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Determination of period matrix of double
of surface with boundary via its DN map

Dmitrii Korikov*

Abstract. As is well-known, the conformal class of a surface 𝑀 with boundary is determined by its
DN map Λ. We propose an algorithm for determination of the 𝑏-period matrix B of the (Schottky)
double of 𝑀 via Λ.

1 Introduction

EIT problem.
Let (𝑀, 𝑔) be a surface (a smooth oriented two-dimensional compact manifold) with
(smooth) boundary Γ diffeomorphic to a circle and smooth metric 𝑔. Let Δ be the
Laplace-Beltrami operator on (𝑀, 𝑔); denote by 𝑢 𝑓 the harmonic extension of the
function 𝑓 ∈ 𝐻1/2 (Γ) into 𝑀 . Let 𝜈 be the unit exterior normal vector on Γ. e
continuous operator Λ : 𝐻1/2 (Γ) ↦→ 𝐻−1/2 (Γ) defined by Λ 𝑓 := 𝜕𝜈𝑢

𝑓 is called the
Diriclet-to-Neumann (DN) map. To determine an unknown surface via its DN map is
called the two-dimensional Electric Impedance Tomography (EIT) problem.

It is well-known that the DNmapΛ determines only the conformal class of (𝑀, 𝑔)
and the restriction of the metric to the boundary Γ. Namely, let (𝑀, 𝑔) and (𝑀 ′, 𝑔′)
be two surfaces with the common boundary Γ = 𝜕𝑀 = 𝜕𝑀 ′. We write [(𝑀, 𝑔)] =

[(𝑀 ′, 𝑔′)] if there is a conformal diffeomorphismbetween (𝑀, 𝑔) and (𝑀 ′, 𝑔′)which
does not move the points of Γ. en the theorem of Lassas and Uhlmann [13] states
that Λ = Λ′ if and only if [(𝑀, 𝑔)] = [(𝑀 ′, 𝑔′)] and 𝑔 and 𝑔′ induce the same length
element on Γ. So, it is natural to understand the conformal class [(𝑀, 𝑔)] =: ℛ(Λ)
as a solution to the EIT problem.

In [5, 12], the following natural result on the stability of solutions to the EIT prob-
lem is established. Let 𝛽 : 𝑀 ↦→ 𝑀 ′ be an orientation-preserving diffeomorphism
and let 𝑥 ∈ 𝑀 , then the differential 𝑑𝛽 maps the unit circle (in the metric 𝑔) in 𝑇𝑥𝑀
to some ellipse in 𝑇𝛽 (𝑥 )𝑀 ′ with major and minor semi-axes 𝑟> (𝑥) and 𝑟< (𝑥) (in the
metric 𝑔′), respectively. e ratio 𝐾𝛽 (𝑥) = 𝑟> (𝑥)/𝑟< (𝑥) is called the dilatation of the
map 𝛽 at 𝑥 while its maximum 𝐾𝛽 = max𝑥∈𝑀 𝐾𝛽 (𝑥) on 𝑀 is called the dilatation of
𝛽. Since 𝐾𝛽 = 1 if and only if 𝛽 is conformal, the quantity log𝐾𝛽 is the deviation of
the map 𝛽 from being conformal. e Teichmuller distance between conformal classes
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2 D. Korikov

𝜏 = [(𝑀, 𝑔)] and 𝜏′ = [(𝑀 ′, 𝑔′)] is defined by

𝑑𝑇 (𝜏, 𝜏′) :=
1
2
inf
𝛽
log𝐾𝛽 , (1.1)

where the infimum is taken over all orientation-preserving diffeomorphisms from𝑀

onto𝑀 ′ which do not move the points of the common boundary Γ.en 𝑑𝑇 is a well-
defined functional on conformal classes (i.e., it does not depend on the choice of the
surfaces (𝑀, 𝑔) and (𝑀 ′, 𝑔′) representing 𝜏 and 𝜏′) and it is ametric on the space𝔐𝔤,Γ

of conformal classes [(𝑀, 𝑔)] of surfaces (𝑀, 𝑔) of given genus 𝔤 and with boundary
Γ. Note that, in the case Γ = ∅, the above definitions coincide with the definition of
the classical Teichmüller moduli spaceM𝔤 ≡ 𝔐𝔤,∅ (see [1, 8, 18]). At the same time, the
space 𝒟𝔤,Γ of the DN maps of surfaces of genus 𝔤 and with boundary Γ is endowed
with the metric given by the operator norm 𝑑𝑂 (Λ,Λ′) := ‖Λ′ − Λ‖𝐻1/2 (Γ) ↦→𝐻−1/2 (Γ) .
en the stability result of [5] states that the solvingmapℛ : 𝒟𝔤,Γ → 𝔐𝔤,Γ is continu-
ous. In other words, the closeness ofΛ′ toΛ implies the existence of a near-conformal
diffeomorphism between (𝑀, 𝑔) and (𝑀 ′, 𝑔′) which does not move the points of Γ.
is result is generalized in [12] for the non-orientable case and the case in which DN
map is given only on a segment of the boundary. In addition, in [12], it is proved that
the map ℛ : 𝒟𝔤,Γ → 𝔐𝔤,Γ and its inverse are point Lipschitz continuous, i.e., the
following local stability estimate holds

𝑐(Λ)𝑑𝑂 (Λ,Λ′) ≤ 𝑑𝑇 (ℛ(Λ),ℛ(Λ′)) ≤ 𝐶 (Λ)𝑑𝑂 (Λ,Λ′) (𝑑𝑂 (Λ,Λ′) ≤ 𝑅(Λ))
(1.2)

(here the positive constants 𝑐(Λ), 𝐶 (Λ), 𝑅(Λ) depend only on Λ). Note that, in the
above stability result, bothΛ andΛ′ are assumed to be DNmaps (and the correspond-
ing surfaces are homeomorphic); the case of noisy boundary data was not discussed
here.

Main result.
One may wonder if there is a more explicit connection between Λ and ℛ(Λ) that
extends formula (1.2) (e.g., the existence of the (Fréchet) differential of the map ℛ,
explicit formulas for conformal invariants of (𝑀, 𝑔) via its DN map, etc.)? However,
the moduli spaces𝔐𝔤,Γ of surfaces with fixed boundary Γ are not finite-dimensional
and thus are inconvenient for these purposes. is is due to the presence of infinitely
many degrees of freedom related to different ways of attaching a surface to the curve
Γ (in other words, infinitely many reparametrizations of DNmaps

Λ ↦→ Λ𝜙 , Λ𝜙 𝑓 := (Λ( 𝑓 ◦ 𝜙−1)) ◦ 𝜙,

where 𝜙 is an arbitrary diffeomorphism of Γ). One can get rid of these “extra” degrees
of freedom by considering the (Schottky) doubleM of the surface 𝑀 which is the Rie-
mann surface without boundary obtained by gluing two copies 𝑀 × {±} of (𝑀, 𝑔)
along the boundaries (i.e., by the identification (𝑥 × +) ∼ (𝑥 × −) of points 𝑥 × + and
𝑥 × −, where 𝑥 ∈ Γ). e double M is endowed with the anti-holomorphic involu-
tion 𝜏 : (𝑥 × ±)/∼ ↦→ (𝑥 × ∓)/∼. One can identify 𝑀 with one of the submanifolds
(𝑀 × {±})/∼ obtained by cutting M along the curve {𝑥 ∈ M | 𝜏(𝑥) = 𝑥}. Denote
the conformal class of M by ℛ̂(Λ), where Λ is the DN map of 𝑀 . en Λ′ = Λ (or
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Determination of period matrix via DN map 3

even Λ′ = Λ𝜙) implies ℛ̂(Λ) = ℛ̂(Λ′) and, due to the definition of the Teichmüller
distance, inequality (1.2) implies

𝑑𝑇 (ℛ̂(Λ), ℛ̂(Λ′)) ≤ 𝐶 (Λ)𝑑𝑂 (Λ,Λ′) (𝑑𝑂 (Λ,Λ′) ≤ 𝑅(Λ)). (1.3)

e moduli space M𝑚 of the surfaces of genus 𝑚 > 1 without boundaries is a
complex (3𝑚 − 3)-dimensional orbifold while the conformal classes of doubles of
genus 𝔤 surfaces with boundaries diffeomorphic to a circle constitute the stratumM◦

𝔤

of real dimension 6𝔤− 3 inM2𝔤 [7]. ereby, the original EIT problemΛ ↦→ ℛ(Λ) is
replaced by the finite-dimensional reduced EIT problemΛ ↦→ ℛ̂(Λ)which is equivalent
to the determination of appropriate coordinates of the double of (𝑀, 𝑔) in themoduli
space via its DN map Λ.

