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Geometric Waldspurger periods

Sergey Lysenko

ABSTRACT

Let X be a smooth projective curve. We consider the dual reductive pair H = GO,,,,
G = GSpy,, over X, where H splits on an étale two-sheeted covering  : X — X. Let
Bung (respectively, Bung) be the stack of G-torsors (respectively, H-torsors) on X. We
study the functors Fg and Fy between the derived categories D(Bung) and D(Bung),
which are analogs of the classical theta-lifting operators in the framework of the geometric
Langlands program. Assume n = m = 1 and H nonsplit, that is, H = 7.G,, with X
connected. We establish the geometric Langlands functoriality for this pair. Namely, we
show that Fiz : D(Buny) — D(Bung) commutes with Hecke operators with respect to
the corresponding map of Langlands L-groups “H — LG. As an application, we calculate
Waldspurger periods of cuspidal automorphic sheaves on Bungy,, and Bessel periods of
theta-lifts from Bungg, to Bungsp,. Based on these calculations, we give three conjectural
constructions of certain automorphic sheaves on Bungsp, (one of them makes sense for
D-modules only).

1. Introduction and main results

1.0 This paper, which is a sequel to [Lys06a], is a part of two (related) research projects: (i) a
geometric version of the Howe correspondence (an analog of the theta-lifting in the framework of
the geometric Langlands program); (ii) a geometric Langlands program for GSpy.

We consider only the (unramified) dual reductive pair (H = GQy,,,, G = GSp,,,) over a smooth
projective connected curve X. Let Bung (respectively, Bungy) denote the stack of G-torsors
(respectively, H-torsors) on X. Using the theta-sheaf introduced in [Lys06a], we define functors
Fg : D(Bung) — D(Bung) and Fg : D(Bung) — D(Bung) between the corresponding derived
categories, which are geometric analogs of the theta-lifting operators. Based on classical Howe cor-
respondence (cf., for example, [Ada89, Kud96, MVW87, Ral82]) and our results from [Lys07], we
conjecture a precise relation between the theta-lifting functors and Hecke functors on Bung and
Bung (cf. Conjecture 1). For n = m (respectively, for m = n+ 1) the functor Fg; (respectively, Fyr)
is expected to realize the geometric Langlands functoriality for a morphism of Langlands L-groups
HY — G (respectively, G — HT).

We prove this conjecture for the dual pair (GOy, GL3), where GOy = 7, G, is a group scheme
over X, here m : X — X is a nontrivial étale two-sheeted covering. If F is a rank-one local system
on X , then this provides a new proof of the geometric Langlands conjecture for . E independent
of the existing proof due to Frenkel, Gaitsgory and Vilonen [FGV02, Gai04].

Let us describe our remaining main results in a form that is less technical than their actual
formulation. Assume that the ground field k = I, is finite of ¢ elements with ¢ odd. Set G = GL3. Let
E be a rank-two irreducible £-adic local system on X . Write Autg for the corresponding automorphic
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sheaf on Bung (cf. Definition 8). Let fg : Bung(k) — Q denote the function ‘trace of Frobenius’
of Autg.

Let ¢ : Y — X be a nontrivial étale two-sheeted covering. Write PicY for the Picard stack of Y.
Let J be a rank-one local system on Y equipped with an isomorphism N(J) = det E, where N(J)
is the norm of J (cf. Appendix A.1). Write f7 : (PicY)(k) — Q for the corresponding character
(the trace of Frobenius of the automorphic local system AJ corresponding to J). The Waldspurger
period of fg is

/ o651 (8) 5
Be(PicY)(k)/(Pic X) (k)

(the function that we integrate does not change when B is tensored by ¢*L, L € Pic X), here dB
is a Haar measure. A beautiful theorem of Waldspurger says that the square of this period is equal
(up to an explicit harmless coefficient) to the value of the L-function L(¢*E® J 1, 1) (cf. [Wal85]).
We prove a geometric version of this result. The role of the L-function in geometric setting is
played by the complex
PRy, (9" E® %) )d. (1)
d=0
Here Y@ is the dth symmetric power of Y and V(@ denotes the dth symmetric power of a local
system V on X. The geometric Waldspurger period is

RI.(Pic Y/ Pic X, ¢t Autg AT 1), (2)

where ¢1 : PicY — Bung sends B to ¢.B. The sense of the quotient Pic Y/ Pic X is made precise in
§6.3.3; this stack has two connected components (the degree of B modulo two), so (2) is naturally
7./27-graded. Our Theorem 5 says that there is a Z/2Z-graded isomorphism between (1) and the
tensor square of (2), the Z/2Z-grading of (1) is given by the parity of d. If ¢*E is still irreducible,
then (1) is the exterior algebra of the vector space H! (Y, 7*®¢*E), which is placed in cohomological
degree zero.

In the classical theory of automorphic forms there has been a philosophy that for multiplicity one
models of representations the corresponding periods of Hecke eigenforms can be expressed in terms
of the L-functions (of the corresponding eigenvalue local system). In addition to the Waldspurger
periods, we also consider Bessel periods for GSp, (see §6) and generalized Waldspurger periods for
GL4 (see §7), which all illustrate this phenomenon.

Consider now the dual pair (G, H ), where G = GSp, and H is as follows. Let GO} be given
by the exact sequence 1 — G,, — GLg x GLy — G@g — 1, where the first map sends = € G,,
to (z,271). Let 7 : X — X be an étale degree two covering, set ¥ = Autyx(X). The group ¥ act
on this exact sequence permuting the two copies of GLs. Let H be the group scheme on X, the
twisting of G@O by the S-torsor 7 : X — X. The above exact sequence yields a morphism of stacks
p : Bun, X Bung, here Bun, X denotes the stack of rank-two vector bundles on X. Write Bun,
for the stack of rank-r vector bundles on X.

Let E be an irreducible rank-two local system on X and let Aut 5 be the corresponding auto-
morphic sheaf on Bun, ¢ (cf. Definition 8). Assume given a rank-one local system y on X equipped

with an isomorphism det E = 7*y. Then Aut 5 descends naturally to a perverse sheaf K fo. 1 O

Bunj. Now assume that X is connected. For the theta-lifting functor Fg : D(Bun ;) — D(Bung)
our Theorem 6 calculates the Bessel periods of K := Fg(K P, i)

At the level of functions the Bessel periods are defined, for example, in [BFF97]. In geometric
setting, let P C G be the Siegel parabolic, vp : Bunp — Bung be the natural map. The stack
Bunp of P-torsors on X classifies collections: L € Buns, A € Bun; and an exact sequence 0 —
Sym?L —? — A — 0 on X. Let Sp be the stack classifying L € Buny, A € Bun; together
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with a map Sym? L — A ® Q. Here Q is the canonical line bundle on X. So, Sp and Bunp are
dual (generalized) vector bundles over Bung x Bunj, and one has the Fourier transform functor
Foury, : D(Bunp) — D(Buns, ) between the corresponding derived categories of ¢-adic sheaves.

Let ¢ : Y — X be anontrivial étale two-sheeted covering. Let e : PicY — Sp be the map sending
B € PicY to the pair L = ¢.B, A® Q = N(B) with natural symmetric form Sym? L — A ® Q
(cf. §6.1.1). Let J be a rank-one local system on Y equipped with N(J)= x. The complex

AJ ® e* Foury (vpK)

descends naturally with respect to the map PicY — PicY/Pic X. The Bessel period of K is the
(Z/2Z-graded) complex

RI(PicY/Pic X, AT ® e* Foury (vpK)). (3)
Our Theorem 6 says that (up to a shift) there is a Z/2Z-graded isomorphism between
DRI (T @ 6" (mE) D) d] (4)
d=0

and the tensor square of (3). The Z/2Z-grading on (4) is given by the parity of d.

From Conjecture 1 it would follow that K is an automorphic sheaf on Bung corresponding to
the local system E given by the pair (m,E*, x ') with symplectic form N2 (m E*) — x 71 (cf. also
Conjecture 2). Here & stands for the Langlands dual group. As predicted by the general philosophy
on multiplicity one models, the complex (4) makes sense for all G-local systems on X, this allows
us to formulate a conjectural answer for the Bessel periods of all automorphic sheaves on Bung
(cf. Conjectures 4 and 5).

The geometry suggests that one should be able to recover an automorphic sheaf on Bung from the
knowledge of all of its Bessel periods (including those for ramified two-sheeted coverings ¢ : Y — X).
To formulate the corresponding conjecture we switch from ¢-adic sheaves to D-modules (for § 8 only),
as it requires the Fourier—Laumon transform, which is not known in ¢-adic setting.

We also propose one more conjectural construction of automorphic sheaves on Bung as theta-
lifting from GQy (cf. Conjecture 6).

1.1 General notation

Let k denote an algebraically closed field of characteristic p > 2, all of the schemes (or stacks) we
consider are defined over k. Fix a prime ¢ # p. For a scheme (or stack) S write D(S) for the derived
category of f-adic étale sheaves on S and P(S) C D(S) for the category of perverse sheaves.

Fix a nontrivial character ¢ : F, — @}‘ and denote by L, the corresponding Artin—Shreier sheaf
on A'. Since we are working over an algebraically closed field, we systematically ignore Tate twists.

If V— S and V* — S are dual rank-n vector bundles over a stack S, we normalize the Fourier
transform Four,, : D(V) — D(V*) by Foury,(K) = (py+)i1(§*Ly & py,K)[n], where py,py- are the
projections and & : V xg V* — Al is the pairing.

Let X be a smooth projective connected curve. Write €2 for the canonical line bundle on X. For
a smooth scheme of finite type S and a locally free Og-module £ write £L* = L* ® Qg, where g
is the canonical line bundle on S. For a morphism of stacks f : Y — Z we denote by dim. rel(f)
the function of a connected component C of Y given by dim C' — dim C’, where C’ is the connected
component of Z containing f(C').

Write Buny, for the stack of rank-k vector bundles on X. For k£ = 1 we also write Pic X for the
Picard stack Bun; of X. We have a line bundle Ay on Buny with fibre det RT'(X, V) at V' € Buny.
View it as a Z/27Z-graded placed in degree x (V) mod 2. Our conventions about Z/27Z-grading are
those of [Lys06a, §3.1].
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1.2 Other results and ideas of proofs

1.2.1 Theta- sheaf Let G}, denote the sheaf of automorphisms of O% b ®QF preserving the natural
symplectic form /\ (OX ® QF) — Q. The stack Bung, of Gi-bundles on X classifies M € Bun%
equipped with a symplectic form /\ M — Q. We have a us-gerbe Bun(;k — Bung, , where BunGk
is the stack of metaplectic bundles on X. In [Lys06a] we have introduced the theta-sheaf Aut =
Auty @ Autg on BH;le (cf. §2.1 for precise definitions). We refer to Aut, (respectively, to Aut,) as
the generic (respectively, special) part of Aut. We write xy Aut = Aut when we need to express the
dependence on X.

Let P, C G} be the Siegel parabolic preserving the Lagrangian subsheaf (9’;( C (’)I)"’( @ QF.
Write v, : Bunp, — Bung, for the projection, where Bunp, is the stack of Pj-bundles on X. We

extend vy to a map 7, : Bunp, — BTﬂle (cf. §2.1).

The stack Bunp, classifies L € Buny, together with an exact sequence 0 — Sym?’L —? - Q —0
of Ox-modules. Let OBunpk C Bunp, be the open substack given by HO(X,Sym? L) = 0.

In [Lys06a, Definition 3] we have introduced the complex Sp, on Bunp, by some explicit con-
struction (cf. § 2.1 for details). It was shown in [Lys06a, Proposition 7] that there is an isomorphism
over OBumpIc

t, 1 Spy — U, Aut[dim. rel(vy)].
We show that t; extends naturally to an isomorphism over Bunp, (cf. Proposition 1).

Let m : X — X be an étale degree-two covering, ¥ = Auty(X) = {1,0} the automorphisms
group of X over X. Let £ be the X-anti-invariants in 7,0, so £ Is equipped with a trivialization
k: E2= 0. Let & be the Y-anti-invariants in 7,.Qy, it is equipped with £ = Q. Let g denote the
genus of X.

Write Bun,, ¢ for the stack classifying rank-2n vector bundles W on X with symplectic form
/\2 W — Q. Let m, : Bung, ¢ — Bung,, be the map sending the above point to m,W equipped
with natural symplectic form A*(m. W) — Q. Let ]/371/11Gn  denote the corresponding stack of
metaplectic bundles. The map m,, extends to a map 7, : B—{l-l/lGn 5 ]/371?1G2n (cf. §3.5). We establish
a canonical isomorphism

¢ Aut = 7, Aut[dim. rel(7,)]

preserving the generic and special parts (cf. Proposition 3).

1.2.2 Theta-lifting functors. Let n,m € N and G = GSpy,. Let H = GQY  denote the con-
nected component of unity of the split orthogonal similitude group GO,,,, over Spec k. Pick a maxi-
mal torus and a Borel subgroup Ty C By C H. We pick an involution & € Qg,, (k) preserving Ty and
By such that & ¢ SQs,,,. So, for m > 2 (and m # 4) it induces the umque nontrivial automorphism
of the Dynkin diagram of H. Consider the correspondlng Y-action on G@ ., Dy conjugation. Let H
be the group scheme on X, the twisting of G@ m Dy the ¥-torsor 7 : X - X .

The stack Bung of G—torsors~ on X classifies M € Buns,, A € Bun; with symplectic form
/\2 M — A. The stack Buny of H-torsors on X classifies V' € Buny,, C € Bun;, a nondegenerate
symmetric form Sym? V' — C, and a compatible trivialization v : C~™ @ det V = &£. This means that
the composition

2
Cm@(detV)? L £250
is the isomorphism induced by V= V* @ C.

Let RCov® denote the stack classifying a line bundle &/ on X together with a trivialization

U®2 = O. Tts connected components are indexed by H., (X, Z/27Z).
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Let Bung be the stack classifying V' € Bung,,,C € Bun; and a symmetric form Sym?V — C
such that the corresponding trivialization (C~™ ®det V)2 = O lies in the component of RCov® given
by (€, k). Note that

Bung — Speck X0 Bung,
where the map Spec k — RCov? is given by (€, k). The projection pg : Bung — Bung is a us-torsor.

Write Bun‘fq C Bung for the open substack given by degC = d, and similarly for Bun%. Set
BunG,H = BunH XPic X Bun(;,

where the map Bung — Pic X sends (V,C,Sym?V — C) to Q@ ® C'. The map Bung — PicX
sends (M, A* M — A) to A. We have an isomorphism C ® A= for a point of Bung p. Let

7 : Bung g — Bung,,,,

be the map sending a point as above to V ® M with symplectic form A*(V ® M) — Q. We extend
7 to amap 7 : Bung g — Bung,,,, (cf. §3.2.1). Let Bun,, 5 be the stack obtained from Bung, 5 by
the base change Bung — Bungy.

Viewing 7% Aut as a kernel of integral operators, we define functors Fg; : D(Bung) — D(Bung)
and Fp : D(Bung) — D(Bung), set also ' = pj; o Fly (cf. §3.2.1).

1.2.3 The pair GOs, GLy. Assume n = m = 1 and X connected. In this case we prove
Conjecture 1 for the functor Fg. To do so, we first prove Theorem 1 saying how the action of
Hecke operators on 7* Aut with respect to G is expressed in terms of the similar action with respect
to H. This is a global geometric analog of a particular case of the theorem of Rallis [Ral82] (cf. also
[Lys07]).

We also show that both 7* Auty[dim.rel(7)] and 7* Auts[dim.rel(7)] are self-dual irreducible
perverse sheaves on each connected component of BunG’ i (cf. Proposition 5), and the functor
Fg : D(Bung) — D(Bung) commutes with the Verdier duality.

If E is a rank-one local system on X , let K denote the automorphic sheaf on Bung; — Pic X
corresponding to E. Then Fg(Kj) is an automorphic sheaf on Bung corresponding to the local
system E = (m,E)*. We check that (up to a tensoring by a one-dimensional vector space) the sheaf
Fg(K ) coincides with the perverse sheaf Autp constructed via Whittaker models in [FGV02]
(cf. Proposition 6).

Theorem 1 also allows us to calculate the following Rankin—Selberg-type convolution (we need it
for our proof of Theorem 5). Let E be an irreducible rank-two local system on X, F; be a rank-one
local system on X. We denote by Autp, 4@, the corresponding geometric Eisenstein series (cf. §4.3).
Our Theorem 2 provides an explicit calculation of Fj(Aut B 60, ®Aut g). The method of its proof
is inspired by [Lys02]. We do not know whether this Rankin—Selberg convolution was known before
in classical theory of automorphic forms.

1.2.4 Waldspurger periods. Let us explain how we calculate the Waldspurger periods (Theo-
rem 5). Mainly, we follow the approach of Waldspurger [Wal85], but there are some new phenomena
in geometric settings.

Let n =2, so G = GLg. Let E be an irreducible rank-two local system on X and let Autg be
the corresponding automorphic sheaf on Bung. Take both 7 : X — X and H = G@g split. Recall the
perverse sheaf K_.p . p 7 on Bung from §1.0. First, we identify K ., ;. p g With the theta-lift

Fg(Autp+) from Bung (cf. Proposition 8). This is a geometric version of a Theorem of Shimizu
(see [Wal85]).
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Then we consider the diagram

PicY <" PicY x PicY 2% Buny x Bun,

PR, l l
4R,

BunR¢ BunH

where m is the tensor product map (followed by the automorphism sending B € PicY to B* ® Qy ),
and the vertical arrows are, roughly speaking, the quotients by the action of Pic X, where £ € Pic X
sends (L1, Lg) € Bung x Bung to L1 ® £, Ly ® L*. Recall that ¢; sends B € PicY to ¢.3 € Buny.

The key step is Theorem 4 that calculates the complex (pgr ¢)!q*R¢F ‘7 (Autp+) explicitly in terms

of £ and ¢ : Y — X (in our actual formulation of Theorem 4 the covering = : X — X may
be nonsplit). We derive Theorem 4 from the properties of the theta-lifting between GOy and GLo
(Proposition 6) combined with our Rankin—Selberg convolution result (Theorem 2).

Let us indicate at this point that the existence of the geometric Waldspurger periods of automor-
phic sheaves (the fact that condition (Cy) in Definition 10 holds) is a consequence of an intriguing
acyclicity result (Theorem 3, §6.1.2). It says that the Hecke property of a given automorphic sheaf
S on Bung already implies that S is universally locally acyclic (ULA) over ‘the moduli of spectral
curves’. This allows us to control perversity of the complexes Kg in Theorem 5 (and similarly for
Bessel periods in Theorem 6).

We also formulate conjectural answers for the geometric Waldspurger periods (Conjecture 3)
and the geometric Bessel periods (Conjecture 4) of all automorphic sheaves. In addition, we verify
Conjecture 3 for geometric Eisenstein series on Buny (cf. Proposition 10).

1.2.5 Case H = GOg. Assume m = 3 and X split, so H = G@g. Let n = 2, so G = GSpy.
Let Ex be a G-local system on X viewed as a pair (E, x), where E (respectively, ) is a rank-four
(respectively, rank-one) local system on X with symplectic form /\2E — x. Assume that FE is
irreducible. Recall that G is a subgroup of GSping, which is the Langlands dual to H. We define
the perverse sheaf K By, 00 Buny corresponding to a GSping-local system (£, x). We conjecture
that

Fo(Kp. ) (5)
is an automorphic sheaf on Bung corresponding to Ex (cf. Conjecture 6). We show that the

geometric Bessel periods of (5) are essentially the generalized Waldspurger periods of K -
(cf. Proposition 11).

2. Theta-sheaf

2.1 Let GG denote the sheaf of automorphisms of (’)l;( @ QF preserving the natural symplectic form
/\2((9§( @® Q%) — Q. The stack Bung, of Gy-bundles on X classifies M € Bung; equipped with
a symplectic form A\? M — Q. Write Ag, for the line bundle on Bung, with fibre det RI'(X, M)

at M. We view it as a Z/2Z-graded line bundle (purely of degree zero). Denote by Bung, — Bung,
the po-gerbe of square roots of Ag, .

Recall the definition of the theta-sheaf Aut on BTﬂle from [Lys06al. Let ;Bung, C Bung, be
the locally closed substack given by dim HO(X ,M) =i for M € Bung,. Let iBII/le denote the
preimage of ;Bung, in BE;IG}@'

Write ;B for the line bundle on ;Bung, whose fibre at M € ;Bung, is det HO(X ,M). View ;B
as 7Z/2Z-graded placed in degree dimHY(X, M) modulo 2. For each i > 0 we have a canonical
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Z/2Z-graded isomorphism

It yields a two-sheeted covering ;p : ;Bung, — i%gk locally trivial in étale topology. Define a
local system ;Aut on ;Bung, by

;Aut = Homg, (sign, ;,Qy).

The perverse sheaf Aut, € P(B;;lgk) (respectively, Auts € P(B—a;lgk)) is defined as the intermediate
extension of gAut[dim Bung] (respectively, of ; Aut[dim Bung —1]) under i]é;;lgk — B;;lgk. The
theta-sheaf Aut is defined by
Aut = Aut, © Aut, .
Let P C G} be the Siegel parabolic preserving the Lagrangian subsheaf (9])% C (9’;( @ QF. Write
Q. for the Levi quotient of Py, so Q, — GLj canonically.
Write vy, :fl@npk — Bung, for the projection. As in [Lys06a, §5.1], we extend it to a map

Uy, : Bunp, — Bung, defined as follows. The stack Bunp, classifies L € Buny, together with an exact
sequence 0 — Sym? L —? — Q — 0 of Ox-modules. The induced exact sequence 0 — L — M —
L* ® Q — 0 yields an isomorphism of Z/2Z-graded lines

det RT'(X, M) = det RI'(X, L) ® det RT'(X, L* ® Q) = det RI'(X, L)®?.
The map 7y, sends the above point to (B, M), where B = det RI'(X, L) is equipped with the above
isomorphism B? = det RT'(X, M).

Recall the definition of the complex Sp, on Bunp, [LysO6a, Definition 3|. Denote by V — Bung
the stack whose fibre over L € Buny is Hom(L, ). Write V, — Buny, for the stack whose fibre
over L € Buny, is Hom(Sym? L, Q?). We have a projection 73 : V — V, sending s € Hom(L, Q) to
s ® s € Hom(Sym? L, Q?). We set

Spy = Foury (ma Q) [dim. rel],
where Foury, : D(V,) — D(Bunp) denotes the Fourier transform functor, and dim. rel is the function
of a connected component of Buny given by dim.rel(L) = dim Buny —x(L), L € Buny.
The group S» acts on V sending (L, s : L — ) to (L, —s). This gives rise to a So-action on Sp .

