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WEAK SEPARATION LATTICES OF GRAPHS
GERT SABIDUSSI

1. Introduction. In an interesting, but apparently largely unknown, paper
[1] Halin has introduced the concept of a primitive set of vertices of a graph.
This concept, or rather a slight modification of it, seems to provide the key
to a new approach to the well-known and important class of graph-theoretical
problems centering on the notion of separation. As is well known, if 4, B, C
are sets of vertices of a (non-oriented) graph X, C is said to separate A and B
if and only if every AB-path in X contains a vertex of C. Holding 4 fixed,
let us write C <4 B for the fact that C separates A and B. This relation of
separation is easily seen to be a quasi-order on the power set of the vertex-set
of X.

In general, <, is not a partial order. In order to force it to be one, there is,
as always, the possibility of passing to the quotient structure associated with
the canonical equivalence defined by Be,Cif andonlyif B =4 Cand C =<4 B.
In the context of separation theory it is, however, more natural to consider
sets of vertices rather then equivalence classes of such sets. The customary
procedure in such a situation is to search for a ‘‘canonical’”’ representative of
each equivalence class modulo ¢, and to work with these representatives.
This approach was used by Pym and Perfect [6] in their study of independence
structures associated with separation in (directed) graphs. They were able to
show ([6, Lemma 7.3]) that the set of canonical representatives of ¢4 endowed
with the relation =<, is a complete lattice. This closely parallels Halin's result
({1, Satz 1]) that the primitive sets (relative to 4) form a complete lattice
with respect to = ,. It should be noted, however, that Halin-lattices and
Pym and Perfect-lattices are not the same thing.

The very fact that complete lattices make their appearance in connection
with separation is sufficiently striking to merit a detailed investigation. Sur-
prisingly, this was neither carried out by Pym and Perfect nor by Halin.
Only recently, Pym and Perfect-lattices were systematically studied by
Polat [5].

The present article is inspired by Halin’s approach. We replace the equiva-
lence o4 by a larger one, 74, also defined in terms of separation and permitting
the choice of a unique natural representative for each equivalence class in
such a way that, once again, restriction of =, to the set of these representa-
tives produces a complete lattice. In order to see how this can be accomplished,
let B and C be two sets of vertices with Bs,C, and take any x € B U C, say
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x € B. Let W= (xg,...,%,) be an Ax-path, ie., xy € 4,x, = x. Since
C £, B there is an m; < m such that x,, € C. Thus (xg,...,%,,) is an
AC-path, hence by B =<, C there is an m, < m; with x,, € B. Continuing,
one obtains a sequence of subscripts m = m; = ... = 0 such that the corre-
sponding vertices alternatingly belong to B and C. Since one must have
my = mq after a finite number of steps, it follows that x, € B M C, for some
E<m, ie,, (BNC)=<,B and (BN C) =, C (which, incidentally, is
equivalent to (BN C)o B and (B M C)o,C). However, one cannot prove
that B = C. Nevertheless, this simple argument shows how to remedy the
situation. If x is the first vertex of B on the path W (counting from 4), then
all the subscripts m, m,, . . . must be equal, i.e., x € C. Thus, if one considers
only sets all of whose members are “‘first’” vertices on some AB-path, one
will be able to arrange that =<, is also anti-symmetric. Halin’s primitive sets
are defined on the basis of this observation.

In spite of the remarkable fact that the Halin-primitive sets form a com-
plete lattice, their definition appears to be too narrow. The reason is that
Halin defines primitivity in terms of the vertices of the given graph without
availing himself fully of the amount of structure provided by the edges. In
Section 2 we redefine the notion of primitivity in a manner closely parallel to
that of Halin, but based on the edges, and show that these new primitive sets
also form a complete lattice relative to = ,. This lattice will be called the
weak separation lattice of (X, A), and will be denoted by Q(X, 4).

In Section 10 we compare the two notions of primitivity. We show that
every Halin-primitive set is primitive in the new sense, and that for a rooted
graph (X, {a}) the weak separation lattice Q(X, {«}) is isomorphic to the
separation lattice in the sense of Halin of the line graph d.X relative to a suitably
chosen subset of (0X). Thus when considering classes of lattices the theory
we are developing in this paper may be viewed as a special case of the theory
of Halin. However, for a given indiwvidual pair (X, A) exactly the opposite
is the case; the weak separation lattice Q(X, 4) is in general much richer
than the corresponding Halin-lattice.

One aspect of the assignment of separation lattices to pairs (X, 4) (in
whatever sense: weak, Halin, or Pym and Perfect) is that it is functorial. In
order to make this a meaningful statement suitable morphisms between pairs
have to be defined. For weak separation lattices the appropriate mappings
(called rim stable maps) are introduced in Section 4. We denote the resulting
category by Gpm. In Section 5 we establish that Q is a contravariant functor
from G,, to the category of complete lattices and complete meet-preserving
maps. In Section 6 we characterize the lattice of primitive sets of a rooted
tree and show that in this case the lattice is always distributive. Section 8
deals with the closure system associated with the complete lattice Q(X, 4),
providing a geometric description of the corresponding closure operator.
Finally, in Section 9 we show that for 3-connected graphs the lattice Q(X, 4)
is always coatomic.
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Further papers will deal with the relationships between Q(X, 4) and the
weak separation lattices of the contractions of X, the question of the existence
of adjoints of the functor Q, as well as with certain geometric lattices related
to weak separation lattices (which in general are not semi-modular and hence
not geometric), thus providing a framework in which the vast theory of
geometric lattices can be brought to bear on problems in separation.

For a graph X we denote the vertex-set by 1(X), the edge-set by E(X).
Thus, £(X) is an irreflexive, symmetric binary relation on 1(X). Y is a
subgraph of X if V(Y) C V(X) and E(Y) C E(X); it is a restriction of X if
it is a subgraph and x,y € V(Y), [x, y] € E(X) always implies [x, y] € E(Y)
(i.e., YVis a full subgraph). If ¥ C X we denote by X\ Y the least subgraph
of X whose edge-set is E(X) — E(Y). X — Y will denote the restriction of X
to V(X) — V(Y).Forx € V(X)weput V(x;X) ={y € V(X):[x,y] € E(X)}
and E(x;X) = {[x,y]:y € V(x;X)}, i.e.,, V(x;X) is the set of neighbors of x,
and E(x;X) the set of edges incident with x.

A path W = (x0,...,x,) is a graph with V(W) = {xo,...,x,} (all x,
distinct) and E(W) = {[x;1,x]:2=1,...,n}.

Throughout this paper, X will denote a connected graph (unless otherwise
stated).

We conclude this section with an important result concerning the relation
4. For a graph X we shall denote by Py the complete lattice of all subsets
of V(X) with union and intersection as operations.

1.1. THEOREM. Every g 4-class is a complete sublattice of Px.

Because it will be useful.later we state first the following obvious (and
well-known) result.

1.2 LEMMA. Let A, By, 1 € I, be subsets of V' (X), and put C = U, B
Then B <4 Cif and only if B < 4 B, for each 1 € 1.

Proof (of Theorem 1.1). Let B, B,, 7 € I, be subsets of V(X), and put
C= Ui By D= Nic Bi. We have to show that if Be B, for each 7 € I,
then Beo,C and BoD.

That o, is compatible with arbitrary unions can be seen as follows. By
1.2, B £ 4 C. On the other hand, C =, B is a consequence of B; C C since
each AB-path contains a vertex of B ;.

Concerning intersections, let W = (xo,...,x,) be an AB-path, and
m = n the least subscript with x, € B. Since B; <4 B for each 1, there is
an r; < m with x,, € B. If r; < m, application of B £ 4 B; to the AB;-path
(x0, ..., %) produces an s; < r; with x; € B, contradicting the minimality
of m. Thus, r;, = m for each 7 € I, i.e., x,, € D. Therefore D <, B. On the
other hand, B <, D is trivial, since every AD-path is also an 4 B;-path for
each 7 € I. Hence Bo 4D, completing the proof. In fact, it is easy to show that
every o4-class is an interval in Py.
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Theorem 1.1 indicates how a canonical representative of each ¢ ,-class can
be obtained. In principle there are two choices, either to take the greatest
element of ¢ 4[B], i.e., Uc4[B], or the least element, Mo 4[B]. Since in separa-
tion theory the emphasis is on minimal separators, one adopts the second
alternative. This leads to the sets first introduced by Pym and Perfect and
studied in detail by PPolat [5]. Polat calls them primitive but it should be
observed that his notion of primitivity coincides neither with that of Halin
nor with our own.

The author is indebted to the referee for having pointed out an error in the
formulation of Theorem 1.1 and for having shortened its proof, as well as for
numerous other remarks and suggestions.

2. Primitive sets.

2.1 Definition. Let A, B C V(X). An A B-accessibility path in X is a path
W = (xy,...,x,) C X such that

xg €A and xg,...,%,1 ¢ B

(the vertex x, may or may not belong to B). x, will be called an A4 B-«ccessible
vertex. By 45 we denote the set of all 4 B-accessibility paths in X, and we
set

—_ DI
XAB - ‘IbAIi'

In the following we will keep A fixed whereas B is allowed to range over all
subsets of T7(X). With this in mind we say that X 45 is the «ccessibility graph
determined by B. These graphs correspond to (but are not identical with)
what is called Verbindungsgraph in [1, p. 35]. In the terminology just intro-
duced a Verbindungsgraph X (4 — B) in the sense of Halin is the restriction
of X to 1"(X 1), and might thus be called a full uccessibility graph (see also
Section 10).

It is clear from Definition 2.1 that no A4 B-accessibility path can contain
two vertices of B.

Figure 1 shows an example of an accessibility graph (4 = {af,
B = {1,2,3,4'}) on the left according to our definition, on the right the
corresponding full accessibility graph.

In any graph X, if x € 4 then (x) is an AB-accessibility path for any
B C 17(X). Hence 4 C 1 (X 15).

If 4 =0 there are no 4 B-accessibility paths. This means that Xy is
always empty. Since this is an uninteresting case we will henceforth assume that
A # 0.

If B = @, then clearly every path in X which has one endpoint in 4 is an
A B-accessibility path. Consequently, X 4y = X.

2.2 Lemma. C =, B implies W40 C Wyp, and hence X 1o C X 5.
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Proof. Let W = (x,...,%,) be an AC-accessibility path. If x, € B for
some r < #u, then (xo, ..., x,) is an AB-path, whence by C =, B there is an
5,0 £ s £, with x; € C, a contradiction. Hence xq, . .., x,1 ¢ B, i.e., Wis

an A B-accessibility path.
Under very slight hypotheses concerning X the converse of 2.2 is also true.

