a lower bound for the family ( 5 *)*€/• Now let C be an A -primitive 
set such t ha t B t ^ A C for every i £ I. By Lemma 1.2, this says t h a t C ^ A B. 
Since B 3 BQ, we have trivially B ^ A B0, whence C ^ A BQ. T h u s B0 is indeed 
the greatest lower bound. 

In the following it will also be convenient to have an explicit expression for 
suprema in the latt ice Q(X, A). For this we first prove a lemma which says 
t ha t any union of accessibility graphs is again an accessibility graph. Here 
again we follow the ideas of Halin. The supremum of the empty family, i.e., 
the least element of Q(X, A) is A since A C V(XAB) for every B C V{X) 
and XAA is the discrete subgraph of X on A, the la t ter implying t h a t A is 
A -primitive. 

2.11 PROPOSITION. For any non-empty family (Bi)iei of subsets of V(X), 
UteiXABl = XAB, where B = 3i U^jXABl. 

Proof. Abbreviate XABl by Xt and pu t F = Uiei Xu B = dxY. 
T a k e any i £ I and an ^ ^ - a c c e s s i b i l i t y pa th W = (x0, . . . , xn). Suppose 

t ha t xm £ B for some m < n. Since B = 3i F there is an edge 

e = [xm,y] e E(X\Y). 

But (xo, . . . , xm, y) is an AB^-accessibility pa th , whence e Ç E(Xt) C E(Y), 
a contradict ion. Hence W is an ^4£>-accessibility pa th . This proves Y C XAB. 

For the reverse inclusion take any ^.^-accessibil i ty pa th W = (x0, . . . , xn), 
and pu t ek = [xk, xk+i], k = 0, . . . , n — 1. Wi thou t loss of generality we may 
assume tha t w > 0. I t suffices to prove tha t for each k = 0, . . . , n — 1 there 
is an i £ / such tha t ek £ E{Xt). Suppose by way of contradict ion tha t there 
i s a n r a , 0 ^ m ^ w — 1, such tha t em g E(X t) for every i G / , i.e.,em g E(Y), 
and t ha t m is the smallest such subscript. If m = 0, then xw. = x0 Ç yl C F ( F ) . 
If ra > 0 then by minimali ty of m, em-i G E(Xf) for some j G / , hence 
gm_i G £ ( F ) , hence again *w G F ( F ) . But em G E{Y) implies xm G 9î F = B, 
contrary to W being an ^^-access ib i l i ty pa th . 
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2.12 COROLLARY. If (Bi)ier is any family of A-primitive sets, then 

supiei Bi = 9? UitiXABi. 

This follows immediately from the preceding lemma. 

3. One-s ided se t s . This section is primarily technical and provides the 
background for Section 4 as well as certain results in Section 8. 

In view of 2.6 (ii), every set B C V{X) can be divided into the following 
three par ts : 

B C\ i n t Z A B , MXAB, and B - V(XAB). 

In general, all three sets are non-empty. T h a t is, vertices of B lie on either side 
of the rim of XAB. 

3.1 Definition. A set B C V(X) is called one-sided if and only if 

B r\'mtXAB = 0. 

In particular, every primitive set is one-sided. For an example of a set 
which is not one-sided, see Figure 2a. 

3.2 LEMMA. Any union of one-sided sets is a one-sided set. 

Proof. Let (Bi)iei be a family of one-sided sets, B = {Ji(zTBi. Suppose 
there is a vertex x £ B C\ int XAB. Then for each i Ç / , 

E(x]X) CE(XAB) CE(XABi). 

At the same time, x £ Bj for some j £ / , whence x £ Bj C\ mtXAB-, a 
contradiction. 

T h e intersection of two one-sided sets need not be one-sided. In general, 
even the intersection of two primitive sets is not one-sided. 

3.3 LEMMA. If (Bi)iei is a family of one-sided sets, then $&AB = $&Ac, where 
B = Uiei Bt and C = U t a &ABX. 

Proof. B D C implies SS^s C 2BA c- For the reverse inclusion take any 
A C-accessibility path W = (xo, . . . , xn) and suppose tha t W is not an ^ in ­
accessibility pa th . Let m be the least subscript such tha t xm Ç B. Then 
xm G Bi for some i G / , and since x0, . . . , xm-i G B, it follows tha t 
xm G V(XAB{). By one-sidedness of Bt, xm G BtC\ V(XABi) implies 
xm G $lXABi = /3ABi C C, contrary to W being an A C-accessibility pa th . 

By way of digression, we consider the question whether the relation rA defined 
in Section 2 is a congruence on the complete lattice ^x (relative to union and 
intersection as operations). The answer is, in general, negative. In Figure 2a con­
sider the two sets B1 = {2,4}, B2 = {2', 4 / }. If ra were a congruence, then in view 
of BiTaPaBi = Ciy i = 1, 2, we wrould have (Bi U 5 2 ) r a ( C i U C2), bu t this is 

https://doi.org/10.4153/CJM-1976-069-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1976-069-6


700 GERT SABIDUSSI 

FIGURE 2a FIGURE 2b 

Heavy lines = Xa,Bl\j n2 Heavy lines = X a , C l u c2 

obviously not the case, since Z f l ( f l l u B2 is a proper subgraph of J ( i i C i u c2-
On the positive side we have: 

3.4 PROPOSITION. TA is a semilattice congruence on the set of all one-sided sets. 

Proof. BiTaCi implies (3ABt = f3ACi, where (Bi)iei and (Ci)iei are families 
of one-sided sets. From 3.3 one then has immediately t ha t UraV, where 
U = U izi Bi} V = U tçi Ct. 

Proposition 3.4 says in part icular t ha t every rA-class of one-sided sets 
contains a largest element. These sets will be described in Theorem 8.2. 

Since the intersection of one-sided sets is not necessarily one-sided it is not 
surprising tha t the behavior of rA relative to intersections is even worse than 
for unions. In the graph of Figure 3 let Bt = {i, 3, 4, 5}, i = 1, 2. Bt is one­
sided, and $aBi = {i, 3, 4}. 

The heavy lines in Figure 3a show X(ltBin B.2 = Xa<i^^i5]j Figure 3b shows 
Xa,PaB1(}0aB2 = ^«,[3,4). Since these two graphs are different, {3 ,4 ,5} and 
{3, 4} are not in relation ra. Thus , in general, intersections do not preserve 
TA even in the case of one-sided sets. 

We conclude this section with a result which will be useful later (Section 8) . 

3.5 LEMMA. If B is one-sided, then In t XAB is the union of all AB-accessibility 
paths which are disjoint from B. 

Proof. Take any ylx-path W disjoint from B. Then x £ i n t X ^ 5 ; for if 
x Ç dlXAB, then x G B by 2.6 (ii), a contradiction. Conversely, given any 
x £ int XAB there is an ^^-access ib i l i ty pa th Q = (x0, . . . , xn) with xn — x. 
By one-sidedness of B, x does not belong to B, hence W is disjoint from B. 
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FIGURE 3a FIGURE 3b 

Since In t XAB is a section of X this proves equality of In t XAB and the union 
of all ^45-accessibility pa ths missing B, 

We remark here tha t contrary to what one might be tempted to think it is 
in general not the case t ha t for two one-sided sets B, C, i n t X A / i W i n t X 4 C 

is the interior of some accessibility graph. 

4. R i m s tab le m a p s . In the next section it will be shown tha t the con­
struction of the weak separation lattice of a pair (X, A) is ' ' na tu ra l " in the 
sense tha t if pairs on the one hand and complete lattices on the other are 
regarded as suitable categories, then the correspondence Q is a functor. T o 
set the stage we have to define an appropriate class of mappings between 
pairs. 

In 4.1 and 4.2 we do not assume that the graphs involved are connected. 

4.1 Definition. Let X, Y be graphs. A function <p : V(X) —> V(Y) is a weak 
contraction if and only if [x, y] G E(X) implies ç>x = py or [<px, <py] Ç E(Y). 

These are the maps which have been called homomorphisms by Ore [4]. 

In the sequel we shall use the following. 
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Notation. Let <p : V(X) -> V(Y) be a weak contract ion, X' C X. By <^X' 
is meant the subgraph of 7 with 

F ( ^ X ' ) = ^ F ( X ' ) , 
and E((pXf) = {[<px, <py] : [x,y] 6 E(Xf) and <̂ x 7̂  ^ } . 

Similarly, if 7 ' C Y, we denote by ç{~l) Y' the restriction of X to the set 

I t is an immediate consequence of 4.1 t ha t if <p : V(X) —> V(Y) is a weak 
contract ion, and X' is a connected subgraph of X, then ^ X ' is connected. In 
other words, weak contractions preserve connectedness. 

4.2 Definition. Given two graphs X, Y a function <p : F ( X ) —» 7 ( F ) is a 
contraction if and only if (i) <p is a weak contract ion, and (ii) for every 
y Ç <p7(X) the graph ^ ( _ 1 )(3 ;) is connected. 