By [Lys06a, Remark 3], the So-invariants of Sp, are Spy, 4 (respectively, Sp., s) over the connected
component of Bunp, with x(L) even (respectively, odd).

Let “Bunp, C Bunp, be the open substack given by H°(X,Sym? L) = 0. By [Lys06a, Proposi-
tion 7] there is an isomorphism?

t, : Spy — Uy, Aut[dim. rel(vy,)] (6)

over 0Bunpk; here dim.rel(v) = dimBunp, —dim Bung, is a function of a connected component
of Bunp,. From [Lys06a, §2] it may be deduced that, in the case of a finite base field, the function

‘trace of Frobenius’ of Sp, descends with respect to 7 : Bunp, — BH;le over the whole of Bunp, .
We claim that it is also true in the geometric setting.

PROPOSITION 1. The isomorphism v extends naturally to an isomorphism over Bunp, .
Proof. The proof is in several steps.

Step 1. For an effective divisor D on X denote by p pBung, the stack classifying M € Bung,
together with a Pj-structure on M|p. A point of p pBung, is given by M € Bung, together with

'The isomorphism t; is not canonical: once v/—1 € k is chosen, vy is well defined up to a sign.
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a lagrangian Op-submodule Lp C M]|p. Denote by pp : Bunp, — p pBung, the map sending
(L C M) € Bunp, to (M, Lp) with Lp = L|p. Let vp : p pBung, — Bung, be the projection.

Pick a point x € X and a nonnegative integer i. Set D = ix. Let ap : Bunp, — Bunp, be the map
sending an exact sequence 0 — Sym?L —? — Q — 0 to its push-forward with respect to the
map Sym? L — Sym?(L(D)). Since Hom(f2, Sym?(L(D))/Sym? L) acts freely and transitively on
a fibre of ap, the map ap is an affine fibration of rank k(k + 1)i.

We are going to establish a canonical isomorphism

(ap)1Spy = Spyl—ki).

To do so, write 7T2D i VS 2D for the map obtained from m : V — V5 by the base change
Buny — Buny, sending L to L(D). So, a fibre of V¥ — Buny, is Hom(Sym?(L(D)), Q?), and we have
a natural map

taD : VQD — Vg,

the transpose of ap. Since (‘ap)*7yQp = (75),Qy canonically, our assertion follows from the stan-
dard properties of the Fourier transform functor.

Step 2. Denote by ,Hg, the Hecke stack classifying M, M’ € Bung, together with an isomorphism
of Gi-torsors M= M'|x_,. Let T, C Qr = GLj denote the maximal torus of diagonal matrices,
its coweight lattice identifies with Z*. The preimage of the standard Borel subgroup of Qj in P is
a Borel subgroup of Gy, this also fixes the set of simple roots of G. Set wy = (1,...,1), where 1
appears k times. This is a dominant coweight of (G, orthogonal to all of the roots of Q.

Denote by p pHg, the stack classifying (M,M’', M'= M|x_,) € ,Hg, such that M’ is in
the position iwy with respect to M at x, Lp C M|p with (M,Lp) € p pBung, satisfying Lp N
(M'/M(—D)) = 0. The latter intersection is taken inside M (D)/M(—D), it makes sense because
Lp C M/M(—D) and

M(—D)c M' c M(D).

Denote by ay.p : p,pHG, — p,pBung, the map sending the above point to (M, Lp). We have
the following diagram, where the square is cartesian.

Bunp, b p,pPHa, b Bung,
laD law (7)
Bunp, N p,pBung, o Bung,
Here py, p is the map sending (L' C M’) to (M’, M, Lp), where (L C M) is the image of (L' C M")
under ap and Lp = L|p. The map vy p : ppHa, — Bung, sends the above point to M.
Consider the diagram

- awp  —— oy ——
D,PI}_(G]C - D,P:BunG;C - BllnGk

. aH,D —
obtained from p pHg, — p,pBung, = Bung, by the base change Bung, — Bung,. Now vy p
lifts to a map

Un,p : p,pPHg, — Bung,
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defined as follows. A point of D,p7-~£(;,c is given by (B,M,M’',Lp C M|p), where B is a one-
dimensional (Z/2Z-graded purely of degree zero) vector space equipped with a Z/2Z-graded isomor-
phism B2 = det RI'(X, M). The map # p sends this point to (B, M’), where B’ = B® dety,(Lp)~*
is equipped with an isomorphism

(B')?= detRI'(X, M) (8)

that we are going to define.
For a vector bundle N on X write Np = N /N (—D). We have an exact sequence of Op-modules

0—(MnM)/M(-D) — M'/M(—D) — (M + M')/M — 0.
Note also that (M + M')/M is the orthogonal complement of (M N M')/M(—D) with respect to

the perfect pairing of Op-modules Mp @ M (D)p — Q(D)p given by the symplectic form. By our
assumptions, (M N M")/M(—D) C Mp is a lagrangian Op-submodule such that

(M N M")/M(=D)) ® Lp= Mp = (M + M')/M) ® O(-D)) & Lp.

The exact sequences of Ox-modules 0 — M(-D) - M — Mp — 0 and 0 - M(-D) - M' —
M'/M(—D) — 0 yield Z/27-graded isomorphisms
—_detRT'(X, M) detx(M(D)p) — detRI'(X, M)
det RT'(X, M’ - -
etR ( ’ )_> detk(LD) © detk(LD & O(D)) - detk(LD)®2

giving rise to (8).
To summarize, the diagram (7) is refined to the following commutative diagram

Bunp, <2 Bun Py
~ ~ Vg,
7 lpp lpH,D (9)

N % — ar,D ~ UH,D ——

BU,DGIC I — D,PBunGk I — D,PHGk - BunGk
where the middle square is cartesian. Here pp is the product map (pp X ), and py,p is the product
map (py,p X k).
Step 3. Set %*Bunp = aD(OBunp), this is an open substack of Bunp. For i < j we have “»*Bunp C
0.3Bunp and the union of all %“Bunp equals Bunp. We are going to extend t; to each 0iBunp in a
compatible way.

Now (6) and the diagram (9) yield an isomorphism over %»'Bunp,
Spw[—kji] — (aphSpy — Pplax,p)(x,p)* Aut[dim. rel], (10)
where dim. rel = dim Bunp, + dim.rel(ap) — dim Bung, and dim.rel(ap) = k(k + 1)i.

Restricting (10) to the open substack “Bunp C “*Bunp and applying (6) once again, we obtain
an isomorphism of (shifted) perverse sheaves over “Bunp

Py Aut = Py (an.p)1(ig.p)* Aut[k(k + 1)i 4 k2. (11)

Step 4. Denote by $,Bunp C “Bunp the open substack given by H°(X, (Sym? L)(D)) = 0. Let us
show that the map pp : %Bunpk — p,pBung, is smooth.

Set p = Lie P, and g = Lie G,. Let Fp, be a k-point of Bunp, given by (L C M). Let K denote
the kernel of the composition

97p, — (875, )|p — Homo, (Lp, Mp/Lp).

Recall the following notion. For a 1-morphism Speck = X to a stack X the tangent groupoid to
r is the category, whose objects are pairs (1, 1), where 1 is a I-morphism Speck[e]/e? — X and
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« is a 2-morphism = — Z;. Here Z; is the composition Speck < Spec k|e]/¢? L X. A morphism
from (z1, 1) to (z2,a2) is a 2-morphism [ : 1 — 2 such that the following diagram commutes.

g

T —= T9
|z
2
X

The tangent groupoid to p pBung, at the k-point pp(Fp,) is isomorphic to the stack quotient
of HY(X,K) by the trivial action of H’(X, K). The natural map prFp, — 87p, factors through

K C grp - We need to show that HY(X,p Fp,) = H'(X, K) is surjective. We have an exact sequence
0— K/(p]:Pk) — (g/p)]:Pk — (Q®Sym? L*)p — 0. So, K/(pfpk)3(§2®8ym2 L*)(—D), the desired
surjectivity follows.

It is easy to deduce that pp : %Bunpk — p,pBung, is smooth. One checks that it is also
surjective and has connected fibres. So, (11) descends to an isomorphism of (shifted) perverse

sheaves on p pBung,
ﬂ*D Aut = (CNLH’D)!(IZH7D)* Aut[k(k: + 1)+ ]6‘22]
Now from (10) we obtain an isomorphism over **Bunp,

Spy — PpPp Aut[dim. rel(vy)]. O

For the rest of the paper we fix the isomorphism (6) over Bunp,, some of our results will depend
on this choice.

3. Theta-lifting for the pair GSp,,,, GOs,,

3.1 Let n,m € N and G = G = GSp,,,. Pick a maximal torus and a Borel subgroup Tg C Bg C G.
The stack Bung classifies M € Buns,, A € Bun; with symplectic form /\2 M — A. We have a
(Z/27Z-graded) line bundle Ag on Bung with fibre det RT'(X, M) at (M, A).

Let 7 : X — X be an étale degree two covering, o the nontrivial automorphism of X over X and
Y = {1,0}. Let £ be the g-anti-invariants in 7,0, it is equipped with a trivialization  : £2= O.
Let & denote the o-anti-invariants in ,Qy, it is equipped with 5317@@ Let g (respectively, §)
denote the genus of X (respectively, of X ).

Let H = G@gm be the connected component of unity of the split orthogonal similitude group
GQs,,, over Speck. Pick a maximal torus and a Borel subgroup Ty C By C H. Pick 6 € Og,, (k)
with 52 = 1 such that & ¢ SQ,, (k). We assume in addition that & preserves Ty and By, so for
m > 2 it induces the unique? nontrivial automorphism of the Dynkin diagram of H. For m = 1 we
identify H— G,,, X G,, in such a way that & permutes the two copies of G,.

Realize H as the subgroup of GL(k?™) preserving up to a multiple the symmetric form given by

the matrix
0 FE,
E, 0)°

where F,, € GL,, is the unity. Take Ty to be the maximal torus of diagonal matrices, By the Borel
subgroup preserving for ¢ = 1,...,m the isotropic subspace generated by the first ¢ base vectors
{e1,...,€;}. Then one may take & interchanging e,, and es,, and acting trivially on the orthogonal
complement to {e,, o}

2Except for m = 4. The group GOy also has trilitarian outer forms, but we do not consider them.
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Consider the corresponding Y-action on H by conjugation. Let H be the group scheme on X,
the twisting of H by the ¥-torsor 7 : X — X.

The stack Bun classifies V' € Bung,,, C € Bunj, a nondegenerate symmetric form Sym2 V=2,
and a compatible trivialization v : C~" ® det V — £. This means that the composition

2@ (det V)2 5 £2550

is the isomorphism induced by V= V* @ C. (Although det is involved, we view ~ as ungraded.)

Let RCov® denote the stack classifying a line bundle 2/ on X together with a trivialization
U2 = O. Tts connected components are indexed by HL,(X,7Z/27), each connected component is
isomorphic to the classifying stack B(uz2).

Let Bung be the stack classifying V € Bung,,,C € Bun;, and a symmetric form Sym?V — C
such that the corresponding trivialization (C~™®det V)2 = O lies in the component of RCov® given
by (€, k). Note that

Bung = Speck Xgco0 Bung,

where the map Speck — RCov® is given by (£, k). Write Bun%, C Bungy for the open substack
given by degC = d, and similarly for Bun‘fq.

The projection py : Bung — Bungy is a po-torsor. By extension of scalars pus C @’E it yields a
rank-one local system A on Bung, which we refer to as the determinantal local system.

Let Ag be the (Z/2Z-graded) line bundle on Bungy with fibre det RI'(X, V') at (V,C). Set
BUHG’H = BunH XPic X Bun(;,

where the map Bunyg — Pic X sends (V,C,Sym?V — C) to 2 ® C~'. The map Bung — Pic X
sends (M, /\2 M — A) to A. We have an isomorphism C ® A— (2 for a point of Bung p. Let

7 : Bung g — Bung,,,,
be the map sending a point as above to V' ® M with symplectic form /\2(V ® M) — Q.

PROPOSITION 2. For a point of Bung, i as above we have a canonical Z/27-graded isomorphism

det R['(X,V)?" @ det R['(X, M)?™
det R['(X, 0)?" @ det R['(X, A)2nm’

More precisely, we have a canonical Z/2Z-graded isomorphism of line bundles on Bung, i

™ Ay, — AT @ AZ @ A7 @ det RD(X, ©) 2™,

detRT'(X,V @ M)=

(12)

LEMMA 1. We have the following.

(i) For any M € Bun,, V € Bun,, there is a canonical Z/2Z-graded isomorphism

__det RI(X, M)®™ @ det RT(X,V)®" _ det RI(X, A® B)
det RD(X, M @V
RO MO V)= = R (X, A @ det RO(X,B)  © det RT(X, O)@mm-T’

where A =det M, B =detV.
(ii) For any A,B € Pic X there is a canonical isomorphism of 7 /27Z-graded lines

det RT'(X, A ® B™) @ det RD(X, A" _ det RT(X, B™) ® det RT\(X, O)™~1
— .

det RO(X, A @ B)™ det RL(X, B)™
Proof. (i) Denote by A(M,V') the Z/2Z-graded vector space
det RI'(X, M @ V) det RI'(X, A) ® det RI'(X, B)
det RT'(X, M)®" @ det R['(X, V)®n det RT'(X, A ® B) ’
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where A =det M, B=detV. View A as a Z/27Z-graded line bundle on Bun,, x Bun,,. Let us show
that this line bundle is constant.

For an exact sequence of Ox-modules 0 — M — M' — M'/M — 0, where M'/M is a torsion
sheaf of length one at © € X, we have a canonical Z/2Z-graded isomorphism A(M', V)= A(M,V).
Similarly, for an exact sequence of Ox-modules 0 — V — V' — V'/V — 0, where V'/V is a torsion
sheaf of length one at « € X, we have a canonical Z/2Z-graded isomorphism A(M,V')= A(M,V).

To conclude, note that A(O™, O™) = det R['(X, O)®1—"m,
(ii) The proof is similar. O

Proof of Proposition 2. For a point (M, A) of Bung the form /\2 M — A induces an isomorphism
det M — A". So, by Lemma 1, for a point of Bung g as above we get a Z/2Z-graded isomorphism

__det R['(X,V)?" @ det RT'(X, M)?*™  det RI'(X, A" @ det V)
—

det RI(X, V& M) det RT'(X, A") ® det RT'(X, det V') det RT'(X, O)4nm—1 (13)
Applying it to M = ;. (O & A) with the natural symplectic form A? M — A, we obtain
det RI'(X, ©)2vm=1 __ det RT'(X, A" @ det V)
det RD(X, A)2"m  det RT(X, A") @ det RT(X, det V)
Combining the latter formula with (13), one concludes the proof. O

3.2.1 By Proposition 2, we obtain a map 7 : Bung g — ]§1;1G2nm sending (/\2 M — A,Sym?V
—C,ARCTQ) to (N2(M ®V) — Q,B). Here

det RC(X, V)" @ det RT'(X, M)™
det RT(X, O)"™ @ det RT(X, A)wm’

and B2 is identified with det R['(X, M ® V) via (12).

B =

DEFINITION 1. For the diagram of projections
Bungy & Bung n LR Bung
define Fiz : D(Bung) — D(Bung) by
Fo(K) = pi(7% Aut ®q* K)[dim. rel],
where dim. rel = dim Bung,, — dim Bung,,,,,. Define Fy : D(Bung) — D(Bung) by
Fp(K) = q(7" Aut ®p* K)[dim. rel],
where dim. rel = dim Bungg, —dimBung,,,,. Set also Fjz = p}; o Fr. Replacing Aut by Aut, (re-

spectively, by Autg) in the above definitions, one defines the functors Fg s, Fr s, ' , (respectively,

,S

Fag, Fag, Fg g). We write Fg = Fy when we need to express the dependence of Fy on GG, and
similarly for Fg = Fg.

Let Bun,, 7 be obtained from Bung g by the base change Bun; — Bung. By abuse of notation,

the restriction of 7 : Bung g — ]§1;1G2nm to Bung, 5 is also denoted by 7.

3.2.2 Let Ag (respectively, Ag) denote the coweight (respectively, weight) lattice for H. Write
Aﬁ for the dominant coweights. The corresponding objects for G are denoted Ag, Ag and so on.

For m > 2let t,,, € Spiny,,, be the central element of order two such that Spins,,, /{Ztm} — SOsy,,.
Here Spiny,,, and SQ,,, denote the corresponding split groups over Speck. For m > 2 denote
by GSpin,,,, the quotient of G,,, x Spin,,,, by the subgroup generated by (—1,¢). Let us convent that
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GSpiny, = G, X G,,. The Langlands dual group is H = GSpin,,,. We also have G = GSpin,,, 1
where GSpiny,, | ; is the quotient of G,, x Spiny, ;| by the diagonally embedded {+£1}.

Let Vi (respectively, V) denote the standard representation of SOy, (respectively, of SOy, ).

Case m < n. Pick an inclusion Vg — Vg that is compatible with symmetric forms. It yields an
inclusion H < G, which we assume is compatlble with the correspondmg maximal tori. Pick
an element og € SO(Vg) — Gqq normalizing Tg and preserving Vi and Ty C By, Let o € O(Va)
be its restriction to V. We assume that op viewed as an automorphism of (H,Ty) extends the
action of ¥ on the roots datum of (F, Tg) defined in §3.1.

In concrete terms, one may take Vg = k"1 with symmetric form given by the matrix

0 FE, O

E, 0 0},

0o 0 1
where E,, € GL,, is the unity. Take ']TG to be the maximal torus of diagonal matrices. Let Vig C Vg
be generated by {e1,...,€m,€nt1,---,Entm}. Let Ty be the torus of diagonal matrices and By the
Borel subgroup preserving for i = 1,...,m the isotropic subspace generated by {ej,...,e;}. Then

one may take og permuting e,, and e, 4, sending es,4+1 to —ea, 41 and acting trivially on the other
base vectors.

We let ¥ act on H and G via the elements o, og. §o, the inclusion H < G is Y-equivariant and
yields a morphism of the L-groups HY — G, where HL SHx ¥ and GESG x & (in the sense of
Appendix B.2).

Case m > n. Pick an inclusion Vg — Vg compatible with symmetric forms. It yields an inclusion
G < H, which we assume compatible with the corresponding maximal tori. Let og be the identical
automorphism of V. Extend it to an element o € O(Vg) by requiring that o preserves Ty C By
and og ¢ SO(Vy), o = id.

Let ¥ act on H and G via the elements om, og. The ¥-action on (H,TH) extends the E—act}on
(defined in § 3.1) on the root datum of (H, Tfg). Again, we get a morphism of the L-groups G — H¥.
Note that G x ¥ = G is the direct product in this case.

As in Appendix B.2, in both cases the corresponding functoriality problem can be posed. As in
Appendix B.1.1, for A\ € Aﬁ (respectively, A € AJ(E) one defines the Hecke functors

H;l{ :D(Bung) — D(X x Bung)
and
H), : D(Bung) — D(X x Bung).

Write VE)H‘ (respectively, Vé) for the irreducible representation of H (respectively, of G) with highest
weight .

CONJECTURE 1. We make the following conjectures.

(i) Case m =n. For A € A there is an isomorphism functorial in K € D(Bunj)
(m x id) Hy Fo(K) = €D (id RFg)HY, (K) @ Homg (VY (VE)*).
MEAE

Here 7 x id : X x Bung — X x Bung and idXFg : D(X x Bung) — D(X x Bung) is the
corresponding theta-lifting functor.
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(ii) Case m = n+ 1. For u € A{} there is an isomorphism functorial in K € D(Bung)

HY P (K)= @D (r x id)*(id R ) HE(K) © Homg (VE)*, ViH)-
e
Here 7 x id : X x Bung — X x Bung and idXFp : D(X x Bung) — D(X x Bung) is the
corresponding theta-lifting functor.

In both cases these isomorphisms are compatible with the action of ¥ on both sides (X acts on
the Hecke operators for H via (61)).

Remark 1. For other pairs (n, m) the relation between the theta-lifting functors and Hecke functors
is expected to be essentially as in [Lys07] involving the SLy of Arthur.

3.2.3 Let act : Pic X x Bung — Bung be the map sending (£ € Pic X, M, A) to (M ®L, AR L?).
Write also act : Pic X x Buny — Buny for the map sending (£ € Pic X, V,C) to (V ® £,C ® L?).

DEFINITION 2. For a rank-one local system U on X write AU for the automorphic local system on
Pic X corresponding to U. It is equipped with an isomorphism between the restriction of AU under
X@  PicX,D — O(D) and U (@) this defines AU up to a unique isomorphism.

DEFINITION 3. For a rank-one local system A on X say that K € D(Bung) (respectively, K €
D(Bung)) has central character A if K is equipped with a (Pic X, AA)-equivariant structure as in
[Lys06a, Appendix A.1, Definition 7]. In particular, we have act* K — AAX K.

Remark 2. Using Lemma 1, one checks that for K € D(Buny) (respectively, K € D(Bung)) with
central character y the central character of F¢;(K) (respectively, of Fz(K)) is x ' ®&F". The reason
for that is as follows. Let X i be the stack classifying (M, A) € Bung, (V,C) € Buny, U € Pic X
equipped with A ® C ® U? = Q. We have a commutative diagram

Bung g —— Bung,,,,
XG,H % BUHG7H

where mg (respectively, m ) sends the above collection to (M ®@U, A®U?) € Bung, (V,C) € Buny
(respectively, to (M, A) € Bung, (V ® U,C ® U?) € Bung). Then the diagram

BunG’H é BunGQnm
| I+
XG,H % BUHGJ{

is not 2-commutative in general. The key observation is as follows. Consider a line bundle on Pic X
whose fibre at U € Pic X is

IU) = det RI'(X,U ® £) ® det RT'(X, O)
" detRI(X,U) ® det R['(X, &)
The tensor square of this line bundle is canonically trivialized, so defines a 2-sheeted covering

of Pic X. The corresponding local system of order two on Pic X is A&.