2.3 LEMMA. If no vertex belonging to B is of degree 1, and if W,ye C Wy,
then C =< 4 B.

Proof. Suppose W, C W4p and let W = (xy,...,x,) be an AB-path,
ie., xo € A4, x, € B. Suppose, moreover, that x,...,x, ¢ C, and consider
an arbitrary vertex y adjacent to x,. If y ¢ V(W), then W' = (xo, ..., %, ¥)
is an A C-accessibility path, hence by hypothesis, W' € 28 5. This means in
particular that x, ¢ B, a contradiction. If, on the other hand, y = x, with
m < n— 2,then W’ = (xg,...,%nm Xn, ¥,—1) is an A C-accessibility path, and
hence belongs to W, 5. Once again this yields x, ¢ B. It follows that x,—; is
the only vertex adjacent to x,, i.e.,-x, is of degree 1.

The following is now obvious:

2.4 ProrosITION. If X 1s a graph without vertices of degree 1, then C < 4 B
if and only if Wae C Wy p.

Extremely simple examples show that 2.3 is false in the presence of vertices
of degree 1. One may even have W5 = W, for two sets B and C which are
incomparable with respect to = 4.

2.5 Definttion. Let X be any graph (no connectedness assumed here),
Y a subgraph of X. By the rim of ¥ relative to X is meant the set

RNY = {(ye V(¥V): E(:X) Z E(Y)} = V(YN X\Y).
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A vertex y € NV is called a rim vertex of V, int ¥ = V(V) — RNV is called
the interior of Y, and a vertex y € int V is an interior vertex of Y. By Int ¥V
we denote the restriction of Y toint Y. If A C V(X), the rim of the restriction
of X to 4 is called the boundary of A and is denoted by BA. That is,

BA ={acd: V(X)L A}
For ¥ C X we define BY to be BV (Y).

Clearly BY C RY. Equality holds if and only if y € WY implies
E(y;X) ¢ E(Y), where ¥ is the restriction of X to V(Y). In particular,
BY = NY if Vis a restriction of X,

2.6 LEmMA. (1) E(; X 45) = E@;X) for each x € V(X 5) — B.

(i1) NRX 45 C B (rim relative to X).

(i) If %,y € V(X 4p) but not both x,y € NX 45, and e = [x,y] € E(X),
then e € E(X 45). In particular, Int X 45 15 a restriction of X.

Gv) If x,y € BN V(X 4n), then [x,v] ¢ E(X.5). Hence if two vertices
x,v of BN V(X 4p) are adjacent in X, then x,y € RX 4 5. In other words, if
two vertices in B are adjacent in X, then neither of them belongs to int X 4 p.

Proof. (i) x € V(X 4p) — B implies the existence of an A4 B-accessibility
path W = (x¢,...,x,) with x, = x and V(W) disjoint from B. Take any
e = [x,y] € E(x;X). Ify & 17(W), then W \U (e) is an 4 B-accessibility path,
whencee € E(X 4p5). lfy ¢ V(V),ie.,y = x,,m < n, then (xo,...,x,) \J (¢)
is an A B-accessibility path, so that again ¢ € E(X ,5).

(i) is an immediate consequence of (i).

(iii) is trivial since e belongs to E(x;X) as well as E(y;X). Hence if
e ¢ E(X p), then x, v € RX 45.

(iv) is equally trivial, for if e = [x, y] € E(X 45), then ¢ isan edge of some
A B-accessibility path . But no accessibility path contains two vertices of B.

2.7 LEMMA. Let Bo = StXAB- T hen XABO = XAB-

Proof. By C B implies that every A4 B-accessibility path is also an A4 B,-
accessibility path, i.e., 5 C W, 5., and hence X 45 C X 45,

We show next that V(X 45) = V(X 45,). Suppose x ¢ V(X 45). Then any
Ax-path (xo,...,x,), where x, = x, meets B. Let » be the least subscript
with x, € B. Then (xy, ..., x,) isan A B-accessibility path, hence x, € V(X 435).
Let s be the largest subscript such that x; € V(X 45). Clearly » < s < #n since
X, =x ¢ V(X ,p5). By maximality of s, x4, & V(X 4p), hencex, € WX ,5 = B..
[t follows that no Ax-path is an A By-accessibility path, i.e.,, x ¢ V(X 45,).

To complete the proof take any A Bg-accessibility path W = (yq, ..., y,).
By what has just been shown V(W) C V(X,p). Hence if some edge
e = [y4, ¥ir1) does not belong to E(X ,p), then y, € RX 5 = By, a con-
tradiction. Thus W C X 45.
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It should be observed that in general B 5, and W, are different. For
example, if X is a (finite) circuit, and «a, b are two distinct vertices of X, then
the ab-accessibility paths are precisely those which start at ¢ and do not
contain b as an interior point. Thus X,, = X, whence By = RX,, = 0. But
this means that 8,z, consists of all paths starting at «, i.e., B,5, is properly
larger than .

In the light of 2.6 (ii), which says that RX 45 C B for any B C V(X), we
now define the basic concept of this paper.

2.8 Definition. A set B C V(X)) is primitive (or, more precisely, A-primitive)
if and only if RX 45 = B.

The introduction of primitive sets is motivated by the observation that for
them, separation is a partial order.

2.9 PROPOSITION. Let B be an A-primitive set, C any subset of V(X). Then
C éAB ifand only ifXAC C XAB-

Proof. In view of 2.2 we only have to prove sufficiency. Assume X 4o C X 4.

Let x € B, W an Ax-path, and assume that W does not meet C. Then W is an

~ AC-accessibility path and x ¢ C, ie, x € V(X4¢) — C. By 2.6 (i),

E(x;X4¢) = E(x;X). Since X, ¢ C X, 5 this gives E(x;X,5) = E(x;X),
whence x ¢ RX 45 = B, a contradiction.

To recapitulate: by 2.2 we have that Bo,C implies X 45 = X 4 for arbi-
trary B, C C V(X). In other words, if we define Br,C by X 45 = X 4, then
04 C 74. By 2.6 (ii) and 2.7 we have that every set B C V(X) contains an
A-primitive subset which is equivalent to B modulo 74, viz. RX 4 5. Moreover,
RX 45 is the smallest set (relative to inclusion) which is T 4-equivalent to B. For
if X, =Xy4c, then RX 45 = RX 4¢ C C by 2.6 (ii). Thus the A-primitive
sets can be characterized as the (unique) smallest representatives of each
equivalence class modulo 74. They may thus be considered as canonical
representatives, and it is in this sense that they were alluded to in the intro-
duction. Incidentally, it follows from 2.7 that any set C with RX . C C C B
belongs to the same equivalence class modulo 74 as B. As for ¢, (see 1.1) this
permits one to prove that every 74-class is closed under arbitrary intersections.

By Q(X, 4) we denote the set of all A-primitive subsets of V' (X). It follows
from 2.9 together with the definition of A-primitive sets that the restriction of
the quasi-order < 4 to Q(X, A) is a partial order.

As a consequence of Lemma 2.7 we have the existence of a mapping
Ba:PBx— Q(X,A) (Bx = power set of V(X) partially ordered by inclusion)
defined by

ﬂAB = ERXAB'
B4 is order-inverting. For if B C B’ C V(X), then clearly X 45 D X 45/, but
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Xup=Xic,Xap = Xac,where C = 8,4B,C' = B,4B". Hence 8,48 = 4 BB’
The following corresponds to Halin’s Satz 1.

2.10 THEOREM. Q(X, A) is a complete laitice relative to the order =< 4. This
lattice is called the weak separation lattice of (X, 4).

Proof. 1t suffices to show that every family (B;); of A-primitive sets has
an infimum. We will show that
inf B; = 84B, where B = \U B,
i€r €I
Abbreviate 848 by By. For I = @ we have B = @, whence X, 5 = X, i.e.,
@ is the greatest element of Q(X, 4).
Since 8,4 : By — Q(X, A) inverts order, we have that for each 7 € I,

B, CB=B;=8.B; 2,848 = B

Hence By is a lower bound for the family (B,) ;. Now let C be an A-primitive
set such that B; = 4 Cfor every 7 € I. By Lemma 1.2, this says that C <, B.
Since B D By, we have trivially B =< 4 By, whence C = 4 By. Thus By is indeed
the greatest lower bound.

In the following it will also be convenient to have an explicit expression for
suprema in the lattice Q(X, 4). For this we first prove a lemma which says
that any union of accessibility graphs is again an accessibility graph. Here
again we follow the ideas of Halin. The supremum of the empty family, i.e.,
the least element of Q(X, 4) is A since 4 C V(X 45) for every B C V(X)
and X 44 is the discrete subgraph of X on A4, the latter implying that 4 is
A-primitive.

2.11 PROPOSITION. For any non-empty family (B;)ic; of subsets of V(X),
Uter Xup: = Xap, where B = N User Xap:

Proof. Abbreviate X 45, by X, and put ¥V = U, Xy, B = NY.
Take any ¢ € I and an A4 B -accessibility path W = (xy, ..., x,). Suppose
that x,, € B for some m < n. Since B = NV there is an edge

e =[x, v] € E(X\T).

But (xg, ..., x,,v) is an 4 B-accessibility path, whence ¢ ¢ E(X;) C E(Y),
a contradiction. Hence W is an A B-accessibility path. This proves ¥V C X 45.

For the reverse inclusion take any A B-accessibility path W = (xy, . .., x,),
and put e, = [x, x,41], B = 0, ..., 7 — 1. Without loss of generality we may
assume that #» > 0. It suffices to prove that for each 2 = 0,...,n — 1 there
isan ¢ € I such that ¢, € E(X,). Suppose by way of contradiction that there
isanm,0 < m < n — 1,such thate, ¢ E(X,)foreveryt € I,ie.,e, ¢ E(Y),
and that m is the smallest such subscript. If m = 0, thenx,, = xo € 4 C V(Y).
If m > 0 then by minimality of m, e, € E(X;) for some j € I, hence
em—1 € E(Y), hence again x,, € V(V). Bute, ¢ E(Y) implies x,, € RY = B,
contrary to W being an 4 B-accessibility path.
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2.12 COROLLARY. If (B;)cs 1s any family of A-primitive sets, then
supiwer By = RN Ues X 4.
This follows immediately from the preceding lemma.
3. One-sided sets. This section is primarily technical and provides the
background for Section 4 as well as certain results in Section 8.