Most of the known (say, Fenchel–Nielsen’s) local coordinates on the moduli space
are highly dependent on the methods of their construction and are therefore incon-
venient for the reduced EIT problem. e exception is the coordinates provided by
entries of 𝑏-period matrices of surfaces. Recall that a Torelli marked surface is a Rie-
mann surface 𝑋 without boundary equipped with a choice of canonical homology
basis [𝑙 ·] = {𝑎1, . . . , 𝑎𝑚, 𝑏1, . . . , 𝑏𝑚} (“a marking”) on it. We say that two Torelli
marked surfaces (𝑋, [𝑙 ·]) and (𝑋 ′, [𝑙′· ]) are equivalent if there is a biholomorphism 𝛽

between them which preserves the marking (i.e., 𝛽 ◦ 𝑎𝑘 = 𝑎′
𝑘
, 𝛽 ◦ 𝑏𝑘 = 𝑏′

𝑘
). e space

T𝑚 of equivalence classes of Torelli marked surfaces of genus 𝑚 (endowed with met-
ric (1.1), where the infimum is taken over all marking-preserving diffeomorphisms) is
the infinite-sheeted covering space (called the Torelli space) of the moduli spaceM𝑚.
Let 𝜔1, . . . , 𝜔𝑚 be the basis of holomorphic differentials on 𝑋 dual to the canoni-
cal homology basis (i.e., their periods obeys 𝑇 (𝜔𝑖 , 𝑎 𝑗 ) :=

∫
𝑎 𝑗
𝜔𝑖 = 𝛿𝑖 𝑗 ). en the

𝑚 × 𝑚-matrix B with entries

B𝑖 𝑗 = 𝑇 (𝜔𝑖 , 𝑏 𝑗 ) :=
∫
𝑏 𝑗

𝜔𝑖

is called the 𝑏-period matrix of the Torelli marked surface (𝑋, [𝑙 ·]). It is clear that B is
a conformal invariant, i.e., it depends only on the class [(𝑋, [𝑙 ·])] of (𝑋, [𝑙 ·]) in T𝑚.
Due to the Torelli theorem ([21], see also [9, 15, 19]), the 𝑏-period matrix B determines
[(𝑋, [𝑙 ·])], i.e., the map [(𝑋, [𝑙 ·])] ↦→ B is an injection. So, entries of the 𝑏-period
matrix provide the local coordinates onM𝑚. Note that although the 𝑏-period matrix
of 𝑋 is not uniquely determined by its conformal class [𝑋] ∈ M𝑚 due to the infinitely
many choices of marking on 𝑋 , any two 𝑏-period matrices of 𝑋 are related to each
other via well-known transformations corresponding to the change of the canonical
homology basis. In addition, the 𝑏-periodmatrices of surfaces of genus𝑚 belong to the
Siegel upper half-space H𝑚 (the space of symmetric matrices with positive-definite
imaginary parts) of the dimension𝑚(𝑚 + 1)/2while the dimension ofM𝑚 is 3𝑚 − 3.
us, the entries of the 𝑏-period matrix are not independent for higher genera𝑚 > 3.
In particular, the solutions to the reducedEIT problem (elements ofM◦

𝔤 ) are described
by 6𝔤 − 3 real parameters while their 𝑏-period matrices (considered as elements of
H2𝔤) provide 2𝔤(2𝔤 + 1) real parameters.
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4 D. Korikov

e main result of the paper is an algorithm for determination the 𝑏-period matrix
of the double M of the surface (𝑀, 𝑔) via its DN map Λ. It is presented at Steps 1-
4, Section 3. e first (more or less standard) step is determining the boundary data
associated with the Abelian differentials on the double M of (𝑀, 𝑔). As a result, we
obtain an isomorphic copy (endowed with additional structures like inner product,
etc.) of the space𝐻0 (M;𝐾) of Abelian differentails onM (Proposition 3.1 and Lemma
2.2). e second step, which is the key point in our procedure, is the determination of
the boundary data associated with the Abelian differentials whose periods have integer
imaginary parts. Here the key trick (Proposition 3.2) is reducing such a determination
to solving the non-linear equations

𝜕𝛾 (𝐻 − 𝑖)
[
𝑝
𝛼1
1 . . . 𝑝

𝛼𝔤

𝔤 𝑞
𝛽1
1 . . . 𝑞

𝛽𝔤
𝔤

]
= 0. (1.4)

on the unknown real parameters 𝛼1, . . . , 𝛼𝔤, 𝛽1, . . . , 𝛽𝔤 . Here 𝜕𝛾 is the differentiation
along Γ and 𝐻 := Λ−1𝜕𝛾 is the Hilbert transform of the surface (𝑀, 𝑔); the functions
𝑝1, . . . , 𝑝𝔤, 𝑞1, . . . , 𝑞𝔤 are determined by the eigenfunctions and eigenvalues of𝐻 (via
formula (3.13) below). On the third step, we apply Proposition 3.3 to construct an iso-
morphic copy of the basis in 𝐻0 (M;𝐾) dual to some canonical homology basis [𝑙 ·]
onM. On the last step, we calculate the 𝑏-period matrix B in this homology basis. By
applying trivial transformations, one can obtain fromB all other 𝑏-periodmatrices of
M. Itworth noting that, although the homology basis [𝑙 ·] is unknown, it obeys an addi-
tional symmetry property (see formula (2.22) below) with respect to the involution on
the doubleM.

Comments.
1) In its traditional understanding, the two-dimensional EIT is equivalent to the con-
struction (or the visualization) of some conformal copy of the surface with given DN
map. ere are several approaches to perform this. e method of [13] is based on
the simultaneous analytic continuation of harmonic functions from the boundary. In
the algebraic approach of [2], the conformal copy of a surface is constructed as the
spectrum (the set of multiplucative linear functionals) of the algebra of holomorphic
functions on the surface; the latter being determined up to isometric isomorphism by
the DN map. As follows from the descriptions, both approaches are highly abstract
and thus unsuitable for surface visualization. e method of [10, 16] allows to con-
struct the conformal copy as a part of an algebraic curve immersed in CP2 and thus
is most appropriate for the visualization; however, this algorithm seems to be highly
unstable under small perturbations of the DNmap.emethod of [3, 5, 12] makes use
of holomorphic embeddings into high-dimensional spaces C𝑛 instead, which leads to
the proof of the (Teichmüller) stability of solutions to the EIT problem. However, the
applicability of the methods of these papers as an algorithm for construction a copy
(including the stability of the solutions in the presence of noisy boundary data) has not
been studied.

2) In contrast to the above approaches, we deal with the calculation of numerical
parameters that encode themost of the informaton about the unknown surface (𝑀, 𝑔)
(in particular, its conformal structure). Indeed, in view of the Torelli theorem [21], the
𝑏-period matrixB determines (up to biholomorphism) the doubleM of (𝑀, 𝑔). In the
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Determination of period matrix via DN map 5

generic case,M admits the unique antiholomorphic involution (the surfaces with sev-
eral involutions constitute a lower-dimensional stratum). Even in exceptional cases,
the additional symmetry of B (provided by (2.22)) allows one to choose the proper
involution 𝜏 onM. Now the cuttingM along the set of fixed points of 𝜏 provides two
conformal copies𝑀 ′,𝑀 ′′ of (𝑀, 𝑔). So, the only information that is lost is the proper
way of identifying of the points of the curve Γ and the points of the boundary of 𝑀 ′

and the proper choice of the metric on the boundary with which Λ becomes a DN
map of 𝑀 ′. Although this information could in principle be obtained by including
additional steps in the algorithm, this question is not considered in the present paper.

3) As showed in [2], the genus of the surface is determined by its DNmap. Namely,
if 𝐻 = 𝜕𝛾Λ

−1 is the Hilbert transform of the surface 𝑀 , then its genus gen(𝑀) is just
the total multiplicity of eigenvalues of𝐻 contained inC+\{𝑖}. It worth noting that the
surface genus is not stable under small perturbations of its DN map [11]. Namely, by
cutting small disks from (𝑀, 𝑔) and attaching a finite number 𝑘 of small handles, one
provides the higher genus surface whose DNmap is arbitrarily close toΛ. In this case,
the 𝑘 “extra” eigenvalues of 𝐻 inC+\{𝑖} are close to 𝑖. Note that one cannot lower the
surface genus without significant change of its DN map.

4) As shown in [6], the real additive cohomology structure of the manifold with
boundary is determined by its DN map defined on exterior differential forms. is
result is improved in [20] where it is proved that the information on themultiplicative
structure (the cap product) of cohomologies can be also recovered from the DNmap.
Also, in [20], a simple connection between the eigenvalues of the Hilbert transform
and Poincaré duality angles of the manifold is established.emethods of [6, 20] have
much in common with Step 1 of the present algorithm.

5) e continuous dependence of the 𝑏-period matrix B ofM = ℛ̂(Λ) on the DN
map Λ ∈ D𝔤,Γ (provided the appropriate choice of marking on M) trivially follows
from estimate (1.3). e stability of the algorithm for determining B in the presence of
small noise in the boundary data is discussed at the end of Section 3. ere we also
prove the following convergence-type stability result.

Proposition 1.1 LetΛ be a xed DN map of some surface (𝑀, 𝑔) of genus 𝔤 with boundary
Γ. Then there are suciently small numbers 𝜀0 = 𝜀0 (Λ) > 0 and 𝑐0 = 𝑐0 (Λ) > 0 such that
the implementation of the algorithm Steps 1-4 to any approximation Λ′ of Λ obeying

‖Λ′ − Λ‖𝐻1 (Γ)→𝐿2 (Γ) = 𝜀 < 𝜀0

provides the matrix B′ obeying

‖B′ − B‖𝑀2𝔤×2𝔤 ≤ 𝑐0𝜀,

where B is some 𝑏-period matrix of the doubleM of (𝑀, 𝑔). (Note that the implementation of
Steps 1-4 requires the a priori knowledge of the noise bound 𝜀.)
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6 D. Korikov

2 Preliminaries

Complex structure.
As is well-known, the orientation and the conformal class [𝑔] of metrics on 𝑀 deter-
mine the unique complex structure (biholomorphic sub-atlas of the smooth oriented
atlas on 𝑀) on it, such that, a) in any holomorphic coordinate 𝑧 on 𝑀 , the metric 𝑔 is
of the form 𝑑𝑠2𝑔 (𝑧) = 𝜌(𝑧) |𝑑𝑧 |2, where 𝜌(𝑧) > 0, or, equivalently, b) any holomor-
phic coordinate 𝑧 on 𝑀 obeys (★ + 𝑖 Id)𝑑𝑧 = 0, where ★ is the Hodge operator on
(𝑀, 𝑔). Given this complex structure, a function 𝑤 on 𝑀 is holomorphic (resp., anti-
holomorphic) if and only if the Cauchy-Riemann condition 𝑑=𝑤 = ★𝑑<𝑤 (resp.,
𝑑=𝑤 = −★ 𝑑<𝑤) holds. e space of functions holomorhic on int𝑀 and smooth up
to the boundary Γ is denoted by𝒜(𝑀).