3.3.1 Let P C G be the Siegel parabolic, so Bunp classifies L € Bun,,, A € Buny, and an exact
sequence of Ox-modules 0 — Sym? L —? — A — 0. Write vp : Bunp — Bung for the projection.
Let Mp be the Levi factor of P, so Bunys, — Bun, x Pic X.
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Set Bunp g = Bunp XBun,; Bung g and Bun,, 7 = Bunp Xpun, Bun, 5. We have a commutative
diagram

Bung g —— Bung,,,,

S

Bunp gy L Bunp,,,,
where 7p sends (V,C,Sym?V — C) and
0—Sym?*L —-? - A—0 (15)

to the extension

0— Sym*(V®L)—?—Q—0, (16)
which is the push-forward of (15) under the composition

AT @Sym?* L=5CoQ '@ Sym? L — Q'@ Sym?V @ Sym? L — Q' @ Sym*(V @ L).
Here the second map is induced by the form C — Sym?V. We have used the fact that for
(V,C,Sym?V LA C) of Buny the map Sym?V*= (Sym? V) @ C2 =1 induces a section C <
Sym?V of Sym?V e , so C is naturally a direct summand of Sym? V.
Although (14) commutes, the following diagram is not 2-commutative

5 T
BunGH —— Bung,,,,

Tl/pxid TDQHM

_ TP
BunP,H E—— BunPQnm

its non-commutativity is measured by the following lemma. Write ap : Bunp — Pic X for the map
sending (15) to det L. Let ap 5 be the composition Bun, 7 — Bunp 2 Pic X.

LEMMA 2. There is a canonical isomorphism over Bunp 5

(vp X id)*f'* Aut A—:T]*gﬁéknm Aut® a*P’HAEO.

Proof. Write Bun p.i for the restriction of the gerbe BTﬂlG%m — Bung,,,, under 7o (vp x id) :
Bun, 5z — Bung,,,,. The map 7o (vp x id) yields a trivialization %P,H — Bunp g xB(u2) of
this gerbe. So, Doy, o Tp gives rise to a map Bun P~ B(u2). The corresponding po-torsor over
BunR 7 is calculated using Lemma 1. Namely, we have a line bundle on BunP’ 7 Whose fibre at
((15),V,C,Sym?V — C,~) is

J(C™ @ det L)

I (C™)
The tensor square of this line bundle is canonically trivialized and gives rise to the corresponding
p2-torsor on Buny 7. Our assertion follows by Remark 2. O

DEFINITION 4. Let Fpy : D(Bung) — D(Bunp) be the functor given by
Fpy(K) = (pp)(apK @ 7pSpy)[dim. rel]
for the diagram of projections
Bungy pL Bunp gy PE Bunp,

where dim.rel = dim Bunp g — dimBuny — dimBunp,,,, is a function of a connected component
of Bunp . Replacing H by H in the above diagram, one defines Fp, : D(Bung) — D(Bunp) by
the same formula.

391

https://doi.org/10.1112/50010437X07003156 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X07003156

S. LYSENKO

COROLLARY 1. The isomorphism (6) yields an isomorphism Fp, ® op A&y — v Fg[dim. rel(vp)] of
functors from D(Bung) to D(Bunp).

3.3.2 Let Sp be the stack classifying I € Bun,, A € Pic X, and a section Sym?> L = A ® Q.
Then Sp and Bunp are dual (generalized) vector bundles over Bunys, — Bun,, x Pic X. Let ip :
Bunjs, <— Sp denote the zero section.

Let
Vi p — Bun, x Buny
be the stack whose fibre over (L € Bun,,V,C,Sym?V — C) is Hom(V ® L,Q). We have a map
py : Vu.p — Sp sending (V,C) € Buny, L € Bun,, L LV*20 to (L, A,s), where A= Q®C!
and s is the composition
Sym? L™ 02 @ Sym? V: — Q2@ S A0 Q.

DEFINITION 5. Let Fs : D(Buny) — D(Sp) be given by Fs(K) = (py)iq}, K [dim. rel(qy)] for the
diagram

Buny <2 Vpg.p . Sp, (17)

where qy is the projection.

The following is immediate from the definitions.

LEMMA 3. There is a canonical isomorphism of functors F P’w: Foury oFs from D(Bung) to
D(Bunp).

Let CTp : D(Bung) — D(Bunjs,) be the constant term functor given by CTp(K) = pprpK
for the diagram Bung & Bunp 2R Bunyy,, where pp is the projection. Let oy, : Bunys, — Pic X
be the map sending (L, .A) to det L.

COROLLARY 2. The isomorphism (6) induces an isomorphism CTpoFg—ipFs ® a’}‘VIPASO of
functors (up to a shift) from D(Buny) to D(Bunyz,).

Let Vj p be obtained from Vg p by the base change Bun; — Bung. Denote by
&v 1 Vu,p — Buny xXpicx Sp (18)
the map (qy, py). The map Vj , — Bung xpjc x Sp obtained from &, by the base change Bung —

Bungy is again denoted by &) by abuse of notation.
Define the complex °7 on Bunj Xpicx Sp by

°T = & Qeldim Vy; p).

The group S acts on &y changing the sign of t : L — V* ® Q, so Sy acts also on %7 . Let Foury, :
D(Bung xpic xSp) — D(Buny 5) denote the Fourier transform. For the map 7p : Bunp, gz —
Bunp,,, we have a Sp-equivariant isomorphism

75Spy[dim. rel(7p)] = Foury (°7).

Remark 3. If G1 is a connected reductive group, which is not a torus, it is expected that for
the projection prg, : Bung, — Bung, /g, ,q,) and a cuspidal complex K € D(Bung,) we have
(prg, )1 /K = 0. The reason to believe in this is that for K cuspidal and automorphic the eigenvalues
of Hecke operators acting on K and on QQy are different, so that Qy and K are ‘orthogonal’.

So, for m > 1 it is expected that for the projection prz : Bunz; — Pic X sending (V,C) to C
and a cuspidal K € D(Bung) we have (pryz)i K = 0. If this is true then for such cupidal K we have
CTp(Fa(K)) =0 (in particular, if n = 1, then Fz(K) is cuspidal).
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Indeed, by Corollary 2, a fibre of CTp(Fg(K)) over (L, A = C~! ® Q) is an integral over
(V,C) € Bung equipped with a map L — V* ® , whose image is isotropic. However, we can
first fix the isotropic subbundle of V* ® £ generated by the image of L and then integrate. The
corresponding vanishing follows.

3.4 The case of split H

In this section we assume that the covering 7 : X — X split. Let Q ¢ H = G@gm be the
Siegel parabolic, then Bun(2 is the stack classifying L € Bun,,,C € Bunj, and an exact sequence

0 — /\2L —?7 — C — 0 on X. The projection vg Buné2 — Buny sends the above point to
(V,C,Sym?V — C,~), where V is included into an exact sequence 0 — L — V — L* ® C — 0 and
~:detV=Cm.

Let M be the Levi factor of Q, so BunM — Bun,, x Pic X. Let Bun 0 be the stack obtained
from BunG g by the base change Bun — BunH Lemma 1 implies that the following diagram is
2-commutative

Bung g - Bung,,,,
N
Bunacj2 i) Bunp,, .
where 75 sends (M, A, AN>M — A, 0— A*L —? — C — 0) to the extension
0 — Sym?(M ® L) —? — Q — 0,

which is the push-forward of 0 — AQA? L —? — Q — 0 under the composition AOA\? L — A\’ M®
AN’L — Sym?>(M ® L). Recall that we have a canonical direct sum decomposition
Sym?(M @ L) = (Sym? M @ Sym® L) & (\* M @ \* L).
DEFINITION 6. Let Fj5 , : D(Bung) — D(Bung) be the functor given by

Fg(K) = pQ!(qQK ® TQSRw)[dlm. rel]

for the diagram of projections
9Q PG
Bung =— BU,DG’Q~ — BunQ,
where dim. rel = dim Bun, 5 — dim Bung — dim Bunp, ,,,,.
COROLLARY 3. The isomorphism (6) induces an isomorphism Fg , = V%F [dim. rel(v)] of functors

from D(Bung) to D(Bung).

Let S@ be the stack classifying L € Bun,,,C € Pic X, and /\2 L2 C®Q. Then SQ and Buné2
are dual (generalized) vector bundles over Bunyy,,.

Let Wg 5 — Bun,, x Bung be the stack whose fibre over L € Bun,,, (M, A) € Bung is Hom(M®
L,€2). We have a map pw : W 5 — Sg sending L € Buny,, (M, A) € Bung and ¢ : L — M* ®Q to
(L,C=Q® A1 s), where s is the composmon

N (/\ M*)®Q2—>A ® 02,
Define F, : D(Bung) — D(S3) by
Fso(K) = (pw)ayy K [dim. rel(qw )]

Q
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for the diagram

q p
BunG W WG,Q w SQ

Here qyy is the projection. From the definitions one obtains the following.

LEMMA 4. There is a canonical isomorphism of functors Fg w: Foury, oFSQ from D(Bung) to
D(Bung).

3.5 Weil representation and two-sheeted coverings

Write BunGmX for the stack classifying rank-2n vector bundles W on X with symplectic form
/\2 W — Q. Let m, : BunGmX — Bung,, be the map sending the above point to m.W equipped
with natural symplectic form A?(m, W) — Q. Denote by Ag, x the line bundle on Bung ¢ with
fibre det R['(X, W) at W. Since 7% Ag,, — A, % canonically, , lifts to a map

Tt Bung, ¢ — Bung,,

PROPOSITION 3. There is a canonical isomorphism ¢Aut— 7, Aut[dim.rel(7,)] preserving the
generic and special parts.

Proof. Let ;Bung, C Bung, be the locally closed substack given by dim HO(X ,M) =i for M €

Bung, . Let ;Bung, be the restriction of the po-gerbe Bung, — Bung, to ;Bung,. As in [Lys06a,
Remark 1], we have a cartesian square, where the vertical arrows are canonical sections of the
corresponding po-gerbes.

T
iBunGmX —*>;Bung,,

| |

Tn
Bung ¢ ——;Bung,,

This gives a canonical normalization of the sought-for isomorphism over ;Bun, g for i =0,1. It
remains to show its existence.

To do so, consider the commutative diagram

Voo
B n N n,X _
u pn,X—>BunGn,X

Lﬂ'n,P lﬁ'n

Uan,
Bunp,, —— Bung,,

where we denote by 7, p the following map. Given an exact sequence on X
0— Sym? L —? — Q5 — 0, (19)
summate it with the sequence obtained by applying ¢*. The resulting exact sequence
0— Sym*(L®o*L) =7 — Qg — 0

is equipped with descent data for X = X, so yields an exact sequence 0 — Sym2(7r*L) —7 =0 —0,
which is the image of (19) by m,_p.

Let .Bun,6 ¢ C Bun, ¢ be the open substack classifying W € Bun, ¢ with HO(X, W) = 0.
Let .V, ¢ — Bun, ¢ be the vector bundle with fibre Hom(W,€1¢) at W. Write Bunp  for the
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preimage of cBunm ¢ under the projection Bun poX Bunn’ - We obtain a commutative diagram

2 * B
Sym CVn,X ~— Bunp ¢

lﬂ'v lﬂ'n,P

Sym2 Cvékn CBunPQn

where the horizontal arrows are those of [Lys06a, §5.2]. Here 7y is the map sending L € Bun, ¢,
be Sym? H'(X, L) to m.L € Buny,,b € Sym? H'(X, 7.L).

By [Lys06a, Proposition 7], it suffices to show that over .Bun p, x there is an isomorphism
7T;kL7PSP’¢[diIn. I‘el(ﬂ'n,p)] = Sp’w.

We have the sheaves Sy, on Sym? V' andon Sym? .Vj, defined in [Lys06a, §4.3]. Since 73,y — Sy
up to a shift, our assertion follows from [Lys06a, §5.2]. O

3.6 Whittaker-type functors

3.6.1 Write BTJE]P for the Drinfeld compactification of Bunp introduced in [BG02, §1.3.6].
So, Bunp classifies (M,A) € Bung together with a Lagrangian subsheaf L € M, L € Bun,.
Then Bunp C Bunp is the open substack given by the condition that L is a subbundle of M.

In the spirit of [Lys06b, §7], let Z; denote the stack obtained from Bung, 7 by the base change
B;;lp — Bung. Let vz : Z; — Bung, 7 be the projection.
Denote by m 1 : Zo — Z; the stack over Z; with fibre consisting of all maps s : Sym? L — A®Q.

A version of [Lys06b, Theorem 3] holds. Namely, one defines a Whittaker category DV (2,) as in
[Lys06b, §2.10]. We now give its description on strata.

For d > 0 let S1Z; C Z; be the closed substack given by the condition that A" L — A" M
has zeros of order at most d. Its open substack 42, C S¢Z; is given by the following: there is a
subbundle L' C M such that L C L' is a subsheaf with d = deg(L’/L). Then S9Z; is stratified by
‘Zy for 0 < i < d.

The stack 2, classifies collections: a modification of rank-n vector bundles L ¢ L' on X
with deg(L//L) = d, A € PicX, and an exact sequence 0 — Sym?*L’ —? — A — 0 on X,
(V,C,Sym?V — C,v) € Bunj with C® A= Q.

Set

12y =2Zyxz 92, and S92y = 2y xz S1Z;.
Let dZé — @2, be the closed substack given by the following condition: s factors as
Sym?L — Sym?’ L’ — A® Q.

Let 7y : 725 — A! be the pairing of s with the extension 0 — Sym? L/ —? — A — 0.

Let 9Py be the stack classifying (V,C,Sym?V — C,v) € Bun 7> @ modification of rank-n vector
bundles L € L' on X with d = deg(L’/L), and a section s : Sym? L' — A® Q with C ® A= Q. The
projection

¢2: 125 — Py
is smooth.
LEMMA 5. Any object of DV (?25) is the extension by zero from Z}. The functor
LJ(K) =" Ly @ ¢ K[dim. rel]
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provides an equivalence of categories 4J : D(Py) — DW(92;) and is exact for the perverse
t-structures. Here dim. rel is the relative dimension of ¢s.

PROPOSITION 4. There is an equivalence of categories Wiy : D(21) = DW(25), which is exact for
the perverse t-structures, and (g 1) is quasi-inverse to it. Moreover, for any K € DV (2,) the
natural map (w21 1K — (m2,1)+K is an isomorphism.

3.6.2 We have naturally 7P, = Bunj xpic xSp. Note that 42, is of codimension d in Z;. Define
the complex 7 € D(4Py) by
AT = pr*(°7T)[d + nd),
where pr : ¥Py — 0P, is the projection forgetting L (the relative dimension of pr is nd). Set also
Ky = 4J(9T). Let Sy act on “Ks via its action on °7. Using (6), for the *-restriction we obtain

Wia(vz7" Aut)|az, [dim. rel(7 o vz)] = dE,.

4. The pair GL2, GO,

4.1 Keep the notation of §3 assuming n = 1,m = 1. So, G = G = GLs. In §4 we assume that
X is connected.? Identify H = G@O with G,, X G,, in such a way that the automorphism o of
H permutes the two copies of G,,, so H = 7,G,,. We have canonically Ay = Z2, and o sends a
coweight p1 = (p1, p2) to op = (2, p1).

We have a canonical isomorphism Pic X = Bun 7 i sending B € PicX to V = m.B, C = N(B)
equipped with natural symmetric form Sym?V — C and isomorphism v : C =& ® det V. Here
N : Pic X — Pic X is the norm map (cf. Appendix A.1). We also write o for the map Pic X — Pic X
sending B to ¢*B. The following diagram is 2-commutative.

Pic X — Pic X

|

Bungy

Write X @ for the dth symmetric power of X, we also view it as the scheme classifying effective
divisors on X of degree d.

Let Pic? X be the connected component of Pic X classifying £ € Pic X with deg £ = d. Write
Pic’d X for the stack classifying £ € Pic? X with a section @ — £. One defines Pic’® X similarly.
Let

7r’x :Pid? X — Pid? X X Pic X Pic X
be the map sending (£ € Pic? X, 0 4 L) to (L,0 m N(L)). The group Ss acts on 7., sending
(L,t) to (£, —t). We have an open immersion X (% < Pic’? X corresponding to nonzero sections.
Restricting 7/, to the corresponding open substacks, one obtains a map

7T, : X(d) — X(d) XPic X PiCX
By abuse of notation, denote also by m the direct image map 7 : X4 — X(d),

LEMMA 6. We have the following.
(i) For any local system E on X we have m,E?)
we have * (x(M) = (7% )@,

= (. E)@. For a rank-one local system x on X

3Some of our results extend to the case of non-connected X, but this case reduces to the study of renormalized
geometric Eisenstein series from [BG02].
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(ii) For each d > 0 both the Sy-invariants and anti-invariants in 7Qq[d] are irreducible perverse
sheaves. If d > 2g — 2, then the same holds for (n,,)1Qp[d].

Proof. (ii) The map 7., is finite. Write Pic X for the Picard scheme of X and similarly for X. We
have a us-gerbe

E:X(d) XPic X PiCX —>X(d) me&)z.

Step 1. Let us show that the Ss-invariants in m{Qy[d] is an irreducible perverse sheaf. It suffices to
show that v7Qy[d] is an irreducible perverse sheaf.

Let Z denote the image of the (finite) map ro7n’ (with reduced scheme structure). The projection
pz : Z — X@ ig a finite map. Take a rank-one local system E on X that does not descend to X.
Let AFE denote the corresponding automorphic local system on Pic X (cf. Definition 2). Since (pz),
sends a nonzero perverse sheaf to a nonzero perverse sheaf, it suffices to show that

(p2)((em{Qeld]) ® (Qr W AE))
is an irreducible perverse sheaf. However, the latter identifies with (mE)®[d], so is irreducible.
Step 2. Let nz (respectively, n) denote the generic point of Z (respectively, of X (d)). From Step 1 it
follows that the map ron’ yields an isomorphism 1= nz. So, the restriction of the us-gerbe t to 1z

is trivial. For any map & = (id, &) : n — n x B(us), the Sy-anti-invariants in &Qy is an irreducible
local system. It follows that the Sy-anti-invariants in 7Qy[d] is an irreducible perverse sheaf.

Step 3. For d > 2g — 2 the stack Pic’? X is smooth. Since (7, )1Qq[d] is the Goresky—MacPherson
extension from X (@ x Pic X Pic X, from Steps 1 and 2 we learn that both the Ss-invariants and
anti-invariants in (7,);Qy[d] are irreducible perverse sheaves. O

For the map 7 : Bun, 7 — BTJE]GQ set
Autg 7, =77 Autg[dim.rel(7)] and Autg g =7" Auts[dim. rel(7)]
and AutGﬁ = AuthLg @AUtG,FI,s'

ProprosiTIiON 5. We have the following.
(i) Both Autg g, and Autg g . are irreducible perverse sheaves, and we have D(Autg 7) =
AutG7 j canonically.
(ii) The sheaf Aut, 5 is ULA with respect to Bun, 5 — Bung.

Proof. (i) Consider the map Bun, 5 — Bung 5 obtained from Bunp — Bung by base change
Bun,, 5 — Bung. Let OBunPﬁ be the open substack of Bun, 5 given by 2deg L + degC < 0. We
have a commutative diagram

BunGﬁ —' - Bung,

TP
OBU,DP’g — OBUHP2

where the vertical arrows are smooth and surjective. By [Lys06a, Proposition 7] and Lemma 2, it
suffices to show that both 75Sp .y 4[dim. rel] and 7;55p,y s[dim. rel] are irreducible perverse sheaves
over each connected component of “Bun P

Recall the following notation introduced in § 3.3.2. The stack Sp classifies L € Pic X, A € Pic X
and a map L®? — A®Q. Let °Sp C Sp be the open substack given by 2deg L — deg A+ degQ < 0.
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The stack Vj p classifies L € PicX, B € Pic X and 7°L 5 B*. (We may view t as a map
LoV — Qfor V =mn.B.) The map & : Vg p — Bung xpic x Sp sends (L, B,t) to (L, B, s), where
s: L? — N(B*) is the norm of t. Set

OVHJ;. = fgl(BunH XpiCXOSP).
Note that OVH p is smooth (here the connectedness of X is essentially used).
By definition, 75,5p,[dim. rel] is the Fourier transform of (&)Qg[dim Vj; p]. From Lemma 6(ii)
it follows that (&) Qg[dim Vi p) is a direct sum of two irreducible perverse sheaves over Bung

X pic x'Sp. We are done.
(ii) We need the following general observation. If f : Y — S is a vector bundle over a smooth base
S and K € D(Y') is ULA with respect to f, then Foury(K') is ULA with respect to the projection
Y — 6S.

Apply this to the vector bundle v : Bung xpic x 0Sp — O(BunH Xpic x Bunyy, ), where the base
classifies pairs B € Pic X, L. € Pic X with 2deg L + deg B < 0.

Since the projection OVH,P — O(BunH X pic x Bunyy,,) is smooth, (£,),Qy is ULA with respect to
v, so its Fourier transform is also ULA over °(Bun i XPic x Bunpz,).

Since Bun P~ BunG’  is smooth and surjective, our assertion follows (the ULA property is
local in the smooth topology on the source). O

For our particular pair (lfI , G) the projection Bung 5 — Bung is proper (this phenomenon does
not happen for m > 1). So, Proposition 5 implies that Fz commutes with the Verdier duality.

4.2 Hecke property

4.2.1.1 For a dominant coweight A of G write ﬁg for the Hecke stack classifying x € X, M, M’ €
Bung with an isomorphism 3 : M = M'|x_, such that M’ is in a position < X\ with respect to M
in the sense of [BG02]. We have a diagram

Supp Xpg — )\
H

X x Bung G

Bung,

where pg (respectively, pi;) sends (x, M, M’, 3) to M (respectively, M").

We fix an inclusion H < G = GLy as the maximal torus of diagonal matrices. This yields
isomorphisms Ag — Ag = Z. Given a coweight pu = (p1, p2) € Ag such that A — p vanishes in 1 (G)
(that is, A1 + A2 = p1 + pe), consider the diagram

/
~ SUpPP XPg o A Py a
’ H, ’ ~
~ - ~ -
X X Bung o Ao BunH’G

Supp Xpag —\
-

X x Bung G

where ﬁ%)‘c classifies collections: (B,M) € Bung ., & € X for which we set + = n(#) and

(x, M, M, 3) € ﬁg. The map pj , forgets (3, M’), so the left square is cartesian. The map p}; o
sends the above collection to (B', M') € Bung ., where B' = B(ju1& + p20()).