Let <p : V(X) -> 7 ( 7 ) be a contract ion, e = [y,y'] G £ ( ^ X ) . Then 
7 (^ ( - 1 ) (^ ) ) = 7 ( ^ " 1 ) ( y ) ) U ^ ( ^ ( _ 1 ) ( y ) ) , the two graphs ^ - " ( y ) and 
^ ( - 1 ) ( y ) a r e connected, and there is an edge [x, x'] £ E(X) with <̂ x = 3;, 
< x̂' = y'. Thus <£(-1)(e) is connected. This says t ha t if Y' is any connected 
subgraph of <pX, then <p{~l) Y' is connected. 

We now consider the class of all pairs (X, A), where X is a connected graph 
and A C V(X) (if A = {a} we write (X, a) instead of (X, {a})). Given two 
pairs (X, A ) and ( 7, B) we define a map <p : (X, A ) —» ( 7, 2$) to be a function 
^ : 7 ( X ) -> V{Y) such tha t <M C B. 

4.3 Definition. A map <p : (X, ^4) —> (Y, B) is rim stable if and only if ^ is 
a weak contract ion and the inverse image of every one-sided subset of V(Y) 
is again one-sided, i.e., for any C C V(Y), 

C C\ int YBC — 0 implies v~lC C\ i n t X A ) ¥ , - i c = 0. 

Obviously, ^a i r s and rim stable maps form a category. This category, denoted 
by G r j m , provides us with the natura l sett ing for the s tudy of weak separation 
lattices. 

The following result shows t ha t the rim stabil i ty of a weak contraction <p 
depends on the behaviour of cp on primitive sets. 

4.4 PROPOSITION A weak contraction <p : (X, A) —> ( 7 , B) is rim stable if 
and only if the inverse image of every primitive set is one-sided. 

For the proof we need two auxiliary results. 

4.5 LEMMA. B C B' C V(X) implies int XAB> C int XAB. 

Proof. B C B' implies XAB> C XAB. Hence 

x 6 i n t X A B , C V(XAB>) C V(XAB) 

and x (? i n t X A # implies x Ç dlXAB, i.e., E(xm
fX) <X E(XAB). Bu t since 

x Ç int XAB', E(X\X) C E(XAB>) C E(XAB), a contradict ion. 
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4.6 LEMMA. If <p : (X,A) —> (Y, B) is a weak contraction, then for any 

CC V{Y), <pXAt(f-ic C YBC, and hence XAi(p-ic C <? ( _ 1 )FB C . 

Proof. T o prove the first par t it suffices to show tha t ç>W C YBC for any 
^4, ^_ 1C-accessibility pa th W = (x0, . . . , xn). Let g = [y, y'] G £(<pW). There 
exists a subscript i, 1 rg i ^ w, such tha t y = (pxt-i and y' = ipxt. Note t ha t 
cpxo, . . . , <^xn_i $ C since W is an A, ^ - 1C-accessibility pa th . Let h be the 
least subscript such tha t e is incident with <pxh. Clearly h ^ i — I < n. Con­
sider U = <p(xo, . . . , xh). Since <p is a weak contraction, [7 is a connected 
subgraph of Y, hence U contains a <px0, ^x^-path Q. V(Q) C V(U) = 
{(pXj : 0 S j è h} and since h < n, no vertex of Q belongs to C. Hence 
Q U (e) is a i n a c c e s s i b i l i t y patli which contains e, in other words, 
e G £ ( F 5 C ) . 

T h e second par t is an immediate consequence of the first. 

Proof (of Proposition 4.4). Necessity is obvious. Sufficiency: Take any 
C C V(Y) and suppose there is an x G <p~lC C\ int XAt<p-ic- PBC is a primitive 
subset of C; by hypothesis and 4.5, 

ip-lfiBC C\ \ntXA#-\c C (p~lfiBC C\ mtXAtip-^BC = 0, 

from which it follows tha t x G <p~lfiBC, i.e., <̂ x G 9 î F B C . But since <£ is a weak 
contraction, x G i n t X 4 > v , - i c C F ( X A ^ - i c ) implies <̂ x G F ( F / i C ) (4.6), 
whence <px G int F # c . This says C C\ int F/?c ^ 0, i.e., C is not one-sided. 

The next two propositions provide examples of rim stable maps. 

4.7 PROPOSITION. If <p : (X, A) —» ( F , B) is a contraction which is nowhere 
one-one {i.e., I^ -1^! 9^ 1 for every y G F ( F ) ) , //zen <p is rim stable. In fact, the 
inverse image under <p of every subset of V(Y) is one-sided. 

Proof. Take any C C F ( F) and suppose there is an x G ^ _ 1 C Pi int XAt<p-\ c> 
P u t <px = y. Since <p is nowhere one-one, \v~ly\ = 2. Since <p is a contraction, 
<p{~l) (y) is connected, hence there exists an edge e = [x, x'] G E(<p{~l) (y)). 
x G i n t X ^ ^ - i c implies g G £ ( x ; X ) C £(AG4 >^-ic). At the same time, 
x, x' G <p~ly C ^ _ 1 C , but this is a contradiction to 2.6 (iv). 

4.8 PROPOSITION. If <p is a contraction of (X, a) onto ( F , b) (i.e., <pX = Y 
and (pa — b), then <p is rim stable. 

Proof. Take a ^-primitive subset C of V(Y) and suppose there is an 
x G v~lC C\ int ATHi^-ic. Put y = <px. By the proof of 4.7, <p~1y = {x}. Since 
y G C = 9 tF Ô C there exists an edge ey = [% / ] G £ ( ^ ; F ) — £ ( F 6 C ) . By 
surjectivity of cp, <p~ly' ^ 0, and since ^ is a contraction, cp(~l) (ey) is a con­
nected subgraph of X with V(<p{~l) (ey)) = {x} U <£_13/'. Hence there is an 
x' G ç~ly' such tha t [x, x'] G E(x;X) Ç_ E(Xtlt(p-\c) (since x G i n t X a ^ - i c ) , 
which in turn implies x' G V(Xat(p-ic)> At the same time x' G ^ _ 1 C , otherwise 
we have a contradiction to 2.6 (iv). Hence by 4.6, y' = <px' G V(YbC) — C = 
int YbC, whence ey G E(yf;Y) C E(YbC), a contradiction. 
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T h e following example shows t ha t in 4.8 the hypothesis t ha t <p be a contrac­
tion (not jus t a weak contract ion) is essential. Let X be the graph of Figure 2a, 
F the restriction of X to {a, 1, 2, 3, 1', 2' , 3 '} , cp the weak contract ion of 
(X, a) onto (Y,a) which maps 4 i—> 2, 4' •—> 2' and which is the ident i ty 
elsewhere. C\ = {2} is a-primitive in Y, bu t <p~lCi = Bx = {2, 4} is not one­
sided. Hence <p is not rim stable. 

5. T h e f u n c t o r Q. Any map p : (X, A) —> ( F, B) induces a function 
<2(^):<2(F,£)-><2(X,,4)by 

Q(v) = PAV~1. 

Since Q(<p) *s a mapping between lattices one might hope t h a t with suitable 
conditions on cp, Q(<p) will turn out to be a latt ice homomorphism. Trivial 
cases aside, this is, however, not the case. We will show (Proposition 5.2) t h a t 
if cp is rim stable, then Q(<p) preserves a rb i t ra ry infima bu t fails to preserve 
suprema (see the counterexample given after 5.5). Nevertheless, rim stable 
maps appear to be the natura l maps to work with in this context, since they 
arise from the closure systems associated with separat ion latt ices (see Section 
8) . We have found no sufficiently wide subclass of the rim stable maps for 
which the induced maps are lattice homomorphisms. Possible candidates for 
such a class would be the contract ions, bu t our counterexample shows tha t 
even restriction to surjective contract ions will not force the induced maps 
Q(<p) to preserve suprema. T h u s there seems to be no good reason, a t this point, 
for restricting the class of rim stable maps in any way. Nevertheless, one 
cannot help feeling t ha t there is room for improvement . 

5.1 LEMMA. / / <p : (X, A) —> ( F , B) is a weak contraction and \f/ : ( F , B) —» 

(Z, C) is rim stable, then Q(\j/ o <p) = Q(<p) oQ(\p). In particular this holds 
when both cp and xp are rim stable. 