e operator
Φ : 𝐴 ↦→ (★𝐴♭)♯

(here ♭ : 𝑇𝑀 ↦→ 𝑇∗𝑀 and ♯ := ♭−1 are the musical isomorphisms defined by 𝐴♭ :=
𝑔(𝐴, ·)) acts as the counterclockwise right angle rotation in each tangent space 𝑇𝑥𝑀
(𝑥 ∈ 𝑀). Note that both ★ and Φ are independent of the choice of metric 𝑔 from
the conformal class [𝑔]. e Cauchy-Riemann condition can be rewritten as ∇=𝑤 =

Φ∇<𝑤 (in any metric from [𝑔]).
Choose a unit tangent vector field 𝛾 on Γ. In the subsequent, we agree that the

orientations of 𝑀 and Γ are related by

Φ𝜈 = 𝛾. (2.1)

Harmonic fields.
Denote by 𝐿2 (𝑀 ;𝑇𝑀) the space of the real square integrable vector fields on 𝑀 ,
endowed with the inner product (𝐴, 𝐵) :=

∫
𝑀
𝑔(𝐴, 𝐵)𝑑𝑆 (we also denote the

complexification of 𝐿2 (𝑀 ;𝑇𝑀) by 𝐿C2 (𝑀 ;𝑇𝑀)). e harmonic fields constitute the
(closed) subspace

H := {𝐴 ∈ 𝐿2 (𝑀 ;𝑇𝑀) | div(Φ𝐴) = div𝐴 = 0 in 𝑀\Γ}

in 𝐿2 (𝑀 ;𝑇𝑀). By definition, the rotation Φ is an isometric automorphism of
𝐿2 (𝑀 ;𝑇𝑀) which preserves harmonicity and obeys Φ−1 = Φ∗ = −Φ. Also, each
harmonic field 𝐴 on𝑀 can be represented as 𝐴 = ∇𝑢 (with harmonic 𝑢) in any simply
connected subdomain of 𝑀 .

Introduce the subspace of potential fields E := {∇𝑢 ∈ H} and denote by N its
orthogonal complement inH . LetD = ΦN . In view of the Stokes theorem, formula

(𝐴,∇𝑢) =
∫
𝑀

div(𝑢𝐴) =
∫
Γ

𝑢𝐴𝜈𝑑𝑙

holds for any 𝐴 ∈ H and 𝑢 ∈ 𝐶∞ (𝑀), where 𝐴𝜈 := 𝑔(𝐴, 𝜈). us, a harmonic field
belongs to N (D) if and only if it is tangent (normal) to Γ. In particular, any 𝐴 ∈ N
(𝐴 ∈ D) is smooth up to the boundary due to the increasing smoothness theorems for
solutions to elliptic boundary value problems. Note that

dimN = dimD = 2𝔤. (2.2)
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Determination of period matrix via DN map 7

Denote 𝐴𝛾 := 𝑔(𝐴, 𝛾). Let 𝐴 ∈ N ; then Φ𝐴 ∈ H and the Stokes theorem yields∫
Γ
𝐴𝛾𝑑𝑙 = −

∫
𝑀
div(Φ𝐴)𝑑𝑆 = 0.us, each 𝐴 ∈ N∪D can be represented as 𝐴 = ∇𝑢

in a tubular neighborhood of Γ. In particular, the mapsN 3 𝐴 ↦→ 𝐴𝛾 ,D 3 𝐵 ↦→ 𝐵𝜈

are injections due to the uniqueness of solution to the Cauchy problem for the Laplace
equation.

Hilbert transform.
Denote by 𝑃 the orthogonal projection onE in 𝐿2 (𝑀 ;𝑇𝑀) and introduce the reduced
rotation Φ̂ := 𝑃Φ𝑃. Since Φ is anti-hermitian, so is Φ̂. In what follows, we also
consider the complexification Φ̂(𝐴 + 𝑖𝐵) = Φ̂𝐴 + 𝑖Φ̂𝐵 of Φ̂ acting in 𝐿C2 (𝑀 ;𝑇𝑀).

Let 𝑢 = 𝑢 𝑓 be a harmonic function in𝑀 with trace 𝑓 onΛ.enΦ∇𝑢 is a harmonic
field. From the orthogonal decompositionH = E ⊕ N , we have

Φ∇𝑢 𝑓 = ∇𝑣ℎ + 𝐴, (2.3)

where 𝐴 ∈ N and 𝑣ℎ is someharmonic functionwith the trace ℎ. Hence, Φ̂∇𝑢 𝑓 = ∇𝑣ℎ
and −Φ̂∇𝑣ℎ = ∇𝑢 𝑓 + 𝑃Φ𝐴, i.e.,

(Φ̂ + 𝑖𝐼)∇𝑤 = −𝑃Φ𝐴, where 𝑤 = 𝑢 𝑓 + 𝑖𝑣ℎ .

Note that 𝑃Φ𝐴 = 0 if and only if 𝐴 = 0. Indeed, if 𝑃Φ𝐴 = 0, then (Φ𝐴,∇𝑢) =

(Φ𝐴, 𝑃∇𝑢) = (𝑃Φ𝐴,∇𝑢) = 0 for any smooth 𝑢 on 𝑀 . Since Φ𝐴 is harmonic, it
means that

0 =

∫
𝑀

div(𝑢Φ𝐴)𝑑𝑆 =

∫
Γ

𝑢(Φ𝐴)𝜈𝑑𝑙 = −
∫
Γ

𝑢𝐴𝛾𝑑𝑙,

whence 𝐴𝛾 = 0 on Γ and 𝐴 = 0 in𝑀 . In view of (2.3), we obtain the following criteria:
𝑤 is holomorphic (resp., antiholomorphic) in𝑀\Γ if and only if ∇𝑤 is an eigenvector
of Φ̂ corresponding to the eigenvalue −𝑖 (resp., +𝑖).

In view of (2.3), the equality Φ̂∇𝑢 𝑓 = 0 implies ∇𝑣ℎ = Φ̂∇𝑢 𝑓 = 0 and 𝜕𝛾 𝑓 =

−(Φ∇𝑢 𝑓 )𝜈 = −𝜕𝜈𝑣ℎ + 0 = 0, whence 𝑢 𝑓 = const and ∇𝑢 𝑓 = 0. In addition, (2.3)
implies that (Φ̂ − Φ)∇𝑢 𝑓 = 0 if and only if 𝐴 = 0, i.e., if and only if ∇𝑢 𝑓 ∈ Ker(Φ̂ −
𝑖) ⊕ Ker(Φ̂ + 𝑖).

Let us show that

(Φ − Φ̂)E = N . (2.4)

Indeed, since the left-hand side is equal to (𝐼 − 𝑃)ΦE , it is contained inN . Next, sup-
pose that the field 𝐴 ∈ N is orthogonal to (𝐼−𝑃)ΦE.en−(Φ𝐴,∇𝑢) = (𝐴,Φ∇𝑢) =
(𝐴, 𝑃Φ∇𝑢) = (𝑃𝐴,Φ∇𝑢) = 0 for any 𝑢 ∈ 𝐶∞ (𝑀) and Φ𝐴 ∈ N . e last equality
means that 𝐴𝛾 = −(Φ𝐴)𝜈 = 0. erefore, 𝐴 = 0 in 𝑀 .

In view of the above, the eigenvalues of Φ̂ of infinite multiplicity are 0 (the corre-
sponding eigenspace is 𝐿C2 (𝑀 ;𝑇𝑀) 	 EC), −𝑖 and +𝑖 (the corresponding eigenspaces
consist of gradients of holomorphic and anti-holomorphic functions on 𝑀 , respec-
tively) while the remaining eigenvalues have the total multiplicity dim(Φ − Φ̂)E =

dimN = 2𝔤 in view of (2.2). Since Φ̂∇𝑤 = Φ̂∇𝑤 and Φ̂ is anti-hermitian, the
remaining eigenvalues (counted with their multiplicities) can be represented as

𝜆±𝑘 = 𝑖𝜇±𝑘 , 𝜇±𝑘 = −𝜇∓𝑘 ∈ R (𝑘 = 1, . . . , 𝔤). (2.5)
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Denote by (·, ·)Γ the inner product in 𝐿C2 (Γ; 𝑑𝑙). Let 〈 𝑓 〉 := ( 𝑓 , 1)Γ/(1, 1)Γ denotes
the mean value of 𝑓 on (Γ, 𝑑𝑙). In view of the Green formula

(∇𝑢 𝑓 ,∇𝑢ℎ) = (Λ 𝑓 , ℎ)Γ =: ( 𝑓 , ℎ)Λ, (2.6)

the map 𝔈 : 𝑓 ↦→ ∇𝑢 𝑓 is an isometry from the space 𝜕𝛾𝐻3/2 (Γ;C) = { 𝑓 ∈
𝐻1/2 (Γ;C) | 〈 𝑓 〉 = 0} equipped with the inner product (·, ·)Λ onto EC.