The Hecke functor H** : D(Bung ) — D(X x Bung ) is given by
H*A(K) = (supp XijI’G)!(ICﬁ%,AG ® (p%LG)*K)[—dim Bung ). (20)
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We have

pr* ICﬁg [dim. rel] = ICﬁg’AG,
where dim.rel = dim Bung, 7 —dim Bung. By Appendix B.1.3, H** commutes with the Verdier
duality. As in Appendix B.1.2, we have a canonical isomorphism

by ¢ (0 x id)* o HHA S HoHA (21)

(we used that o acts trivially on the dominant coweights of G).

Write V? for the irreducible representation of G with highest weight A. For a G-representation
V and p € Ag denote by V(u) the p-weight space of H in V.

THEOREM 1. For A € A{,pu € Ay such that A\ — p vanishes in 71(G) the sheaf H“’)‘(AutG i) Is
perverse, and we have

A ~ A
HY (Autg ) = @H”’O(Autcﬂ) @ (VY (v — ). (22)
v
In other words, the sum (without multiplicities) is over the coweights v = (—a, a) such that A\y —jq >
a > o — A1. If Ay — X9 is even, then this isomorphism preserves generic and special parts, otherwise
it interchanges them.

Remark 4. The isomorphism (22) is compatible with the action of ¥ = {1,0} on both sides, that
is, the following diagram commutes.

(0 x id)*H*Auty, ) — (0 x id)* (B, H"(Auty, 5) © (V)" (v — )

L -

H”“”\(AutGﬂ) D, H""’O(AutGﬁ) ® (VM) *(ov — o)

4.2.1.2  Recall that Buny , denotes the stack obtained from Bung . by the base change Bunp £
Bung. Recall the stack S¢Z; (cf. §3.6.1). We have a commutative diagram,

SUPP XPi.p — A Pap

\ . i <A1
X X BunH7P HFI,P A=Az zo
lid XVUp l [VZ
!
- SUPP XD Gy ) Pg.a
X x BunFLG Hf{,G BunH’G
e, A

where the left square is cartesian, thus defining ﬁH p» and the map p’H P sends (z,B,L — M, 3 :
M=M"|x_,) to (B',L(—=\z) — M’'). Here B’ = B(u1& + p20(z)). Write also A" = det M' =
A(—=(M + A2)z) and L' = L(—\z).
Define the Hecke functor
HA : D(SM™2220) — D(X x Bung p)
by
H*A(K) = (supp xpg p)(pr’ ICﬁg ® (p%LP)*K)[()\Q — A1) — dim Bung].

We normalize it so that (in view of Theorem 1) it should preserve perversity. The term (Aa — A1)
appears, because the dimension of Buny , depends on a connected component. So,

(id xvp)*HAM (K)[dim. rel(vp)] = HA (v% K [dim. rel(vz)]).
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We have a commutative diagram

/
<A1—A A7 Pz _
ZyNTR ——— N Xz, 2o —> SR 2,

2,1 l Lﬂ'z@
/

~ SUpp XpPg p__, \ Pgp
_ ’ H ’ <A—A
X x BunH7P A.p -z

where the right square is cartesian. Here Z;i is the stack over X x BunH p whose fibre over
(#,B,0 = L — M — L*® A — 0) is Hom(L?, A® Q(iz)), where x = 7(%). By definition, pz is the
map that forgets (3, M’).

Define the Hecke functor H*A : D(SM—222,) — D(Zf)‘l_)a) by
HAMNK) = pzi(pr* ICp ® (p'z)*K)[(A2 — A1) — dim Bung], (23)

it commutes with the functor (2 1)

4.2.2 Grothendieck group calculation. Set K; = vi Aut, g[dim.rel(vz)] and Ky = Wia(Ky).
Recall that Buny , classifies B € Pic X, L € Pic X, and an exact sequence 0 — L? -7 — A — 0
on X with C = N(B) and A =Q®C~!. Let .Buny » C Bung , be the open substack given by

2deg L + degC + 2(A\; — A2) < 0. (24)

The projection .Bung , — Bung  is smooth and surjective. We will derive Theorem 1 from a
description of the complex

(id x Vp)*H“’)‘(AutG’H) [dim. rel(vp)] = HHA (K7

over X x .Bun 77 p- The latter follows from the Hecke property of Ky for (23).

By equivariance, H**(K3) is the extension by zero from the closed substack Z<0 — Zg)‘l_A2

Write Z§ C Z2<Z for the open substack given by the condition that L% A ® Q(iz) does not have
a zero at z. Let Z\Z be the preimage of X X BunHP under 7o 1 Z\ — X X BUDHP Set

Zh = CZ§Z N Zi. Set also

W =pz'(c23) N0 (W) (12)).
Let K’ denote the s-restriction of H**(K3) to <23, We can similarly define the category D (.23),
then K' € DV (.23).

LEMMA 7. The complex K° (respectively, K' for i < 0) is placed in non-positive (respectively,
strictly negative) perverse degrees. The zeroth perverse cohomology of K identifies with

GBH”O @ (VA (v — i)l z. (25)

Proof. Denote by 4K’ the *-restriction of
(pr*ICo @(p'z)" (“K2))[(A2 = A1) — dim Bung] (26)

to 1Y followed by the direct image pz. Let Sy act on K via its action on YKy (cf. §3.6.2). We
are reduced to the following lemma. O

LEMMA 8. The complex 4K is placed in perverse degrees at most zero. The inequality is strict for
all terms except °KY. The zeroth perverse cohomology of °K is So-equivariantly isomorphic to (25).
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Proof. Recall the following diagram.

Pz “x

lpz l(bg
24 dp,

The scheme Y7 is empty unless i < (A; — A2) — 2d.
Assume i < (A; — A2) — 2d, then the map pz : Y — Zi can be seen as a (twisted) projection
Zi % (CrynsY) — o2
for N = ()\1 —d, oy + d)
Recall that ﬂé‘; is a twisted product (X x Bung) X @g, where the projection to Bung corre-
sponds to pg. We have ICﬁA — ICx xBuny XAy, where Ay € Sph(Grg) is the spherical sheaf on
G

Grg corresponding to A.

View 2} as the stack classifying 7 € X, B € Pic X, an exact sequence 0 — L — M — L*®@ A —
0 on X, where C ® A= and (24) holds, and a section s : L? — A ® Q(ix) that has no zero at x.
Here x = w(Z) and C = N(B).

View 4Y7 as the stack over cZé, whose fibre over the above point is the scheme of pairs (M’, 3)
with M’ € Bung and 3 : M = M’|x_, such that M’ is in a position at most A\ with respect to M,
and L C M’ is a subbundle. Here L = L((d — A\1)z).

View %2} as the stack classifying B’ € Pic X, a modification L' C L of line bundles on X with
deg(L/L') = d, an exact sequence 0 — L?> —? — A’ — 0, and a section s : L? — A’ ® Q. Here
NB)o A —=Q.

The map p; sends the above collection to B’ = B(u1Z + p20(%)), L(—M\z) = L' € L =
L((d—X\)x),s: L> - A ®Q,and 0 — L? —»? — A’ — 0. Note that A" = A(—(\; + X2)).

Now it is convenient to think of “P, as the stack classifying a modification L' C L of line bundles
on X with deg(L/L') = d, B' € Pic X, and a section s : L? — A’ ® Q, where N(B') @ A’ = Q.

Denote by pp : 25 — 4P, the map sending the above collection to B’ = B(u1& + pa0(2)),
L(=M\z) = L' C L =L((d—\)z), and s : L? — A ® Q. It fits into the following commutative
diagram.

Pz Iy
dY’L —>dZé —>A1

lpz Jo
23 Lo, 9Py
If i <0 then by [FGV02, 7.2.7(2)] the map
Ixopy : Z5 % (Grgn §Y) — Al
identifies with
25 % (Gryn SA')OXX—XQ,N x Al == AL
where v = (0,7), and x}\ is the notation from [FGV02]. By [FGV02, Theorem 1], the complex
RI(Gres N5Y, Ay @ (06)) L)
is placed in degree (2)',5) = A\; — A2 — 2d and equals Hom (VA @ V¥, V¥,
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A connected component of 9Y? maps to a pair of connected components of 42} and .Z%. For
such pair of components we have

dim .28 — dim 925 =14 3d +i + 2(Xa — \p). (27)
The *-restriction of (26) to ?Y? identifies with
()" (“T) © X" Lo)R(AN © () ) Lol ign )L+ (o = A1) + dim. el (6)].

The condition (24) guarantees that, over p/z(?Y?), the complex ?K> is placed in the usual cohomo-
logical degree —d — dim(?2%). Using (27), we learn that A’ is placed in usual cohomological degree
—dim .2} + 4. Since i < 0, it is placed in perverse degree at most zero, and the inequality is strict
unless ¢ = 0.

For i = 0 we have HomG(VA,V)‘/) = 0 unless A = \. So, only °K° contributes to the zeroth
perverse cohomology of K.

It remains to analyze the zeroth perverse cohomology of the -restriction of 7 under Pp Z8 —
OP,. We have to consider the space of sections t : 7*L' — (B')*, that is,
t:m*L — B"®@Qg((M — p1)T + (M — p2)o(2))
such that Nt : L? — A ®  has no zero at . This means that ¢ : 7L — B* ® Q¢ (aZ — ao (%)) for
some a € Z such that
a7 — ao(F) < (A — )3 + (A1 — pa)or(3)

as divisors on X. Our assertion follows. O

Remark 5. In the above proof we have that ¢ — dim 22 = —dim 22 does not depend on 7, so that
HAA KS))| 250 is placed in the usual cohomological degree —dim .Z9.

LEMMA 9. The complex H“’)‘(Kl) over X x Bung p is placed in perverse degrees at most zero,
and its zeroth perverse cohomology identifies with

v, A\ *
@ H™ 0 V ) ( )‘XXCBunI%P'

Proof. The intersection of a fibre of .Bun P BunG 7 With each connected component of .Bun P
is either connected or empty. So, by Proposmon 5, K1 is an irreducible perverse sheaf over each
connected component of .Bunp 5.

Let (C)Zg be the preimage of cBllIlp,g under w1 : 02y, — BunRH. By Proposition 4, K is an

irreducible perverse sheaf over each connected component of YZ5. So, if v is a coweight of G@g that
vanishes in 71 (G), then H*Y(K}3) is an irreducible perverse sheaf over each connected component of

A
)

The functor (1)1 : DV(23) — D(Z) is exact for the perverse t-structures (and commutes
with Hecke functors). Our assertion now follows from Lemma 7. O

Proof of Theorem 1. Recall that the Hecke functor (20) commutes with Verdier duality. Since
Aut, 7 is self-dual, our assertion follows from Lemma 9.

The So-equivariance statement from Lemma 8 combined with [Lys06a, Remark 3] imply the last
assertion about generic and special parts. Indeed, for L € Pic X,B € PicX and L' = L(—\z),
B’ = B(p1 + pez) we have x(L' @ m.88') — x(L @ m.B) = Aa — A1. O

4.2.3 Let us derive from Theorem 1 that Fg commutes with Hecke operators. As in
Appendix B.1.3, for p = (p1, p2) € Ag we have a Hecke functor H"g : D(Bung) — D(X x Bung).
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It is given by
/ *
Hug(K) = (pg) K[1]

for the map p’H X x Bung — Buny sending (Z,B) to B(—u1& — peo(Z)), here B € Pic X.
COROLLARY 4. We have the following.

(i) For the map m x id : X x Bung — X x Bung and a dominant coweight A of G we have an
isomorphism of functors

(7 x id)* o Hy 0 Fg = @D (Id R Fg) o HL @ (VA)* (1) (28)
I
from D(Bung) to D(X x Bung). This isomorphism is compatible with the action of > = {1, 0}
. . n AN . . .
gn both sides. It is understood that ¥ acts on @, Hy ® (V*)*(u) via the isomorphisms (61).
0,

H), o Fz = Homsy, <triv, Px xid)y o (idRFg) o HY, @ (VA)*(M)> .
n
Here id XFg is the corresponding functor D(X x Bung) — D(X x Bung). If \; — Ay is even,
then (28) preserves the generic and special parts of F; otherwise it interchanges them.

(ii) If K is an automorphic sheaf on Bung corresponding to a rank-one local system F on X, then

Fo(K) € D(Bung) is an automorphic sheaf corresponding to the local system (m.E)*.

Proof. (i) Take i = (f11,0) with fi; = A\ + Aa. Consider the diagram

!
Pg.a

~ Supp Xpj g — i\ q
X X BllIlFLG HH,G BU,DH’G - BunH
lMxp l p
> ~ A
X x Bung X xx Hg Bung

where both squares are cartesian. By Theorem 1, for K € D(Buny) we obtain an isomorphism
(7 x id)*Hy Fg(K)
= @Pid xp)(H(Aut, 5) @ (VA)*(v — i) @ HI_f(K))[—l — dim Bung]
v

=P UdRFHH(K) @ (V) (v = ).
v
The assertion about generic and special parts also follows from Theorem 1. O

COROLLARY 5. For the map 7 x id : X x Bung — X x Bung and a dominant coweight A of G we
have

(7 x id)" o (iId KFp) o Hy = @ HL o Fy @ (V) (—p). (29)
n
This isomorphism is compatible with the action of ¥ = {1,0} on both sides. So,

(idRFg) o Hy = Homy (triv, @ (m xid); o H’;} oF7® (V)‘)(—M)>' (30)
I

Here id XF5 : D(X x Bung) — D(X x Bung) is the corresponding functor. If Ay — Ay is even then
(29) preserves the generic and special parts of Fy, otherwise it interchanges them.
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Proof. For a coweight fi such that A — i vanishes in 71 (G) we have a commutative diagram

Pe i SWPPXP o id x
Bung Hg HH X x BunG i X x Bung

Lsupp XpaG lSUPp XPi.a ;1%
H

XxBun(;<—X><BunGg—>X><BunH

where the left square is cartesian. Here supp xpg o sends (Z,B, M = M'|x_,) to (z, M',B’) with
B' = B(uZ + fiz0(Z)). The map p'; sends (2, B') to B'(—[u@ — [i20(Z)).
In this notation we have

H—A—wo(A) (K)= (supp Xp/H,G)!(ICﬁﬂg”AG ®p}I,GK) [—dim BunH’G].

So, for K € D(Bung) the above diagram yields an isomorphism
(7 x id)* (ld RF ) Hey (K) = (id xply )i(id xq)(H~*N (Aut, 5) @ p*K)[~dim Bung].  (31)
By Theorem 1,
H =W (Autg, 7) = @ H(Autg, z) @ (V70N) (v + o).

v

So, the right-hand side of (31) identifies with @, H™* " F5(K) @ VA (v + fi). O

4.3 Recall that Sp classifies: L € Bun;, A € Bun; and L2 5 A ® Q. We have open immersion
4 : PicX x X@ < Sp sending (L,D) to L, A = Q' ® L*(D) with the canonical inclusion
L? - A® Q.

DEFINITION 7. Let E be a rank-one local system on X . Recall that A~E~ denotes the corresponding
automorphic local system on Pic X (cf. Definition 2). Set E = m,FE. Define the perverse sheaf
Ey e P(BunH) by

Ey = pu 1 AE[dim Bung].
LEMMA 10. For d > 0 we have canonically
ji Fs(By) = AN(E*) R (E*)@ @ AN (E)q[dim Sp].

Proof. The stack Vj p classifies B € Pic X, L ePicX, and amap ¢t : L ® w8 — Q. The datum of
t is equivalent to a datum of ¢ : 7*L — B*. We have C = N (B).

Let py be the composition V5 p — V. p v Sp, it sends the above point to (L, A = Q®C™!,s),
where s : L? — A ® Q equals the norm of . We have a cartesian square

Pic X x X 2% Vg p
lid X 7T lﬁv
Pic X x X@ —21~Sp

where jy 4 sends (L, D) to L, B = (7*L(D))* with the canonical inclusion ¢ : 7L < B*. We have
canonically

74 GpAE = AN(E*) B (E*)D @ AN (E)q.

Our assertion follows by Lemma 6(i). O

Since Pic? X is connected, the covering py : Pic? X — BunCIl{ is nontrivial, and NV is a nontrivial
local system on each Bun%,.
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LEMMA 11. The following conditions are equivalent:
(i) FE is irreducible;
(ii) E does not descend to a rank-one local system on X;
(iii) AE does not descend with respect to Pic X X Pic X;
(iv) the local system pg1AE on Buny is irreducible.
DEFINITION 8. For an irreducible rank-k local system W on X denote by Auty, the corresponding

automorphic sheaf on Buny normalized as in [FGV02]. By [FGV02], if A is the dominant weight of
the standard representation of GLg, then HE\;Lk (Autyy ) = W* X Autyy[1].

Recall the normalization of Auty for k£ = 2. The map vp : Bunp — Bung sends 0 — L? —? —
A — 0 to M (included into 0 - L — M — L*® A — 0). First, one considers the complex, say
Kw, on Pic X x X(@ whose fibre at L, D is

Adet W) p0-1 @ WD [dim Sp).
® D

Then Foury ((jq)1Kw) identifies with v Autyy [dim. rel(vp)] over the components of Bunp for which
deg(A® Q) > 2deg L. The sheaf Autyy is perverse and irreducible on each connected component of
Bung.

To fix notation for Eisenstein series, denote by Bunp the stack classifying M € Bung, L € Pic X

and an inclusion of coherent sheaves L — M. Write Bun;lp’dl for the connected component of Bunp
given by deg L = d; and deg M + deg ) = 2d; + d. We have a diagram

. . ap — bp
Pic X x Pic X =—— Bunp — Bung,

where qp sends (L C M) to (L,L~! ®det M), and pp is the projection. For rank-one local systems
Eqi,Ey on X set

Allt]_s;l@E2 = (AE2)51 &® (ﬁp)lq*p(AEl X AEQ)[dimmp].
This normalization is compatible with the above in the following sense. If Fq and FEy are not
isomorphic, then Foury ((ja)«Kg eoE,) descends (over some open substack of Bunp) to Autg, ¢r,,
and we have the functional equation Autg,er, — Autg,ep, (cf. [BG02]). Write

—~ d,d
AUtEl@E2 — @ AUtéléBEb’ (32)
(d,d1)E€72

dydy a0 =—d.d
where Auty™ is the contribution of Bunp h

Recall the map ap : Bunp — Pic X sending 0 — SymzL —?—>A—0to L. Let °Sp C Sp be
the open substack classifying inclusions L? — A ® Q with L, A € Pic X.
ProrosiTiON 6. We have the following.

(1) If E is irreducible then, over the connected components of Bunp given by deg L < 0, there
exists an isomorphism

Fpy(Eg) = vh Autgs @(A&)q @ ap Ao[dim. rel(vp)]. (33)
So, (6) gives rise to an isomorphism of perverse sheaves on Bung
Fg(EH) = AutE* ®(A50)Q (34)

(2) Assume E‘~: Qy. Then over the components of Sp given by deg(A® Q) —2deg L > 3g — 3 the
sheaf Fs(Ey) is perverse, the Goresky-MacPherson extension from 9Sp. Both (33) (for deg L
small enough) and (34) remain valid, where now E— Q; & &.

Proof. (1) Since Nij(AFE) = 0, our assertion follows from Lemma 10 combined with Corollary 1.
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(2) The components of V ,, given by deg B+2deg L < 0 are smooth (this is where the connectedness

of X is essential). The fibres of N : Pic X — Pic X are of dimension g — 1, so over the corresponding
components of Sp the map py : Vjz p — Sp is small. The first assertion follows. The second assertion
is obtained from Lemma 10. ]

Remark 6. (i) Proposition 6 implies that the constant term CTp(Autg,qg,) is essentially the coho-
mology of the Prym variety (cf. Appendix A.1).

(ii) The formula (34) for E = Q is a version of the classical theorem of Siegel (its proof
given by Weil can be found in [Wei65]; a version proved by Waldspurger is found in [Wal85, §1.5,
Proposition 2].

(iii) If E = Qy, then ¥ = {1,0} acts naturally on Ey and, hence, on Fg(Ep). Let ¥ acts on
Autg g, via (34). The o-invariants of Autg oq, are By 4, Aut®® _the sum over (d,d;) € Z2 with

Eo®Qq’
dy even.

(iv) The stack BunGﬁ X Bung BunGﬁ splits as a disjoint union of the open substacks 4 LI U/*,
where U® is given by the condition that B; ® 82_1 € Bung, for a point (Bi,B; € Pic X, M €
Buny, N(B1) @ det M = N (B2) @ det M = Q) of Bung g XBun, Bung 7 (cf. Appendix A.1). So,
the restriction of Fg(EH) under BunG7 7 — Bung is naturally a direct sum K@ K, where K¢ is the
contribution of Y®. If E = Qy, then (32) is not a refinement of the decomposition K0 & K.

To see this, consider the line bundle £@ on X(@ the dth symmetric power of &. Its tensor
square is canonically trivialized, so it defines a ps-torsor ;X @ — x@_ A fibre of the latter map
over D € X@ can also be seen as the set of connected components of the stack of pairs (B, k), where
B € Pic X, k : N(B) = O(D). The restriction of the covering X — X under  : X(@ — x()
has a distinguished section, and m(@y))Lr v@ — K% ® K, where K is the contribution of the
distinguished section.

Recall that (Q®&) Y = @gzo(symk,d—k)!(@Zgg(()d_k))a where symy, 4, : X®) x X0 — x (@)
is the sum of divisors. So,

d

K'eK'= <@(Symk,d-k)!@e X géd_k)>
k=0

)

<X (d)

but the right-hand side is not a refinement of the decomposition of the left-hand side.

4.4 Local Rankin—Selberg-type convolutions

4.4.1 Recall the following Laumon’s construction for GLo. Let Bun) be the stack classifying
M € Buns with nonzero section 2 — M. To a local system E on X one associates a complex
Laump on Bun), defined as follows.

Let Q be the stack classifying collections (L; C Lo C M) with L1 =, Ly/L; = Ox, where
Ly C M is a modification of locally free Ox-modules of rank two. Let evg : Q — A! be the map
sending the above point to the class of 0 — L; — Lo — Lg/L; — 0. Let qo : @ — Shg be the
map sending the above point to M /Ly, here Shy is the stack of torsion sheaves on X. Write Lp for
Laumon’s sheaf corresponding to E (see [FGV02]). Let pg : Q — Bunf be the map forgetting Lo.
Set

Laumpg = po1(qoLEe ® evgLy)[dim Q.