Proof. T a k e any C-primitive set K C V(Z) and pu t H = ip"lfiB^~lK. We 
shall show tha t %&A,<P~H-^K — %&AH- Since <p~l\p~lK Z) H we have t h a t 
S B A ^ - V - 1 ^ C 3&AH- Now let W = (x0, . . . , xn) be an ^li^-accessibility pa th 
in X. We have to show tha t W is also an A, <^_ 1^_ 1^-accessibility pa th . 
Suppose, by way of contradict ion, t h a t xm G ip~1\f/~lK for some m < n, and 
tha t m is the least subscript with this proper ty . Hence <pXoy . . . , <pxm—i (? 
so tha t (pxm G V(YB^~iK) (here one uses t h a t <p is a weak cont rac t ion) . Since 
(pxm £ $~lK, rim stabil i ty of \p implies t h a t <pxm G dlYB^-iK = fiB\p~lK, i.e., 
xm G H, cont rary to W being an A ^-accessibi l i ty pa th . 

5.2 PROPOSITION. / / <p : (X, A) —> ( F , B) is rim stable, then 

fiAcp-^:Q(Y1B)-^Q(X,A) 

preserves arbitrary infima. 
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In particular, this says t ha t /3A<£>-1 is an order-preserving map. For the proof 
of this proposition we need two lemmas. 

5.3 LEMMA. If <p : (X, A) —> ( F , B) is a weak contraction, then $&Ai<p-ic = 
%&A,<P-1PBC for every one-sided set C C V(Y). 

Proof. Since ip~xC D <p~lfiBC it suffices to prove t h a t %&A,<p-i0Bc C SB^.^-ic-
Take any A, ^""^sC-accessibility pa th W = (x0, . . . , xn), and suppose t ha t 
there is an r < n with xr G ç~lC. r may be taken as the least subscript with 
this property. Then x0, . . . , xT-\ G v~lC, hence xr G V(XAt<p-ic)> Since <p is 
a weak contraction, <pxT G V(YBC) by 4.6. This together with <pxr G C and 
one-sidedness of C implies <pxr G 9 ? F B C = 0 f iC, so tha t xr G <p~lfiBC, contrary 
to W being an ^4, ^ " ^ C - a c c e s s i b i l i t y pa th . Hence we have shown tha t W 
is an A, ^"^-access ib i l i ty pa th . 

5.4 LEMMA. If <p : (X,A) —» ( F , 5 ) is a weak contraction, then for any 
family (C<)^/ of primitive subsets of V(Y), 

28A,?" 1 |nf CV = 2 B A , ^ - 1 C » 

T^^r^ C = U fez Cf. 

Proof. By 3.2, C is a one-sided set. Hence 2 8 A , * - I C = 2BA,V»-I/SBC by 5.3, 
bu t pBC = inf Ci by the proof of 2.10. 

Proof (of Proposition 5.2). Let (Ci)i£I be a family of primitive subsets of 
V(Y). We wish to show tha t $A<P~X inf Ct = inf pAip~lCt. This is the same as 
fiAip~lfiBC = /3A£7, where C = U<çz C* and U = KJ i^i fiA<p~lCu and amounts 
to showing tha t XAt<f>-i int a = XAU. By Lemma 5.4 it suffices to show tha t 
XAt(p-ic = X AU. 

For each i G / , fiA<p~lCi C <P~1CÙ hence U C Uz6 /^ _ 1 Cf = ^ - 1 C , hence 

For the reverse inclusion let W = (x0, . . . , xn) be an A ^/-accessibility pa th , 
i.e., XQ, . . . , xn—i G C/. We will show tha t W is also an A, <p_1C-accessibility 
pa th . Suppose, by way of contradiction, t ha t there is an r < n with 
xr G <p~lC = Uz€/^_ 1CZ-, and let s ^ r be the least subscript such tha t 
xs G <p~1Cj for some 7 G i". Then x0, . . . , x5_i G <p~lCj, in other words, 
x s G V(XA><p-iCj). By rim stabil i ty of <p this together with x s G <p_1C;- implies 
x s G $lXAtip-iCj — ^A(p~~1Cj d U, s. contradiction. 

We can sum up 5.1 and 5.2 as follows: 

5.5 T H E O R E M . The assignment (X, A) 1—» Q(X, A), <p^-*Q(<p) is a contra-
variant functor from the category G r i m into the category L,nf of complete lattices 
and (complete) mi-preserving maps. 

Concerning suprema it is clear from 5.2 tha t for any rim stable 
c : (X,A) —> ( F , B) and any family (C*)<€/ of primitive subsets of V(Y) 
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one has 

PAV~1 sup Ci è A sup $A<p-lCu 

but equality need not hold as is shown by the example of Figure 4. Note that 
the map used in this example is a contraction of (X, a) onto (Y, a). Figure 4 
shows the two graphs and the mapping <p between them; Figure 5 shows the 
corresponding weak separation lattices. Sets are written without braces and 
commas; thus 131' means {1,3,1 '}. Those elements of Q(X,a) which are 
images under the induced mapping /3„<p-1 are indicated by circles. 

<P 

1 3 - > 2 

x —> x otherwise 

FIGURE 4 

Pa<P~l 21 ' 

Q(X, a) Q(Y,a) 

FIGURE 
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Take G = 21', G = 12. Then in Q(Y, a), sup*=ii2 G = 0, hence 
ft^?-1 sup ,=1,2 G = 0. On the other hand, ft^G = 321', pa<P~1C2 = 123, so 
that in Q(X, a), supz==i,2 A ^ - 1 G = sup{321/, 123} = 23, which shows that 
/3a<£>-1 does not preserve suprema. 

It will be noted that in this example the map /3a^_ 1 is one-one. The reason 
for this is that <p is a surjective contraction, as we shall now show. 

5.6 PROPOSITION. / / cp is a contraction of (X, A) onto (Y,B) (i.e., cpX = Y 
and <pA = B), then Q(<p) : Q(Y, B) —> Q(X, A) is one-one. 

The proof depends on the following refinement of 4.6: 

5.7 LEMMA. If cp is a contraction of (X, A) onto (Y, B), then <pXAt<p-ic = YBC 

for every C C V(Y). 

Proof. Let W = (;y0, . . . , yn) be a. ^(^-accessibility path in F, i.e., yo £ B, 
and y0, . . . , yn-i £ C. Put et = \yt-i, yt], i = 1, . . . ,n. Since V (<p{~l) (e t)) = 
ip~lyi-i \J ip~lyt and <p{~l)(ei) is connected, there exist vertices zt-i Ç (p~ly^i 
and xt 6 ip~ly% such that e( = [z2-_i, x j G E(^ ( - 1 )(^i)) , i = 1, . . . , n. Choose 
an arbitrary x§ (z A C\ <p~ly§ (this is possible since yQ £ B and ^ = B). 
Since ^""^O^) is connected, there is an x*srpath Pt in ^""^(^O» i = 0, . . . , 
n — 1. Now put 

S = i W (ei') U A U . . . U Pn_! U ( O -

5 is an ^4xw-path, and it is clear from the construction that no vertex of S 
(with the possible exception of xn) belongs to <^~1C Hence 5 is an A, ç~lC-
accessibility path. Again from the construction of 5 it is clear that <pS = W. 
This means W C <pXAi(p-iC} and hence YBC C <£>^G^-ic. Equality of the two 
graphs then follows from 4.6. 

Proof (of Proposition 5.6). Let C, C G Q(Y, B) and / S ^ ^ C = PAV^C. 

Then XAtV-ic = l i ^ - i c , whence by 5.7, F 5 C = A ^ - i c = <pXAt<p-iC' = 
YBC>. Finally, since Cand C are primitive, C = C. 

<P lJo <P lyi V~lj2 <p~lyn 

FIGURE 6 

The path S 
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6. The weak separation lattice of a rooted tree. A case where the 
s t ructure of a weak separation latt ice is part icular ly easy to describe is t h a t 
of a rooted tree (T, a). 

For x, y c V{T) define y ^ x if and only if y is a vertex of the (unique) 
path in T which joins a and x. We shall describe Q(T, a) in terms of certain 
ideals of the part ial ly ordered set (V(T), ^ ) . 

Given an arb i t ra ry part ial ly ordered set (A, :g ) and an element x £ A 
we shall mean by the upper neighborhood of x the set Ux of all elements y £ A 
which cover x (i.e., which are >x and for which there is no element z with 
x < z < y). Note t ha t for a ver tex x of a rooted tree (T, a) we have Ux = 
{y 6 F (x ;T ) : y > x\. 

6.1 Definition. An order ideal / of a part ial ly ordered set (A, ^ ) is a neigh­
borhood ideal if and only if for any x 6 I either Ux C\ I = 0 or Ux C I-

6.2 LEMMA. For any partially ordered set the neighborhood ideals (if there are 
any) form a complete sublattice of the lattice of all order ideals. 

Proof. T h e lattice operations in the latt ice of all order ideals are set-theoretic 
union and intersection. Let (Ia)aeA be any family of neighborhood ideals, 
J = y a € A j a . If jjx r\ I ^ 0, then Ux C\ Ia ^ 0 for some a, hence Ux C /« 
by definition of a neighborhood ideal. Hence Ux C / , i-e., I is a neighborhood 
ideal. T h e a rgument for intersections of neighborhood ideals is quite analogous. 