We define the Hilbert transform as the isomorphic copy

𝐻 := −𝔈−1Φ̂𝔈

of the reduced rotation Φ̂ = 𝑃Φ𝑃 (the minus sign is introduced to match the usual
definition of the Hilbert transform on the circle). en the Stokes theorem yields

(Λ𝐻 𝑓 , ℎ)Γ = (𝐻 𝑓 , ℎ)Λ = −(𝑃Φ𝑃∇𝑢 𝑓 ,∇𝑢ℎ) =(Φ∇𝑢 𝑓 ,∇𝑢ℎ) =

=

∫
𝑀

div(𝑢ℎΦ∇𝑢 𝑓 )𝑑𝑆 = (−𝜕𝛾 𝑓 , ℎ)Γ

for any 𝑓 , ℎ ∈ 𝜕𝛾𝐻3/2 (Γ;C). Hence,

𝐻 = Λ−1𝜕𝛾 , 𝐻−1 = 𝜕−1𝛾 Λ. (2.7)

Here 𝜕−1𝛾 is the integration with respect to the length element along Γ in the direc-
tion 𝛾. Since the images Λ𝐻1 (Γ;C) and 𝜕𝛾𝐻1 (Γ;C) are orthogonal to constants in
𝐿2 (Γ), both operators (2.7) are well-defined on 𝐻1 (Γ;C). In addition, the DNmapΛ
is a pseudo-differential operator of the first order which coincides with |𝜕𝛾 | modulo
smoothing operator [14]. us 𝐻 = −|𝜕𝛾 |−1𝜕𝛾 modulo smoothing operator and both
operators (2.7) arewell-defined on 𝐿C2 (Γ; 𝑑𝑙). Although the second operator−𝜕−1𝛾 Λ in
(2.7) inverts 𝐻 only on the orthogonal complement to constants, we keep the (slightly
misleading) notation 𝐻−1 for it.

Note that 𝐻 coincides with the standard Hilbert transform on the circle if 𝑀 is
a closed unit disk D. e extensions of the standard Hilbert transform on the circle
were considered in [4, 6], while the above definition (slightly different and based on
the connection between 𝐻 and the reduced rotation Φ̂) is proposed by Belishev.

Let𝒜(𝑀) be the algebra of smooth holomorphic functions on𝑀 . Denote byTr the
trace operator 𝑤 ↦→ 𝑤 |Γ . In view of the above, we arrive at the following statement.

Lemma 2.1 𝐻 is an anti-hermitian operator in the space (𝜕𝛾𝐻3/2 (Γ;C), (·, ·)Λ). The
spectrum of 𝐻 consists of 0 (with Ker𝐻 = C), ±𝑖 (with the eigenspaces

Ker(𝐻 − 𝑖) = clos𝐻1/2 (Γ;C)
(
{𝜂 ∈ Tr𝒜(𝑀) | 〈𝜂〉 = 0}

)
,

Ker(𝐻 + 𝑖) = clos𝐻1/2 (Γ;C)
(
{𝜂 ∈ Tr𝒜(𝑀) | 〈𝜂〉 = 0}

)
,

respectively; here · denotes the complex conjugation), and eigenvalues (2.5). The eigenfunctions

𝜂±𝑘 = 𝜂∓𝑘 (𝑘 = 1, . . . , 𝔤) (2.8)

corresponding to 𝜆±𝑘 are smooth. (In what follows, we assume that eigenfunctions (2.8) are
normalized in 𝐿C2 (Γ; 𝑑𝑙) and the eigenfunctions corresponding to the same eigenvalue are
orthogonal in 𝐿C2 (Γ; 𝑑𝑙).)
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Proof It remains to check that 𝜂±𝑘 ∈ 𝐶∞ (Γ;C). To this end, recall that 𝐻 =

|𝜕𝛾 |−1𝜕𝛾 and 𝐻−1 = 𝜕−1𝛾 |𝜕𝛾 | = −𝐻 modulo smoothing operators. us, the claim
follows from the equality 0 ≠ (𝜆±𝑘 + 𝜆−1±𝑘)𝜂±𝑘 = (𝐻 + 𝐻−1)𝜂±𝑘 . �

Double cover.
e double of (𝑀, 𝑔) is the surface (M, g) obtained by gluing (𝑀, 𝑔) with its copy
(endowed with the opposite orientation) along the boundary. In the subsequent, we
consider 𝑀 to be embedded into M. Introduce the involution 𝜏 on M which inter-
changes any point 𝑥 of 𝑀 with the same point on its copy. en 𝜏(𝑥) = 𝑥 if and only
if 𝑥 ∈ Γ. e projection 𝜋 : M ↦→ 𝑀 defined by 𝜋(𝑥) := 𝜋(𝜏(𝑥)) := 𝑥 for any
𝑥 ∈ 𝑀 ⊂ M is continuous, open and discrete, and the set of its ramification points
coincides with Γ.

e metric g, the rotation 𝚽, and the Hodge operator ? on M are obtained by
gluing together the corresponding metrics, rotations, e.t.c., on 𝑀 and its copy. By
construction, the metric is symmetric

𝜏∗g = g = 𝜋∗𝑔,

while the rotation and the Hodge operator are anti-symmetric

𝑑𝜏 ◦𝚽 = −𝚽 ◦ 𝑑𝜏, 𝜏∗ ◦ ? = −? ◦ 𝜏∗ (2.9)

with respect to the involution 𝜏. To check that𝚽 and ? are correctly defined (i.e. they
are continuous on the whole M, including Γ), it is sufficient to note that 𝑑𝜏(𝛾) = 𝛾

and 𝑑𝜏(𝜈) = −𝜈, whence (𝚽𝜈) |Γ− = −(𝚽 ◦ 𝑑𝜏(𝜈)) |Γ− = 𝑑𝜏((𝚽𝜈) |Γ+ ) = 𝑑𝜏(𝛾) =

𝛾 = Φ𝜈 = (𝚽𝜈) |Γ+ , where Γ+ and Γ− denotes the sides of Γ internal and external
with respect to 𝑀 , respectively. In particular,M is orientable.

Note that, although the metric g is, in general, only Lipschitz continuous on Γ,
the rotation and the Hodge operator are smooth on the whole M. Moreover, M is
endowed with the complex structure compatible with the complex structures on 𝑀
and its copy (these can be considered as complex submanifolds of M). Indeed, it is
sufficient to construct appropriate holomorphic charts in the neighbourhood of Γ. Let
𝑥0 be an arbitrary point of Γ and let 𝑢 be a smooth harmonic function in 𝑀 obeying
𝜕𝜈𝑢 = 0 and 𝑢(𝑥0) = 0, 𝜕𝛾𝑢(𝑥0) > 0. In view of the Poincaré lemma, we haveΦ∇𝑢 =

∇𝑣 in some (simple connected) neighborhood𝑈 of 𝑥0 in𝑀 . In particular 𝜕𝛾𝑣 = 𝜕𝜈𝑢 =

0 in Γ∩𝑈 and one can assume that 𝑣 = 0 on Γ∩𝑈.en𝑤 = 𝑢+𝑖𝑣 is holomorphic in𝑈
and real-valued in Γ∩𝑈. Since 𝑥0 is a simple zero of 𝑤 and 𝜕𝜈𝑣(𝑥0) = −𝜕𝛾𝑢(𝑥0) < 0,
one can assume, by making the𝑈 smaller, that 𝑤 : 𝑈 ↦→ C+ is an injection. Now we
extend 𝑤 on𝑈 ∪ 𝜏(𝑈) by symmetry 𝑤 ◦ 𝜏 = 𝑤; then 𝑤 : 𝑈 ↦→ C is an injection and
𝑤 is holomorphic on 𝜏(𝑈) in view of (2.9). us, (𝑈, 𝑤) is a holomorphic chart onM
which is compatible with the complex atlases of 𝑀 and its copy 𝜏(𝑀).

Note that, if the function 𝑤 is holomorphic in a domain𝑈 ⊂ M, then 𝑤† = 𝑤 ◦ 𝜏
is holomorphic in 𝜏(𝑈) due to (2.9).
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Abelian differentials.
A (complex) 1-form 𝜔 on M is called an Abelian differential (of the first kind) if the
equations

𝑖?𝜔 = 𝜔, 𝑑𝜔 = 0 (2.10)
hold in M or, equivalently, if it can be locally represented as 𝜔 = 𝑑𝑤, where 𝑤 is a
holomorphic function. e space 𝐻0 (M;𝐾) of Abelian differentials of the first kind
has the complex dimension dim𝐻0 (M;𝐾) = gen(M) = 2𝔤.

In view of (2.9), the map

𝜔 ↦→ 𝜔† := 𝜏∗ (𝜔)
preserves equations (2.10) and therefore it is an involution on 𝐻0 (M;𝐾). We call𝜔 ∈
𝐻0 (M;𝐾) symmetric and write 𝑤 ∈ 𝐻1

𝑠𝑦𝑚(M;𝐾) if 𝜔† = 𝜔. en 𝐻0
𝑠𝑦𝑚 (M;𝐾) is

a real linear space of dimension 𝔤 and any 𝜔 ∈ 𝐻0 (M;𝐾) admits the decomposition
𝜔 = 𝜔++𝑖𝜔− , where𝜔+ = (𝜔+𝜔†)/2 and𝜔− = (𝜔−𝜔†)/2𝑖 belong to𝐻0

𝑠𝑦𝑚(M;𝐾).
e important observation used in the paper is the following connection between

the tangent harmonic fields on 𝑀 and the symmetric Abelian differentials on its
doubleM.

Lemma 2.2 𝐴 ∈ N if and only if (𝐴+ 𝑖Φ𝐴)♭ is a restriction on 𝑀 of a symmetric Abelian
dierential 𝜔𝐴 onM. The map 𝐴 ↦→ 𝜔𝐴 is a bijection fromN onto 𝐻1

𝑠𝑦𝑚(M;𝐾).