Consider the map ¢’ : Bunp — Pic X x Bun) sending (L € M) to (L®Q 1, Qc M@ L' ®Q).
For local systems F, E; on X, where Fj is of rank one, set

Laump g, = (AE1)q ® (4')"(A(E) @ det F) ¥ Laumpg)[dim Pic X].
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Let Laum%f%l denote the restriction of Laumpg g, to the connected component Bun(lig’d1 of Bunp given
by deg M + deg Q) = 2d; +d and deg L = d;. Recall the projection pp : Bunp — Bung. By [FGV02,
§7.9], for E irreducible and d > 0 we have

Laum%%e = pp Autg[dim.rel(pp)]

over B—un(]ig’dl, and
pp Laump g, — Autp, gq, ® Autp[—dim Bung].
Denote by
mult®@ : Pich X x X4 — pic?htd X

the map sending (L, D) to (7*L)(D). Note that mult®® is a (representable) Galois Sa-covering over
its image, the corresponding automorphism of Pic® X sends L to L ® &. Let € : Pic X = Pic X be
the involution sending B to B*. The following is closely related to the main result of [Lys02].

THEOREM 2. For any local systems E, F1 on X withrk(Ey) = 1, rk(FE) = 2 there is an isomorphism

Fp(pp Laumz® )= (Adet E)g-1 @ e mult"" (A(det E @ Ey @ &) X (7" E)D)[d+g—1] (35)
depending only on a choice of (6). If d is even (respectively, odd), then Fy _ (respectively, Fy )

- d,d . . .
sends ppLaump él to zero. In particular, for E irreducible we have

Fg(Autg og, ® Autg)
SP(Adet B)g-1 @ ey mult>™ (A(det E® By @ &) K (7*E))[d + g — 1 + dim Bung],
d>0

where dy is a function of a connected component of Bun 5 given by 2d; +d = deg(B*) for B € Buny.
The sum is over d > 0 such that dy € 7Z.

Remark 7. Write s% : X(@ x X(d=20) _, X(d) for the map sending (D, D) to 7*D + D. For any
rank-two local system F on X the sheaf (7" E)(9) admits a filtration with successive quotients being

sP((det B)@ ® 7*(E@-20)))

for 0 < a < d/2. This follows from the fact that for a two-dimensional Qp-vector space E we have

a
Sym**’ E ® Sym® E = @(det E)® @ Sym?¢ -2 g,
i=0

On the other hand, the complex p p;Laum%dél has a filtration indexed by a > 0 coming from a

stratification of Bunp. The corresponding stratum of Bunp is given by the condition that there is
a divisor D € X( such that L(D) C M is a subbundle. One may check that the corresponding
graded complexes of the left- and the right-hand side of (35) coincide.

4.4.2 Following [FGV02], for a local system E on X denote by Av% : D(Bung) — D(Bung) the
following averaging functor. Let Modg be the stack classifying a modification M C M’ of rank-two
vector bundles on X with deg(M’/M) = d. Let 5 : Mod$ — Shg be the map sending this point to
M'/M. We have a diagram

Bung L Modg i Bung,
where p (respectively, p') sends (M C M’) to M (respectively, to M'). Set AvL(K) = pj(p*K @
L5)[2d)(d).
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By [FGV02, Proposition 9.5], for an irreducible rank-two local system W on X we have
Av(Auty) = Auty @ RDX D (B @ W*)D)[d].

Write Sy for the symmetric group on d elements, set ¥4 = Aut yq (X 4), We have a semi-direct
product £ x Sy acting on X, it fits into an exact sequence 1 — X4 — ¥4 % S; — S; — 1. For a
dominant coweight A of G the functor

D HE o oW @ (V) () - © (V) (—pug)
H1seos g

is naturally a functor from D(Buny) to the equivariant derived category Dzd”Sd(X 4 x Bung). So,
we can introduce the functor

(H}LG)W : D(Bun;) — D%(X? x Bung)

given by
(11} ) = Homs triv, (r x i), €D 3t o+ o3 (V) 8-+ (V) () ).
M1 d

where, by abuse of notation, we have written 7 x id : X% % Bun g— X 4 % Bun 7 for the projection.

For a local system E on X let Av : D(Bun i) — D(Bung) denote the averaging functor given
by
AV (K) = Homs, (triv, (pry)i(pr] B © (Hy ,)*(K)),

where A = (1,0), and pr; are the two projections from X? x Bun g toX 4 and Bun > respectively.
PRroOPOSITION 7. For any local system X on X we have a canonical isomorphism of functors
Fg o Avl = Av, oF s

from D(Bung) to D(Bung). If d is even, then this isomorphism preserves the generic and special
parts of F'5, otherwise it interchanges them.

Proof. Take A = (1,0). By [Gai04, 1.8], the functor (H))®? maps D(Bung) to the equivariant
derived category D%¢(X? x Bung). We have a canonical isomorphism of functors from D(Bung) to
itself

Av}, = Homyg, (triv, (pry)i(pr} E® @ (HY)®4))

where pr; are the two projections from X¢ x Bung to X¢ and Bung, respectively. Applying (30) d
times we get a Sg-equivariant isomorphism

(1A BFy) o (HY)® = (1Y )% o Iy,

where idXFj; : D(X? x Bung) — D(X? x Buny) is the corresponding functor. If d is even, then
this isomorphism preserves the generic and special parts of F'5, otherwise it interchanges them.
Our assertion follows. O

Proof of Theorem 2. The proof proceeds in two steps.

Step 1. Case d = 0. Let X} be the stack classifying L € Pic™* X, B € Pic X, and an isomorphism
€: L2 ®C= Q% where C = N(B). We have a diagram of projections

Pich X & x 2 Pic X,
where g (respectively, p;) sends the above point to L (respectively, to B).
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Let py : X — A7 denote the stack whose fibre over a point of &7 is the stack of exact sequences
of Ox-modules

0-L—-M-LoQ =0 (36)

Consider the diagram

eV x

-
Bunp2 L. BUHPJ; <_qX X > Al,

where evy is the map sending a point of X to the class of (36), and gy sends a point of X to the
collection (L € M, B, £ : C ® det M = Q) with C = N(B). Using (6) and Corollary 1 we obtain

F(pp Laum}y’s ) = (Adet E)g-1 @ pri(pa 1 (qyThSpy ® evivLy) ® (i A(EL @ det E @ &))[b),

where b = dim Bungp, — dim Bunp,, here dimBunp, is the dimension of (the unique) connected
component of Bunp, containing 7p(qx(X)).

Consider the map s1 : Pic®t X — A} sending L to the collection (L, B, ¢), where B = (7*L)* and
¢: L? ® C= Q2 is the natural isomorphism with C = N(B). The following diagram commutes.

P1

Pich X =—— X Pic X
| T
S1 €
Pich X" pio2di ¢
Recall that Sy acts on Spy (cf. §2.1). By definition of Spy, we get a So-equivariant isomorphism
511Qelg — 1] = px1(¢xTHSpy @ vy Ly)[b].

Note that s; is a (respresentable) Ss-covering over its image. We have a 2-automorphism 7 of
the identity functor idy, acting on (L,B,¢{) as —1 on L and trivially on B. Since n acts as —1 on
Homyg, (sign, s11Qy) and trivially on ¢j A(E; @ det E ® &), it follows that

p11(gTA(E) @ det E ® &) ® Homyg, (sign, s11Q¢)) = 0. (37)

We have used that RI'.(B(uz), W) = 0, where W is the nontrivial rank-one local system on B(ju2)
corresponding to the Ss-covering Speck — B(u2).

Note that the genus of X is odd. For a point of X as above, we have X(L ® m.8) = 0mod 2. By
[Lys06a, Remark 3|, we obtain (S p,w)52 — Sp,y,g over the connected component of Bunp, containing
T7p(gx(X)). From (37) it follows that FH’S(ﬁp!Laum%f%l) = 0. So,

FH’g(ﬁp[Laum%t%l) = (Adet E)g-1 ® € Inult?’d1 A(E1 @ det E® &)[g — 1].

Step 2. For d > 0 we have AV%(ﬁ;Laum%’f%l) :7Laum%f%l. By Step 1 and Proposition 7, we obtain
Fg(pp Laumg® )= (Adet E)g-1 @ Avi (e mult)” A(E) @ det E® &))[g — 1.
It is easy to check that for any K € D(Pic? X) we have
AvE (e mult)™ K) = e mult]"™ (K K (7 E)@)/[d].

Our assertion follows. O

5. The case H = GO,
5.1 Keep the notation of §3 assuming m = 2.
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Remark 8. Given k-vector spaces Vi, Vs of dimension two we have a canonical symmetric form
Sym?(Vi ® Va) — det V; ® det V. One may obtain a compatible isomorphism

i ve © det(Vy @ Vo) = (det Vi @ det V3)?

as follows. Denote by St (respectively, det) the standard (respectively, the determinantal) represen-
tation of GLo. Fix an isomorphism ~g; : det(St X St) = (det M det)? of GLy x GLg-representations
compatible with the above symmetric form. It yields the desired isomorphism as follows. Given V;
pick an isomorphism of vector spaces b; : V; — St and define 7y, v, by the following commutative

diagram.
det(V1 ® Vg) (det Vi @ det V)2
lbl@bQ lb1®b2
det (St X St) (det X det)?
Then 7y, v, does not depend on b;. We have vy, v, = —vv; 1.

Denote by Bun, X the stack of rank k vector bundles on X. Denote by p : Bun, X Bung the
map sending W to (V,C,Sym?V LA C,7), where V' € Buny is the descent of W ® o*W equipped
with natural descent data, C = N(det W), and h is the descent of the canonical symmetric form
Sym?(W @ o*W) — det W ® o* det W. The compatible trivialization

det(W @ o*W) = (det W @ o* det W)?
descends to v : C™2 ® det V= £. The map p is smooth and surjective.

Another way to spell the same construction is as follows. We have an exact sequence 1 — G, —
CLy x GLy — GOY — 1, where the first map sends € G,, to (z,2~!). Then we can think of the
automorphism & of GO chosen in §3.1 as an automorphism of this exact sequence permuting
the two factors of GLa x GLa. The corresponding twisting of this exact sequence by the X-torsor

X - X gives an exact sequence 1 — U, — m, GLy — H— 1.

We have Bun,, gL, — Bunz’ - The stack Buny, classifies B € Pic X equipped with an isomor-
phism N(B)= O. The above map p is the extension of scalars under m, GLy — H. Write also o
for the automorphism of Bun sending (V,C,Sym? V' — C,v) to (V,C,Sym? V — C, —v). Then the
following diagram is 2-commutative.

P PH
Bunzx —— Bung —— Buny

c A

Bunzj( . Bung

Let Bun2 xC Bun, X be the substack given by degW d. Recall that Bun‘fq is given by
degC d. For X connected the irreducibility of Bun 2% and surjectivity of p imply that the stack

Bun? 7 is irreducible, so N is a nontrivial local system on each Bun§; in this case.

Let E be an irreducible rank-two local system on X. Let Aut i be the corresponding automorphic
sheaf on Bun, ¢ normalized as in [FGV02] (cf. also Definition 8). We fix a rank-one local system x

on X and an isomorphism 7*y = det E. This provides descent data for Aut ; for the map Bun, ¢ —
Bun, so we obtain a perverse sheaf, say KE'7X7H on Bung.

For X connected, the group stack Bung,_ has two connected components (cf. Appendix A.1),

write Bun?]Tr for its connected component of unity.
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DEFINITION 9. The quotient of Bun,, ¢ by the action of Bun?]Tr is a p-torsor over Bun g, we denote
by SN the corresponding local system (of order two) on Bun . We refer to it as the spinorial norm.

We have K | 5 ® SN—= K <@g, i+ The central character of K 18 X

The local system 7, E* is equipped with a natural symplectic form /\2(77*173'*) — x !

rise to a G-local system Ex on X, where G = GSp, for n = 2.

, SO gives

If X splits, then we fix a numbering of connected components of X. Then E becomes a pair of
irreducible rank-two local systems F1, 5 on X. We obtain Bun, ¢ = Buns x Buny and Autz =

Autp, X Autg,. The descent datum for det E becomes det F; = det Ey — x. For X split we have an
exact sequence 0 — 7/27 — w1 (H) KNy 0, and Bun% has two connected components Bun%, for
0 € A~'(d). For d odd the stack Bun{; is connected and the covering pyr : Bun% — Bun% splits. For d

even Bun has two connected components Bun;, § € A\=1(d), and the covering py : Bun%, — Bun,
is nontrivial.

If £ is an irreducible rank-two local system on X such that 7*FE is irreducible, then the perverse
sheaf K . Bdet B has natural descent data with respect to pg : Bunz — Bung, thus defining a
perverse sheaf K i on Bung. Recall the local system & on X (cf. §3.1).

CONJECTURE 2. If n = 2, then we have the following.
(1) If E does not descend with respect to X = X, then Fa(pu 1K i) € D(Bung) is a cuspidal

automorphic sheaf on Bung for Ex. (For non-connected X our assumption says that Ej, Fy are
non-isomorphic irreducible rank-two local systems on X equipped with det £} = det E».)

(2) If E is an irreducible rank-two local system on X with 7*F irreducible, then we have two
cases. If there is an isomorphism £ — E® & on X, then F(Kg ) € D(Bung) is isomorphic to the
geometric Eisenstein series (for the Siegel parabolic of G), otherwise it is a cuspidal automorphic
sheaf on Bung for Es. (In particular, for X non-connected we obtain an Eisenstein series this way. )

Question. In case (2) of Conjecture 2 for connected X, what about Fo(Kgg ®@N)?

5.2 In the rest of §5 we assume, in addition, that n = 1. Let E be an irreducible rank-two local
system on X. Assume that its restriction E = 7*E is still irreducible.

The following is a geometric version of a theorem of Shimizu (see [Wal85, Theorem 1], it is also
an argument supporting Conjecture 1 in the case n = 1,m = 2.

PROPOSITION 8. For X split we have Frp(Autps) = A(det E)o ® Kj ¢ gdet g,j7- 1his isomorphism
depends on a choice of (6).

Proof. The proof proceeds in two steps.

Step 1. Let jq : Bung x X4 — Sg be the open immersion sending (L, D) to L,C = N Lo (D)
with canonical inclusion A L < C ® Q. Let 8% be the open substack of Sj given by deg(C @ 2) —
deg L = d. We claim that
Fs,(Autp)|gs = jar(Autp RE@)[d].
Q
Recall the stack Weo classifying M € Buns, L € Bung, and ¢t : L — M*®£Q. Let OWGQ CWeo

be the open substack given by the condition ¢ : L «— M* ® € is an inclusion. From cuspidality of
Autpg- it follows that only "W, ¢ contributes to Fi, (Autp«)|ga, so the latter is extension by zero
: Q

under jq.

Let € : Buny — Buny be the involution sending M to M* ® Q. Then €* Auty — Autg+ canoni-
cally. Our assertion follows from Hecke property of Autg.
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Step 2. The map Vg BunQ — Bunj sends (L € Buny,0 — /\2L -V —=C—-0)toV=L*®W
with symmetric form Sym?V — C. From Step 1 we obtain

V%Fg(AutE* )= A(det E)q ® VZ}KE‘,det B,

There is an open substack "Buns C Buns with the following properties. The projection

Q Q
OBunQ — Bung is smooth and surjective with connected fibres, and uz}K p.gldim.rel(vg)] is a
perverse sheaf over OBunQ. Our assertion follows. O

Note that Proposition 8 (at least the corresponding non-canonical isomo;phism) would also
follow from Conjecture 1. We conjecture that Proposition 8 remains valid for X nonsplit.

6. Bessel periods for GSp,

6.1.1 Keep the notation of §5.1. In §§6.1.1 through 6.2 we assume n = 2. Recall the stack Sp
classifying L € Bung, A € Bun;, and Sym? L = A®Q. Denote by Sp C Sp the open substack given
by

2deg(A® Q) —2deg L =

Let 5 X(") = X() be the open subscheme classifying divisors x1+ - - -+, on X with z; pairwise
distinct. Let "*S}, C Sp be the open substack given by the condition that L S L@ A®Q and

div(L* ® A® Q/L) € "X Set
RCov" = Pic X XPic X TSSX(T),

where the map "**X(") — Pic X sends D to O(—D), and Pic X — Pic X takes a line bundles to its
tensor square. It is understood that "*X () = Spec k.

We have a map p1 : "8}, — RCov" sending the above point to £, = (A ® Q)™ @ det L with
the induced inclusion 55 — Ox.

LEMMA 12 [Lys06b, 7.7.2]. For r > 0 the stack RCov" classifies two-sheeted coverings ¢ : Y — X
ramified exactly at Dx € "X with Y smooth. The stack "95Sp identifies with that classifying
collections Dx € "X (") a two-sheeted covering ¢ : Y — X ramified exactly at Dx, and B € PicY.

The identification in Lemma 12 sends B € PicY to L = ¢,B with symmetric form Sym? L =
N(B)= A ® Q. Note that s admits a canonical section N(B)(—Dx) — Sym? L, which is a vector
subbundle of Sym? L. Let q; : "95S} — Bung be the map sending (L, A, s) as above to L.

LEMMA 13. For r > 4(g — 1) the map q; : "**S}, — Buny is smooth.

Proof. Since the projection "*S}; — RCov" is smooth, the stack "**S}, is smooth. Since Buny is
also smooth, it suffices to show that the fibre of q; over a field-valued point L € Buns is smooth.

Let us calculate the tangent space to the fibre of q; at a point (L,.A,s). For brevity, write

C=A® 0. Let K denote the cokernel of O < C ® Sym? L*. The sheaf K is locally free. The
tangent space in question identifies with H(X, K). We claim that H*(X, K) = 0.

Indeed, suppose that (L, A4, s) is given by a collection: a two-sheeted covering ¢ : Y — X ramified
at Dy € "X () and a line bundle B on Y. So, L= ¢, and s : Sym? I — C = N(B) is the natural
symmetric form. Let Dy € ™Y (") be the ramification divisor of ¢, so Dx = ¢, Dy. Then Sym? L
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is included into the following cartesian square.

N(B) @ ¢.(B?) — B?|p, @ B|p,

T

Sym? L BQDY

Let 04 be the nontrivial automorphism of ¥ over X. We have K* = ¢,(B ® U;';B_l(—Dy)). So,
H(X,K*@Q)SH (Y, 6" Q0 B® U:;B_l(—Dy)) = 0, because the degree of the corresponding line
bundle on Y is 4(¢ — 1) —r < 0.

As q; is separable, and the dimensions of the tangent spaces to the fibres are constant, q; is
smooth. O

Fix a two-sheeted covering ¢ : Y — X ramified at Dx € "X (). Write oy for the nontriv-
ial automorphism of Y over X, and &, for the og-anti-invariants in ¢,Oy, it is equipped with
5;170(—DX). Write Dy € Y() for the ramification divisor of ¢, so Dx = ¢.Dy. Recall that ¢
is recovered from (&4, Dx ) as Spec(Ox ® &), where the structure of a Ox-algebra on Ox @ & is
given by Sg — Ox.

Recall the stack Buny,, its connected components Bun“U¢ are indexed by a € Z/27Z
(cf. Appendix A.1). Let OBunU¢ C Buny, be the open substack given by H(Y,V ® ¢*Q) = 0
for V € Buny, equipped with N (V)= Ox.

Let PicY be the preimage of OBuan5 under e, : PicY — Bung, (cf. Appendix A.1). Denote
by ¢1 : PicY — Buns the map sending B to ¢.5.

For g = 0 we have OBunU¢ = Buny,. If g = 1, then OBunU¢ C Buny, is given by the condition
that V is not isomorphic to Oy-.

LEMMA 14. We have the following.

(i) Ifr > 4g — 4, then OBun&ﬁ is nonempty for each a € Z/27. So, the intersection of “Pic Y with
each connected component of PicY is nonempty.

(ii) The restriction of ¢1 : PicY — Bung to the open substack °PicY C PicY is smooth.

Proof. (i) Write Ker N for the kernel of the norm map N : PicY — Pic X (cf. Appendix A.1). Let
OKer N be the open subscheme given by HO(Y,V ® ¢*Q) = 0 for V € Ker N. Then OBunU¢ is the
preimage of “Ker N under the projection Bung , — Ker N.

Let Z denote the preimage of Q2 under the map X*9=%) — Pic X sending D to O(D). Here
Pic X is the Picard scheme of X. Let Z’ be the preimage of Z under ¢ : Y49=4 — X(9=4) We
have Z' = () for g = 0, Z' = Speck for g = 1, and dim Z’' = 3g — 4 for g > 1. Then Ker N is the
complement to the image of the map Z’ — Ker N sending D to (¢*Q~1)(D). Since each connected
component of Ker IV is of dimension g — 1 4 /2, our assertion follows.

(ii) Since both “Pic Y and Buny are smooth, it suffices to check that for B € °PicY the natural
map H'(Y, 0) — HY(X, End(¢.B)) = H' (Y, Bo¢* ((¢.5)*)) is surjective. We have a cartesian square

O(Dy) @ Uf,;B(Dy) —— O(Dy)/O & O(Dy)/0O
B ® ¢ ((¢:8)") O(Dy)/0O
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where the right vertical arrow is the diagonal map. This yields an exact sequence

B

0— 0y =B " (6.8)) = =5
¢

(Dy) — 0.

We have HY(Y, B(Dy) ® a:’;B_l) = HY(Y,¢*Q ® 03B ® B~H* = 0, because 03B ® B~! € "Bung,.
We are done. O

Our purpose is to study the *-restriction of FS(pH!KE’X’H) under Pic_Y — "8}, C Sp. For
d € Z set d = 2degQ — d. The complex Fs(pm Kp H\Bunf}[) lies in D(Pic?Y).

Define Y by the following cartesian square.
y —Y
l l (39)
X\ — X

Consider the exact sequence 1 — G,,, — G,,, x G, A G,, — 1, Yvhere N is the product map, and
the first map sends z to (z,z~1). Twisting it by the Z/2Z-torsor X X via the action permuting
two factors of G,,, X G,,, we obtain an exact sequence 1 — U, — 7w, G,, X Gy, — 1 of group schemes
on X; here N is the norm map. Consider the composition U, — m,G,, — 7.0.G,, = ¢+7.G,,,. Define
the group scheme R4 on X by the exact sequence

1 = Uy — ¢47Gyy — Ry — 1. (39)

The corresponding map PicY — Bung , 18 smooth and surjective.