We now characterize the primit ive sets of a rooted tree in terms of its neigh­
borhood ideals. 

6.3 T H E O R E M . For any rooted tree (T, a) the sets V{TaB), B C V(T), are 
precisely the neighborhood ideals of the partially ordered set (V(T), ^ ) . 

Proof. Take any B C V(T) and let x G V(TaB). Then there is an aB-
accessibility pa th (x0, . . . , xn) with x0 = a, xn = x. Hence if y ^ x, then 
y = Xi for some i ^ n, hence y G V(TaB). T h u s V(TaB) is an order-ideal of 
V(T). 

T o see t ha t it is a neighborhood ideal take any vertex y (z Ux r\ V(TaB) 
and an ai^-accessibility pa th (x0, . . . , xn) for y, i.e., x0 = a, xn = y, and 
Xo, . . . , xrt_i (? i3. Since r is a tree, xn_i = x, and hence for each z G t/^, 
(xo, . . . , xw_i, 2) is an «^-accessibility pa th . T h u s Ux C V(TaB). 

T o prove t ha t any neighborhood ideal / determines an accessibility graph 
let B be the set of all maximal elements of / (i.e., those y (z I for which there 
is no x G I with x > y), and consider V(TaB). 

Suppose there is an x G / — V(TaB), and let (x0, . . . , xn) be the pa th in T 
joining a and x. Then xm G B for some m < n. Since x„ = x G / this contra­
dicts the fact t h a t xm is a maximal element of / . Hence / C V(TaB). 

If x G V(TaB) then the pa th W = (x0, . . . , xn) which joins a to x is an 
a^-accessibili ty pa th . If x ? / then there is a largest subscript m < n for 
which xOT Ç / , and hence x w + 1 Ç UXm. If f/^ P\ / = 0, then xm G -B, bu t this 
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is impossible since W is an aJ3-accessibility pa th . Hence UXm C I> whence 
xm+i Ç / , contrary to the maximality of m. Thus V(TaB) C I, completing 
the proof. 

It is worth noting tha t for rooted trees those subsets B which contain no 
end-vertex of T a r e one-sided. For if x £ B P\ int TaB, then E(x;T) C E(TaB) 
and hence Ux C V(TaB). d(x\T) ^ 2 implies t ha t C/̂  ^ 0. Given y (z Ux 

the pa th in 2" which joins a and y is an ^ -acces s ib i l i t y path and contains x. 
Hence x (? B, a contradiction. But this means tha t 5 is one-sided. 

By Theorem 6.3 the lattice Q(T, a) is isomorphic to the lattice of all neigh­
borhood ideals of (V(T), ^ ) , the isomorphism being B H-> V(TaB). I t is well 
known tha t the lattice of order ideals of any p.o. set is distributive. Any sub-
lattice of a distributive lattice is distr ibutive; hence from 6.2 we have 

6.4 T H E O R E M . The weak separation lattice of a rooted tree is distributive. 

7. C h a i n s . In this section we determine all rooted graphs whose weak 
separation lattice is a chain. I t turns out t ha t these graphs can be obtained 
by a simple construction from paths or rays ( = one-way infinite pa ths ) . 
T h e restriction to rooted graphs entails no loss of generality (see beginning of 
Section 8) . 

Before s ta t ing the principal result of this section we introduce some termi­
nology and notat ion. 

7.1 Definition. Given a rooted graph (X, a) and a vertex x £ V(X) let 

Ux= {y £ V(x;X) : p(a, y) > p(a,x)\, 

where p denotes distance in X. The inequality p(a, y) > p(a, x) is equivalent 
to p(a, y) = p(a, x) + 1. We shall say tha t x is essential if and only if Ux 9^ 0. 

Observe t ha t if X is a tree, then Ux is the upper neighborhood of x introduced 
in the preceding section. 

7.2 T H E O R E M . Any weak separation lattice Q(X, a) which is a chain is iso­
morphic to a segment of the ordinal co + 1. Moreover, (X, a) is a cactus with the 
following properties: 

(i) every block of X is either an edge or a triangle; 
(ii) for every x G V(X), Ux contains at most one essential vertex; and 

(iii) for every x G V(X) there is at most one edge ex joining two vertices in 
Ux; if Ux contains an essential vertex ux, then ex G E{nx\X). 

Conversely, if (X, a) satisfies (i), (ii) and (iii), then Q(X, a) is a chain. 

Conditions (i), (ii) and (iii) permit the following explicit description of 
(X, a) (actually, (i) is redundant ; it is implied by (ii) and (iii)). For each 
n ^ 0 let An = {x G V(X) : p(a, x) = n], and d = max(» : An j£ 0}. If X 
is non-trivial, then either d is a positive integer or d = oo. Clearly, for every 
n < d, An contains an essential vertex, hence by condition (ii) exactly one 
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such, say xni and x0 = a. Then W = (x0, . . . , xd-i) or W = (x0, Xi, . . .) is a 
path or a ray (depending on whether d is finite or infinite) which comprises all 
essential vertices of X, and which is the skeleton of X in the sense that every 
other vertex of X is adjacent to some vertex in W. That is, 

V(X) = U V(xn;X). 
0<n<d 

Moreover, for 0 < n < d we have 

V(xn]X)r\An^ = {xn_x} 

by condition (ii), and 

\V(xn;X)nAn\ g 1 

by condition (iii) (if V{xn\X)r\ An = \yn), say, then xn, yn and xn-i form a 
triangle). UXn = V(xn\X) C\ An+i is non-empty and may be of any cardinality. 
By (iii) all but at most two vertices of UXn are of degree 1. If UXn contains two 
vertices of degree §;2, then one of them is xn+i, the other is of degree 2, and 
they are adjacent to each other. 

All this says that (X, a) can be obtained by taking a path or a ray W 
starting at a and by attaching at each vertex of W (except at the other end-
point, if W is a path) at most one triangle which must have an edge in common 
with W, as well as any number of vertices of degree 1 (see Figure 7). 

FIGURE 7 

Proof (of Theorem 7.2). Sufficiency: Let 0 < n < d. In terms of the descrip­
tion of (X, a) given above, every vertex in Bn = UXn — {xn+i} is of degree 1 
(case ln) or Bn contains exactly one vertex of degree 2, say yn (case 2n). If 
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d < oo, then Ud contains no essential vertex, bu t it may nevertheless happen 
tha t Ud contains exactly two vertices of degree 2 (all others being of degree 1), 
#d, Jd, say, and [xd, yd] £ E(X) (case 2d). The corresponding a-primitive sets 
are {xn\ (case ln, n < d), or {xn} and {xn, yn) (case 2n, n < d), and {xd, yd\ 
(case 2d), as well as 0. I t is straightforward to verify tha t the map 
7] : Q(X, a) —> co + 1 defined by {xw} i—» 2rc, {xn, yn] *-* 2n + 1, 0 »—> co + 1, is 
a monomorphism. Clearly the image of rj is isomorphic to a segment of co + 1. 

Necessity: Suppose Q(X, a) is a chain. Let F be a block of X which is not 
an edge. Ei ther a £ V(Y) or a d V(Y); in the lat ter case there is a unique 
cut-vertex c of X separating a from Y. Pu t b = a or c as the case may be, and 
suppose there are two distinct edges et = [xt, yt] of Y, i = 0, 1, not incident 
with b. Since Y is 2-connected there is a path in Y containing b and et but not 
ei-i. Hence Bt — {xityi}t i = 0, 1, are two incomparable a-primitive sets, 
contrary to Q(X, a) being a chain. Hence a t most one edge of Y is not incident 
with b, i.e., F is a triangle. This proves (i). 

Since every block of X is either an edge or a triangle, it is clear tha t every 
essential vertex (with the possible exception of a) is a cut-vertex. In any 
graph, if x is a cut-vertex, then x Ç diXax C {x}, i.e., {x} G Q(X, a). 

Suppose x G V(X) is such tha t Ux contains two distinct essential vertices 
Uo, Ui and let et G E(ut;X), ef 9e [x, ut], i = 0, 1. Since tii is a cut-vertex 
one has {ut} G Q(X, a) as Avell as et G E{XùUl-i) — E(XaUi), i = 0, 1. Hence 
{UQ} and {z/i} are two incomparable elements of Q(X, a), a contradiction. 

Finally, suppose Ux contains an essential vertex uXJ and let [y, z] Ç E(X) 
with ^ z f f/a;. If y 9e ux 9e zf then Xa>f?/i2j = X V . On the other hand, 
e G E(XaUx), bu t since XaMx ^ X, {ux\ and {3̂ , 2} are incomparable a-primitive 
sets. This completes the proof. 

I t should be noted tha t while Q(X, a) is a t most countable the order of X 
may be as high as one wishes. The reason is t ha t a t any vertex of the skeleton 
pa th (or ray) one may a t tach any number of vertices of degree 1. 