In view of 2.6 (ii), every set B C V(X) can be divided into the following
three parts:

BN intXAB, mXAB, and B — V(XAB)

In general, all three sets are non-empty. That is, vertices of B lie on either side
of the rim of X , 5.

3.1 Definition. A set B C V(X)) is called one-sided if and only if
B m intXAB = ﬂ

In particular, every primitive set is one-sided. For an example of a set
which is not one-sided, see Figure 2a.

3.2 LEMMA. Any union of one-sided sets is a one-sided set.

Proof. Let (B;)i; be a family of one-sided sets, B = U ; B;. Suppose
there is a vertex x € B\ int X 5. Then for each 7 € I,

E(x;X) CE(X45) C EXu4s:).

At the same time, x € B; for some j € I, whence x € B;MNint X ,5;, a
contradiction.

The intersection of two one-sided sets need not be one-sided. In general,
even the intersection of two primitive sets is not one-sided.

3.3 LEMMA. If (B;)ics is a family of one-sided sets, then W5 = W 4 ¢, where
B = Ui Biand C = U BaB..

Proof. B D C implies Wyp C W4 For the reverse inclusion take any

A C-accessibility path W = (xy, ..., x,) and suppose that W is not an AB-
accessibility path. Let m be the least subscript such that «x, € B. Then
x, € B; for some 7 ¢ I, and since xg,...,%Xn,—1 ¢ B, it follows that

Xm € V(X 4p;). By one-sidedness of B, «x,¢€¢ B;MN V(X,.p5) implies
Xm € RX 45, = BaB; C C, contrary to W being an A C-accessibility path.

By way of digression, we consider the question whether the relation 7 4, defined
in Section 2 is a congruence on the complete lattice Py (relative to union and
intersection as operations). The answer is, in general, negative. In Figure 2a con-
sider the twosets B; = {2,4}, B, = {2/,4’}. If 7, were a congruence, then in view
of BiraBuB: = C;, 1 = 1,2, we would have (B; \U By)71,(C; \J C,), but this is
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FI1GURE 2a FIGUuRE 2b
Heavy lines = Xa 5,U », Heavy lines = X4, ¢,U ¢,

obviously not the case, since X, 5, y 5, is a proper subgraph of X, ¢, U cs-
On the positive side we have:

3.4 PROPOSITION. 74 15 a semilattice congruence on the set of all one-sided sets.

Proof. B,C; implies B4B; = $4C;, where (B;)ic; and (C;)e; are families
of one-sided sets. From 3.3 one then has immediately that Ur,V/, where
U= UieIBt, V= UiEI Ci-

Proposition 3.4 says in particular that every 7,-class of one-sided sets
contains a largest element. These sets will be described in Theorem 8.2.

Since the intersection of one-sided sets is not necessarily one-sided it is not
surprising that the behavior of 7, relative to intersections is even worse than
for unions. In the graph of Figure 3 let B; = {1, 3,4, 5}, 7 = 1,2. B, is one-
sided, and 8,B; = {1, 3, 4}.

The heavy lines in Figure 3a show X, 5,1 5, = Xu.(3.1.5), Figure 3b shows
Xuganingen: = Xa,i3.1). Since these two graphs are different, {3, 4, 5} and
{3, 4} are not in relation r,. Thus, in general, intersections do not preserve
74 even in the case of one-sided sets.

We conclude this section with a result which will be useful later (Section 8).

3.5 LEMMA. If B is one-sided, then Int X 4 5 is the union of all A B-accessibility
paths which are disjoint from B.

Proof. Take any Ax-path W disjoint from B. Then x € int X 4p; for if
x € NX 5, then x € B by 2.6 (ii), a contradiction. Conversely, given any
x € int X 45 there is an A B-accessibility path Q = (xo, ..., x,) with x, = x.
By one-sidedness of B, x does not belong to B, hence W is disjoint from B.
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1 2 1 2
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FiGure 3a F1Gure 3b

Since Int X 45 is a section of X this proves equality of Int X 45 and the union
of all 4 B-accessibility paths missing B.

We remark here that contrary to what one might be tempted to think it is
in gemeral not the case that for two one-sided sets B, C,int X 4, \J int X 4¢
is the interior of some accessibility graph.

4. Rim stable maps. In the next section it will be shown that the con-
struction of the weak separation lattice of a pair (X, 4) is ‘“‘natural” in the
sense that if pairs on the one hand and complete lattices on the other are
regarded as suitable categories, then the correspondence Q is a functor. To
set the stage we have to define an appropriate class of mappings between
pairs.

In 4.1 and 4.2 we do not assume that the graphs involved are connected.

4.1 Definition. Let X, ¥ be graphs. A function ¢ : V(X) — V(Y) is a weak
contraction if and only if [x, y] € E(X) implies px = ¢y or [¢x, ¢y] € E(Y).

These are the maps which have been called homomorphisms by Ore [4].

In the sequel we shall use the following.
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Notation. Let ¢ : V(X) — V(Y) be a weak contraction, X’ C X. By X’
is meant the subgraph of ¥ with

V(eX') = oV (X"),
and  E(eX') = {[ex, ¢y] : [x,3] € E(X') and ox 5 ¢y}

Similarly, if ¥/ C Y, we denote by oDV’ the restriction of X to the set
eV (Y).

It is an immediate consequence of 4.1 that if ¢ : 1(X) — V(Y) is a weak
contraction, and X’ is a connected subgraph of X, then ¢X' is connected. In
other words, weak contractions preserve connectedness.

4.2 Definition. Given two graphs X, ¥ a function ¢ : I'(X) — V(Y) is a
contraction if and only if (i) ¢ is a weak contraction, and (ii) for every
y € oV(X) the graph ¢V (y) is connected.

Let ¢: V(X)— V(YY) be a contraction, e = [y,y'] € E(¢X). Then
V(eP(e)) = V(e () Y V(= (y)), the two graphs ¢“V(y) and
eV (y") are connected, and there is an edge [x,x'] € E(X) with ¢x =y,
ex’ = 9'. Thus ¢V (e) is connected. This says that if ¥V’ is any connected
subgraph of ¢X, then ¢~V ¥V’ is connected.

We now consider the class of all pairs (X, 4), where X is a connected graph
and 4 C V(X) (if A = {a} we write (X, «) instead of (X, {a})). Given two
pairs (X, 4) and (Y, B) we define a map ¢ : (X, A) — (¥, B) to be a function
¢: V(X)— V(Y) such that o4 C B.

4.3 Definition. A map ¢ : (X, 4) — (Y, B) is rim stable if and only if ¢ is
a weak contraction and the inverse image of every one-sided subset of V(YY)
is again one-sided, i.e., for any C C V(Y),

CNint Yge = 0 implies ¢ 'CMNint X4 -1 = 0.

Obviously, pairs and rim stable maps form « category. This category, denoted
by G, provides us with the natural setting for the study of weak separation
lattices.

The following result shows that the rim stability of a weak contraction ¢
depends on the behaviour of ¢ on primitive sets.

4.4 PrROPOSITION A weak contraction ¢ : (X, A) — (Y, B) is rim stable if
and only if the inverse image of every primitive set is one-sided.

For the proof we need two auxiliary results.
4.5 Lemma. B C B' C V(X) implies int X 45 C int X 4 5.
Proof. B C B’ implies X 45 C X 45. Hence

x€intXup CV(Xup) C V(Xan)

and x ¢ int X5 implies x € RX 45, 1e.,, E@x;X) C E(X,5). But since
x €int X, p, E(x;X) C E(X4p) C E(X,3), a contradiction.
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4.6 LEmMA. If ¢: (X, 4) — (V, B) is a weak contraction, then for any
C C V(Y), ¢XA,¢_1C C YBCy (Ind hence XA"‘,—lc C (p(—l) Yljc.

Proof. To prove the first part it suffices to show that oW C Yy for any
A, ¢~1C-accessibility path W = (xo, ..., x,). Lete = [y,9'] € E(eW). There
exists a subscript 7, 1 = ¢ = #, such that y = ¢x,_; and y" = ex,;. Note that
@Xoy .+« oy X1 ¢ C since W is an A, ¢~ 'C-accessibility path. Let % be the
least subscript such that e is incident with ¢x;,. Clearly 2 =7 — 1 < n. Con-
sider U = ¢(xo,...,x3). Since ¢ is a weak contraction, U is a connected
subgraph of V, hence U contains a ¢xg, px,-path Q. 1(Q) C 1'(U) =
{ex;: 0 =7 = h} and since h < n, no vertex of Q belongs to C. Hence
QU (e) is a BC-accessibility path which contains e, in other words,
e € E(Ygo).

The second part is an immediate consequence of the first.

Proof (of Proposition 4.4). Necessity is obvious. Sufficiency: Take any
C C V(Y) and suppose thereisanx € ¢71C M int X 4 o-1¢. B5C is a primitive
subset of C; by hypothesis and 4.5,

@_lﬁgcm int XA e-le C 9’)—1636‘ m iﬂt XA w-18gc = 0,

1

from which it follows that x ¢ ¢~ 185C, i.e., ¢x ¢ N Y. But since ¢ is a weak
contraction, x € int X ,-1¢ C V(X4p-1¢) implies o¢x € T(Vze) (4.6),
whence ¢gx € int Y. This says C M int Ve 5% 0, i.e., C is not one-sided.

The next two propositions provide examples of rim stable maps.

4.7 ProrositioN. If ¢ : (X, A) — (Y, B) is a contraction which is nowhere
one-one (t.e., |~y # 1 for every y ¢ V(Y)), then ¢ is rim stuble. In fuct, the
inverse image under ¢ of every subset of 1 (V) 1s one-sided.

Proof. Take any C C 1’(Y) and suppose thereisanx € ¢~ 1C M int X 4 ,-1¢.
Put ¢x = y. Since ¢ is nowhere one-one, |¢~'y| = 2. Since ¢ is a contraction,
¢V (y) is connected, hence there exists an edge ¢ = [x, x'] € E(¢V (y)).
X € int X, ,-10 implies ¢ € E(;X) C E(X 4-1¢). At the same time,
x,x" € ¢y C ¢~ 'C, but this is a contradiction to 2.6 (iv).