Let 4GL2 be the group scheme of automorphisms of ¢+ Oy, this is an inner form of GLs. We
denote by the same symbol ,GLy its restriction to X. We have a natural map ¢,G,, — ¢ GLa of
group schemes on X. Let ¢H be the group scheme on X included into a morphism of exact sequences

11— UT(' — W*QE*Gm R¢ 1

S

1 — Uy —> m(yGlo) —> 4 —1

Since Bun¢ i — Bung canonically, we obtain a morphism qr, : Bung, — Bung.

For £ € Pic X we have ¢*N(L£)= N(¢*L) canonically. Consider the map ¢,7.G,, ol 0.G

induced by the norm 7,.G,, X G- It is easy to check that U; C Ker ¢./N, so we obtain a map
Ry — ¢+Gyy,. Let pgr, denote the composition of the extension of scalars Bung, — PicY with the
automorphism € : PicY = PicY sending B to B* = B*® Qy. So, the following diagram commutes.

- qR,
PicY — Buan) e BUHH
lN l“d’ (40)
PicY —— PicY

When (€4, Dx ) run through RCov", the group schemes Ry are naturally organized into a group
scheme R over RCov” xX. Let Bung denote the stack over RCov” associating to a scheme S the
following category: a map S — RCov", and a Rg-torsor on S X X, where Rg is the restriction of R
under S x X — RCov" x X.
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Diagrams (40) naturally form a family
BU,DH LI Bunp ﬂ) TSSS};.

PROPOSITION 9. The restriction of Fs(py 1K N ) to the open substack "**S}, C Sp is canonically
isomorphic to

(]JR)! q*RKE,X’H[dim. rel(qR)].
In particular, for a k-point of RCov" given by ¢ : Y — X, the x-restriction identifies canonically

Fs(pu Kg , g)lpicy = (PR, )1 dR, K gldim.rel(qr)).

Proof. Define a map (y : PicY — VH,P as follows. Given B € PicY, let W = (;E*B and (V,C,
Sym?V — C,v) € Bung be the corresponding H-torsor. We have ¢*¢,B= ¢,0*B, so there is a
natural map

TV SW @ "W — ¢.7* Ny (B) = ¢ Ny (B),
where Ny : PicY — PicY is the norm map. It descends to a map V — ¢« Ny (B). So, for L =
¢« (Ny (B)*) we obtain a map t : V. — L* ® . By definition, (4 sends B to (V,C, Sym?V — C,n) €
Bung, L € Bung, and t: V — L* @ Q.

Denote by (;31 : PicY — Bun, ; the map sending B to (;E*B. We have the following commutative

diagram.
Bun, ¢ <" picy <= PicY
]
Bun Vir,p Sp

It extends naturally to the following diagram.
PicY

% l coN

HP%BUHR(P—)PICY

.

As ¢ varies in RCov” these diagrams form the following family.

PR rsser
Bunp —— "%Sp

A

Bung Vi p Sp

Our assertion is reduced to the following lemma. O

LEMMA 15. The square in (41) is cartesian.

Our proof of Lemma 15 uses the following elementary observation.

SUBLEMMA 1. Let K be a field of characteristic different from two. Let V; be two-dimensional
K -vector spaces. Let B, B’ be one-dimensional K-vector spaces. Equip B @ B’ with the quadratic

form

(0,0.id)

s:Sym*(BeB)=B*eB?*aBe B BeB.
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Assume we are given a map t : B® B’ — Vi ® V5 such that there is the following commutative
diagram.

Sym?(B & B') — Sym?(V; @ V)
B® B det V; ® det Vs

Then there exist a unique decomposition into a direct sum of one-dimensional subspaces V; = U; ® U]
and unique isomorphisms B— Uy ®Us, B'—= U{®UJ under which t identifies with a natural inclusion

(h@Uy) @ (U @Uy) — V1@ Va. 0

Proof of Lemma 15. Consider a point of Vj p given by Fp = (V,C,Sym?V — C,v) € Bung,
L € Bung and ¢t : V — L* ® Q. Assume that its image in Sp is identified with a point (¢ : ¥ —
X, B € PicY) of "*S}. So, we are given an isomorphism L — ¢, and the following diagram
commutes.

Sym?V —2> Sym*(L* ® Q)

T B T (42)

c N(B)™! & 02 — N(B*)(~Dx)

Since L* ® Q= ¢, B*, we view the datum of t as t : *V — B*. We have a commutative diagram

(togt) * * R%
oV —">B @ aiB

l / (43)
" . B*
where
¢* . B* = {b € B* © oz B" | the image of b in (B* © 0,B8")|p, lies in the diagonal B*|p,, }.

Pick a lifting of 5 € Buny to a point W € Bun, ¢. We obtain 7*V =W ® o*W. From (43) we
obtain a map

B (t,cr:;t) . .

(W o W) —=7"(B" @ 03B
whose tensor square fits into the following commutative diagram.

¢* Sym*(W @ o*W) — (B2 @ U:’;B*z © B* @ oyB%)

T T(0,0,l)

¢*(det W @ o* det W) —— 7*(B* @ 0, B*(~2Dy))

By abuse of notation, we also write o and oy for the involutions of Y obtained by base change in
the square (38).

Note that any surjection QE*W — L, where £ is a line bundle on Y, gives rise to a map &, : V —
?« Ny (L). Indeed, the composition

TVISW QW — 0L @ 0" ¢ L — ¢y (L @ 0 L) ¢ Ny (L)
descends to a map &, : V — ¢ Ny (L).

~ By Sublemma 1, there is a unique rank-one subbundle Wi C q;*W, for which we set £ =
(¢p*W) /W7, and a unique o-invariant inclusion of coherent sheaves £ ® o*L — 7*B* with the
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following properties. The latter inclusion gives rise to an inclusion Ny (£) < B*, and the composition

V % g Ny (L) — 6.B* (44)
equals t.
Taking symmetric squares in (44), we obtain a commutative diagram

Sym? V ——= Sym?(¢, Ny (L)) ——= Sym? (¢, 5) ——= N(B")

| T 7 )

¢ (NxNy (£))(=Dx )~ Nx(B*)(—Dx)

in which the middle square is cartesian (and all three of the vertical arrows are subbundles).
Using (42) we conclude that there is a unique isomorphism 7 : C = (Nx Ny (£))(—Dx) making
(45) commute, and the inclusion Ny (L) — B* is actually an isomorphism.

Let us show that the natural map W — qg*ﬁ is an isomorphism. We have inclusions
OW — ¢ oL — LB I}L,
whose determinants yield ¢* det W < det(¢* . L) = (L&oyL)(—7* Dy ). Symmetrizing with respect
to the action of o, one obtains inclusions

FrtC S §F(det W™ det W) (Lo L)@0l(Loa* £)(—27* Dy) (76" Nx Ny (£))(—27* Dy)

whose composition is an isomorphism (equal to restriction of 1). So, W = ¢.L is an isomorphism.

Viewing £ as a .7 Gp-torsor on X, let Fr, be the Ry-torsor on X obtained from it by extension
of scalars (39). Then qgr,(Fgr,) — Fz equips Fz with a Rg-structure that does not depend on a
choice of a lifting of F 7 to a m, GLs-torsor. We are done. O

Remark 9. Consider the case of X = X split. We have an exact sequence 0 — Z/27 — m(H) —
Z — 0. The *-restriction
FS(pH!KE,x,IZI”PiC‘iY

is naturally a direct sum of two complexes indexed by 6 € wl(ﬁ ) whose image in Z is d. If YV is
connected then qg, : Bung, — Bung induces a bijection at the level of connected components

7T0(Bun3¢):Wo(BunH):ﬂ'l(H).

6.1.2 Recall the diagram

q1 p1
Buny <— "**Sp —— RCov"

introduced in §6.1.1. In this section we prove the following acyclicity result.

THEOREM 3. Let E be a rank-two local system on X and let K € D(Bunsy) be a Hecke eigensheaf
with eigenvalue E. Then qiK is ULA with respect to py : "**Sp PLRCov".

Proof. The proof proceeds in three steps.

Step 1. The difficulty comes from the fact that q; x p; : "**S) — Buny x RCov” is not smooth (for
g > 1), we come around it using the Hecke property of K. Namely, for d > 0 consider the diagram

supp xp’

X (@) % Bung =<—— Modg L

Buns,

where Mod{ is the stack classifying a lower modification (L C L') of rank-two vector bundles on X
with deg(L'/L) = d, the map p (respectively, p’) sends (L C L') to L (respectively, L'). The map
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supp sends this point to div(L’'/L). As in [FGV02, §9.5] one shows that
(supp xp")ip*K[d] = (E*)Y K K,

this is the only property of K that we actually use.

Define temporarily the stack X and the maps px, p’y by the following diagram, where the square
is cartesian.

Buns x RCov"”

Tpxid
bx

X Mod4 x RCov"

lplx lsupp xp’ xid

7SS Qr id xq1xp1
X(d) X SP _—

The above property of K yields an isomorphism
(phe) 0 (K B Q)[d] = (B) R qi K. (46)

X (@ % Buny x RCov”

Step 2. Let us show that for d > 4g — 4 the map py : X — Buny x RCov" is smooth. The projection
X — T9ST is smooth of relative dimension 2d. Since ™S}, is smooth, X" is also smooth.

Fix a k-point of RCov” given by a two-sheeted covering ¢ : Y — X. The corresponding objects
Dy, &4, and o4 are as in §6.1.1. Let py 4 : Xy — Buny be obtained from py by the base change
Buny x Spec k — Buny x RCov". The stack X} classifies L € Buny and B € PicY with an inclusion
of coherent sheaves L C ¢,18 such that div((¢.B)/L) is of degree d. It suffices to show that px ¢ is
smooth.

Write Bung y for the stack classifying Vi € PicY, V € Bungy, and an inclusion of coherent
sheaves V; C V. Let “Bunpy be the open substack given by H*(Y, Vi ® (V/V;)) = 0. One checks
that the projection OBunBy — Buny y is smooth. Set

—
Y = Buny Xgun,, Bunpy,

where the map Buny — Bungy sends L to ¢*L*. So, the projection ) — Buny is smooth.

We have an open immersion j : X — Bung X Bungy y mBy sending (L C ¢.B) to L € Buno,
Vi = B! with the induced inclusion B! < ¢*L*. It suffices to show that the image of j is contained
n V.

Let (L C ¢.B) be a k-point of X with D = div((¢.B)/L). Note that (det L)(D)— &y @ N(B).
Define an effective divisor D’ on Y and L; € PicY by the exact sequence

0— Ly — ¢*L —B(-D')—0

Then L C ¢.(B(—D')), and taking the determinants we obtain det L C & ® N(B)(—¢.D’), so
D > ¢.D'. We must show that H (Y, B ® Ly)=0.

We have Ly ® B(—=D')—=¢*det L= B ® o;B(—Dy — ¢*D), because ¢*E;— O(—Dy). Our

assertion follows from the fact that
*

* NU(bB * / *
B ®L1®Qy—>?®¢ QD" — ¢*D)
is of degree 49 — 4 — 2d +deg D' <49 —4—d < 0.

Step 3. Assume d > 4g — 4. Since K X Qy is ULA with respect to the projection Buny x RCov" —
RCov", it follows that p% (K X Q) is ULA over RCov". Since p'y is proper,

(P )10k (K B Qp)
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is ULA over RCov" (cf. [BG02, §5.1.2]). Using (46), we learn that (EF*)(¥ X ¢iK is ULA over
RCov". So, the restriction of (E*)(® K qiK to "sX(@ x 7587, is also ULA over RCov”. Since E(@
is a local system over "**X (@ and the ULA property is local in the smooth topology of the source,
our assertion follows. O

Consider a k-point of RCov” given by ¢ : ¥ — X as in §6.1.1. Recall that ¢; : PicY — Buny
sends B to ¢.B. Using [BG02, Property 4 of §5.1.2] and Lemma 13 we obtain the following.

COROLLARY 6. Let E¥ be a rank-two local system on X and let K be a E-Hecke eigensheaf on Buns.
Then

D(¢] K [dim. rel(¢1)]) = ¢]D(K)[dim. rel(¢q)].
In addition, if K is perverse, then for r > 4g — 4 the sheaf ¢ K [dim.rel(¢1)] is perverse.

Remark 10. (i) Let E be an irreducible rank-two local system on X and let Autg be the correspond-
ing automorphic sheaf on Bung normalized as in [FGV02]. Then for any r the complex ¢} Autg is a
direct sum of (possibly shifted) perverse sheaves. Indeed, take d > 4g — 4 and apply the decomposi-
tion theorem for the (shifted) perverse sheaf p*X7 & Autg and the proper map p’X7 6" Xy — X (@ % PicY
as in the proof of Theorem 3.

(ii) The map ¢; : PicY — Buny is not flat, because its fibres have different dimensions (this is
related to the fact that the dimension of the scheme of automorphisms of L € Buny varies).

6.2 We may view o and o, as (commuting) automorphisms of Y. Let Z be the quotient of Y by

the involution o o o4, so we get two-sheeted coverings Yy %4 Z LA X. Note that Z is smooth, and «
is unramified. Let Dz be the ramification divisor of 3, then 3,Dz = Dx. Let o be the nontrivial
automorphism of Z over X.

Another way is to say that we let &g = £ ® &, it is equipped with 56:7(9(—DX). Then
Z = Spec(Ox @ Ep), the structure of an Ox-algebra on (Ox @ &p) is given by 5% — Ox. Let &4
be the og-anti-invariants in ¢,Q. Then we have 5,Q; — Q; @ & 5 with

5075 :507¢ ® &.

Let Pic(Y, Z) be the stack classifying B; € PicY, By € Pic Z, an isomorphism of line bundles
N(B1) = N(Bz) on X, and its refinement 715 : Bi|p, — Ba|p, over Dy = Dz. This means that %,
coincides with

N(B1)|px = N(B2)|px
We have used the fact that 5 and ¢ yield isomorphisms of (reduced) schemes Dy — Dx — Dy-.

LEMMA 16. The map PicY — Pic(Y,Z) sending B to (Ny(B),Nz(B)) yields an isomorphism
Bung, — Pic(Y, 2).

Proof. Denote by ]:2¢ the preimage of the diagonal G,, — G,, x G,, under the
homomorphism

$:Gm X BuGr "2 Gy X Gy

of group schemes on X. The product of norms yields a homomorphism ¢,7.G,, — R¢ of group
schemes on X, and Uy lies in its kernel. The induced map Ry — R¢ is an isomorphism over
X — Dx, but not everywhere (if ¢ is ramified). The group scheme Rg4|p, over Dy has several
connected components, and Ry|p, is its component of unity. Our assertion follows. ]
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The map pgr, : Bung, — PicY sends (B1, Ba, 12, N(B1) = N(Bz)) to Bi. The following square

is cartesian.
b -

—_— X
(0% l/ﬂ'
Py
The map pyoqr, : Pic(Y, Z) — Bung sends (B1, B2, v12, N(B1) = N(B2)) as above to the collection
(V,C,Sym?V — C), where V C ¢,B1® 3,5 is the lower modification defined by the cartesian square

=~

-

—~ N

¢sBB1 @ BBy — (61 & BBB2)| py — Bilpy @ Balp,

Tid +712 (47)
1% Bi|p,
C = N(By)(—Dx), and the quadratic form Sym?V — C is the restriction of the difference of forms

on B3;
Sym?(¢.By & B.B2) — N(By).

Denote by ZY the gluing of Z and Y along the isomorphism Dz — Dy. If Dy is empty, then
ZY is the disjoint union of Z and Y. The projection ¢ : ZY — X is a 4-sheeted covering.

For a point (B, Ba,v12, N(B1) = N(Bz2)) € Pic(Y,Z) denote by Bjy the line bundle on ZY
obtained by gluing By and B, along 712. Then V from diagram (47) is nothing but V' = g, Bjs. Let
K7y denote the dualizing complex on ZY then Kzy[—1] is the gluing of Qy (Dy) and Qz(Dyz) via

Qy (Dy)|py = Opy = Op, = Q2(Dz)|p,-
Set (Bi2)* = Hom(Bia, Kzy)[—1], this is the gluing of B ® Qy(Dy) and Bj ® Qz(Dyz) along the
isomorphism

M2 : By ©Qz(Dz)|p, = By @ Qy(Dy)|py -
Then (0.B12)* = 0+(B7,) canonically. If ¢ is unramified, then ZY is smooth, and the definition of
(B12)* coincides with that of §1.1.

6.3.1 In §§6.3.1-6.3.4 we assume n = 1.

Fix a two-sheeted covering ¢ : Y — X as in §6.1.1. For a given rank-one local system J on Y
we want to calculate

RF(PiCKAj@ (de))! q*R¢KE“,xﬂ)' (48)
Assume that we are given an isomorphism xy — NJ of local systems on X. Then the complex that
we integrate will descend under ey : PicY — Buny,; we will actually integrate over Buny, .

First, consider the situation when E is an irreducible rank-two local system on X and E = n*E.
Let Autg« denote the corresponding automorphic sheaf on Buny normalized as in [FGV02]. The
following result is a calculation of

(R, )1 aR, Fiy(Autp-)[dim. rel(qr, )], (49)
under these assumptions.
THEOREM 4. Assume that Y 2, X is unramified and nonsplit, and the coverings X 5 X and

Y 2, X are not isomorphic over X. Then the complex (49) is isomorphic to

P A€o @ det E)g @ mult]" ™ (A(E @ det E*) K (¢* E*)D)[d + g — 1],
d>0
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where dy is a function of a connected component of PicY given by 2dy + d = degB for B € PicY
(the sum is over d > 0 such that d; € Z). Here

mult?® : Picht X x Y@ — pic2h+dy

is the map introduced in §4.4.1.

Remark 11. One may extend Theorem 4 to the case of Y 2, X split. To do so, first extend Theorem 2
to the case of split X, then the argument of §6.3.2 will go through. We leave this to the interested
reader.

6.3.2 Define Bung g, by the following commutative following diagram, where the square is
cartesian.

Bung g, — BunGﬁ _r, Bung

l“
PR qr

Pic Y ~——— Bung, . Bun g

Then Bung, g, classifies M € Buny for which we set A = detM and C = Q ® A~ B, € PicY,
By € Pic Z, isomorphisms N (B;) — N(B2) = C(Dx) and its refinement 712 : Bi|p, — B2|p,-

Proof of Theorem /. Let H 3 (respectively, pr) denote the group scheme on X obtained as a twisting
of GOY by the Z/2Z-torsor 3 : Z — X (respectively, ¢ : Y — X) as in §3.1.

We have a commutative diagram

X —_—

f ~ ~ —
Bung r, —— BunG’Hﬁ XBung BunG7H¢ — Bung, x Bung,

| -

7 —_—

Bung, 7 Bung,

where 79 is the map defined in §3.5 for X LI X. Here f is the isomorphism sending the above point
of Bung g, to (B, M, N(B2) ® A— Q) € Bung iy (B1,M,N(B;) ® A=) € Bun,, i,

By Proposition 3,
75 Aut[dim. rel] = Aut X Aut,

where dim.rel = 2dim Bung, — dim Bung,. We must calculate the direct image under the compo-
sition of projections

BunGﬁﬂ X Bung BunG,}% — BunGﬁé — Bun}g](Z> .
To calculate the direct image with respect to the first map we use Proposition 6 applied to the

functor Fgﬁ : D(Bungﬁ) — D(Bung). It yields an isomorphism

Hp = \ps —
Fg, ?(Qp)[dim Bungﬁ] = Aut&m@(@lZ ® (A& 8)a-
So, (49) identifies with
(A& p)a ® 6[F5¢ (Autp- ® Autg, | aq,)[—dim Bung].

Applying Theorem 2 for F 7, One identifies (49) with the direct sum

P Ao @ det E)g @ mult]" ™ (A(& ® det £*) K (7% E*) D) [d + g — 1],
=0
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where d; is a function of a connected component of PicY given by 2d; + d = deg B for B € PicY'.
The sum is over d > 0 such that d; € Z. O

6.3.3 Geometric Waldspurger periods. In this section we assume that X is split and oY =X
is nonsplit. From Theorem 4 combined with Proposition 8 one derives the following.

COROLLARY 7. Assume that ¢ : Y — X is nonramified. For an irreducible rank-two local system
E on X we have

(pR¢)!qE¢K7r*E7detE,H[dim' rel(qR¢)] = @ (A& 4)0 ®mult§i7d1 (A(det E*)X (¢*E*)(d))[d—|—g— 1],
d>0
(50)

where dy is a function of a connected component of PicY given by 2dy + d = deg B for B € PicY
(the sum is over d > 0 such that dy € 7).

Remark 12. By Remark 9, (50) is naturally a direct sum of two complexes indexed by those 0 €
m1(H) whose image in Z is 2deg (2 — deg B, B € PicY. However, the right-hand side of (50) seems
not to be the refinement of this decomposition (cf. Remark 6).

Recall the exact sequence 1 — G, — ¢,G,, — Uy — 1 on X (cf. Appendix A.1). The corre-
sponding extension of scalars map e : PicY — Buny, sends B to Bl'® U:;B. Ifgo:Y — X is
unramified, then Uy is also the kernel of the norm map ¢.G,, — Gy,.

For a € Z/27Z we write Bun“Ud) for the connected component of Buny, corresponding to a, so

Bun([)]d) is the connected component of unity (cf. Appendix A.1). Let ¢; : PicY — Buny be the map
sending B to ¢.B.

DEFINITION 10. Let J be a rank-one local system on Y. Let K € D(Buny) be a complex with
central character N(J). Then the complex A7 ~! ® ¢ K is equipped with natural descent data for
the map ey : PicY — Buny,. Assume that the following holds:*

(Cw) Kk is a complex on Buny, equipped with
eglr[dim. rel(ey)] S AT @ ¢ K[dim. rel(¢y))].
For a € Z/27 the Waldspurger period of K is
WP*(K,J) = RI'¢(Bung; , Kk ).

Let my g : Y@ — Bungy , be the map sending D to O(D — a:’;D) with natural trivializations
N(O(D —03D))— O and O(D — 03 D)|p, — Op, . The map my 4 is proper.

Let multy : BunU¢ X BunU¢ — BunU¢ denote the multiplication map (BunU¢ has a natural
structure of a group stack). If ¢ is ramified, then multy is proper.