8. The closure operator associated with the weak separation lattice 
of a rooted graph . I t is clear from Proposition 2.11 tha t for any pair (X, A) 
the sets E(XAB), B C V(X), form the open sets (i.e., complements of closed 
sets) of a closure system. In this section we s tudy briefly the closure operator 
arising from this system. We begin by showing tha t in so doing we may restrict 
ourselves to the case of a rooted graph, i.e., a pair where A = {a}. This is 
done by the s tandard procedure of adjoining a new vertex to the given graph. 

Given an arbi t rary pair (X, A) take a new vertex a ? V(X) U E(X) and 
consider the graph X' with 

V(X') = V(X) U {a} and E(X') = E(X) U ( [ f l ( x ] : x U ) . 

8.1 PROPOSITION. The a-primitive sets of X' are [a] and the A-primitive sets 
of X. In other words, the lattice Q(X', a) consists of Q(X, A) with the set {a} 
adjoined as a new zero element. 
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Proof. The only a-primitive set of X' which contains a is [a). Any other 
a-primitive set B of X' is therefore a subset of V(X). For any such B, if 
(XQ, . . . , xn) is an A ̂ -accessibility path in X, then (a, XQ, . . . , xn) is an 
aJ3-accessibility path in X'', and conversely. This says that 

F(X' a B) = F ( Z A 5 ) U {a} and 

£(* '«*) = E(XAB)U{[a,x] : x € 4 } . 

Moreover, $IXAB = S î 'X '^ (rims in X and X', respectively), since for 
x e F(X), 

v ' ^ j (£ (x ;Z) U {[a,*]}, if s € 4 . 

Hence 23 is a-primitive if and only if it is A -primitive. 

For the remainder of this section we shall deal with a given rooted graph 
(X, a). We first characterize the accessibility graphs in terms of their edge-
complements, in other words, the closed sets of the underlying closure system. 

8.2 THEOREM. Given a one-sided set B C V(X) with a d B put X\XaB = F. 
Then 

(i) a d V(Y); 
(ii) X — Y is connected; 

(iii) Y is a restriction of X; and 
(iv) Y has no isolated vertex. 
Conversely, if Y is a subgraph of X satisfying (i), (ii) and (iii), then X\Y = 

Xa,v(Y)- Moreover, if Y also satisfies (iv), then V(Y) is a one-sided set, 9ÎF is 
a-primitive, and X\Y = Xa^Y- In other words, the non-zero elements of Q(X, a) 
are precisely the rims of subgraphs satisfying (i), . . . , (iv). 

Note that since F is a restriction of X the two sets 3î F and 33 F coincide. 

Proof. We begin by showing that X — Y = Int XaB. Since by 2.6 (iii), 
Int XaB is a restriction of X, it suffices to prove that V{X) — V(Y) = int XaB. 

Since a (£ B, XaB 9^ (a) and hence has no isolated vertex. This implies 
V(XaB) H F (F) = WXaB = SRF, whence int XaB H V(Y) = 0, i.e., 
int XaB C V(X) — V(Y). For the reverse inclusion note that 

X - XaB C X\XaB = Y. 

Hence x Q V(Y) implies x & V(X - XaB), i.e., x G V(XaB). Also, 
V(Y) D 3?F = dtXaB, whence x g ^XaB. Thus V{X) - V(Y) C int XaB. 

Since 23 is one-sided any vertex in int XaB can be joined with a by an 
^-accessibility path W disjoint from B and hence disjoint from dtXaB C B. 
This means that W C X — F, proving (i) and (ii). 

To prove (iii) take x, y £ F (F ) such that e = [#, y] £ 23 (X) — -£(F). 
Then e G £(XaZÎ) and hence x, y G F(X a B ) , i.e., x, y £ V{XaB) C\ V{Y) = 
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dtXaB. But this is a contradiction, since no two vertices of ^\XaB are adjacent 
mXaB (2.6 ( iv)) . 

(iv) is clear from the definition of F as an edge-complement. 
Now suppose tha t F satisfies (i), (ii), (iii) and pu t V(Y) = B. We have 

to show tha t X\Y = XaB. Let W - (x0, . . . , xn) be an a£-accessibility pa th . 
If W (Z X\Y, then [ x ^ , x j 6 E(Y) P\ E(W) for some i, 1 ^ i ^ ' w . But 
then Xf-i £ B P\ V(W) and i — 1 < n, contrary to W being an ^ - a c c e s ­
sibility pa th . Hence XaB C X \ K None of the conditions (i), (ii), (iii) is 
used for this inclusion. 

For the reverse inclusion take any e = [x, y] £ E(X\Y). At least one of 
x, y belongs to X — F, say x; for if x, y £ F ( F ) then by (iii), g G E(Y), a 
contradiction. By (i) and (ii) there is an ax-path W in X — F. But then 
I f U (e) is an ^ -acces s ib i l i t y pa th containing e, i.e., g G E(XaB). 

Now assume (iv), and suppose there is an x G B P\ int X a B . (iv) implies 
0 =é E(x;Y) C E(x;X) = £ ( x ; X a B ) = E(x;X\Y), an obvious contradiction. 
T h u s B is one-sided. 

Since we already know tha t X\Y = XaB we have from (iv) tha t 9î F = 
$iXaB, hence by 2.7, 9Î F is a-primitive and X \ F = X a i ^ F . This completes 
the proof. 

For future reference we sta te the equation X\Y = XatV{Y) as a separate 
corollary. 

8.3 COROLLARY. For any one-sided set B, XaB = Xa>v(x\xnri)-

8.4 COROLLARY. Let Bt€ Q(X, a), Yt = X\XaBi, i = 1,2. 77*ew £ i ^ a £ 2 

i / an J on/;y if Y 2 is a restriction of Fi. 

Proof. Bi ^aB2<=$ XaBl C XaB2 <=} Fx D F 2 <=> F2 is a restriction of Yu 

the last equivalence following from the fact tha t Fi, F 2 are restrictions of 
X (8.2 (iii)). 

For a given rooted graph (X, a) letR(X, a) be the collection of all connected 
restrictions Z of X with a £ V(Z). Partial ly ordered by inclusion, R(X, a) 
forms a complete lattice in which the supremum and infimum of a family 
(Zt)iei are given by 

sup Zf = restriction of X to U Zu 

inf Zi = Z, 
it i 

where Z is the component of Plie/ Z i which contains the vertex a. The graph 
(a) and X are the zero and one-element, respectively, of R(X, a ) . 

8.5 PROPOSITION. For ciny rooted graph {X, a) the mapping Ç '. B i—» In t XaB is 
an infective complete meet-preserving mapping of Q(X, a) into R(X, a ) , i.e., 
in the category L i n f , Q(X, a) is a sub object of R(X, a ) . 
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Proof. By 8.2, f is indeed a mapping of Q(X, a) into R(X, a). I ts injectivity 
can immediately be seen from the following factorization: 

B^XaB^X\XaB^X - (X\XaB) = IntXa*. 

Let Bo = inf Bt in <2(X, a)> Z = m^ I n t XaBi in R{X, a). Since f preserves 
order, 

lntXaBQ = f ^ o C i n f f ^ , = Z. 

In order to prove the reverse inclusion note t ha t Z is the union of all pa ths 
W C Z which s ta r t a t a. Since Z C C\iu \ntXaBi we have t ha t any such 
path W is disjoint from every Bt (3.5), hence W is disjoint from B = U *e/ -B*. 
This means IT C In t XaB and hence Z C In t XaB = IntX f l j B o , completing 
the proof. 

Given any edge e G E(X) denote by Ve the set consisting of the two vertices 
incident with e. 

For the rooted graph (X, a) let ^ a = ty(E(X — a)). Define a mapping 

* : $ „ - > Q(X, a) by 

Note t ha t B = [J eeF Ve is a one-sided set. This follows from 2.6 (iv) and the 
observation tha t any x G B is incident with some e = [x, y] G F, so t ha t 
y G B. 

8.6 LEMMA. £ w a f s unions to infima. 

Proof. Let F , G $« and pu t £* = U ^ - 7 „ i G / . Then 

£ U F< = & U 7C = 0a U 3< = 0a U &#< = £„ U ^ 

= inf £F„ 

the essential equali ty (in the middle) being provided by 3.3. 
In particular, Lemma 8.6 says t ha t £ is an order-inverting map . 
T h e following is the main result of this section. 

8.7 T H E O R E M . The mapping a : ^ a —> tya defined by F^> E(X\Xa^F) is a 
closure operator on E(X — a ) , and the lattice g a of a-closed subsets of E{X — a) 
is anti-isomorphic (as a complete lattice) to QQ(X, a), the sublattice consisting 
of all non-zero elements of Q(X, a). 