Proof Let 𝐴 ∈ N and let 𝜔𝐴 be the 1-form on M given by 𝜔𝐴 := (𝐴 + 𝑖Φ𝐴)♭
on 𝑀 and extended to 𝜏(𝑀) by symmetry 𝜔†

𝐴
= 𝜔𝐴. Let 𝑈 be a simple connected

neighborhood in 𝑀 ; since 𝐴 and Φ𝐴 are harmonic, they can be represented as 𝐴 =

∇𝑢, Φ𝐴 = ∇𝑣 in 𝑈 and the function 𝑤 = 𝑢 + 𝑖𝑣 is holomorphic in 𝑈. en 𝜔𝐴 =

(∇𝑤)♭ = 𝑑𝑤 in 𝑈. By symmetry 𝜔†
𝐴

= 𝜔𝐴, we have 𝜔𝐴 = 𝜏∗𝑑𝑤 = 𝑑𝑤 ◦ 𝜏 =

𝑑𝑤† in 𝜏(𝑈), where 𝑤† is holomorphic in 𝜏(𝑈). If Γ ∩ 𝑈 is a segment, then 0 =

𝐴𝜈 = 𝜕𝜈𝑢 = 𝜕𝛾𝑣 and one can chose 𝑣 in such a way that 𝑣 = 0 on 𝑈 ∩ Γ. en
𝑤 |Γ+ (𝑥) = 𝑢 |Γ+ (𝑥) = 𝑢 ◦ 𝜏 |Γ+ (𝑥) = 𝑢 |Γ− (𝑥) = 𝑤† |Γ− (𝑥) for 𝑥 ∈ Γ ∩𝑈 and, due to the
Schwarz reflection principle, 𝑤 admits holomorphic extension (still denoted by 𝑤) to
𝑈 ∪ 𝜏(𝑈) which coincides with 𝑤† on 𝜏(𝑈). erefore 𝜔 admits the representation
𝜔 = 𝑑𝑤 with holomorphic𝑤 in any simply connected neighborhood inM and, hence,
𝜔 ∈ 𝐻1

𝑠𝑦𝑚(M;𝐾). e map 𝐴 ↦→ 𝜔𝐴 is an injection due to the uniqueness of the
analytic continuation.

Now, suppose that 𝜔 ∈ 𝐻1
𝑠𝑦𝑚(M;𝐾) and 𝜔♯ = 𝐴 + 𝑖𝐵. en 𝐴,𝐵 are harmonic

since div(𝐴 + 𝑖𝐵) = ?𝑑?𝜔 = −𝑖?𝑑𝜔 = 0 and div(Φ(𝐴 + 𝑖𝐵)) = −?𝑑𝜔 = 0. An
addition, 𝐴 + 𝑖𝐵 = 𝜔♯ = (𝑖?𝜔)♯ = 𝑖(Φ𝐴 + 𝑖Φ𝐵) = −Φ𝐵 + 𝑖Φ𝐴, whence 𝐵 = Φ𝐴

and 𝜔 = (𝐴 + 𝑖Φ𝐴)♭. Finally, 𝜔(𝜈) = 𝜔† (𝜈) = 𝜔(𝑑𝜏(𝜈)) = −𝜔(−𝜈), whence 𝐴𝜈 =

<𝜔(𝜈) = −<𝜔(𝜈) = 0. erefore, 𝐴 ∈ N and 𝜔 = 𝜔𝐴. is means that the map
𝐴 ↦→ 𝜔𝐴 is a surjection. As a corollary, we have dimN = dim𝐻1

𝑠𝑦𝑚 (M;𝐾) = 𝑔 which
explains formula (2.2). �

Homology groups.
Let (𝑋, 𝑔) be an oriented surface (possibly with non-empty boundary) of genus𝑚 and
let 𝑙 be a finite (possibly empty) collection of closed oriented curves in 𝑀 . By defini-
tion, the following operations preserve homology class (‘cycle’) [𝑙] of 𝑙: a) a homotopic
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deformation of each curve in 𝑙 , b) cutting the curves into a finite number of segments
and gluing them together in a different order in such away that the resulting curves are
closed and the orientation of each segment is preserved, c) adding or excluding an ori-
ented boundary of some (arbitrarily oriented) domain in 𝑋 . e set of cycles endowed
with the addition [𝑙] + [𝑙′] = [𝑙 ∪ 𝑙′] is an Abelian group 𝐻1 (𝑋,Z) called the first
homology group. Note −[𝑙] = [−𝑙], where −𝑙 is obtained from 𝑙 by reversing the ori-
entation of all curves. It is well known that 𝐻1 (𝑋,Z) ' 𝜋1 (𝑋◦)/[𝜋1 (𝑋◦), 𝜋1 (𝑋◦)] '
Z2𝑚, where 𝑋◦ is obtained from 𝑋 by attaching disks to all connected components of
𝜕𝑋 .

Let 𝑙, 𝑙′ be closed oriented curves in 𝑋 ; by homotopic deformation one can assume
that they are smooth, oriented by unit tangent vectors 𝛾, 𝛾′, respectively, 𝑙 inter-
sects 𝑙′ a finite number of times, and each intersection is transversal. e intersection
is positive if (𝛾, 𝛾′) is positively oriented with respect to the orientation of 𝑋 , and
negative otherwise. By definition, the intersection number [𝑙]♯[𝑙′] is the difference
between numbers of positive and negative intersections of 𝑙 and 𝑙′ (if 𝑙, 𝑙′ are col-
lections of the curves, then [𝑙]♯[𝑙′] is obtained by the summation of the intersection
numbers of all pairs from 𝑙 × 𝑙′). It can be shown that [𝑙]♯[𝑙′] is invariant with
respect to operations a)-c) and thereby iswell defined on homology classes.Moreover,
♯ : 𝐻1 (𝑋,Z) × 𝐻1 (𝑋,Z) ↦→ Z is an alternating bilinear form.

We say that [𝑙 ·] = {[𝑙1], . . . , [𝑙2𝑚]} form a homology basis on 𝑋 if they generate
𝐻1 (𝑋,Z). Introduce the intersectionmatrix 𝐽 of the basis [𝑙 ·] by 𝐽𝑖 𝑗 := [𝑙𝑖]♯ [𝑙 𝑗 ].e
homology basis is called canonical if its intersectionmatrix coincideswith the standard
symplectic matrix

Ω(𝑚) =

(
0 𝐼𝑚

−𝐼𝑚 0

)
.

In this case we call that 𝑎1 = [𝑙1], . . . , 𝑎𝑚 = [𝑙𝑚] are 𝑎-cycles and 𝑏1 =

[𝑙𝑚+1], . . . , 𝑏𝑚 = [𝑙2𝑚] are 𝑏-cycles. e canonical bases always exist. Two homol-
ogy bases [𝑙 ·], [𝑙′· ] are simultaneously (non-)canonical if and only if [𝑙′

𝑖
] = ∑

𝑗 𝑀𝑖 𝑗 [𝑙 𝑗 ]
(𝑖 = 1, . . . , 𝑚), where𝑀 ∈ Sp(𝑚,Z) (here Sp(𝑚,Z) is the group of symplectic𝑚×𝑚-
matrices with integer entries). A compact Riemann surface 𝑋 with empty boundary
endowed with a choice of a canonical homology basis [𝑙 ·] is called a Torelli marked
surface.

Let 𝜕𝑋 be empty or diffeomorphic to a circle, let 𝜔 be a harmonic 1-form on 𝑋 ,
and let 𝐴 = 𝜔♯ . e integral

𝑇 (𝜔 | [𝑙]) ≡ 𝑇 (𝐴| [𝑙]) :=
∫
𝑙

𝜔 =

∫
𝑙

𝑔(𝐴, 𝛾)𝑑𝑙

(where 𝛾 and 𝑑𝑙 are tangent unit vector and the length element on 𝑙 , respectively)
depends only on [𝑙]; this integral is called the period of 𝜔 (or of 𝐴) along the cycle [𝑙].

We say that𝜔 is normal (tangent) to 𝜕𝑋 if𝜔(𝛾) = 0 (𝜔(𝜈) = 0) on 𝜕𝑋 , or, equiva-
lently, if 𝐴 = 𝜔♯ is normal (tangent) to 𝜕𝑋 .enharmonic 1-forms𝜔 normal (tangent)
to 𝜕𝑋 are determined by their period vectors

T(𝜔 | [𝑙 ·]) ≡ T(𝜔 | [𝑙 ·]) := (𝑇 (𝜔| [𝑙1], . . . , 𝑇 (𝜔 | [𝑙𝑚])𝑇

with respect to a given homology basis [𝑙 ·].
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12 D. Korikov

Lemma 2.3 Let (𝑋, 𝑔) be an orientable surface of genus𝑚 (possibly with non-empty bound-
ary), let Φ be a rotation on 𝑋 and let [𝑙 ·] be a homology basis on 𝑋 . Suppose that 𝐴, 𝐵 ∈
𝐶∞ (𝑋 ;𝑇𝑋) satisfy div𝐴 = div(Φ𝐵) = 0 in 𝑋 . In addition, suppose that 𝐴 is tangent
and/or 𝐵 is normal to 𝜕𝑋 . Then their inner product in 𝐿2 (𝑋 ;𝑇𝑋) admits the representation

(𝐵, 𝐴) = T(𝐵| [𝑙 ·])𝑇 𝐽−1T(−Φ𝐴| [𝑙 ·]), (2.11)

where 𝐽 is the intersection matrix of [𝑙 ·].