THEOREM 5. Assume that ¢ : Y — X is unramified. Let FE be an irreducible rank-two local system
on X and let J be a rank-one local system on Y equipped with det E — N(J). The condition (Cy)
is satisfied for Autp giving rise to Kg = Kaut,. The complex Kg is a direct sum of (possibly
shifted) perverse sheaves. We have

multy (Kp 8 Kg) = @D (A4 ® ANT) )a © (mea)(T © ¢*E*)Dd).
d>0

4 Although each perverse cohomology of the latter complex descends with respect to ey, we ignore whether the same
is true for the complex itself, as the fibres of e, are not contractible.
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In particular, for a € 7./27 there are isomorphisms

B WP“(Autp,J) @ WP (Autp, J)

a1+az2=a,
a; EZ/QZ

(A&, @ AINT) o ® < P rrey? (ge ¢*E*)(d))[d]>-

d=>0,
a=d mod 2

If * E is irreducible, then the latter complex is a vector space (placed in cohomological degree zero).

Proof. Under our assumptions the sequence (39) fits as the low row in the diagram

1—>GmXGm—>¢*GmX¢*Gm—>U¢XU¢—>1

| & |

where the left vertical arrow sends z to (z, z_l). Let k4 : Bung b = BunU¢ X BunU¢ denote the
corresponding extension of scalars map. The following diagram is cartesian.

PR

BunR¢ PicY

\L’{(P le(ﬁoe
mult g

BunU¢ X BunU¢ — Buan5

By Remark 10, the condition (Cyy) is satisfied, and we obtain
(AT )gy @ PR, AT @ Gi, K o gor . gldim. rel(qr,, )] = 15 (Kp K Kp)[dim. rel(rg)].
By Corollary 7, we obtain
(e 0 €)* multy (Kp W KCp)[dim. rel(ky)]

= (Ao ® ANT) )a ® <@ AT @ mult]™ (A(det £*) K (6" E*)D)[d + g — 1])
d>0

= (A& @ AINT ) o ® <@ mult> (Qy X (J ® ¢*E*) ) [d+ g — 1]>
>0

where d; is a function of a connected component of PicY given by 2d; + d = degB for B € PicY
(the sum is over d > 0 such that d; € Z).

The following square is cartesian

. mult® 91
Pich X x V(@) —— pjc2dhitdy

l l¢

y(@) M. Bung,

where the left vertical arrow is the projection. Since dim.rel(k,) = g — 1, we obtain an isomorphism

(eg o €) multy (K X Kg) = (Afyy @ A(NT ) )a ® (eg o €)” (@ (me,a) (T ® ¢ E*) [d]>
d=0
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compatible with the descent data for ey o €. So,

mult¢g (/CE X /CE) = (A507¢ ® A(Nj)*)ﬂ & <@ (mqb,d)!(j ® Qb*E*)(d) [d]> )
d>0

the sum over all d > 0. For d even (respectively, odd) mg 4 maps Y@ to BunOU ) (respectively, to

Bunllj¢).
If ¢*E is irreducible, then RI(Y@ (F @ ¢*E*)D)[d] = AV with V = HY(Y, J ® ¢*E*). The
last statement follows. O

6.3.4 In this section ¢ : Y — X is allowed to be ramified. Let us calculate the geometric
Waldspurger periods of Eisenstein series on Buns. Let Eq, Es be rank-one local systems on X and
let J be a rank-one local system on Y equipped with N (J) — E;® Es. Recall the complex Autg, ¢z,
on Buny (cf. §4.3). Let

”rﬁ(z)’d : Y(d) — BUHU(z>
be the map sending D to O(oy; D — D) with canonical trivialization N(O(c}D — D)) — Ox.

PrOPOSITION 10. The condition (Cyy) is satisfied for Autg,ep,. For the corresponding complex
Keer, = Kautp,op, We have

Kpom = G(AE)e,z01 @ (lga) (T @ ¢*Ey)D[d]. (51)
40
In particular,
multg(Kg,om, K Kpom) = @) A(E @ Br)e,pq-1 @ (Mea(T " @ ¢*(Ey @ Ey)) D [d).
40

Proof. We have a cartesian square

- ©)
|_| Pic X x Y@ e . o

d>0
l¢1,P [¢1
bp

Bunp Bun,

where ¢ p sends (L, D) to (L € M), M = L ® ¢,O(D). The map mult®® : Pich X x Y@ —
Pic?41+4 sends (L, D) to (¢*L)(D). So, we have

¢} Autp,pm, ®AT ' [dim. rel(¢1)] = ED(AE)e, m0-1 @ multy ™ (Q, & (T ® ¢*Ey)P)[d + g — 1],
d>0

where d; is a function of a connected component of PicY given by 2d; +d = deg B, B € PicY (and
the sum is over d > 0 such that d; € Z). We have used that dim.rel(¢1) = 2(1 — g) + & deg Dx.

The following square is cartesian

. mult® 41 .
Pich X x V(@) —— pjc2dhitdy

l ~ lw

y@ —"*" . Bung,
where the left vertical arrow is the projection. This yields an isomorphism

o1 Autp,op, @AT Hdim. rel(61)] = @AE)g,s0-1 © €5 (tg.a)(T " © ¢*Ea)D)[d +g - 1].
d=0
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Since dim.rel(ey) = g — 1, the first assertion follows.

To get the second assertion, recall that for rank-one local systems V; on Y we have
d
(1 & Vo) = Psymya (V" BV,
0=k

where symy, g : Y (%) x y(d=k) _ ¥ js the sum of divisors. O

Remark 13. (i) Recall that the Eisenstein series Autg e, above is called regular if E; and E»
are not isomorphic (cf. [BG02, §2.1.7]). Under these assumptions (1 q)1(J ' @ ¢*Ea)@ = 0 for
d > 2gy — 2 (so, the sum in (51) is actually by 0 < d < 2gy — 2).

Indeed, my 4 decomposes as Y@ 5 picy &4 Buny,, where s sends D to O(D). If d > 2gy — 2,
then s is a vector bundle of rank d +1 — gy over PicY with zero section removed. For a rank-one
local system E on Y we have s$1E@ = AF ® 5/Qp. Further, ey : PicY — Buny, is a homomorphism

of group stacks, each fibre of e, identifies with Pic X. So, if N(E) is nontrivial, then (e4)|AE = 0.

(ii) If F is a rank-two local system on X, J is a rank-one local system on Y equipped with
det E= N(J), then we have 7! ® qﬁ*E:a(’;j ® ¢*E* canonically. Write also oy : yd — y@

for the map sending D to a(’;D. Then the composition Y (49 78 y(d) " Buny, equals myg 4. So,

(Mea) (T ® ¢"E)D = (mg a)(T @ ¢"E*)@

canonically. Thus, Theorem 5 and Proposition 10 are consistent.

Theorem 5 and Proposition 10 suggest the following conjecture, which is a theorem if one of the
following holds:
(i) E is irreducible and ¢ is nonramified,;
(ii) FE is a direct sum of two rank-one local systems.
CONJECTURE 3 (Waldspurger periods). Let E be a rank-two local system on X. Let K € D(Buny)
be an automorphic sheaf with eigenvalue E. Let ¢ : Y — X be a (possibly ramified) degree-two
covering and let J be a rank-one local system on Y. Assume that condition (Cyy) is satisfied for

J and K giving rise to Kx € D(Buny,). Then for a suitable normalization of K there exists an
isomorphism

multg (K K Kx) = @ (mg.a)(T © ¢"E*)D[d].
=0

6.3.5 Geometric Bessel periods. In this section we assume that ¢ : Y — X is nonsplit. Assume

n =2,s0 G = GSp,.

DEFINITION 11. Let K € D(Bung) be a complex with central character xy~!. Let J be a rank-one
local system on Y equipped with N(7)= x. For the inclusion PicY < "*Sp C Sp the x-restriction
AJ @ Foury (vpK)|picy is equipped with natural descent data for ey : PicY — Bung,. Assume
that the following holds:

(Cp) Kk is a complex on Buny, equipped with
egKr[dim. rel(eg)] = AT @ Foury, (vp K )[dim. rel(vp)]|picy.
For a € Z/2Z the Bessel period of K is
BP*(K,J) = Rle(Bunf,,, Kx).
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Assume that X is connected. Let E be an irreducible rank-two local system on X and let x be
a rank-one local system on X equipped with 7*x = det E. Recall the complex K N defined in

§5.1. Recall the map mg g : Y — Buny, introduced in §6.3.4.

THEOREM 6. Assume that ¢ : Y — X is nonramified. Let J be a rank-one local system on Y
equipped with N(J)—= x. The condition (Cp) is satistied for J and K = Fg(pu 1 Kg ,, ) giving
rise to Kx € D(Buny,). We have

(multy ) (Kx B Kx) = @i, (T @ ¢* (mB%)) D [d].
=0

In particular, for a € 7Z./27 there are isomorphisms

P BrPu(K,J)@BP*(K J)= P RIYD (J@ ¢ (m.E))D)d].
a1+az=a, d=>0,
a; €L/27 a=d mod 2

Proof. According to Proposition 9 and Corollary 1, we must find a complex Kx € D(Buny,)
together with an isomorphism

€K [dim.rel(eg)] = AT ® (pr, )19k, Kf | gldim.rel(qr,)]. (52)
Let us show that R fits into the following cartesian square.

be _— W*U(;S

lNy lNy (53)

Indeed, (39) fits into the following commutative diagram.

1 G, 0+ G, Uy 1
N Ny Ny
1 TG Ty Gy — MUy ——1
id
1 Ur TG Ry 1
Ny Ny

1 6:Gpy —L > ,Gy — 1

The latter diagram together with the exact sequence 1 — G, — ¢.G,;, — Uy — 1 yield (53).

Let kg : Bung, — BunU¢ be the extension of scalars map given by the upper row in (53). The
composition PicY — Bung, = BunU is the map e 3 sending B to oy *B® B~ We get a cartesian
square

Bung, e, BunUd;
lp% lNY
PicY ——= Buny,
where Ny (B) := Ny (B)~! for B € PicY.
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Consider the commutative diagram

~ a2}
PiC Y —— Buan) —_— BunU(g

lél l‘“ﬁp
Buan - Bung

where ¢ sends B to ¢, 5.

By Remark 10, the condition (Cyy) is satisfied for Autg, the covering $:Y — X, and the local
system 7*7. So, there is a complex Kz € D(BunUd.)) equipped with

eZICE[dim. rel(es)] SATT) ! @ ¢ Aut g[dim. rel(¢1)].
Set K=K 7 ® (AT )y, it is equipped with an isomorphism
Pr, AT @ ar, Kp | gldim.rel(qr, )] 3/&2]@[dim. rel(kg)]

over Bung,. Set K = Nyg(l&), it is equipped with an isomorphism (52). We have the following
commutative diagram.

mult(;5
Buan; X BUHUd; < BunUd.>

mult

Buny, x Buny, —= Buny
P ¢ ¢

lNy XNY

By Theorem 5, we have
(mult ;) (K R K) = @H(AE, g)a, @ (my )(7T @ ¢*E*)Dd],
d=0
where mj ; : Y@ - Buny; sends D to O(D — o D) with natural trivialization
Nz (O(D - o;D)) = Ox.
Since 5075):777*50,@5, we obtain (A507(£)QX :7A(N507¢;)93@g. So,
(mult )i (Kxe R Ke) = (Ny )i (multy ) (K K K) = @ (Ny )i(my (7T @ 6" E*)D[d].
d=0

The following diagram commutes.

- mg a
y(d) — Buan;

lfr lNY
y (@) ed Bung A
Our assertion follows. O

Theorem 6 combined with Conjecture 2 suggest the following.

CONJECTURE 4 (Bessel periods). For G = GSp, let Ex be a G-local system on X viewed as a
pair (E,x~!), where E (respectively, x) is a rank-four (respectively, rank-one) local system on X
equipped with a symplectic form /\2E — x L. Let K be an automorphic sheaf on Bung with
eigenvalue E (in particular, the central character of K is x~1).

Let ¢ : Y — X be a (possibly ramified) degree-two covering. Let J be a rank-one local sys-
tem on Y equipped with N(J)—= x. Assume that condition (Cp) is satisfied for J and K. If the
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corresponding complex Kx € D(Buny qb) is nonzero then
(multy) (K ® Kre) = @ (g .a) (T @ ¢°E)V]d]
d=0

for a suitable normalization of K. In particular, for a € Z/27Z there are isomorphisms

B BP(K,7)@BP*(K,J)= @ Ry (7 ¢ E)D)d. (54)
aitaz2=a, d=0,
a; €EL/27 a=d mod 2

Remark 14. Under the assumptions of Conjecture 4 we have H2(Y,J @ ¢*E)* S HY (Y, J @ ¢*E).
Consider the case H'(Y,J ® ¢*E) = 0 for i = 0,2. Then BP(K,J) ® BP(K, J) identifies with the

vector space (placed in degree zero)
DAY (59

i>0
where V = H(Y, J ® ¢*E). The symplectic form on E induces a map
H(Y,J ®0}J @ ¢*(E © E)) — H*(Y,Q¢) = Q. (56)
Since the cup-product
VeV=HY(Y,J ®¢"E)eH (Y,05J © ¢*E) - H*(Y,J ® 0T ® ¢*(E ® E))

is anti-symmetric, composing it with (56) one obtains a nondegenerate symmetric form Sym?V —
Q¢ on V. We have dim V' = 8(gy — 1), where gy is the genus of Y.

Let Spin(V') denote the simply connected covering of SO(V). Let I', and I'g be the half-spin
representations of Spin(V'), here a and 3 are the corresponding fundamental weights of Spin(V') (cf.
[FHO1, 19.2, p. 287]). Then

__AO 2 4
loolaalzels> A VaN Ve Ve
and

Pa®rg@rﬁ®ra3/\IV@/\3V@/\5V@~~-.

CONJECTURE 5 (Bessel periods refined). Under the assumptions of Conjecture 4 consider the case
H(Y,J®¢*E) =0 fori=0,2. Set V =H (Y, J ®¢*FE). Then there is a numbering o, (a € Z/27Z)
of the half-spin fundamental weights of Spin(V') and isomorphisms for a € Z/2Z

BPY(K,J)=T.,,,
where 'y, is the irreducible (half-spin) representation of Spin(V') with highest weight ay,.

7. The case H = GOg

7.1 In this section we assume that m = 3 and X is split, so H = H = G@g. We have an exact
sequence 1 — s — GLy — G@g — 1 of group schemes over Spec k. By abuse of notation, we write
p : Buny — Buny for the corresponding extension of scalars map. It sends W € Buny to

(V:/\2W,C = det W, Sym* V 2 €,).

Here A is the symmetric form induced by the exterior product /\2 W ® /\2 W — det W, and 7 :
det V = C3 is a compatible trivialization. The connected components of Bun 7 are indexed by m (H).

We have an exact sequence 0 — m1(GLy) — m1(H) — Z/2Z — 0, and the image of p is ¢Bung :=
|—|a€7r1 (GL4) Bun%"
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Recall that
H = GSping = {(c,b) € G,,, x GLy4 | detb = ¢*}.

Consider a H-local system on X given by a collection: local systems E and y on X of ranks four and
one, respectively, and an isomorphism det £ = x2. Assume that F is irreducible on X. Let Autg
denote the corresponding automorphic sheaf on Buny (cf. Definition 8). Then Autg is equipped with
natural descent data with respect to p : Buny — Bung, so gives rise to a perverse sheaf K By, 00
OBun i

LEMMA 17. The sheaf K o extends naturally to a perverse sheaf (still denoted by the same
symbol) over Buny with Central character .

Proof. Let act : Pic X x Bung — Bung be the action map sending £ € Pic X and (V,C, Sym? —
C) € Bung (V®L,C®L). Let 1Bungy C Buny denote the complement to (Buny. Then act

to
sends Pic'g{ X x (Bung to ;Bung, where b = a + k mod 2. The perverse sheaf

AXKKp  glg—1]

on Pic! X x ¢Bun 7 18 equipped with natural descent data for act : Pic! X x oBun 7 — 1Bung. This
yields a perverse sheaf K, i1 on the whole of Buny equipped with act® K, N g AxX K, N2
Here Ay is the automorphic local system corresponding to .

Assume n = 2, so G = GSp,. View a G-local system Es on X as a pair (E,x), where F
(respectively, X) is a rank-four (respectively, rank-one) local system on X with symplectic form
/\ E — x. The symplectic form induces the isomorphism det F — X and (F, x) identifies with the
H-local system Ey obtained from E via the extension of scalars G — H.

CONJECTURE 6. We have the following.

(i) Let Ex be a G-local system on X and Eg be the induced H-local system on X given by
(E, x). There exists K € D(Bung) which is a Eg-Hecke eigensheaf satisfying Fyg (K) = Kp. . g-

(ii) Assume in addition that E is irreducible (as a local system of rank four). Then K =
Fa(Kp. .« g) satisfies the properties of (i).

7.2 Recall the stack RCov" introduced in §6.1.1. Denote by Buny, the following stack. For a
scheme S, an S-point of Buny,, is a collection consisting of a map S — RCov" giving rise to a two-
sheeted covering ¢Y — S x X, and a rank-k vector bundle on gY. Let us precise that a map
S — RCov" is given by a collection (&, k, D), where D — S x X is the preimage of the incidence
divisor on "**X (") x X under S x X — "X () x X and £ is a line bundle on S x X equipped with
k:E2= Osxx(—D). Then Ogsxx @ € is a Ogyx x-algebra, and 5Y = Spec(Ogxx @ E).

We simply think of Bunyg, as the stack classifying Dx € "X (") a two-sheeted covering ¢ :
Y — X ramified exactly at Dy (with Y smooth), and a rank-k vector bundle U on Y.

Recall that we assume n = 2, so G = GSpy. Note that "**S}, = Buny ,. We have a diagram
Bun4 (L BUH2,r L rssS};’

where q2 (respectively, pa) is the map sending (¢ : Y — X,U) as above to W = ¢, U (respectively,
to the point (¢ : Y — X, (det U)*) of "°S}). Extend it to a commutative diagram

q2
Bungy =— BUHQ,T

LT

Bunf{ <qL BUHR i> TSSS};
defined as follows.
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For a point of RCov" given by ¢ : Y — X let R, now denote the group scheme on X included
into an exact sequence 1 — pus — ¢, GLy — R4 — 1. Let 4 GL4 be the group scheme of auto-
morphisms of gzb*(O%,). Define ¢ﬁ by the following commutative diagram, where the rows are exact
sequences.

1 —H2 —> ¢, GLy —— Ry ——1

Pl

1 —— 2 —— 4 Gly oH 1

Since ¢P~I is an inner form of H, Bung; — Bun j; canonically. Let qg , @ Bung, — Bung de-
note the corresponding extension of scalars map. Since ps lies in the kernel of the determinant
map ¢, GLo ot ¢+Gpy, it yields a map Ry — ¢4Gyy,. Let PR, : BunR¢ — PicY denote the com-
position of the corresponding extension of scalars map Bung, — PicY with the automorphism
e : PicY = PicY sending B to B*. As ¢ runs through RCov", the group schemes R, organize into
a group scheme R over X x RCov", and the diagrams

4R, PRy
Bung <— Bung, — PicY

form a family giving rise to (57). Recall the functor Fs introduced in §3.3.2.
PROPOSITION 11. For K € D(Buny) there is a functorial isomorphism

Fs(K)|rsssr, = (pr)1qR K [dim. rel(qr)].

Proof. The proof proceeds in two steps.

Step 1. Define the stack V4 p and the maps q, p by the diagram

q
Bung <—— V4 p

AP

av ~ Py
Bung Virp

where the square is cartesian. The stack V4 p classifies L € Bung, W € Buny, andamapt: LV —
Q with V.= A\?W.

Let (2 : Bung, — V4 p be the map sending (¢ : Y — X,U) to (W = ¢, U,L = qﬁ*((/\2 U)*),t),
where t : V — L* ® Q is the following map. We have L* ® Q= ¢,(A\>U). The exterior square
of the natural map ¢*¢,U — U is a map qb"‘(/\2 W) — /\2 U, by adjointness it yields a map
t:V — ¢ (N2U).

We have the following commutative diagram.

p2
Buny , —— %S}

e | (55)
q p

Buny Vip Sp

Let us show that the square in this diagram is cartesian. To do so, consider a k-point (L, W,t)
of V4 p whose image under p is given by a k-point (¢ : ¥ — X,B,Dx) of "*S}. So, we are
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given isomorphisms L= ¢,B, C = det W, and N(B) = Q2 ® C~! such that the following diagram
commutes.

Sym?V N Sym?(L* ® Q)

] B T B (59)

C N(B™')®Q? —— N(B*)(—Dx)
Write o4 for the nontrivial automorphism of Y over X, let Dy be the ramification divisor of
¢:Y — X, 80 Dx = ¢.(Dy).
The map t : V — L* ® Q= ¢,(B*) can be seen as t : ¢*V — B*. The latter map is nonzero,
because the symmetric form on L is generically nondegenerate. Applying ¢* to (59), we obtain the
following commutative diagram.

¢* Sym? V — (B*)* @ (0,8")* @ (B* @ 0},8%)

T T(0,0,l)

" det W (B* @ o3 B*)(—2Dy)

The transpose B® Q™! — ¢*V* to t is an isotropic subsheaf in ¢*V*. So, there is a rank-two
vector bundle U on Y and a surjection ¢*W — U such that ¢ factors as a composition

oV — \U S B

We are going to check that /\2 U< B is actually and isomorphism, and the map W - ¢,U is also
an isomorphism.

Indeed, the maps V — ¢, (A2U) — ¢,(B*) yield a commutative diagram

Sym*(V* @ Q) =— Sym?(¢.((A\*U)*)) =— Sym® L

| | |

Cle0? N((\*U)*) =<——N(B)

and the composition of maps in the bottom row is an isomorphism. It follows that the transpose
B — (A*U)* to u is an isomorphism.
Now consider the diagram

v N 6.0) = o (N2,

where the second map is induced by the natural map ¢*¢.U — U. Applying symmetric squares,
one obtains the following commutative diagram.

C

N(A*U)(~Dx)

T

Sym? V —— Sym*(A\*(¢.U)) — Sym*(¢.(\° U))

| |

det(p, U)———= N(A2U)

C

It is easy to see that & induces an isomorphism det(¢,U) = N(A?U)(—=Dx). Thus, det v : det W =
C= det(¢,U) is an isomorphism, so v : W — ¢,U is an isomorphism.
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Step 2. The diagram (58) gives rise to the following commutative diagram.