Proof. Take any F C E(X — a). Since Xa^F = XaB, where B = UeçF Ve, 
the existence of an edge e = [x,y] G F C\ E(Xa^F) = F C\ E(XaB) implies 
t ha t x, y G B r\ V(XaB), which is impossible by 2.6 (iv). Hence 

FCE(X\Xa,iF) = F°. 

T h a t a is isotone follows from the fact t ha t £ inverts order. 
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Still using the above notation we have by 8.3, 

ÇF* = SE(X\Xa,tF) = paV(X\Xa,tF) 
= paV(X\XaB) = $aB = £F. 

This implies t ha t the operator a is idempotent . 

Consider the restriction of £ to %a. We shall denote the restriction also by £. 
Our claim is t ha t £ : g a —» Qo(X, a) is a complete lattice anti-isomorphism. 

£ maps suprema in %a onto infima in Q(X, a). Let F t Ç g„, i G / . Then 

£ sup F , = $( U F > = ? U Ft = inf {F* 

the last equali ty by 8.6. 
£ maps infima in %a ( = intersections) onto suprema in Q(X, a ) . Given a 

family of closed sets Fu i £ I, F = (~)iei Ft is again closed. Hence F — 
E{X\XaÀF). On the other hand, by 2.10, 

F = H E{X/Xa*Fi) = E ( X ) - U E ( X « , * 0 

= J5(X) — £(Xf l)SUP^F,) = £(X\X f l i S Up£F î) . 

T h u s E ( Z \ Z r t j F ) = E(X\X(ltSUVtFî), whence Xa^F = X a > s u p ^ v Since both 
£F and sup £/%• are primitive this implies £F = s u p î € / %Ft. 

£ is one-one. Let Fi, F2 be two closed sets with £Fi = £F2. Then Fi = 
E(X\Xa^Fl) = E(X\Xa^F2) = F2 . 

Finally, £ is onto. Let B £ Qo(^ , a) be given, and put F = E(Y), where 
Y = X\XaB. Then clearly V(Y) = U ^ F Ve. By the first par t of 8.2, Y 
satisfies (i) . . . (iv). Hence by the second par t of the same theorem, XaB = 
X\Y = X(ltV(Y) = Xa^F. This says tha t F is closed and tha t B = %F. 

9. S t ruc tura l propert ies of Qo(X, a). As established in 8.7, Qo(X, a) is a 
complete lattice, and it is easily seen tha t its zero-element is (3aV(a\X). In 
this section we shall deal with the atomicity and coatomicity of Qo(X, a) 
leaving other s tructural properties of this lattice for a later s tudy. We con­
tinue to use the notation of Section 8. To avoid useless complications we shall 
assume tha t V(a;X) is primitive. 

Lit t le t ha t is of interest can be said about the atoms. We sum up the situa­
tion in the following proposition, leaving the proof to the reader. 

9.1 PROPOSITION. Any atom of Qo(X, a) is of the form 

paUV(a;X) - \b})V(V(b;X) - {a})), 

where b G V{a\X). 

Thus the a toms depend exclusively on the local s t ructure of X near the 
vertex a, which implies immediately tha t the lattice QQ(X, a) which depends 
on X globally, will not in general be atomic. For example, using the fact tha t 
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there are a t most d(a;X) a toms, one can easily see t ha t for any graph with 
more than 2d(a] X) edges Qo(X, a) cannot be atomic. 

In view of Theorem 8.7 the coatoms QQ(X, a) are of much greater interest . 
If e = [x, y] G E(X — a) is not a bridge ([2, p . 26]), then both x and y 

are a ^-access ib le , and since e G E(XaVe) it follows t h a t Ve C $lXnVe, so 
t ha t Ve is primitive. Hence if X is a bridgeless graph, then by the proof of 
8.7 and by 2.10, any B G Qo(X, a) can be wri t ten as 

B = èE(X\XaB) = in f{F e : e G E(X\XaB)}. 

e G E(X\XaB) is equivalent to Ve ^a B in Qo(X, a). T h u s 

B = ml{Ve: Ve^aB}; 

in other words, the sets Ve, e G E(X — a), generate Qo(X, a) as a complete 
meet-semilattice. 

We now characterize the coatoms of QQ(X, a). 

9.2 LEMMA. If X is bridgeless, then the coatoms of Qo(X, a) are precisely those 
sets Ve, e G E(X — a), which are not cut sets of X. 

An edge e of X for which Ve is not a cut set will be called non-separating] 
otherwise e is called a separating edge. 

Proof (of Lemma 9.2). In a bridgeless graph, to say t h a t Ve is not a cut set 
implies t ha t neither endpoint of e is a cut vertex. Now let B G Qo(X, a). If 
X\XaB has two dist inct edges eu e2, then Vei ^a B, i = 1, 2, and a t least one 
of these inequalities is strict . Hence if B is a coatom, then X\XaB — (e), i.e., 
B = Ve for some e not incident with a. Moreover, Ve cannot cut X, for if it 
does, let Y be any component of X — Ve which does not contain a, and e' 
any edge of X incident with some vertex of Y. Then e and e' are two dist inct 
edges of X\XaVe, cont rary to Ve being a coatom. 

Since always \Ve\ = 2, Lemma 9.1 and the remarks preceding it yield 
immediately: 

9.3 PROPOSITION. For a ^-connected graph X the lattice Qo(X, a) is coatomic, 
the coatoms being precisely the sets Ve, e G E(X — a). 

In the 2-connected case, if every edge e G E(X — a) is a separat ing edge 
of X, then clearly Qo(X, a) has no coatoms whatsoever. Such a graph has the 
proper ty t h a t every vertex, with the possible exception of a, has infinite 
degree. W h a t happens to the coatomicity of Qo(X, a) when vertices of finite 
degree are present, is not known. However, the following result shows t h a t 
every vertex of finite degree induces a t least one coatom. 

9.4 T H E O R E M . Every vertex of finite degree of a 2-connected graph is incident 
with a non-separating edge. 
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In particular, this says that every vertex of a locally finite 2-connected 
graph is incident with a non-separating edge. Mercier [3] has pushed this 
result further by showing that for every locally rayless 2-connected graph X 
the lattice Qn(X, a) is coatomic. X is said to be locally rayless if and only if 
for every ray R C X and every x G V(X) the set V(x;X) P\ V(R) is finite. 
Trivially, every locally finite graph is locally rayless. 

In the proof of Theorem 9.4 we make use of the well-known concept of the 
block-outpoint tree of a graph ([2, p. 36]). We recall the definition. 

Let X be a (connected) graph, A its set of cut vertices (not to be confused 
with the set A used earlier in this paper), B its set of blocks. One defines the 
block-cutpoint graph T of X by 

V{T) = i U B and E(T) = {[a, B] : a £ A, B Ç B, a £ V(B)\. 

T is known to be a tree ([2, Theorem 4.4]), and for a £ A, d(a;T) is the 
number of blocks which contain a. Hence 

d(a;T) ^ 2 for every a Ç A. 

Similarly, for B £ B, d(B\T) is the number of cut vertices of X which belong 
toB. 

In statement and proof of the following lemma the word "cut-vertex" 
means ''cut-vertex of X". 

9.5 LEMMA. Let X be a connected graph in which every infinite circuit ( = 2-way 
infinite path) contains at most finitely many cut-vertices. Then X has a block 
containing at most one cut-vertex. 

Proof. Suppose every block of X contains two cut-vertices. Then in the 
block-cutpoint tree of X 

d(B;T) è 2 for every B e B. 

This means min2/€F(r) d(y;T) ^ 2. Hence T contains a circuit C, and since T 
is a tree, C must be infinite. The vertices of C are alternatingly blocks and 
cut-vertices of X, i.e., 

C = (. . . , a_i, J3_I, a0, BQ, alf Bu . . .). 

For every integer i let Wt be an a^+i-path in Bt. Then C = U Wt is an 
infinite circuit in X, and C contains infinitely many cut-vertices, a contra­
diction. 

9.6 Definition. Let T be a tree. For x, y G V(T) let T{xy) be the (unique) 
path in T from x to y, and for 4̂ C V(X) put 

rA = U T(xy). 
x,y£A 

A is called a set of generators of T if and only if TA = T. 
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9.7 PROPOSITION. Let T be a tree, A a set of generators of T such that 
d(a\T) ^ 2 for every a G A. Then T contains an infinite circuit 

C = (. . . , C-i, Co, Cij . . . ) 

such that Ci (z A for infinitely many positive as well as infinitely many negative 
subscripts i. In particular, this says that both A and T are infinite. 

Proof. Given any x G A and e G E(x;T) let 

A(x,e) = {a G A : e G E(T(ax))}. 