4.8 PROPOSITION. If ¢ is « contraction of (X, «) onto (V,b) (ie., oX =V
and ¢a = b), then ¢ 1s rim stable.

Proof. Take a b-primitive subset C of 17(Y) and suppose there is an
x € ¢ lCNint X, p-10. Put y = ¢x. By the proof of 4.7, ¢~'y = {x}. Since
y € C =NV, there exists an edge e, = [v,y'] € E(y;V) — E(V,e). By
surjectivity of ¢, ¢y # @, and since ¢ is a contraction, ¢~V (e,) is a con-
nected subgraph of X with 17 (¢ {(e,)) = {x} U ¢~y'. Hence there is an
x' € ¢~ such that [x,x'] € E(x;X) C E(X,4-1¢) (since x € int X, o-1¢),
which in turn implies " € 17(X, ,-1¢). At the same time &’ ¢ ¢71C, otherwise
we have a contradiction to 2.6 (iv). Hence by 4.6, ¥ = ¢x’ € 1"(V,¢) — C =
int ¥,¢, whence e, € E(y';Y) C E(Y,¢), a contradiction.
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The following example shows that in 4.8 the hypothesis that ¢ be a contrac-
tion (not just a weak contraction) is essential. Let X be the graph of Figure 2a,
YV the restriction of X to {q,1,2,3,1,2, 3}, ¢ the weak contraction of
(X,a) onto (Y,a) which maps 4— 2, 4+ 2’ and which is the identity
elsewhere. C; = {2} is a-primitive in Y, but ¢~'C; = B; = {2, 4} is not one-
sided. Hence ¢ is not rim stable.

5. The functor Q. Any map ¢ : (X, 4) — (Y, B) induces a function
Qe) : Q(Y, B) = Q(X, 4) by

Q) = Bag™.

Since Q(¢) is a mapping between lattices one might hope that with suitable
conditions on ¢, Q(¢) will turn out to be a lattice homomorphism. Trivial
cases aside, this is, however, not the case. We will show (Proposition 5.2) that
if ¢ is rim stable, then Q(¢) preserves arbitrary infima but fails to preserve
suprema (see the counterexample given after 5.5). Nevertheless, rim stable
maps appear to be the natural maps to work with in this context, since they
arise from the closure systems associated with separation lattices (see Section
8). We have found no sufficiently wide subclass of the rim stable maps for
which the induced maps are lattice homomorphisms. Possible candidates for
such a class would be the contractions, but our counterexample shows that
even restriction to surjective contractions will not force the induced maps
Q(¢) to preserve suprema. Thus there seems to be no good reason, at this point,
for restricting the class of rim stable maps in any way. Nevertheless, one
cannot help feeling that there is room for improvement.

5.1 LEMMA. If ¢ : (X, A) — (Y, B) is a weak contraction and ¢ : (¥, B) —
(Z, C) is rim stable, then QY 0 ¢) = Q(¢) 0 Q). In particular this holds
when both ¢ and ¥ are rim stable.

Proof. Take any C-primitive set K C V(Z) and put H = ¢~ 18z K. We
shall show that W, ,-y-1x = Wyy. Since oW K D H we have that
Wy o-1y-1x C Wyy. Now let W = (x,...,x,) be an AH-accessibility path
in X. We have to show that W is also an 4, ¢~ ~'K-accessibility path.
Suppose, by way of contradiction, that x, € ¢ W 'K for some m < #, and
that m is the least subscript with this property. Hence ¢x, . . . , ¢xpn_1 ¢ ¢1K
so that ¢x,, € V(Ypy-1x) (here one uses that ¢ is a weak contraction). Since
ox, € Yy7IK, rim stability of ¢ implies that ¢x,, € RV y-1x = By K, i.e.,
X, € H, contrary to W being an A H-accessibility path.

5.2 ProprosITION. If ¢ : (X, A) — (Y, B) is rim stable, then
Bae™' 1 Q(Y, B) = Q(X, 4)

preserves arbitrary infima.
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In particular, this says that B4¢~! is an order-preserving map. For the proof
of this proposition we need two lemmas.

5.3 LEMMA. If ¢ : (X, A) — (¥, B) is a weak contraction, then W4 o-1¢ =
W4 p-185 ¢ for every one-sided set C C V(Y).

Proof. Since ¢71C D ¢~ '85C it suffices to prove that Wy p-185¢ C Wa p-10.
Take any A4, ¢~'BgC-accessibility path W = (xo, ..., %,), and suppose that
there is an r < n with x, € ¢~ !C. r may be taken as the least subscript with
this property. Then xo, ..., %,1 € ¢~ 1C, hence x, € V(X 4 ,-1¢). Since ¢ is
a weak contraction, ¢x, € V(Yg¢) by 4.6. This together with ¢x, € C and
one-sidedness of C implies ¢x, € RY o = B5C, so that x, € ¢~185C, contrary
to W being an A, ¢~1BzC-accessibility path. Hence we have shown that W
is an 4, ¢~ 1C-accessibility path.

54 LEMMA. If ¢: (X, A) — (Y, B) is a weak contraction, then for any
family (C;)icr of primitive subsets of V(Y),

QBA.\O“ nt ¢i = QBA.«p—le
where C = Ule[ C1.

Proof. By 3.2, C is a one-sided set. Hence B, -1 = W, p-15,¢ by 5.3,
but 85C = inf C; by the proof of 2.10.

Proof (of Proposition 5.2). Let (C;)ic; be a family of primitive subsets of
V(Y). We wish to show that 8,07t inf C; = inf 8,07 1C;. This is the same as
Bae~BsC = B,U, where C = Uy; Ciand U = U e; Bae~1Cy;, and amounts
to showing that X 4 ,-1 t ¢; = Xay. By Lemma 5.4 it suffices to show that
Xap-10 = Xav

For each 72 € I, B4¢71C; C ¢~ 1Cy; hence U C Ui ¢~ 'C; = ¢~ 1C, hence
XAU D XA,«p—lc-

For the reverse inclusion let W = (xq, ..., x,) be an 4 U-accessibility path,
ie., %o, ..., %1 ¢ U. We will show that W is also an 4, ¢~1C-accessibility
path. Suppose, by way of contradiction, that there is an 7 < »n with
X, € ¢71C = Uyer ¢7'Cy, and let s <7 be the least subscript such that
xs € ¢71C; for some j € I. Then x,...,x1 ¢ ¢7'C;, in other words,
x5 € V(X 44-1¢;). By rim stability of ¢ this together with x; € ¢~'C; implies
Xy € RX 4 p-1¢; = Bap™*C; C U, a contradiction.

We can sum up 5.1 and 5.2 as follows:

5.5 THEOREM. The assignment (X, A)— Q(X, 4), ¢+— Q(¢) s a contra-
variant functor from the category Gum tnto the category Ly of complete lattices
and (complete) inf-preserving maps.

Concerning suprema it is clear from 5.2 that for any rim stable
0: (X,4) > (Y,B) and any family (C,); of primitive subsets of V(Y)
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one has
Bag~tsup Cy 2 4 sup Bae'Cy

but equality need not hold as is shown by the example of Figure 4. Note that
the map used in this example is a coniraction of (X, a) onto (Y, «). Figure 4
shows the two graphs and the mapping ¢ between them; Figure 5 shows the
corresponding weak separation lattices. Sets are written without braces and
commas; thus 131" means {1, 3, 1’}. Those elements of Q(X, a) which are
images under the induced mapping 8.0~ ! are indicated by circles.

3
© . 1’ 2 1
1/ 1 3—-2
x — x otherwise
a a
(Xv (L) ( Y, (l)
Ficure 4

0
21/
21’ 12
121/
|
QX, a) (Y, a)

FFIGURE 5
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Take C; =21, C,=12. Then in Q(Y,a), supu12C; =0, hence
Bap~lsupi—12 C; = @. On the other hand, B,¢~1C: = 321’, B¢~ 1C: = 123, so
that in Q(X, a), sup,=1.2B.¢~1C; = sup{321’, 123} = 23, which shows that
B¢~ ! does not preserve suprema.

It will be noted that in this example the map B,¢~! is one-one. The reason
for this is that ¢ is a surjective contraction, as we shall now show.

5.6 PrROPOSITION. If ¢ 1s a contraction of (X, A) onto (V,B) (i.e., oX =V
and oA = B), then Q(¢) : Q(Y, B) — Q(X, A) is one-one.

The proof depends on the following refinement of 4.6:

5.7 LEMMA. If ¢ is a contraction of (X, A) onto (Y, B), then X 4 p-1¢c = Yge
for every C C V(Y).

Proof. Let W = (yqg, ..., y.) be a BC-accessibility path in V, i.e., y, € B,
and yo, ..., Y1 ¢ C. Pute; = [y, y:],2=1,...,n Since V(etV(e;)) =
¢~ lyi1 U ¢ ly; and ¢~V (e,) is connected, there exist vertices z;,_1 € ¢~ 1y;_;
and x; € ¢~ ly; such that e/ = [z;-1, %] € E(e™P(e;)), 7 =1,...,n Choose
an arbitrary x¢ € 4 M ¢~y (this is possible since yo € B and ¢4 = B).
Since ¢V (y;) is connected, there is an x;z;-path P, in oV (y,), 7 =0, ...,
n — 1. Now put

S=P, U (e )UPU...UP,_1U (e)).

S is an Ax,-path, and it is clear from the construction that no vertex of .S
(with the possible exception of x,) belongs to ¢~'C. Hence S is an 4, ¢~ !C-
accessibility path. Again from the construction of S it is clear that ¢S = W.
This means W C ¢X 4 o-1¢, and hence Yz C ¢X 4 o-1¢. Equality of the two
graphs then follows from 4.6.

Proof (of Proposition 5.6). Let C, C" € Q(Y, B) and B ¢~ 1C = B¢~ 'C".
Then XA',p—lc = XA’,p—lol, whence by 57, YBC = g&XA,,p—lc = QOXA‘,pAlcl =
Y s¢r. Finally, since C and C’ are primitive, C = (.

62,
Xo en,
_ -
- -
P, -
) 61,
¢y

' o1y ¢y,

FIGURE 6
The path S
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6. The weak separation lattice of a rooted tree. A case where the
structure of a weak separation lattice is particularly easy to describe is that
of a rooted tree (7', a).

For x,y € V(T) define y < x if and only if y is a vertex of the (unique)
path in 7" which joins ¢ and x. We shall describe Q(7', @) in terms of certain
ideals of the partially ordered set (V' (1), =).

Given an arbitrary partially ordered set (4, <) and an element x € 4
we shall mean by the upper neighborhood of x the set U, of all elements y € 4
which cover x (i.e., which are >x and for which there is no element z with
x < z < y). Note that for a vertex x of a rooted tree (1, ¢) we have U, =
{y € V(;T) 2y > x}.