Proof Let ★ be the Hodge operator on 𝑋 (then ★𝜔 = (Φ𝜔♯)♭ for any 1-form 𝜔).
Denote 𝜔 = 𝐵♭ and 𝜂 = ★𝐴♭, then 𝑑𝜔 = 𝑑𝜂 = 0 and at least one of 𝐴, 𝐵 is normal to
𝜕𝑋 . e left-hand side of (2.11) can be rewritten as (𝐵, 𝐴) =

∫
𝑋
𝜔∧𝜂 while the right-

hand side is given by T(𝜔 | [𝑙 ·])𝑇 (−𝐽−1)T(𝜂 | [𝑙 ·]). Let us show that the right-hand
side is independent of the choice of a homology basis. Let [𝑙′· ] be a new homology
basis connected with 𝑙 · via [𝑙′

𝑖
] =

∑
𝑖 𝑗 𝑀𝑖 𝑗 [𝑙 𝑗 ] (i.e., 𝑀, 𝑀−1 have integer entries).

en the period vectors and the intersection matrices obey the transformation rules
T(·| [𝑙′· ]) = 𝑀T(·| [𝑙 ·]) and

𝐽′ = 𝑀𝐽𝑀𝑇 , (2.12)

whence T(𝜔 | [𝑙′· ])𝑇 (−𝐽
′−1)T(𝜂 | [𝑙′· ]) = T(𝜔 | [𝑙 ·])𝑇 (−𝐽−1)T(𝜂 | [𝑙 ·]). us, one can

check (2.11) assuming that [𝑙 ·] = {𝑎1, . . . , 𝑎𝑚, 𝑏1, . . . , 𝑏𝑚} is canonical. en (2.11)
takes the familiar form∫

𝑋

𝜔 ∧ 𝜂 =

𝑚∑︁
𝑗=1

( ∫
𝑎 𝑗

𝜔

∫
𝑏 𝑗

𝜂 −
∫
𝑏 𝑗

𝜔

∫
𝑎 𝑗

𝜂

)
, (2.13)

which is just the Riemann bilinear identity if 𝜕𝑋 = ∅. It remains to prove that (2.13)
is valid if 𝜕𝑋 ≠ ∅ and one of 𝜔, 𝜂 is normal to 𝜕𝑋 . Let 𝑋◦ be the Riemann surface
obtained by attaching a disk 𝐷 = {𝑧 ∈ C | |𝑧 | ≤ 1} to each connected component
of 𝜕𝑋 (to construct the complex charts near 𝜕𝑋 ⊂ 𝑋◦, one can use the procedure
described after (2.9)). Let 𝜔◦, 𝜂◦ be the smooth extensions to 𝑋◦ of 𝜔, 𝜂, respectively,
given by 𝜔◦ = 𝑑𝑢1, 𝜂◦ = 𝑑𝑢2, where 𝑢𝑘 are smooth on �̃� = 𝑋◦\int𝑋 . Denote by 𝜒 a
smooth function with compact support on [0,+∞) equal to 1 in the neighborhood of
zero. Introduce the function 𝜒𝜀 given by 𝜒𝜀 (𝑥) = 𝜒(𝜀−1 ( |𝑧(𝑥) | − 1)) on each disk in
�̃� . Suppose that𝜔 is normal to 𝜕𝑋 ; then one can chose 𝑢1 in such a way that 𝑢1 = 0 on
𝜕𝑋 . Let 𝜔𝜀 be the smooth closed extension of 𝜔 given by 𝜔𝜀 = 𝑑 (𝜒𝜀𝑢1) on �̃� . Since
𝑢(𝑧) = 𝑂 (1 − |𝑧 |) = 𝑂 (𝜀) on the support of 𝜒𝜀 , we have ‖𝜔𝜀 ‖𝐿2 (�̃� ;𝑇∗�̃�) = 𝑂 (𝜀1/2),
whence ∫

𝑋◦

𝜔𝜀 ∧ 𝜂◦ →
∫
𝑋

𝜔 ∧ 𝜂 (𝜀 → 0). (2.14)

Since each closed curve in 𝑋◦ is homotopic to a curve in 𝑋 ⊂ 𝑋◦, we have𝐻1 (𝑋◦,Z) =
𝐻1 (𝑋,Z) and each homology class on 𝑋◦ is an extension of a homology class on 𝑋 .
us, formula (2.13) is valid with the left-hand side replaced by the left-hand side of
(2.14). Now formula (2.13) is obtained by passing to the limit as 𝜀 → 0. �

As easily follows from Lemma 2.3 and (2.10), Abelian differentials are determined
by their 𝑎-periods.

2025/03/27 00:03

https://doi.org/10.4153/S0008414X25000264 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X25000264


Determination of period matrix via DN map 13

Let 𝑋 = M.e involution † acting on curves inM by the rule 𝑙† := 𝜏◦𝑙 induces the
involution † on 𝐻1 (M,Z) obeying [𝑙]† = [𝑙†]. Since the involution 𝜏 is orientation
reversing, we have

[𝑙]†♯[𝑙′]† = −[𝑙]♯[𝑙′] ( [𝑙], [𝑙′] ∈ 𝐻1 (M,Z)). (2.15)

Note that

𝑇 (𝜔† | [𝑙]†) =
∫
𝜏◦𝑙
𝜏∗𝜔 =

∫
𝑙

𝜔 = 𝑇 (𝜔 | [𝑙]) (𝜔 ∈ 𝐻0 (M; 𝑘)). (2.16)

Since 𝜕𝑀 = Γ consists of one connected component, each homology class [𝑙] in M
admits the decomposition [𝑙] = [𝑙+] + [𝑙−]†, where 𝑙± are collections of the curves in
𝑀 . In particular, we have 𝐻1 (M,Z) = 𝐻1 (𝑀,Z) + 𝐻1 (𝑀,Z)† ' 2𝐻1 (𝑀,Z). Due to
this facts and (2.15), any homology basis 𝑎1, . . . , 𝑎𝔤, 𝑏1, . . . , 𝑏𝔤 in 𝐻1 (𝑀,Z) defines
the canonical homology basis

𝑎1, . . . , 𝑎𝔤, 𝑎𝔤+1 := 𝑎†1, . . . , 𝑎2𝔤 := 𝑎
†
𝔤, 𝑏1, . . . , 𝑏𝔤, 𝑏𝔤+1 := −𝑏†1, . . . , 𝑏2𝔤 := −𝑏†𝔤 .

(2.17)
in 𝐻1 (M,Z). In what follows, a homology basis of the form (2.17) is called symmetric.

Period matrices.
Consider a Torelli marked Riemann surface (𝑋, [𝑙 ·]) of genus 𝑚 (here [𝑙 ·] =

{𝑎1, . . . , 𝑎𝑚, 𝑏1, . . . , 𝑏𝑚}). For a basis 𝜔· = {𝜔1, . . . , 𝜔g} in 𝐻0 (𝑋 ;𝐾), we intro-
duce its period matrix T( [𝑙 ·], 𝜔·) with entries T𝑖 𝑗 ( [𝑙 ·], 𝜔·) := 𝑇 (𝜔𝑖 | [𝑙 𝑗 ]). ere is the
unique basis 𝜔· whose period matrix is of the form

T( [𝑙 ·], 𝜔·) = (𝐼𝑚 |B);

this basis is called dual to [𝑙 ·] and thematrixB is called the 𝑏-period matrix of (𝑋, [𝑙 ·]).
We say that a basis𝜔· in 𝐻0 (𝑋 ;𝐾) is canonical if it is dual to some Torelli marking on
𝑋 . Also we say that a matrixB is 𝑏-periodmatrix of 𝑋 if there is a Torelli marking [𝑙 ·]
on 𝑋 such that B is a 𝑏-period matrix of (𝑋, [𝑙 ·]).

Let 𝑋 = M and let 𝜔· = {𝜔1, . . . , 𝜔2g} be a basis in 𝐻0 (M;𝐾). e basis 𝜔· is
called symmetric canonical if it is dual to some symmetric canonical homology basis
[𝑙 ·] onM. In this case, the 𝑏-period matrix B of (𝑋, [𝑙 ·]) is called symmetric.

Now, let [𝑙 ·] = {[𝑙1], . . . , [𝑙2𝔤]} be a homology basis on 𝑀 and let 𝐵· =

{𝐵1, . . . , 𝐵2𝔤} be a basis in D. We say that 𝐵· is dual to [𝑙 ·] if 𝑇 (𝐵𝑖 | [𝑙 𝑗 ]) = 𝛿𝑖 𝑗 ; in
this case, the matrix𝔅 with the entries

𝔅 𝑗𝑖 = 𝑇 (Φ𝐵𝑖 | [𝑙 𝑗 ])

is called the auxiliary period matrix corresponding to the homology basis [𝑙 ·].e basis
dual to [𝑙 ·] exists and is unique. Indeed, if 𝐵′

· = {𝐵′
1, . . . , 𝐵

′
2𝔤} is a basis inD, then the

matrix 𝑀 with entries 𝑀𝑖 𝑗 = 𝑇 (𝐵𝑖 | [𝑙 𝑗 ]) is invertible (otherwise, there is the vector
0 ≠ 𝐵 =

∑
𝑖 𝑐𝑖𝐵𝑖 ∈ N which is harmonic, normal to Γ and has periods 𝑇 (𝐵𝑖 | [𝑙 𝑗 ]) =∑

𝑖 𝑐𝑖𝑀𝑖 𝑗 = 0, a contradiction). us, the dual basis to [𝑙 ·] consists of the vectors
𝐵𝑖 =

∑
𝑗 (𝑀−1)𝑖 𝑗𝐵′

𝑗
.