Since A generates T the set A (x, e) is never empty . Now fix an x0 G A and 
an eo G E(XQ]T), and let x\ G A(x0, e0). Since Xi is an end-vertex of the pa th 
T(XQXI)} and since d(x\\T) ^ 2 there is an £i G E(x\\T) which does not belong 
to T(XQXI). N O W take an x2 G 4̂ (xi, d), etc. I t is then clear t ha t 

R = r(x0x!) u r(xix2) u . . . 
is a ray s tar t ing a t x0, and tha t V(R) contains infinitely many members of 
A (viz. xi} i = 0, 1, . . .). 

Since d(xG;T) ^ 2 there is an e^ G E(XQ\T) — {eo} and one can repeat the 
previous construction beginning with x0 and eQ', obtaining a ray R', also 
s tar t ing a t x0 bu t otherwise disjoint from R, and containing infinitely many 
members of A. C = R U Rf is then the required infinite circuit. 

Proof (of Theorem 9.4). W h a t we shall show is the following stronger 
s t a tement : Given a vertex x0 of a 2-connected graph X such that all edges in 
E(x{)]X) separate X. Then d(xo;X) is infinite, and there is an infinite circuit 
C C X — x0 which contains infinitely many vertices adjacent to x0. 

Since X is 2-connected, Y = X — x0 is connected. T h e assumption t h a t 
every edge in E(x0;X) separates X means t ha t every vertex in AQ = F (x 0 ;X) 
is a cut-vertex of Y, i.e., A0 C A, where A is the set of cut-vertices of F. 

We now show tha t A0 generates T, the block-cutpoint tree of Y. T a k e any 
edge [a, B] of T, and let e G E(a;B). By 2-connectedness of X there is a finite 
circuit Q containing x0 and e. W = Ç — x0 is a pa th in Y joining two vertices 
flo, «l G ^4o, and £ G £ ( W ) . Now consider TT*, the pa th in T induced by W. 
Since the endpoints a0, a-i of W are cut-vertices of Y it follows t ha t they are 
also the endpoints of IT*; in other words, W* = T(aodi). Fur ther , e G £ (1T) 
implies [a, B] G £(1T*) . Thus , [a, B] G E(TAo), and since [a, i$] was an 
arb i t ra ry edge of T it follows tha t T = TAQ. 

In any block-cutpoint tree one has d(a;T) ^ 2 for every a G -4. In par t i ­
cular this holds for the vertices in AQ; hence by 9.G, T contains an infinite 
circuit C which contains infinitely members of AQ. A S in the proof of 9.5, C 
determines a circuit C C F with V(C') H A0 = V(C) H A0. 

In general, Theorem 9.4 is false when d(x0;X) is infinite (see Figure 8) . 
Every edge et is separat ing; nevertheless, the graph is 2-connected. 
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FIGURE 8 

10. C o m p a r i s o n w i t h pr imi t iv i ty in t h e sense of Ha l in . In this section 
we establish tha t the weak separation lattice of a rooted graph is isomorphic 
to the separation lattice in the sense of Halin of the line graph or derivative of 
the given graph. This does not mean, however, t ha t the theory of primitive 
sets as developed in the earlier sections of this paper coincides with Halin 's 
theory when applied to derivatives. Both Halin's primitive sets and our own 
are sets of vertices, not of edges as would be the case if Halin 's definitions were 
simply transferred to derivatives. 

For a subgraph Y of X let Y be the restriction of X to V{Y). On the basis 
of the observation tha t for any B C V(X), %XAB C B, Halin [1, (1.3)] 
defines B to be primitive if and only if B = $$XAB (in Halin 's notat ion XAB 

is X(A —> B)). To avoid confusion we shall call such a set (H)-primitive. 
From the definitions of boundary and rim and 2.6 (ii) one has immediately 

t ha t 

mAB c dixAB c B. 
Hence 

10.1 PROPOSITION. Every (H)-primitive set is primitive. 

Let us denote by Q(H)(X, A) the lattice of all (H)-primitive sets. 

10.2 PROPOSITION. For a rooted graph (X, a) in which every vertex 9^a is 
either a cut-vertex or a vertex of degree 1, Q(X, a) = Q(H)(X, a). Conversely, if 
X — a is locally finite, and Q(X, a) = Q(H)(X, a), then every vertex x G V{X), 
x 9e a, is either a cut-vertex or d(x;X) = 1. 

Proof. Let x G B £ Q(X, a), x ^ a. Since x Ç V(XaB), there is an aB-
accessibility path W = (xQ, . . . , xn), i.e., x0 = a, xn — x, and since x Ç dlXaB, 
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there is an e Ç E(x\X) different from [xn_i, xn]. Hence d(x;X) ^ 2, whence 
x is a cut-vertex. Let F be a block of X containing x and edge-disjoint from W. 
Then V(x\Y) is non-empty and disjoint from V(XaB), i.e., x G 93XaB. Thus 
B = $XaB; in other words, <2(X, a) = Q^(X, a). 

For the converse take any vertex x £ V(X), x ^ a, and suppose that x is 
not a cut-vertex of X and that <i(x;X) ^ 2. This implies that the unique 
block Z of X which contains the terminal edge of every ax-path is not a bridge, 
and hence is 2-connected. Since X — a is locally finite we have from the proof 
of 9.4 that x is incident with a non-separating edge e of Z. e is also a non-
separating edge of X, whence XaVe = X\e, and consequently Ve G Q(X, a) 
but Ve (? <2(i/)(X a). This completes the proof. 

As a corollary we have that Q(X, a) = Q(H)(X, a) for any rooted tree. 

In general, if Q(X,A) ^ Q{H){X, A), the relationship between the two 
lattices is not very strong. In view of the similarity of 2.10, 2.11, 2.12, with 
Halin's Satz 1 (and its proof) it is tempting to think that Q{H)(X, A) is a sub-
lattice of Q(X, A). That this is, however, not the case can be seen as follows. 
In the lattice Q{H)(X, A) the supremum is given by 

sup ™Bt = 23 U XABi = 23 U V(XABi); 
z€7 iei iei 

hence in order to show that sup Bt and sup(H)Bi are different it suffices to 
find an example where U iti XABi is a proper spanning subgraph of X. Such 
an example is provided by Figure 1. If one takes Bi = {1, 2, 3', 4'}, B2 = 
{ l ' , 2 ' , 3 , 4} (these are (H)-primitive sets), then supW{Blt B2} = 33X = 0, 
whereas sup{Bi, B2] = {3,4, 3', 4'}. On the positive side, the inclusion 
Q{H)(X,A) —> Q(X, A) preserves arbitrary infima. To establish this we show 
that for any family Bt Ç Q{H)(X, A),i £ I, 

dixAB = $$xAB, 

where B = U i^i B t. It suffices to prove 9iXAB C %$XAB. 
Let x G diXAB. By 2.6 (ii), x £ B, hence x £ Bj for some j £ / . Since 

Bj e Q{H)(X, A), there is a ^ V(x;X) - V(XABj). If x g 93XAB, then 
F(x;X) C F(X i 4 5 ) , hence y is ^45-accessible, and therefore also ^^ - acce s ­
sible. But this means y £ F(X A B ; ) , a contradiction. It follows that 

iniWBt = pA<H>B = S3X^ = TiXAB = $AB = iniBt. 

Going the other way, there is a natural map fiA
(H) : B i—» 33XAjB from 

<2(X, .4) to (2(//)(^> ^4)- This map is clearly cwto and preserves arbitrary 
suprema. For if {B^^j is any family of primitive sets, then 

0A
im s u p £ , = SBXAfBUDB, = 33 U ZAB,. = 23 F ( U X ^ ) 

= « U 7(X^BV) = 33 U FCX^wOa,) = sup mpA
w)Bt. 

i6 / i€ / 
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On the other hand, very simple examples can be given which show that fiA
{H) 

does not in general preserve infima; thus fiA
{H) is not a lattice homomorphism. 

In order to state the principal result of this section we recall that for a 
given graph X the derivative dX of X is the graph with V(dX) = E(X) and 
E(dX) consisting of all (unordered) pairs of adjacent edges of X. Frequently, 
edge-separation properties of X can be translated into vertex-separation 
properties of dX. The following theorem is an example of this situation. It 
says essentially that the weak separation lattice of a rooted graph (X, a) is 
isomorphic to the Halin-lattice of the pair (dX, E(a\X)). Note in this con­
nection that Halin-lattices are defined in terms of vertex-separation. 

10.3 THEOREM. The mapping da:B\-*Br = \Jh^B E{b\XaB) is an iso­
morphism between Qo(X, a) and Q(H)(dX, E(a\X)). 

Proof. For abbreviation we shall put dX = F and E(a;X) = A. 
Given Z C F we denote by d~lZ the smallest subgraph of X with 

E{d~lZ) = V{Z). 
If W = (x0, . . . , xn) G 2Ba5, then dW = (ei, . . . , en) is an vli^-accessibility 

path in F, where et = [x*_i, x j , i = 1, . . . , n. For if e* G E(b;XaB) for some 
i < n, then x*_i = b G B or xt = b G B, contrary to W G 2Ba£- Thus 
V(dXaB) CV(YAB>). 