6.1 Definition. An order ideal I of a partially ordered set (4, <) is a neigh-
borhood ideal if and only if for any x € I either U, I = @ or U, C I.

6.2 LEMMA. For any partially ordered set the neighborhood ideals (if there are
any) form a complete sublattice of the lattice of all order ideals.

Proof. The lattice operations in the lattice of all order ideals are set-theoretic
union and intersection. Let (l4)ecs be any family of neighborhood ideals,
I = Usea L. If U, NI 5 @, then U, N I, # @ for some «, hence U, C I,
by definition of a neighborhood ideal. Hence U, C 1, i.e., I is a neighborhood
ideal. The argument for intersections of neighborhood ideals is quite analogous.

We now characterize the primitive sets of a rooted tree in terms of its neigh-
borhood ideals.

6.3 THEOREM. For any rooted tree (1, a) the sets V(IT',5), B C V(TI'), are
precisely the neighborhood ideals of the partially ordered set (V (1), =<).

Proof. Take any B C V(T') and let x € V(T,5). Then there is an aB-
accessibility path (xo,...,x,) with xy = ¢, x, = x. Hence if y < x, then
y = x; for some ¢ < n, hence y € V(T ,5). Thus V(7,5) is an order-ideal of
V(T).

To see that it is a neighborhood ideal take any vertex y € U, M V(T,p)
and an aB-accessibility path (xo, ..., x,) for y, ie., xy =«, x, =y, and
X0, .. .,%,—1 & B. Since T is a tree, x,_; = x, and hence for each z € U,,
(x0, . .., X1, 2) is an aB-accessibility path. Thus U, C V(7 .5).

To prove that any neighborhood ideal I determines an accessibility graph
let B be the set of all maximal elements of I (i.e., those y € I for which there
isno x € I with x > y), and consider V(7,5).

Suppose there isan x € I — V(7T,3), and let (xy, . . ., x,) be the path in T°
joining ¢ and x. Then x, € B for some m < n. Since x, = x € [ this contra-
dicts the fact that x,, is a maximal element of I. Hence I C V (T, p).

If x € V(T,) then the path W = (x,, ..., x,) which joins a¢ to x is an
aB-accessibility path. If x ¢ I then there is a largest subscript m < = for
which x,, € I, and hence x,,, € U,,. If U,, N\ I = @, then x,, € B, but this
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is impossible since W is an aB-accessibility path. Hence U,, C I, whence
%me1 € I, contrary to the maximality of m. Thus V(7,5) C I, completing
the proof.

It is worth noting that for rooted trees those subsets B which contain no
end-vertex of T are one-sided. For if x € B M int T, then E(x;T) C E(1.5)
and hence U, C V(T5). d(x;T) = 2 implies that U, # @. Given y € U,
the path in 7" which joins @ and y is an aB-accessibility path and contains x.
Hence x ¢ B, a contradiction. But this means that B is one-sided.

By Theorem 6.3 the lattice Q(7', @) is isomorphic to the lattice of all neigh-
borhood ideals of (V(T), <), the isomorphism being B+ V(T,5). It is well
known that the lattice of order ideals of any p.o. set is distributive. Any sub-
lattice of a distributive lattice is distributive; hence from 6.2 we have

6.4 THEOREM. The weak separation lattice of a rooted tree is distributive.

7. Chains. In this section we determine all rooted graphs whose weak
separation lattice is a chain. It turns out that these graphs can be obtained
by a simple construction from paths or rays (= one-way infinite paths).
The restriction to rooted graphs entails no loss of generality (see beginning of
Section 8).

Before stating the principal result of this section we introduce some termi-
nology and notation.

7.1 Definition. Given a rooted graph (X, a) and a vertex x € V(X) let
Us={y € V(x:X) :pla,y) > pla, x)},

where p denotes distance in X. The inequality p(a, y) > p(q, x) is equivalent
to p(a, y) = p(a, x) + 1. We shall say that x is essential if and only if U, # 0.

Observe that if X is a tree, then U, is the upper neighborhood of x introduced
in the preceding section.

7.2 THEOREM. Any weak separation lattice Q(X, a) which is a chain is 1so-
morphic to a segment of the ordinal w + 1. Moreover, (X, «) is a cactus with the
following properties:

(i) every block of X 1is either an edge or a triangle;
(i1) for every x € V(X), U, contains at most one essential vertex; and

(iii) for every x € V(X) there is at most one edge e, joining lwo vertices in
U,; if U, contains an essential vertex u,, then e, € E(ut,;X).

Conversely, if (X, a) satisfies (1), (ii) and (iii), then Q(X, a) is a chain.

Conditions (i), (ii) and (iii) permit the following explicit description of
(X, a) (actually, (i) is redundant; it is implied by (ii) and (iii)). For each
n=0let A4, = {x € V(X):p(a,x) =n}, and d = max{n: 4, # 0}. If X
is non-trivial, then either d is a positive integer or d = 2. Clearly, for every
n < d, A, contains an essential vertex, hence by condition (ii) exactly one
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such, say x,, and xo = «. Then W = (%o, ..., %q-1) or W = (x,%1,...) IS a
path or a ray (depending on whether d is finite or infinite) which comprises all
essential vertices of X, and which is the skeleton of X in the sense that every
other vertex of X is adjacent to some vertex in W. That is,

VX)) = U V(xa; X).

0<n<d

Moreover, for 0 < n < d we have
V(% X) M Apy = (%521}
by condition (ii), and
|V (e X) M4, =1

by condition (iii) (f V(x,;X)M\ 4, = {v,}, say, then x,, y, and x,—; form a
triangle). U,, = V(x,;X) M A,;1is non-empty and may be of any cardinality.
By (iii) all but at most two vertices of U,, are of degree 1. If U,, contains two
vertices of degree =2, then one of them is x,,1, the other is of degree 2, and
they are adjacent to each other.

All this says that (X, «) can be obtained by taking a path or a ray W
starting at ¢ and by attaching at each vertex of W (except at the other end-
point, if Wis a path) at most one triangle which must have an edge in common
with ¥, as well as any number of vertices of degree 1 (see Figure 7).

V1 Vs

FIGURE 7
Proof (of Theorem 7.2). Sufficiency: Let 0 < n < d. In terms of the descrip-

tion of (X, a) given above, every vertex in B, = U,, — {x,11} is of degree 1
(case 1,) or B, contains exactly one vertex of degree 2, say v, (case 2,). If
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d < o, then U, contains no essential vertex, but it may nevertheless happen
that U, contains exactly two vertices of degree 2 (all others being of degree 1),
Xa, Vo, 2y, and [xq, v4] € E(X) (case 2,). The corresponding a-primitive sets
are {x,} (case 1, n < d), or {x,} and {x,, v, (case 2,,n < d), and {x4, v}
(case 2;), as well as #@. It is straightforward to verify that the map
n:QX,a) > w+ 1 defined by {x,} — 2n, {x,, Yo} —2n + 1,0—w + 1, is
a monomorphism. Clearly the image of 5 is isomorphic to a segment of w 4+ 1.

Necessity: Suppose Q(X, a) is a chain. Let ¥ be a block of X which is not
an edge. Either ¢ € V(Y) or a« ¢ V(Y); in the latter case there is a unique
cut-vertex ¢ of X separating a from Y. Put b = « or ¢ as the case may be, and
suppose there are two distinct edges ¢; = [x;, y;] of ¥, 2 = 0, 1, not incident
with b. Since Y is 2-connected there is a path in ¥ containing b and e; but not
ei_;. Hence B; = {x4 v;}, 1 = 0,1, are two incomparable «-primitive sets,
contrary to Q(X, a) being a chain. Hence at most one edge of Y is not incident
with b, i.e., YV is a triangle. This proves (i).

Since every block of X is either an edge or a triangle, it is clear that every
essential vertex (with the possible exception of @) is a cut-vertex. In any
graph, if x is a cut-vertex, then x € NX,, C {x}, i.e.,, {x} € Q(X, a).

Suppose x € V(X) is such that U, contains two distinct essential vertices
uo, #; and let e; € E(uy; X)), e; # [x,u;], 1 = 0,1. Since u; is a cut-vertex
one has {u;} € Q(X,a) as well as ¢; € E(Xu—;) — E(X,), 7 = 0, 1. Hence
{uo} and {u;} are two incomparable elements of Q(X, ¢), a contradiction.

Finally, suppose U, contains an essential vertex u,, and let [y, z] € E(X)
with y,2 € U, If v u, 5z, then X, .., = X\e. On the other hand,
e € E(X,.,), butsince X,,, # X, {u,} and {y, z} are incomparable ¢-primitive
sets. This completes the proof.

It should be noted that while Q(X, «¢) is at most countable the order of X
may be as high as one wishes. The reason is that at any vertex of the skeleton
path (or ray) one may attach any number of vertices of degree 1.

8. The closure operator associated with the weak separation lattice
of a rooted graph. It is clear from Proposition 2.11 that for any pair (X, 4)
the sets E(X 45), B C V(X), form the open sets (i.e., complements of closed
sets) of a closure system. In this section we study briefly the closure operator
arising from this system. We begin by showing that in so doing we may restrict
ourselves to the case of a rooted graph, i.e., a pair where 4 = {«}. This is
done by the standard procedure of adjoining a new vertex to the given graph.

Given an arbitrary pair (X, A) take a new vertex ¢ 4 V(X) U E(X) and
consider the graph X’ with

VX" = V(X)U{a} and EX’') = E(X)\U {[a,x]:x € A4}.

8.1 ProrositioN. The a-primitive sets of X' are {a} and the A-primitive sets
of X. In other words, the lattice Q(X', «) consists of Q(X, A) with the set {a}
adjoined as a new zero element.
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Proof. The only a-primitive set of X’ which contains a is {a}. Any other
a-primitive set B of X’ is therefore a subset of V(X). For any such B, if
(%, ..., %,) is an AB-accessibility path in X, then (a,x,...,%,) is an
aB-accessibility path in X', and conversely. This says that

V(X'ep) = V(X45) Y {a} and
EX'5) = EX45) I {la,x]:x € 4}.

Moreover, RX ;5 = WX's (rims in X and X', respectively), since for
x € V(X),

E(x;X), ifxq A4

Ex; X') = {E(x'X) U {la, x]}, ifx € A4.

Hence B is a-primitive if and only if it is A-primitive.

For the remainder of this section we shall deal with a given rooted graph
(X, a). We first characterize the accessibility graphs in terms of their edge-
complements, in other words, the closed sets of the underlying closure system.