PR rsser
Bunp —— "**Sp

ol

qav B py
Bung Virp Sp

We have to show that the square in this diagram is cartesian. By Step 1, this is true after the base
change ¢Buny — Bung. For the components of jBuny the argument is similar. U

DEFINITION 12. Let K € D(Bung) be a complex with central character y~!. Then Fgs(K) has
central character . Let J be a rank-one local system on Y equipped with N(J) = x~!. Then for
PicY — 75§}, C Sp the xrestriction AJ ® Fs(K)|picy is equipped with natural descent data
for ey : PicY — Buny,. Assume that the following holds:

(Cg) Kk is a complex on Buny, equipped with
3 Kxcdinm. xel(eg)] 5 AT © (pr, i, (K)ldim. xel(a, ).
For a € Z/27 the generalized Waldspurger period of K is
GWP*(K, J) = RI'¢(Bung;,, Kk).

8. Towards a construction of automorphic sheaves on Bunggp,

8.1 In this section we assume that the ground field is k£ algebraically closed of characteristic zero
and work with D-modules instead of ¢-adic sheaves. A local system on X is now a vector bundle £
with connection V : £ — E ® Q.
LEMMA 18. For a local system E on X there is a canonical 7 /27-graded isomorphism
det RTpr(X, E)= detRT(X,det E) ® det RT'(X,Q @ det E) 1.
Proof. Let DR(E) = (E YE® Q) be the de Rham complex of E placed in degrees zero and one.
The exact triangle DR(E) — E — E ® Q yields
det RTpp(X,E)= detRI'(X,E) ® det RT(X, E @ Q)L

Our assertion follows now from Lemma 1. O

Set n = 2, so G = GSp,. Write LocSys for the moduli stack of G-local systems on X. View a

G-local system E as a pair (E, x), where E (respectively, x) is a rank-four (respectively, rank-one)
local system on X with symplectic form /\2 E — L

Let ¢ : Y — X be a (possibly ramified) two-sheeted covering. Write LocSysy,. for the moduli
stack of rank-r local systems on Y.

Let My denote the stack classifying a G-local system Es = (E,x) on X and J € LocSysy
equipped with N(J)= x. The following is an immediate consequence of Lemma 18.

LEMMA 19. The (Z/2Z-graded) line bundle on My with fibre det RLpr(Y,J ® ¢*E) at (J, Ex)
is canonically trivialized.

Let My C My denote the open substack given by the condition H,5(Y,J ® ¢*E) = 0 for
i = 0,2. We have a vector bundle V on "My whose fibre at (J, Eg) is

Hhp(Y,J ® ¢*E).
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The rank of V' is ¢ := 8(gy — 1), where gy is the genus of Y. As in Remark 14, one equips V' with
a nondegenerate symmetric form Sym?V — . Moreover, the trivialization detV = O given by
Lemma 19 is compatible with this symmetric form.

CONJECTURE 7. The SO, -torsor V lifts naturally to a Spin,-torsor F on My

8.2 Let Ex be a G-local system on X viewed as a pair (E, x), where E and x are local systems
on X of ranks four and one respectively, and /\2 E — x ! is a symplectic form. Assume that F is
irreducible. In this situation we propose the following conjectural construction of an automorphic
sheaf Kg - on Bung corresponding to Eg.

Let r > 0, remind the stacks RCov” and "**S}, C Sp (cf. §6.1.1). A point of RCov" is given
by a divisor Dy € "X and a two-sheeted covering ¢ : ¥ — X ramified exactly at Dx with
Y smooth. Let Yiyniv — X x RCov"” denote the universal two-sheeted covering. For a morphism of
stacks o : S — RCov" denote by Yg — X X S the two-sheeted covering obtained from the universal
covering by the base change id xa: X x § — X x RCov".

Let M be the stack classifying collections: a point of RCov” given by Dx € "Xy 2 x ,
and a rank-one local system J on Y equipped with an isomorphism N ()= x. By definition, for a
scheme S, an S-point of M is given by a map S — RCov" and a rank-one local system J (relative
to S) over Yg equipped with a trivialization of Nxxs(J7).

Let V be the vector bundle on M whose fibre at the above point is Hb rY,J ®¢*E). As in
§8.1, we equip it with a nondegenerate symmetric form and a compatible trivialization det V — O.
Assuming that Conjecture 7 holds, we obtain a Spin,-torsor on M. For the half-spin fundamental
weights a, (a € Z/2Z) of Spin, write V' for the corresponding vector bundles on M induced from
our Spin,-torsor.

The projection M — RCov" should be equipped with an integrable connection along RCov" mak-
ing M into a Drceyr-stack (in the sense of [BDO04, §2.3.1]). Then M carries a sheaf of
algebras Oa[Dreovr] (in the notation of [BD04, §2.3.4]). We expect that V' is naturally a module
over O [Drcoy]-

Consider the two-sheeted covering Yy, — X x M obtained from Y,y — X x RCov" by the
base change id x pr : X x M — X x RCov". Let Juniv denote the universal local system (relative

to M) over Y, its norm on X x M is trivialized. Let Y/Ej) denote the dth symmetric power of Y

(relative to M). That is, Y/Ej) is the quotient of the dth power Ya( X o1+ X pm YAq by the symmetric

group on d elements. Let ju(ffi)v denote the corresponding local system (relative to M) on Yﬁ).

Recall that, for a scheme S, an S-point of "**SY, is given by a map S — RCov" and an invertible
sheaf B on Yg. For a € Z/27Z write "**S; p for the substack of "**S}, given by a = (deg B) mod 2.

An S-point of Yﬁ) is given by the following collection: a map S — RCov", a rank-one local
system J (relative to §) over Yg with a trivialization of Nxxg(J), and an effective Cartier divisor
Dg on Yg flat over S of degree d. For d > 0 consider the Abel-Jacobi map

jac: Y/Ej) — M XRcov "°Sp

over M, it is given by B = Oy (Dg).

There is a unique local system P (relative to M) over M xgcoyr "**Sp with the following prop-
)

erties. For any d > 0 one has jac*PSJu(ziv canonically, and P satisfies the usual automorphic
property with respect to the group structure of Pic Y. More precisely, M xgrcoy "**Sp is a commu-
tative group stack over M, and the automorphic property of P is required for this group structure.

In more concrete terms, M Xgcoyr "**Sp classifies Dx € "X (", ¢:Y — X, a rank-one local
system J on Y with a trivialization of Nx(J), and an invertible sheaf B on Y. Then the fibre of P
at this point identifies with (AJ)p.
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Consider the diagram of projections
M <" M X Rooer resgr, 95 rssgr
For a € Z/2Z define a complex K, on "**S] |, by
(QS)*(quaa ® P)[dim],

where the direct image with respect to ¢s is understood in the (derived) quasi-coherent sense.

We expect that, for a suitable shift, K, has a natural structure of a D-module on "**Sp. Let
then K be the D-module on "**S}, whose restriction to ’“SSS; p is K. Let K denote the intermediate
extension of K under "**Sy C Sp.

Recall that Sp and Bunp are dual (generalized) vector bundles over Buny x Pic X, let Four(K)
denote the Fourier transform of K. Recall the projection vp : Bunp — Bung, let OBunp C Bunp be
the open substack, where vp is smooth. We expect that vpKp,, identifies over “Bunp with Four(K )
as D-modules.

Appendix A. Prym varieties

A.1 Let m: X — X be a two-sheeted covering ramified at some divisor D, on X with deg D, = d.
Let o be the nontrivial automorphism of X over X. Let £ be the o-anti-invariants in 7,0, it is
equipped with £2= O(—D;). Let & be the o-anti-invariants in m,.Qy, it is equipped with £2 = Q,
over X — D,.

The norm map N : Pic X — Pic X is given by N(B) = £~ @ det(m.B), this is a homomorphism
of group stacks. We write Nx(B) = N(B) when we need to express the dependence on X. For
C € Pic X we have canonically N(7*C) = C2.

Let E be a rank-one local system on X. Then E ® o*E is equipped with natural descent data
for 7, so there is a rank-one local system N(E) on X equipped with 7*N(E)=FE ® o*E. (In
the nonramified case we have N(E)= & ® det(m,E) canonically.) Recall that AE denotes the
automorphic local system on Pic X corresponding to E. The restriction of AE under ©* : Pic X —
Pic X identifies canonically with AN (E) For a rank-one local system E on X we have canonically
N*(AE)= A(m*E).

Write Pic X for the Picard scheme of X, so we have a G,,-gerbe Pic X — Pic X. Write Pic" X for
the connected component classifying line bundles of degree r. Let P denote the connected component
of unity of Ker NV, where N : EX — Pic X is the norm map. This is the Prym variety [Mum74].
We need the following results proved in [Mum74]. Assume that X is connected.

Case of ramified 7. The group scheme Ker N is connected, 7* : Pic X — @X is a closed immersion.
For each r we have a surjection

Pic* X /Pic" X — P
sending B to B~! ® ¢*B. For r = 0 its kernel is a finite group isomorphic to P»/¢(J3) for some

inclusion ¢ : Jo — P». Here P2 and .Jo are the _groups of order two points of P and Pic® X,
respectively. Recall that dim Pic’ X = ¢, dimPic® X = 29+ d/2 — 1 and dim P = g + d/2 — 1. So,

Jo = (Z/22)%  and Py = (Z/27)%97472,
Case of unramified m. The group scheme Ker N has two connected components, say Ker” N for

r € Z/27. We denote by Ker” N the connected component of unity. The kernel of 7* : Pic X — Pic X
is Hy := {0, &}, and we have an isomorphism Pic® X/(m X/Hy) = P sending B to B! ® o*B.

The following is probably well known, but we have not found a proof of it, so we give one.
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LEMMA 20. Assume that 7 is nonramified. Both Pic X/(@ X/Hy) and Ker N have two connected
components indexed by 7/27Z. The map § : Pic X /(Pic X/Hy) — Ker N sending B to B! ® 0*B is
an isomorphism, so sends the odd connected component to the odd one.

Proof. Consider the map 7.G,, LN 7.G,, sending f to o(f)f~1. Let N : m,G,, — G,, be the norm
map. The sequences

TGy, LN TGy, N G, —1
and

1 -G, — .G, £ TGy,

are exact in étale topology (indeed, it suffices to check this after base change X 5 X, which is
easy). Taking the étale cohomology of X, we get an exact sequence

HY(X,Im¢€) — Pic X & Pic X — 1

and the map induced by £ is §. The map EX:THl(X, T+Gm) £ HY(X, Im €) is surjective, because
H%*(X,G,,) = 0. O

Let Dy € X@ be the ramification divisor of 7, so Dy = m.D,. Define the group scheme U,
on X by the exact sequence 1 — G,, — m.G,, — U, — 1. The stack Buny, classifies B € Pic X
together with a trivialization

N(B)= Ox (60)
and a compatible isomorphism v : B|p — Op . This means that v%2 . N(B)|p,— Op, is the
isomorphism induced by (60). We have used that 7 induces an isomorphism of reduced divisors
D, = D,. The corresponding extension of scalars map e, : Pic X - Bunys, is smooth and surjective,
it sends B to C = B! ® o*B with natural trivializations C| p,.— Op_and N(C) = Ox.

In both cases (7 ramified or not) the stack Buny,_ has two connected components indexed by
a € Z/2Z, here Bun&r is the connected component of unity. The image of Pic” X under e, equals
Bung; with a = rmod 2.

If 7 is ramified, then Buny, is a scheme, and the projection Bunf;, — P is a Galois covering
with Galois group (Z/27)472.

Appendix B. Group schemes and Hecke operators

B.1.1 Let 7 : X — X be an étale Galois covering with Galois group & = Autx (X). The category
of affine group schemes over X is canonically equivalent to the category of affine group schemes
over X equipped with an action of .

Assume that G is an affine group scheme over Speck (viewed as constant group scheme on X ).
Then an action of ¥ on G is a datum of a homomorphism ¥ — Aut(G). The corresponding group
scheme G over X is then obtained as the twisting of G by the S-torsor 7 : X — X.

The action of ¥ on G gives rise to the semi-direct product G x ¥ included into an exact sequence
1-6G-6GxX—-¥—1.

Let us describe the category of G-torsors on X. For ¢ € ¥ and a G-torsor Fg on a scheme S
denote by FZ the G-torsor on S obtained from Fg by the extension of scalars o : G — G.

LEMMA 21. Let S be a scheme. The category of G-torsors on S x X is canonically equivalent to
the category of pairs (Fg, «), where Fg is a G-torsor on S x X, and a = (o, )sex is a collection of
isomorphisms

0" Fg — FE
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such that for any o, € 3 the following diagram commutes.

o Fg — = THFE) = (T Fg)°

-k

(F¢)7" =—=(F3)°

Proof. Let F be an affine scheme over X. Assume that the action of ¥ on X is lifted to an action
on F. Let F denote the affine scheme over X, the descent of F.

Assume that F is, in addition, a G-torsor. Then for F' to be a G-torsor, the actions of G and of
3} on F' should come from an action of G x ¥ on F. O

Ezample 1. Take H to be a group scheme over Speck, set G = Hom(3, H) (the group structure on
G comes from that of H). Let 3 act on G via its action on ¥ by translations. Then G = . H.

B.1.2 Let G be a connected reductive group over Spec k equipped with a homomorphism ¥ —
Aut(G). Let G be the twisting of G by the S-torsor 7 : X — X. Assume that T C G is a maximal
torus invariant under . Let A (respectively, A) be the coweights (respectively, weights) lattices of
T, so ¥ acts on the corresponding root datum (A, R, A, R). Here R (respectively R) are the coroots
(respectively, roots) of G.

Let W = Ng(T)/T be the Weil group. Since ¥ preserves both T and Ng(T), ¥ acts on W by
group automorphisms. For A € A, w € W and o € ¥ we have o(w\) = (cw)(c ), so ¥ acts on the
set A/W of dominant coweights of G.

Write Bung for the stack of G-torsors on X. Let H¢ denote the Hecke stack classifying & € X,
G-torsors Fg, F{; on X, and an isomorphism Fg :féﬂ X—n(z)- We have a diagram

X x BunGS&pHG —— Bung,
where p (respectively, p’) sends the above point to F¢ (respectively, to F(,).

A choice of a Borel subgroup in G containing T identifies A/WW with the corresponding set of
dominant coweights, hence yields a usual order on A/W. This order does not depend on a choice
of such Borel subgroup.

Let D, (respectively, D) denote the formal neighbourhood of x 6 X (respectively, of & € X).
The map 7 induces Dz — D, for x = 7(Z). For A\ € A/WW denote by HG — Hq the closed substack
given by the condition that F(|p, is in a position at most A with respect to Fg|p,, here we view
them as G-torsors using the canonical isomorphism G| = G x X. Given o € X, this condition is
equivalent to requiring that F(|p, . is in a position at most oA with respect to Fg|p,,

The Hecke functor

H), : D(Bung) — D(X x Bung)
is given by
H(K) = (supp xp)((p) K ® IC,» )[~dim Bung].
G
For each o € ¥ we have a commutative diagram

SUPP XP__5—1) P’
X x Bung =— H. " —— Bung

= T

- supp Xp __y p
X X Bung Hea Bung
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where the vertical middle arrow is an isomorphism. This yields a compatible system of isomorphisms
foroce X

(o x id)* o HY SHZ . (61)

Ezample 2. Given a homomorphism ¥ — Ng(T) C G, consider the corresponding action of ¥ on G
by conjugation. Then G is an inner form of G, and ¥ acts trivially on A/W. Let Fé be the G-torsor
on X obtained from the Y-torsor X by the extension of scalars via ¥ — G. Then G identifies
with the group scheme (over X) of automorphisms of the G-torsor F}. In this case we identify
canonically Bung — Bung sending Fg to the G-torsor Isom(f@,,]:é). Then H* becomes the usual
Hecke functor followed by restriction under 7 x id : X x Bung — X x Bung.

B.1.3 The map supp Xp : ﬁ?; — X x Bung identifies with the twisted projection
(X x Bung)x @&\; — X x Bung .

Similarly, supp xp’ : ﬁg — X x Bung identifies with (X x Bung)x @(—}wo(k) — X x Bung, where
wy is the longest element of W. Note that IC_x is ULA with respect to supp xp’. This implies that
H}, commutes with the Verdier duality. “

B.1.4 Let G denote the Langlands dual group to G, it comes equipped with a maximal torus T.
The group X acts naturally on the root datum (A, R, A, R) of (G, T). Recall that we have an exact
sequence

1 — W — Aut(A, R,A, R) — Out(G) — 1,
where Qut(G) is the group of exterior automorphisms of G. Assume that we are given a lifting of
> — Aut(A, R, A, R)

to a homomorphism g : ¥ — Aut(G,T). (Such a lifting exists under the additional assumption that
the Y-action on (G, T) preserves an epinglage of G containing T.) This lifting is uniquely defined
up to inner automorphisms by elements of T.

Then we have the semi-direct product GX := G x ¥ included into an exact sequence 1 — G —
Gx X — ¥ — 1. This is a version of the L-group associated to Gp. Here G denotes the restriction
of the group scheme G to the generic point Spec F' € X of X (cf. [Bor79]).

B.2 Let now G; be another reductive connected group over Spec k equipped with an action ¥ —
Aut(Gp) and let G; be the group scheme on X obtained as the twisting of G; by the X-torsor
7 X — X.

Assume that Gy satisfies the same conditions as G in Appendix B.1. (The subscript 1 denotes
the corresponding objects for G1.) So, we have a maximal torus Ty C G stable under X, and we
assume that we are given a homomorphism puq : ¥ — Aut(@l) as above. Assume that we are given
a Y-equivariant homomorphism G — G; sending T to T;. It yields a homomorphism GF — GlL.

The functoriality problem is to find a family of functors
sF :D(S x Bung) — D(S x Bung,)

for each scheme S with the following property. Write Vl)‘1 for the irreducible representation of G
with highest weight A\; € A;/W;. Similarly, V* denotes the irreducible representation of G with
highest weight A\ € A/W (this notion does not depend on a choice of a Borel subgroup in G
containing T). We would like to have for each A\; € Ay /W7 isomorphisms of functors

Hgll ogF = @ . gF o HY © Homg (VA VM)
A
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from D(S x Bung) to D(X x S x Bung, ). It is required that these isomorphism are compatible with
the action of ¥ on both sides.

ACKNOWLEDGEMENTS

It is a pleasure to thank G. Laumon for constant support. I am also grateful to V. Lafforgue and
A. Braverman for nice and stimulating discussions.

REFERENCES

Ada89 J. Adams, L-functoriality for dual pairs, Astérisque, vol. 171-172 (Société Mathématique de
France, Paris, 1989), 85-129.

Bor79 A. Borel, Automorphic L-functions, Proceedings of Symposia in Pure Mathematics, vol. 33, part 2
(American Mathematical Society, Providence, RI, 1979), 27-61.

BD04 A. Beilinson and V. Drinfeld, Chiral algebras, AMS Colloquium Publications, vol. 51 (American
Mathematical Society, Providence, RI, 2004).

BGO02 A. Braverman and D. Gaitsgory, Geometric Eisenstein series, Invent. Math. 150 (2002), 287-384.

BFF97 D. Bump and S. Friedberg and M. Furusawa, Fxplicit formulas for the Waldspurger and Bessel
models, Israel J. Math. 102 (1997), 125-177.

FGV02 E. Frenkel, D. Gaitsgory and K. Vilonen, On the geometric Langlands conjecture, J. Amer. Math.
Soc. 15 (2002), 367-417.

FH91 W. Fulton and J. Harris, Representation theory, a first course, Graduate Texts in Mathematics,
vol. 129 (Springer, Berlin, 1991).

Gai04 D. Gaitsgory, On a vanishing conjecture appearing in the geometric Langlands correspondence,
Ann. of Math. (2) 160 (2004), 617-682.

Kud96 S. Kudla, Notes on the local theta correspondence, Furopean School on Group Theory, September
1996, http://www.math.umd.edu/~ssk/castle.pdf.

Lys02 S. Lysenko, Local geometrized Rankin-Selberg method for GL(n), Duke Math. J. 111 (2002),
451-493.

Lys06a S. Lysenko, Moduli of metaplectic bundles on curves and Theta-sheaves, Ann. Sci. Ecole Norm.
Sup. (4) 39 (2006), 415-466.

Lys06b  S. Lysenko, Whittaker and Bessel functors for GSp,, Ann. Inst. Fourier (Grenoble) 56 (2006),
1505-1565.

Lys07 S. Lysenko, Geometric theta-lifting for the dual pair SQ,,,, Sps,,, Preprint (2007),
math.RT/0701170. Ann. of Math. (2), submitted.

MVWS87 C. Moeglin, M.-F. Vigneras and J. L. Waldspurger, Correspondence de Howe sur un corps
p-adique, Lecture Notes in Mathematics, vol. 1291 (Springer, Berlin, 1987).

Mum74  D. Mumford, Prym varieties I, Contribution to analysis (Academic Press, New York, 1974),
325-350.

Ral82 S. Rallis, Langlands functoriality and the Weil representation, Amer. J. Math. 104 (1982),
469-515.

Wal85 J.-L. Waldspurger, Sur les wvaleurs de certaines fonctions L automorphes en leur centre de
symetrie, Compositio Math. 54 (1985), 173-242.

Wei65 A. Weil, Sur la formule de Siegel dans la théorie des groupes classiques, Acta Math. 113 (1965),

1-87.

Sergey Lysenko lysenko@math.jussieu.fr
Université Paris 6, Institut de Mathématiques, Analyse Algébrique, 175 rue du Chevaleret, F-75013
Paris, France

438

https://doi.org/10.1112/50010437X07003156 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X07003156

	1 Introduction and main results
	1.0 
	1.1 General notation
	1.2 Other results and ideas of proofs

	2 Theta-sheaf
	2.1 

	3 Theta-lifting for the pair G$\mathbb{S}{\bf p}_{2n}$, G$\mathbb{O}_{2m}$
	3.1 
	3.4 The case of split $H$
	3.5 Weil representation and two-sheeted coverings
	3.6 Whittaker-type functors

	4 The pair GL$_2$, G$\mathbb{O}_2$
	4.1 
	4.2 Hecke property
	4.3 
	4.4 Local Rankin--Selberg-type convolutions

	5 The case $H={\bf G}\mathbb{O}_4$
	5.1 
	5.2 

	6 Bessel periods for G$\mathbb{S}{\bf p}_4$
	6.2 

	7 The case $H ={\bf G}O_6$
	7.1 
	7.2 

	8 Towards a construction of automorphic sheaves on Bun$_{GSp_4}$
	8.1 
	8.2 

	Appendix A. Prym varieties
	A.1 

	Appendix B. Group schemes and Hecke operators
	B.2 

	References