Conversely, let e G V(YAB>) and 5 = (ei, . . . , en) an ^4^-accessibility 
path in Y with en = e. Then d-1,S is a connected subgraph of X containing a 
and both ends of e. Let P = (x0, . . . , xv) be a path in d~lS with xQ = a and 
xp an end of e. None of the edges ei, . . . , en-i belongs to B', i.e., is incident 
with a vertex of B, hence x0, . . . , xp_i G £ , i.e., P G 2Ba#, so that e G E(XaB). 
This proves 

(10.3.1) F (F A *0 = F(aXû B) = £(X a f l ) . 

Take g G B'. Then e G E(b;XaB) for some 6 G 5R^«B, hence there is an 
e' = [6, c] G £ ( X \ Z a S ) . From (10.3.1) this gives e' G V(YAB>). But 
[e, e'] G E(Y), whence g' G 33FFA i r , i.e., B' G < 2 W ( ^ 4 ) . Thus da is a map 
Qo(X,a)->QW(Y,A). 

By 2.6 (iv) any edge of XaB is incident with at most one vertex of B. Hence 
for e G B' exactly one end of e, say be, belongs to B. This means that B — 
\be : e G B'} which immediately implies that the mapping da is one-one. 

Given C G QiH)(Y, A) put B = Tid~1YAC. We claim that 

(10.3.2) d-*YAC = XaB. 

Let e G E(XaB) and IF = (x0, . . . , xn) G 2BaJe with x0 = a, [xw_i, x„] = e. 
Then dlF is an AC-accessibility path in F. For if [xw_i, xm] G C = $$YYAC, 

where 0 < m < n, then xm_i or xm is incident with some edge e' G F(F A C ) = 
E(d~1YAC). Accordingly, xm_i or xm G 9 îd - 1 F A C = 5 , a contradiction. Since 
« G V(dW) C V(YAC) = E(d~lYAC), this shows that XaB C à~lYAC. For 
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the reverse inclusion let e Ç E(d~lYAC) = V(YAC), and take any . ^ - a c c e s ­
sibility pa th 5 in F of which e is a vertex. Let P = (x0, . . . , xp) be a pa th in 
d _ 1 5 with x0 = a and e = [xp_i, x j . F ( d P ) being contained in F ( 5 ) , d P is an 
A C-accessibility pa th in Y. We claim tha t P G SBas- For if not, take any 
subscript m < n such tha t em = [xm_i, xm] G 5 . This means xm is incident 
with an edge e' not in E(d~l YAC). Having xm in common, em and e' are adjacent 
in F. Since ew G F ( F A C ) this implies t ha t em G S y F ^ c = C, a contradict ion 
to d P being an A C-accessibility pa th . 

From (10.3.2) we have immediately t ha t B = S i d ^ F ^ = VlXaB, which 
means B G Q(X, a). Since B is always ^ { « } , except in the case where C is 
empty , we have t ha t B G Qo(X, a). 

To show now tha t da is onto, take C and B as in the preceding paragraph . 
By (10.3.2) and (10.3.1), 

V(YAC) = E(d-'YAC) = E(XaB) = V(YAB>), 

hence C = $BYYAC = %$YYAB' = B' since wTe have already established tha t 
B G Q(X,a). 

For a family Bt G Q(X, a), i G / , we have from (10.3.1) t h a t 

F(FA t B UpC*W) = F f U i w ) = E ( U X J 

= -EC^a.sups») = V(YAi(SUl)Bi)'); 

in other words, da sup Bt = supiH)daBi. 
Since da is a bijection and preserves suprema, it also preserves infima. 

Theorem 10.3 can be s trengthened in the following sense: not only is every 
weak separation latt ice isomorphic to a Halin-latt ice bu t actually coincides 
with one such. 

10.4 T H E O R E M . Given a rooted graph (X, a) there exists a rooted graph (X', a) 
such that X is a restriction of X' and Q(X, a) = Q{H) {X', a). 

Proof. We construct X' as follows. Let Q be a set disjoint from V(X) U E(X) 
which is in one-one correspondence with E(X). For e G E(X) let qe be the 
element of Q corresponding to e. P u t 

V(X') = V(X) U Q, 

E(X') = E(X) U {[qe,x] : e G E(x;X),x G V(X)\. 

In other words, every edge e = [x, y] of X is being replaced by a triangle Te 

whose vertices are x, y, qe. Note t ha t X is a restriction of X', and tha t each qe 

is a vertex of degree 2. An example of this construction is given in Figure 9. 
For any Y CX we shall denote by Y' the graph U I Te : e G E(Y)}. Our 

claim is t ha t Q(X, a) = Q^(Xf, a). 
T o begin with wre show tha t for every B C V(X), 

(10.4.1) x'aB = (xaBy ~jxaB. 
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FIGURE 9 

(The heavy lines are the edges of X) 

Trivially, any W = (x0, . . . , xn) £ 2BfljB also belongs to 2B'fl£. Let et = 
[Xi-u Xi], 0 < i < n. Then Wt — (x0, . . . , # t_i, qei, xu . . . , xn) likewise be­
longs to 2B'afî. Thus Te C X'aB for every e £ E(XaB), i.e., (XaB)' C Xf

aB. 
Let S = (so, • • . , sm) be a pa th in X' s tar t ing at a. Since s0 = tf, we have 

SQ G V(X) . If for some i, 0 < i < m, the vertex Si is of the form qe for some e, 
then Si-i, si+i £ V(-X"), and e = [s*_i, s i + i ] . Similarly, if sm = qe, then 
sw_i G I7 P O , and e = [sm-i, sf] for some s' Ç F CAT). Thus we can reduce 5 
to a pa th 5 r e d = (x0, . . . , xn), where x0 = a, xn = sm, and x0, . . . , xn-i £ V(AO 
as follows. Let 0 = to < i\ < . . . < in S m be those subscripts with stj £ V(X) 
and s* g F(~AT) for every k, ij < k < i ; + i . I t is clear t ha t i i + i = i ; + 1 or 
ij + 2. P u t Sij = Xj, j = 0, . . . , n. If 5 is an ÛL£>-accessibility pa th in X ' so 
also is 5 r e d . Moreover, S r e d is an «^-accessibility path in X, i.e., Sreû C XaB. 
Thus , whenever a vertex of 5 is of the form qe, then e (E E(XaB), and since 
the two edges of X' incident with qe belong to Te this means X'aB C {XaB)r. 

For any B C V(X), 

(10.4.2) 5B'XflB' = TiXaB. 

Let x G /3aB. Then there is an e Ç £ ( x ; X \ X a Z Î ) ; e = [x, y], say. Case (i): 
3/ g F ( X a f i ) . Then ge is not a 13-accessible in Xf, since every age-path in X ' 
contains either x or 3/, and hence a vertex of B. Case (ii): 3> G V(XaB). Then 
x, y Ç B, and since every age-path in X' must contain either x or 3/, we have 
again qe g F (X f l B ' ) . In either case x (E 93'"Ar„B'. Conversely, if x (E f3a

{H)B, 
then x G 5 , and there is an edge [x, w] G E(XaB), where either w £ F ( X ) 
or w = g« with e = [x, 3/] G E(X). In the first case, ze; is either aB -accessible 
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in X', and then w 6 B, so that [x,w] (Z E(XaB); w g V{XaB) by (10.4.1). 
Again [x, w] $ E{XaB). Similarly, if w = ge, then we have the same two 
alternatives for y which we just had for w, so that [x,y] d E(XaB). Thus 
x e $ixaB. 

(10.4.2) implies in particular that Q(X, a) C Qm (Xf, a). 

Next we show that the inclusion map Q(X, a) —> Q{H) {X', a) is a complete 
homomorphism. Let Bt £ Q(^> a), i £. I- Then 

SUP ^ B , = SB' U XOB/ = » ' ( U -X^.-Y 

the second equality following from (10.4.1), the next to last one from (10 4.2). 
Also, from (10.4.2), 

inf<*>3, = 0aWB = WXaB' = MXaB = 0aB = mîBh 

where B = U*ç/-B*. 
Every C £ Q{H) {X', a) is contained in F(X). Suppose qe £ C for some 

£ = [x, ;y] Ç E(X). Then ge is aC-accessible in X' and adjacent to an aC-
inaccessible vertex. This means that exactly one of x, y belongs to XaC', say 
x G V(XaC'), y Q V(XaC'). This means that every aC-accessibility path in X' 
joining a and qe has the form 5 = (a, . . . , x, ge). Hence x (? C. Thus 5 VJ (e) 
is an aC-accessibility path in X' joining a and y, i.e., y G F(XaC')> a contra­
diction. 

It remains to show that C £ Q{H) (Xf, a) implies C Ç <2(X, a). But this is 
now obvious, since C = WXaC' = 9ÎZflC C C by (10.4.2). 
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