8.2 THEOREM. Given a one-sided set B C V(X) witha ¢ B put X\X.5 = Y.

Then
(i) a ¢ V(Y);
(i) X — Y is connected;

(iii) Y is a restriction of X, and

(iv) Y has no isolated vertex.

Conwversely, if Y is a subgraph of X satisfying (i), (ii) and (iii), then X\V =
Xo vivy. Moreover, if Y also satisfies (iv), then V(Y) 1s « one-sided set, RY 1s
a-primitive, and X\ Y = X, ny. In other words, the non-zero elements of Q(X, a)
are precisely the rims of subgraphs satisfying (i), ..., (iv).

Note that since Y is a restriction of X the two sets Y and BY coincide.

Proof. We begin by showing that X — ¥V = Int X,5. Since by 2.6 (iii),
Int X, is a restriction of X, it suffices to prove that V(X) — V(Y) = int X, 5.

Since a ¢ B, X, # (a¢) and hence has no isolated vertex. This implies
VXazg) YV(Y) = RX.5 = RY, whence intX,NV(Y)=60 .ie,
int X, C V(X) — V(Y). For the reverse inclusion note that

X - XaB CX\XaB = Y

Hence x ¢ V(Y) implies x ¢ V(X — X,5), ie., x¢€ V(X,g). Also,
V(Y) DRY = RX,5, whence x ¢ RX 5. Thus V(X) — V(Y) C int X,5.
Since B is one-sided any vertex in int X, can be joined with ¢ by an
aB-accessibility path W disjoint from B and hence disjoint from NX,z C B.
This means that W C X — Y, proving (i) and (ii).
To prove (iii) take x,y € V(Y) such that e = [x,y] € E(X) — E(Y).
Then ¢ € E(X,5) and hence x,y € V(X,5), ie., x,y € V(X,z0) N V(Y) =
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RX,.p. But this is a contradiction, since no two vertices of N X,z are adjacent
in X,5 (2.6 (iv)).

(iv) is clear from the definition of ¥ as an edge-complement.

Now suppose that Y satisfies (i), (ii), (iii) and put V(YY) = B. We have
to show that X\V = X,5. Let W = (x, ..., x,) be an aB-accessibility path.
If W X\Y, then [x,_1, %, € E(Y) N\ E(W) for some 7, 1 £7 £ n. But
then ;-1 € BN V(W) and 7 — 1 < n, contrary to W being an aB-acces-
sibility path. Hence X,5 C X\Y. None of the conditions (i), (ii), (iii) is
used for this inclusion.

For the reverse inclusion take any e = [x, y] € E(X\Y). At least one of
x,y belongs to X — YV, say «; for if x,y € V(Y) then by (iii), e € E(Y), a
contradiction. By (i) and (ii) there is an ax-path W in X — Y. But then
W U (e) is an aB-accessibility path containing e, i.e., e € E(X,p).

Now assume (iv), and suppose there is an x € B N int X,5. (iv) implies
0 # E(;Y) CEx;X) = E(x;X.5) = E(x;X\Y), an obvious contradiction.
Thus B is one-sided.

Since we already know that X\Y = X,z we have from (iv) that RY =
RX .5, hence by 2.7, NY is a-primitive and X\V = X, xy. This completes
the proof.

For future reference we state the equation X\V = X, v(y) as a separate
corollary.

8.3 COROLLARY. For any one-sided set B, X,p = Xa vix\xp-

8.4 COROLLARY. Let B; € Q(X,a), Y, = X\Xup,, © = 1,2. Then B, £, B,
if and only if Vs is a restriction of Y.

Proof. Bi =, By Xyp, C Xup, & V1 D Voo ¥y is a restriction of Vi,
the last equivalence following from the fact that V;, V. are restrictions of
X (8.2 (iii)).

For a given rooted graph (X, «) let R(X, a) be the collection of all connected
restrictions Z of X with « € V(Z). Partially ordered by inclusion, R(X, a)
forms a complete lattice in which the supremum and infimum of a family
(Z 1) ier are given by

sup Z; = restriction of X to U Z,,

i€r €71

inf Zi = Z,

€r
where Z is the component of (M ; Z; which contains the vertex «. The graph
(a) and X are the zero and one-element, respectively, of R(X, a).

8.5 PROPOSITION. For any rooted graph (X, a) the mapping ¢ : B+ Int X, p1s
an injective complete meet-preserving mapping of Q(X, a) nto R(X, a), i.e.,
in the category Ly, Q(X, a) is a subobject of R(X, a).
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Proof. By 8.2, ¢ is indeed a mapping of Q(X, a) into R(X, a). Its injectivity
can immediately be seen from the following factorization:

B"“)XQBHX\XQB}—)X - (X\XGB) = IntXaB.

Let By = inf B;in Q(X, a), Z = inf Int X5, in R(X, a). Since { preserves
order,

Int -X(ZB() = g‘B() C inf fBl = Z.

In order to prove the reverse inclusion note that Z is the union of all paths
W C Z which start at a. Since Z C Ny Int X5, we have that any such
path W is disjoint from every B; (3.5), hence W is disjoint from B = U, B.
This means W C Int X, and hence Z C Int X, = Int X,5,, completing
the proof.

Given any edge e € E(X) denote by V, the set consisting of the two vertices
incident with e.
For the rooted graph (X, «) let B, = B(E(X — «)). Define a mapping
£: P, — Q(X, a) by
F— g, U V.

eEF

Note that B = U V. is a one-sided set. This follows from 2.6 (iv) and the
observation that any x € B is incident with some e = [x,y] € F, so that
y € B.

8.6 LEMMA. £ maps unions to infima.

Proof. Let F; € P, and put B; = Ueer; Ve, © € 1. Then
guﬁ\izﬂa U I/e=BaUBi=,3uUﬂuBizﬂaugFi
€1 €I i€r

€T ee U ;¢ rFi
= inf EF{,
ic1
the essential equality (in the middle) being provided by 3.3.

In particular, Lemma 8.6 says that ¢ is an order-inverting map.

The following is the main result of this section.

8.7 THEOREM. The mapping a: B, — B, defined by Frs E(X\X,.¢r) is a
closure operator on E(X — a), and the lattice §, of a-closed subsets of E(X — a)
is anti-isomorphic (as a complete lattice) to Qo(X, a), the sublattice consisting
of all non-zero elements of Q(X, a).

Proof. Take any F C E(X — a). Since X, sz = Xup, where B = U e Vo,
the existence of an edge ¢ = [x,v] € FN E(X,¢r) = FMN E(X,p) implies
that x,y € B /M V(X,5), which is impossible by 2.6 (iv). Hence

FC EX\X,:r) = F~

That « is isotone follows from the fact that ¢ inverts order.
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Still using the above notation we have by 8.3,

EFQ = EE(X\X(!,EF) = B(ZV(X\XH,EF)
= BaV(X\XaB) = BB = ¢F.

This implies that the operator « is idempotent.

Consider the restriction of ¢ to {,. We shall denote the restriction also by £.
Our claim is that £ : §, — Qu(X, @) is a complete lattice anti-isomorphism.

£ maps suprema in g, onto infima in Q(X, a). Let F, € . 7 € I. Then

tsup Fy = E( U F;)*=E£U F; = inf £F,
icr €1 i€1 i€ I

the last equality by 8.6.

¢ maps infima in §, (= intersections) onto suprema in Q(X, a). Given a
family of closed sets F,, 1 € I, F = My F; is again closed. Hence F =
E(X\X, tr). On the other hand, by 2.10,

F= M E(X/Xa,EFi) = E(X) - BE(X&EM)

€I
= E(X) - E(Xa,supil"i) = E(X\XG:SUDEF’L.)'

Thus E(X\X, ) = E(X\X, suptr;), whence X, e = X, qupiry. Since both
¢F and sup £F; are primitive this implies £§IF = supye; £F;.

¢ is one-one. Let Fy, Fy be two closed sets with ¢F; = £Fs. Then F; =
E(X\Xu.fFl) = E(X\Xu,EFz) = F.

Finally, ¢ is onto. Let B € Qy(X, a) be given, and put F = E(Y), where
YV = X\X,5. Then clearly V(Y) = U.er V.. By the first part of 8.2, ¥
satisfies (i) ... (iv). Hence by the second part of the same theorem, X,z =
X\Y = X, v(vy = X..tr This says that IFis closed and that B = ¢F.

9. Structural properties of Qy(X, a). As established in 8.7, Qu(X, a) is a
complete lattice, and it is easily seen that its zero-element is 8,V (¢;X). In
this section we shall deal with the atomicity and coatomicity of Q¢(X, a)
leaving other structural properties of this lattice for a later study. We con-
tinue to use the notation of Section 8. To avoid useless complications we shall
assume that V(«¢;X) is primitive.

Little that is of interest can be said about the atoms. We sum up the situa-
tion in the following proposition, leaving the proof to the reader.

9.1 ProrosiTioN. Any atom of Qu(X, a) is of the form
B ((V(a;X) — {o}) W (V(0;X) — {a})),
where b € V(a;X).

Thus the atoms depend exclusively on the local structure of X near the
vertex «, which implies immediately that the lattice Qy(X, @) which depends
on X globally, will not in general be atomic. For example, using the fact that
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there are at most d(¢;X) atoms, one can easily see that for any graph with
more than 2¢@% edges Q¢(X, a) cannot be atomic.
In view of Theorem 8.7 the coatoms Qo(X, ¢) are of much greater interest.
If e = [x,y] € E(X — «a) is not a bridge ([2, p. 26]), then both x and y
are «1’,-accessible, and since e ¢ E(X,y,) it follows that V, C RX,.y,, so
that 17, is primitive. Hence if X is a bridgeless graph, then by the proof of
8.7 and by 2.10, any B € Qo(X, ¢) can be written as

B = gE(X\XaB) = inf{Ve L€ E E(X\X’“B)}
e € E(X\X,3) is equivalent to V, =, B in Qo(X, @). Thus
B =imf{V,:V, z,B};

in other words, the sets 17,, e € E(X — a), generate Q¢(X, ¢) as a complete
meet-semilattice.
We now characterize the coatoms of Qq(X, a).

9.2 LEMMA. If X is bridgeless, then the coatoms of Qo(X, a) are precisely those
sets V7, e € E(X — a), which are not cut sets of X.

An edge e of X for which 1, is not a cut set will be called non-separating;
otherwise e is called a separating edge.