We say that the basis 𝐵· in D is dual if it is dual to some homology basis [𝑙 ·] on
𝑀 ; if, in addition, [𝑙 ·] is canonical, then we say that 𝐵· is canonical. As follows from
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14 D. Korikov

(2.12), two dual bases 𝐵· and 𝐵′
· are simultaneously (non-)canonical if and only if 𝐵′

𝑖
=∑

𝑗 𝑀 𝑗𝑖𝐵 𝑗 , where 𝑀 ∈ Sp(𝔤,Z) is arbitrary; the corresponding homology bases are
related via [𝑙′

𝑖
] = ∑

𝑗 (𝑀−1)𝑖 𝑗 [𝑙 𝑗 ]. Similarly, any two auxiliary period matrices𝔅 and
𝔅′ (corresponding to different homology bases) are related via

𝔅′ = 𝑀−1𝔅𝑀 (𝑀 ∈ Sp(𝔤,Z)). (2.18)

e following lemmaprovides the criterion of the canonicity of the dual basis. Also,
it provides the expression for the auxiliary period matrix of a canonical homology
basis in terms of inner products of elements of its dual basis.

Lemma 2.4 a) The intersection matrix 𝐽 of the homology basis [𝑙 ·] = {[𝑙1], . . . , [𝑙2𝔤]}
in 𝑀 can expressed in terms of its dual basis 𝐵· = {𝐵1, . . . , 𝐵2𝔤} as

(𝐽−1)𝑖 𝑗 = (𝐵𝑖 ,Φ𝐵 𝑗 ). (2.19)

b) The dual basis 𝐵· is canonical if and only if (Φ𝐵𝑖 , 𝐵 𝑗 ) = (Ω(𝔤) )𝑖 𝑗 for all 𝑖, 𝑗 =

1, . . . , 𝔤.
c) If [𝑙 ·] is a canonical homology basis in 𝑀 , then its auxiliary period matrix can be

expressed in terms of its dual basis 𝐵· = {𝐵1, . . . , 𝐵2𝔤} as

(Ω(𝔤)𝔅)𝑖 𝑗 = (𝐵𝑖 , 𝐵 𝑗 ).

Proof a) Since 𝐵𝑘 are normal and 𝑇 (𝐵𝑘 | [𝑙𝑠]) = 𝛿𝑘𝑠 , Lemma 2.3 and the equality
Φ2 = −Id imply

(𝐵𝑖 ,Φ𝐵 𝑗 ) = T(𝐵𝑖 | [𝑙 ·])𝑇 𝐽−1T(−Φ2𝐵 𝑗 | [𝑙 ·]) = 𝛿𝑖𝑘 (𝐽−1)𝑘𝑠𝛿𝑠 𝑗 = (𝐽−1)𝑖 𝑗 .

us, we have proved (2.19). Now b) easily follows from a). c) In view of Lemma 2.3
and the equality 𝐽−1 = Ω−1

(𝔤) = −Ω(𝔤) , we have

(𝐵𝑖 , 𝐵 𝑗 ) = T(𝐵𝑖 | [𝑙 ·])𝑇Ω(𝔤)T(Φ𝐵 𝑗 | [𝑙 ·]) = 𝛿𝑖𝑘 (Ω(𝔤) )𝑘𝑠𝔅𝑠 𝑗 = (Ω(𝔤)𝔅)𝑖 𝑗 .

�

Let [𝑙 ·] = {𝑎1, . . . , 𝑎𝔤, 𝑏1, . . . , 𝑏𝔤} be a canonical homology basis on 𝑀 , let 𝐵· be
the corresponding dual basis in D and let 𝔅 be the corresponding auxiliary period
matrix. Let us establish the connection between 𝔅 and the 𝑏-period matrix B of the
coverM corresponding to the symmetric canonical basis [𝑙 ·] related to [𝑙 ·] via (2.17).
Denote

𝜔𝑖 = (𝑖𝐵𝑖 −Φ𝐵𝑖)♭ (𝑖 = 1, . . . , 2𝔤).

As follows fromLemma 2.2 and the equalityΦD = N ,𝜔𝑖 admit analytic continuation
to symmetric abelian differentials on the double M (still denoted by 𝜔𝑖 = 𝜔

†
𝑖
). Note

that 𝜔1, . . . , 𝜔2𝔤 constitute a basis in 𝐻1 (M;𝐾) due to the linear independence of
𝐵1, . . . , 𝐵2𝔤 . In addition,

𝑇 (𝜔𝑖 |𝑎 𝑗 ) = 𝑖𝛿𝑖 𝑗 −𝔅 𝑗𝑖 , 𝑇 (𝜔𝑖 |𝑏 𝑗 ) = 𝑖𝛿𝑖, 𝑗+𝔤 −𝔅 𝑗+𝔤,𝑖
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for 𝑗 ≤ 𝔤. In view of (2.16) and (2.17), we have

𝑇 (𝜔𝑖 |𝑎 𝑗 ) = 𝑇 (𝜔†
𝑖
|𝑎†

𝑗−𝔤) = 𝑇 (𝜔𝑖 |𝑎 𝑗−𝔤) = −𝑖𝛿𝑖, 𝑗−𝔤 −𝔅 𝑗−𝔤,𝑖 ,

𝑇 (𝜔𝑖 |𝑏 𝑗 ) = 𝑇 (𝜔†
𝑖
| − 𝑏†

𝑗−𝔤) = −𝑇 (𝜔†
𝑖
|𝑏†

𝑗−𝔤) = 𝑖𝛿𝑖, 𝑗 −𝔅 𝑗 ,𝑖

for 𝑗 > 𝔤. en the period matrix of the basis 𝜔· is given by

T( [𝑙 ·] |𝜔·) =
(
𝑖𝜒+− −𝔅𝑇 𝜒++ |𝑖𝜒++ −𝔅𝑇 𝜒+−

)
,

where

𝜒𝔰,𝔰
′
=

(
𝔰𝐼𝔤 𝔰′𝐼𝔤
0 0

)
, 𝜒𝔰,𝔰′ =

(
0 0
𝔰𝐼𝔤 𝔰′𝐼𝔤

)
(𝔰, 𝔰′ = ±) (2.20)

and 𝐼𝑚 is the unit 𝑚 × 𝑚-matrix. Introduce the new basis �̃�· in 𝐻1 (M;𝐾) by �̃�𝑖 =∑
𝑗 𝑀𝑖 𝑗𝜔 𝑗 , where 𝑀 = (𝑖𝜒+− −𝔅𝑇 𝜒++)−1. en its period matrix is equal to

T( [𝑙 ·] |�̃�·) = (𝐼2𝔤 | (𝑖𝜒+− −𝔅𝑇 𝜒++)−1 (𝑖𝜒++ −𝔅𝑇 𝜒+−)
)
.

Hence, the basis �̃�· is dual to [𝑙 ·]. In particular, the 𝑏-period matrix B of M corre-
sponding to [𝑙 ·] is related to𝔅 via

B = (𝑖𝜒+− −𝔅𝑇 𝜒++)−1 (𝑖𝜒++ −𝔅𝑇 𝜒+−). (2.21)

Symmetry (2.17) of the canonical homology basis leads to the symmetries of the dual
basis 𝜔· and the 𝑏-period matrix. Indeed, (2.17) and (2.16) imply

𝑇 (𝜔𝑖+𝔤 |𝑎 𝑗+𝔤) = 𝛿𝑖 𝑗 = 𝑇 (𝜔𝑖 |𝑎 𝑗 ) = 𝑇 (𝜔†
𝑖
|𝑎 𝑗+𝔤),

𝑇 (𝜔𝑖+𝔤 |𝑎 𝑗 ) = 0 = 𝑇 (𝜔𝑖 |𝑎 𝑗+𝔤) = 𝑇 (𝜔†
𝑖
|𝑎 𝑗 )

for 𝑗 ≤ 𝔤. Since the Abelian differentials are determined by their 𝑎-periods, we have
𝜔𝑔+𝑖 = 𝜔

†
𝑖
for 𝑖 = 1, . . . , 𝔤. As a corollary, we obtain

B𝔤+𝑖,𝔤+ 𝑗 = 𝑇 (𝜔†
𝑖
|,−𝑏†

𝑗
) = −B𝑖 𝑗 ,

B𝔤+𝑖, 𝑗 =𝑇 (𝜔†
𝑖
|𝑏 𝑗 ) = 𝑇 (𝜔𝑖 | − 𝑏𝔤+ 𝑗 ) = −B𝑖,𝔤+ 𝑗 .