Proof (of Lemma 9.2). In a bridgeless graph, to say that 1/, is not a cut set
implies that neither endpoint of e is a cut vertex. Now let B € Qo(X, a). If
X\X .5 has two distinct edges e, e2, then V,, =2, B, 7 = 1, 2, and at least one
of these inequalities is strict. Hence if B is a coatom, then X\X,.z = (e), i.e.,
B = T, for some e not incident with a. Moreover, V', cannot cut X, for if it
does, let ¥ be any component of X — 1V, which does not contain «, and ¢’
any edge of X incident with some vertex of Y. Then e and ¢’ are two distinct
edges of X\X,y,, contrary to V, being a coatom.

Since always |V,] = 2, Lemma 9.1 and the remarks preceding it yield
immediately:

9.3 PROPOSITION. For a 3-connected graph X the lattice Qo(X, a) 1s coatomic,
the coatoms being precisely the sets Vo e € E(X — a).

In the 2-connected case, if every edge e € E(X — a) is a separating edge
of X, then clearly Q,(X, ¢) has no coatoms whatsoever. Such a graph has the
property that every vertex, with the possible exception of «, has infinite
degree. What happens to the coatomicity of Qo(X, ¢) when vertices of finite
degree are present, is not known. However, the following result shows that
every vertex of finite degree induces at least one coatom.

9.4 THEOREM. Every vertex of finite degree of a 2-connected graph is incident
with a non-separating edge.
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In particular, this says that every vertex of a locally finite 2-connected
graph is incident with a non-separating edge. Mercier [3] has pushed this
result further by showing that for every locally rayless 2-connected graph X
the lattice Q(X, a) is coatomic. X is said to be locally rayless if and only if
for every ray R C X and every x € V(X) the set V(x;X) M V(R) is finite.
Trivially, every locally finite graph is locally rayless.

In the proof of Theorem 9.4 we make use of the well-known concept of the
block-cutpoint tree of a graph ([2, p. 36]). We recall the definition.

Let X be a (connected) graph, 4 its set of cut vertices (not to be confused
with the set A used earlier in this paper), B its set of blocks. One defines the
block-cutpoint graph T of X by

V(ry=AUB and E(T) = {[a,Bl:a € A, B € B,a € V(B)}.
T is known to be a tree ([2, Theorem 4.4]), and for a € 4, d(a;T) is the
number of blocks which contain a. Hence

d(a;T) =2 2 foreverya € A.

Similarly, for B € B, d(B;T) is the number of cut vertices of X which belong
to B.

In statement and proof of the following lemma the word ‘‘cut-vertex’
means ‘‘cut-vertex of X''.

9.5 LEMMA. Let X be a connected graph in which every infinite circuit (= 2-way
infinite path) contains at most finitely many cut-vertices. Then X has a block
containing at most one cut-vertex.

Proof. Suppose every block of X contains two cut-vertices. Then in the
block-cutpoint tree of X

d(B;T) 2 2 for every B € B.

This means min,cy(ry d(y;T°) = 2. Hence T contains a circuit C, and since T
is a tree, C must be infinite. The vertices of C are alternatingly blocks and
cut-vertices of X, i.e.,

C = ( ey A, B_l, g, Bo, ay, Bl, .. )

For every integer 7 let WW; be an a,a;41-path in B;. Then ¢’ = U W, is an
infinite circuit in X, and C’ contains infinitely many cut-vertices, a contra-
diction.

9.6 Definition. Let T be a tree. For x,y € V(T) let T'(xy) be the (unique)
path in T from x to y, and for 4 C V(X) put

Ty= U T(xy).

z,y€A

A is called a set of generators of T if and only if T4 = T.
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9.7 ProproSITION. Let T be a tree, A a set of gemerators of T such that
d(a;T) = 2 for every a € A. Then T contains an infinite circuit

= ("'7C—Iy60y611-")

such that ¢; € A for infinitely many positive as well as infinitely many negative
subscripts 1. In particular, this says that both A and T are infinite.

Proof. Given any x € 4 and ¢ € E(x;1") let
A(x,e) = {a € A :e € E(T(ax))}.

Since A generates 1" the set 4 (x, ¢) is never empty. Now fix an ¥y € 4 and
an ¢y € E(xo;T), and let x, € A (x0, o). Since x; is an end-vertex of the path
T (x0x1), and since d(x,;7") = 2 thereisan e; € E(x;;7") which does not belong
to T'(xex;). Now take an xs € A4 (x4, €1), etc. It is then clear that

R = T(xex1) Y T'(x1x2) U ...

is a ray starting at x, and that V' (R) contains infinitely many members of
A Viz.x;,1=0,1,...).

Since d(x¢;T) = 2 there is an ¢/ € E(x¢;1") — {eo} and one can repeat the
previous construction beginning with x, and ey, obtaining a ray R’, also
starting at x, but otherwise disjoint from R, and containing infinitely many
members of 4. C = R\U R’ is then the required infinite circuit.

Proof (of Theorem 9.4). What we shall show is the following stronger
statement: Given « vertex xo of a 2-connmected graph X such that all edges in
E(x¢;X) separate X. Then d(xo;X) 1s infinite, and there is an infinite circuit
C C X — xo which contains infinitely many vertices adjacent to x,.

Since X is 2-connected, ¥V = X — x, is connected. The assumption that
every edge in E(xy;X) separates X means that every vertex in 4y = 17 (x¢;X)
is a cut-vertex of YV, i.e., 4¢ C A, where 4 is the set of cut-vertices of V.

We now show that 4, generates 7', the block-cutpoint tree of V. Take any
edge [a, B] of T, and let ¢ € E(«;B). By 2-connectedness of X there is a finite
circuit Q containing xy and e. W = Q — x¢ is a path in ¥ joining two vertices
ag, ay € Ay, and e € E(W). Now consider W*, the path in 7" induced by W.
Since the endpoints ay, a; of W are cut-vertices of YV it follows that they are
also the endpoints of W*; in other words, W* = T'(«¢u;). Further, e € E(WW)
implies (¢, B] € E(W*). Thus, (¢, B] € E(T4,), and since [«¢, B] was an
arbitrary edge of 1" it follows that 7" = 7 4.

In any block-cutpoint tree one has d(«;1") = 2 for every a € A. In parti-
cular this holds for the vertices in 4; hence by 9.6, T" contains an infinite
circuit C which contains infinitely members of 4,. As in the proof of 9.5, C
determines a circuit C" C YV with 1T7(C") M Ay = T(C) M A,.

In general, Theorem 9.4 is false when d(x¢;X) is infinite (see Figure 8).
Every edge e, is separating; nevertheless, the graph is 2-connected.
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FiGURE 8

10. Comparison with primitivity in the sense of Halin. In this section
we establish that the weak separation lattice of a rooted graph is isomorphic
to the separation lattice in the sense of Halin of the line graph or derivative of
the given graph. This does not mean, however, that the theory of primitive
sets as developed in the earlier sections of this paper coincides with Halin’s
theory when applied to derivatives. Both Halin’s primitive sets and our own
are sets of vertices, not of edges as would be the case if Halin’s definitions were
simply transferred to derivatives.

For a subgraph ¥ of X let ¥ be the restriction of X to V(Y). On the basis
of the observation that for any B C V(X), BX . C B, Halin [1, (1.3)]
defines B to be primitive if and only if B = X ,5 (in Halin’s notation X , 5
is X (4 — B)). To avoid confusion we shall call such a set (H)-primitive.

From the definitions of boundary and rim and 2.6 (ii) one has immediately
that

BX 45 CHRX,5 C B.

Hence

10.1 ProrositioN. Fvery (H)-primitive set is primitive.
Let us denote by QU (X, A) the lattice of all (H)-primitive sets.

10.2 PrROPOSITION. For « rooted graph (X, a) in which every vertex #a 1is
either a cut-vertex or a vertex of degree 1, Q(X, «) = Q¥ (X, a). Conversely, if
X — a is locally finite, and Q(X, a) = QU (X, a), then every vertex x € V(X),
X # a, 1s either a cut-vertex or d(x;X) = 1.

Proof. Let x € B € Q(X,a), x # «. Since x € V(X,5), there is an aB-
accessibility path W = (xq, . . ., x,), l.e., Xo = ¢, X, = x, and since x € RXp,
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there is an ¢ € E(x;X) different from [x,_1, x,]. Hence d(x;X) = 2, whence
x is a cut-vertex. Let ¥ be a block of X containing x and edge-disjoint from W.
Then V(x;Y) is non-empty and disjoint from V(X,5), i.e., x € BX,5. Thus
B = BX,p; in other words, Q(X, a) = Q¥ (X, a).

For the converse take any vertex x ¢ V(X), x # a, and suppose that x is
not a cut-vertex of X and that d(x;X) = 2. This implies that the unique
block Z of X which contains the terminal edge of every ax-path is not a bridge,
and hence is 2-connected. Since X — « is locally finite we have from the proof
of 9.4 that x is incident with a non-separating edge e of Z. ¢ is also a non-
separating edge of X, whence X,,, = X\e¢, and consequently V, € Q(X, @)
but V, ¢ Q¥ (X, «). This completes the proof.

As a corollary we have that Q(X, a) = Q¥ (X, a) for any rooted tree.

In general, if Q(X,A4) # Q¥ (X, A), the relationship between the two
lattices is not very strong. In view of the similarity of 2.10, 2.11, 2.12, with
Halin's Satz 1 (and its proof) it is tempting to think that Q¥ (X, 4) is a sub-
lattice of Q(X, A). That this is, however, not the case can be seen as follows.
In the lattice Q¥ (X, 4) the supremum is given by

sup BB, =B U Xup: =B U V(X a8:);

€r €I €I
hence in order to show that sup B; and sup®™ B, are different it sufhices to
find an example where U ;; X 15, is a proper spanning subgraph of X. Such
an example is provided by Figure 1. If one takes B, = {1,2, 3,4}, B, =
{1, 2, 3,4} (these are (H)-primitive sets), then sup™{B,, By} = BX = 0,
whereas sup{B;, Bs} = {3,4,3,4'}. On the positive side, the inclusion
O (X, A) — Q(X, A) preserves arbitrary infima. To establish this we show
that for any family B, € Q¥ (X, 4),1 € I,

NX4p = BX 45,
where B = U ;¢; B It suffices to prove WX 15 C BX 5.

Let x € NX 45 By 2.6 (ii), x € B, hence x € B; for some j € I. Since
B, € Q¥ (X, 4), there is a vy € VV(x;X) — V(X45p,). If x ¢ BX 4p, then
V(x;X) C 1"(X45), hence y is AB-accessible, and therefore also 4B j-acces-
sible. But this means y € (X 45,), a contradiction. It follows that

il]f(H)Bi = ﬁA(H)B = '%XAB = E)QXAB = BAB = illfBi.

Going the other way, there is a natural map 8, : B+— 8X ,, from
Q(X,4) to Q¥ (X, A). This map is clearly onto and preserves arbitrary
suprema. For if (B;)c; is any family of primitive sets, then

BA(H) sup B; =B X4 = B U Xup, = $V< ) XAB,-)
€I €I

=B U V(X)) = B U V(X ,p5,®5,) = sup s, "B,
€7

€l
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On the other hand, very simple examples can be given which show that 8,
does not in general preserve infima; thus 8, is not a lattice homomorphism.

In order to state the principal result of this section we recall that for a
given graph X the derivative 0X of X is the graph with V(0X) = E(X) and
E(3X) consisting of all (unordered) pairs of adjacent edges of X. Frequently,
edge-separation properties of X can be translated into vertex-separation
properties of dX. The following theorem is an example of this situation. It
says essentially that the weak separation lattice of a rooted graph (X, a) is
isomorphic to the Halin-lattice of the pair (80X, E(¢;X)). Note in this con-
nection that Halin-lattices are defined in terms of vertex-separation.

10.3 THEOREM. The mapping 8,: B B = Uyp E(0;X,5) is an 1iso-
morphism between Qo(X, a) and Q™ (80X, E(a;X)).

Proof. For abbreviation we shall put X = YV and E(¢;X) = 4.

Given Z C V we denote by 07'Z the smallest subgraph of X with
E(012Z) = V(Z).

IfW = (x,...,%)C W,y, then dW = (ey, ..., e,) is an AB -accessibility
path in ¥, where e; = [x;_1,%:],72=1,...,n. Forif e; € E(0;X,5) for some
1 <mn, then x;., =0€¢ B or x,=0¢ B, contrary to W &€ B,5. Thus
V(X .5) C V(Y45).

Conversely, let e € V(Y p) and S = (e1,...,e,) an AB’-accessibility
path in ¥ with ¢, = e. Then -5 is a connected subgraph of X containing a
and both ends of e. Let P = (xq, ..., x,) be a path in 9715 with xy = @ and
x, an end of e. None of the edges ¢y, . .., e,_1 belongs to B’, i.e., is incident
with a vertex of B, hence xq, ..., %,—1 ¢ B, i.e.,, P € L®,p, so thate € E(X,p).
This proves

(10.3.1) V(Yap) = V(3X.5) = E(Xup).

Take ¢ € B’. Then e € E(b;X,p) for some b € NX,5, hence there is an
e =1b,c] € E(X\X.s). From (10.3.1) this gives ¢ ¢ V(V,5). But
le,e'] € E(Y), whence ¢ € ByV, 5, 1e., B € Q¥ (Y, A). Thus 9, is a map
Qo(X, a) = QUD (Y, 4).

By 2.6 (iv) any edge of X, is incident with at most one vertex of B. Hence
for ¢ € B’ exactly one end of ¢, say b,, belongs to B. This means that B =

{b,: e € B’} which immediately implies that the mapping 9, is one-one.
Given C € QU (Y, A) put B = N3 1YV 4. We claim that

(10.3.2) 0'Vig = Xun.

Let e € E(X,5) and W = (x0,...,%,) € W,z with xy = «a, [x,_1, x,] = e.
Then oW is an A C-accessibility path in Y. For if [x,_1, x,] € C = By V¢,
where 0 < m < #, then x,_1 or x,, is incident with some edge ¢’ ¢ V(Y () =
E(071Y  ¢). Accordingly, x,,1 or x, € N9~V o = B, a contradiction. Since
e € VOW) C V(Yi¢) = E(071Y (), this shows that X,z C 07V, (. For
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the reverse inclusion let ¢ € E(071Y  ¢) = V(Y4¢), and take any A C-acces-
sibility path S'in ¥ of which e is a vertex. Let P = (xo, . .., %,) be a path in
9-1S with x¢ = ¢ and e = [x,_1, x,]. V(8P) being contained in V(S), dP is an
A C-accessibility path in Y. We claim that P € &,5. For if not, take any
subscript m < n such that e, = [x,-1, x,] € B. This means x,, is incident
with an edge ¢’ not in E(8-'Y ). Having x,, in common, e, and ¢’ are adjacent
in Y. Since e,, € 1 (Y 4¢) this implies that ¢, € By V¢ = C, a contradiction
to P being an A C-accessibility path.

From (10.3.2) we have immediately that B = Wo~'V ¢ = RX,p, which
means B € Q(X, «). Since B is always #{a}, except in the case where C is
empty, we have that B € Qo(X, «).

To show now that 9, is onto, take C and B as in the preceding paragraph.
By (10.3.2) and (10.3.1),

V(Yaie) = E(07'Y4e) = E(Xup) = V(Yasn),
hence C = By Ve = By YV, p = B’ since we have already established that
B € QX,a).
For a family B; € Q(X, ), 1 € I, we have from (10.3.1) that
V(i ®a.) = V(U Vaner) = E( U Xun,)
icr i€l
= E(Xu,suDBi) = V(YA.(SUDBi)');
in other words, 9, sup B; = sup*9,B.,.

Since 9, is a bijection and preserves suprema, it also preserves infima.

Theorem 10.3 can be strengthened in the following sense: not only is every
weak separation lattice isomorphic to a Halin-lattice but actually coincides
with one such.

10.4 THEOREM. Given « rooted graph (X, a) there exists a rooted graph (X', a)
such that X s a restriction of X' and Q(X, a) = Q¥ (X', a).

Proof. We construct X’ as follows. Let Q be a set disjoint from 1"(X) U E(X)
which is in one-one correspondence with E(X). For e € E(X) let ¢, be the
element of Q corresponding to e. Put

VX = V(X)) U Q,
EX') = E(X) U llge, x] 1 e € E(x;X), x € V(X)}.

In other words, every edge e = [x, y] of X is being replaced by a triangle T,
whose vertices are x, ¥, ¢,. Note that X is a restriction of X’, and that each ¢,
is a vertex of degree 2. An example of this construction is given in Figure 9.

For any ¥ C X we shall denote by Y’ the graph U {7, : e € E(Y)}. Our
claim is that Q(X, «) = Q¥ (X', a).

To begin with we show that for every B C 1(X),

(10.4.1) X'i.p = (Xuz)' D Xus
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€a
X
FIGURE 9
(The heavy lines are the edges of X)

Trivially, any W = (xg,...,%,) € W,z also belongs to W,z Let e; =
[xi1, x4, 0 < i< m Then W, = (xq,...,%i1, Qe;y X4, - - -, %) likewise be-
longs to W',5. Thus T', C X', for every e € E(X,3p), ie., (Xuz) C X5

Let S = (sg,..., Sn) be a path in X’ starting at a. Since s, = «, we have

s¢ € V(X). If for some 7, 0 < 7 < m, the vertex s; is of the form ¢, for some e,
then s,.1, 5,41 € V(X), and e = [s;1, Si1). Similarly, if s, = ¢, then
Sm—1 € V(X), and e = [s,_;1, '] for some s’ € V(X). Thus we can reduce S
toapath S;eq = (0, ..., %x,), wherexy = a,%, = sp,and xg, . . ., x,-1 € V(X)
as follows. Let 0 = 29 < 4; < ... < 1, £ m be those subscripts with s;; € V(X)
and s, ¢ V(X) for every k, 1, < k < 4,41 It is clear that ¢;,, = 7; + 1 or
i;+ 2. Put s;, = x5, 7 =0,...,%n If Sis an aB-accessibility path in X' so
also is S;eq. Moreover, S, is an aB-accessibility path in X, i.e., Siea C Xy5p-
Thus, whenever a vertex of S is of the form ¢,, then ¢ € E(X,z), and since
the two edges of X’ incident with ¢, belong to 7', this means X',z C (X.5)'.
For any B C V(X),

(104.2) B'X.p = RNX,5p.

Let x € 8,B. Then there is an ¢ € E(x;X\Xu5); ¢ = [x, v], say. Case (i):
vy & V(X.s). Then ¢, is not aB-accessible in X', since every ag,path in X’
contains either x or vy, and hence a vertex of B. Case (ii): y € V(X,5). Then
x,y € B, and since every ag,path in X’ must contain either x or y, we have
again q, ¢ V(X.5'). In either case x € ¥'X,p’". Conversely, if x € 8,B,
then x € B, and there is an edge [x, w] € E(X,3'), where either w € V(X)
orw = q, with e = [x,y] € E(X). In the first case, w is either aB-accessible

https://doi.org/10.4153/CJM-1976-069-6 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1976-069-6

724 GERT SABIDUSSI

in X’, and then w € B, so that [x,w] ¢ E(X.5); w ¢ V(X.s) by (10.4.1).
Again [x, w] ¢ E(X,5). Similarly, if w = ¢,, then we have the same two
alternatives for v which we just had for w, so that [x,y] ¢ E(X,z). Thus
x € NX 5.

(10.4.2) implies in particuiar that Q(X, a) C Q"™ (X', a).
Next we show that the inclusion map Q(X, a) —» Q¥ (X', a) is a complete
homomorphism. Let B; € Q(X,a), s € I. Then
sup (H)Bi — %/ U X(lBi, — EBI U szBi),

i€r €r
’ ’
= EB)((t.sul)Bi = ER)(a,sunlfi = SUth

the second equality following from (10.4.1), the next to last one from (10 4.2).
Also, from (10.4.2),

inf B, = B,¥0B = B'X,5 = RX.ps = B.B = inf B,

where B = Uy By

Every C ¢ Q¥ (X’ a) is contained in V(X). Suppose ¢, € C for some
e = [x,y] € E(X). Then ¢, is aC-accessible in X’ and adjacent to an aC-
inaccessible vertex. This means that exactly one of x, ¥y belongs to X,¢/, say
x € V(X.¢'),y @ V(X.¢'). This means that every aC-accessibility path in X’

joining ¢ and ¢, has the form S = (¢, ..., x, ¢.). Hence x ¢ C. Thus S\U (e)
is an aC-accessibility path in X’ joining ¢ and y, i.e., ¥y € V(X,¢'), a contra-
diction.

It remains to show that C € QU0 (X', «) implies C € Q(X, a). But this is
now obvious, since C = $'X .o = RX.c C C by (10.4.2).
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