(2.22)

3 Procedure for determination of period matrix of double cover
of 𝑀 from its DN map

Step 1. Determination of boundary data of harmonic normal vectors on 𝑀 .
Let 𝑢 = 𝑢 𝑓 be a harmonic function in 𝑀 with trace 𝑓 on Γ. enΦ∇𝑢 is a harmonic
field and the decompositionH = E ⊕ N yields

Φ∇𝑢 𝑓 = ∇𝑢ℎ + 𝐴, (3.1)

where 𝑢ℎ is a harmonic function in 𝑀 with trace ℎ on Γ and 𝐴 ∈ N . Note that 𝐴 =

(Φ − Φ̂)∇𝑢 𝑓 and ∇𝑢ℎ = Φ̂∇𝑢 𝑓 .
e vector field

𝐵 = Φ𝐴 (3.2)
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is an element of D. Restricting equations (3.1), (3.2) to the boundary and taking into
account (2.1), we obtain

−𝜕𝛾 𝑓 = Λℎ, Λ 𝑓 = 𝜕𝛾ℎ + 𝐴𝛾 , 𝐵𝜈 = −𝐴𝛾 . (3.3)

In particular, we have

𝐵𝜈 = 𝜕𝛾ℎ − Λ 𝑓 = −(𝜕𝛾Λ−1𝜕𝛾 + Λ) 𝑓 = −𝜕𝛾 (𝐻 + 𝐻−1) 𝑓 . (3.4)

As is easily seen from (3.4), 𝑓 is determined by 𝐵 up to an element of<Ker(𝐻+𝐻−1) =
clos𝐻1/2 (Γ;R)

(
<Tr𝒜(𝑀)

)
. is is related to the fact that the fields 𝐴, 𝐵 do not change

after adding the term Φ∇𝑢 𝑓 = ∇𝑢ℎ̃ to both sides of (3.1), where 𝑢 𝑓 + 𝑖𝑢ℎ̃ = �̃� ∈
clos𝐻1 (𝑀,𝑔)

(
𝒜(𝑀)

)
(i.e., the equation Φ∇𝑢 𝑓 = ∇𝑢ℎ̃ is exactly the Cauchy-Riemann

condition for �̃�). One can fix 𝑓 by the additional condition

( 𝑓 , 𝑓 )Λ = 0 ∀ 𝑓 ∈ Ker(𝐻 + 𝐻−1);

then 𝑓 is uniquely defined by 𝐵𝜈 and admits the representation

𝑓 =

𝔤∑︁
±𝑘=1

𝑓𝑘𝜂𝑘 ( 𝑓−𝑘 = 𝑓𝑘 ∈ C), (3.5)

where 𝜂𝑘 are given by (2.8). In particular, one can assume that 𝑓 is smooth.
In what follows, we say that the pair {𝐵𝜈 , 𝑓 } is a boundary data for 𝐵 ∈ D and

denote {𝐵𝜈 , 𝑓 } = 𝔗(𝐵). Note that each 𝐵 ∈ D admits boundary data. Indeed, for-
mula (2.4) implies that each 𝐴 = −Φ𝐵 admits representation (3.1).e space𝔗(D) of
all boundary data is denoted by DΓ . Since each 𝐵 ∈ D is determined by the normal
component of its boundary trace, the linear map 𝔗 : D → DΓ is a bijection.

From (3.1), (3.2), (2.6), and (3.3) it follows that

‖𝐵‖2 =‖𝐴‖2 = ‖Φ∇𝑢 𝑓 ‖2 − ‖∇𝑢ℎ‖2 = ‖∇𝑢 𝑓 ‖2 − ‖∇𝑢ℎ‖2 =
=(Λ 𝑓 , 𝑓 )Γ − (Λℎ, ℎ)Γ = (Λ 𝑓 , 𝑓 )Γ − (𝜕𝛾 𝑓 ,Λ−1𝜕𝛾 𝑓 )Γ = −(𝐵𝜈 , 𝑓 )Γ .

(3.6)

Due to (3.6) and the polarization identity, the inner products of elements ofD can be
found from their boundary data. Namely, we have

(𝐵, 𝐵′) = −(𝐵𝜈 , 𝑓
′)Γ = −( 𝑓 , 𝐵′

𝜈)Γ,

where {𝐵′
𝜈 , 𝑓

′} is the boundary data of 𝐵′ ∈ D. Similarly, since the subspacesN and
D = ΦN are 𝐿2 (𝑀 ;𝑇𝑀)-orthogonal to E andΦE , respectively, we have

(Φ𝐵, 𝐵′) = −(𝐵,Φ𝐵′) = −(Φ𝐴,Φ𝐵′) = −(𝐴, 𝐵′) = (∇𝑢ℎ −Φ∇𝑢 𝑓 , 𝐵′) =
= (Φ∇𝑢 𝑓 , 𝐵′) + (∇𝑣ℎ, 𝐵′) = 0 + (∇𝑢ℎ, 𝐵′) =

=

∫
𝑀

div(𝑢ℎ𝐵′)𝑑𝑆 −
∫
𝑀

𝑢ℎdiv(𝐵′)𝑑𝑆 =

=

∫
Γ

ℎ𝐵′
𝜈𝑑𝑙 + 0 = −(Λ−1𝜕𝛾 𝑓 , 𝐵

′
𝜈)Γ = −(𝐻 𝑓 , 𝐵′

𝜈)Γ .

We arrive at the following statement.
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Determination of period matrix via DN map 17

Proposition 3.1 Using the DN map Λ of 𝑀 , one can construct the isometric copyDΓ ofD
in the following way:

• The spaceDΓ is dened by

DΓ :=
{
{𝐵𝜈 , 𝑓 } ∈ 𝐶∞ (Γ;C) × 𝐶∞ (Γ;C)

���� 𝑓 =

𝔤∑︁
±𝑘=1

𝑓𝑘𝜂𝑘 , 𝑓−𝑘 = 𝑓𝑘 ∈ C, 𝐵𝜈 = −𝜕𝛾 (𝐻 + 𝐻−1) 𝑓
}
,

where 𝐻 = Λ−1𝜕𝛾 is the Hilbert map and 𝜂±1, . . . , 𝜂±𝔤 are eigenfunctions (2.8 )
corresponding to the eigenvalues 𝜆±1, . . . , 𝜆±𝔤 dierent from ±𝑖.

• DΓ is endowed with the inner product

({𝐵𝜈 , 𝑓 }, {𝐵′
𝜈 , 𝑓

′}) := −(𝐵𝜈 , 𝑓
′)Γ = −( 𝑓 , 𝐵′

𝜈)Γ (3.7)

and the alternating bilinear form

〈{𝐵𝜈 , 𝑓 }, {𝐵′
𝜈 , 𝑓

′}〉 := (𝐵𝜈 , 𝐻 𝑓
′)Γ = −(𝐻 𝑓 , 𝐵′

𝜈)Γ . (3.8)

Then the map 𝔗 : D → DΓ introduced after (3.5) is an isometry obeying

(Φ𝐵, 𝐵′) = 〈𝔗(𝐵),𝔗(𝐵′)〉 (𝐵, 𝐵′ ∈ D). (3.9)

Step 2. Determination of boundary data of harmonic normal vectors with integer
periods on 𝑀 .
Let us rewrite (3.1), (3.2) as follows

Φ∇𝑢ℎ = 𝐵 − ∇𝑢 𝑓 . (3.10)

Let 𝑈 be an arbitrary simple connected neighborhood in 𝑀 . Since 𝑢ℎ is harmonic
in 𝑈, the Poincaré lemma implies that there is a harmonic function 𝑉 in 𝑈 obeying
∇𝑉 = Φ∇𝑢ℎ . Hence, the function

𝑥 ↦→ 𝑊 (𝑥) := 𝑢ℎ (𝑥) + 𝑖𝑉 (𝑥) = 𝑢ℎ (𝑥) + 𝑖
∫ 𝑥

·
(Φ∇𝑢ℎ)♭ + 𝑖const (3.11)

is holomorphic in𝑈. However𝑊 is not in general globally defined on𝑀 : after analytic
continuation along the loop 𝑙 from any non-trivial cycle [𝑙] ∈ 𝐻1 (𝑀,Z) in𝑀 its value
acquires the shift

𝑇 (Φ∇𝑢ℎ | [𝑙]) = 𝑇 (𝐵 | [𝑙])
(the equality follows from (3.10)). Note that one can chose a single-valued branch of
𝑊 in a tubular neighborhood of Γ due to

∫
Γ
𝐵♭ =

∫
Γ
𝐵𝛾𝑑𝑙 = 0. In view of (3.10) and

(3.3), the boundary trace of𝑊 obeys

𝜕𝛾𝑊 |Γ = 𝜕𝛾ℎ + 𝑖𝑔(∇𝑉, 𝛾) = 𝜕𝛾ℎ + 𝑖𝑔(Φ∇𝑢ℎ, 𝛾) = 𝜕𝛾ℎ + 𝑖𝜕𝜈𝑢ℎ =

= (𝜕𝛾 + 𝑖Λ)ℎ = −(𝜕𝛾 + 𝑖Λ)Λ−1𝜕𝛾 𝑓 = −𝜕𝛾 (𝐻 + 𝑖) 𝑓 .

Hence,

𝑊 |Γ = −(𝐻 + 𝑖) 𝑓 + 𝑖𝐶

2025/03/27 00:03

https://doi.org/10.4153/S0008414X25000264 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X25000264


18 D. Korikov

Here 𝐶 ∈ R is a constant on Γ which depends on the choices of the constant in (3.11)
and branch of𝑊 near Γ. From now on, we assume that (the branch of)𝑊 is chosen in
such a way that 𝐶 = 0.

e multivalued function 𝑒2𝜋𝑊 acquires the multiplier 𝑒2𝜋𝑖𝑇 (𝐵 | [𝑙 ] ) after analytic
continuation along each closed loop 𝑙 in 𝑀 . erefore, 𝑒2𝜋𝑊 is single-valued if and
only if all the periods 𝑇 (𝐵 | [𝑙]) ([𝑙] ∈ 𝐻1 (𝑀,Z)) of 𝐵 are integer. In the last case,
𝑒2𝜋𝑊 |Γ is an element of Tr𝒜(𝑀) ≡ (Ker(𝐻 − 𝑖) õC) ∩𝐶∞ (Γ;C) due to Lemma 2.1.
So, 𝐵 has integer periods only if the equation

𝜕𝛾 (𝐻 − 𝑖)
[
𝑒−2𝜋 (𝐻+𝑖) 𝑓 ] = 0 (3.12)

holds on Γ. Note that (3.12) is invariant under the shift 𝑓 ↦→ 𝑓 +𝑞, where 𝑞 is a smooth
element ofKer(𝐻+𝐻−1) = Ker(𝐻−𝑖)õKer(𝐻+𝑖)õC. Indeed, if 𝑞 ∈ Ker(𝐻+𝑖)õC,
then 𝑞 is a boundary trace of some holomorphic function 𝑤 and 𝑒−2𝜋 (𝐻+𝑖)𝑞 = 𝑒−4𝜋𝑖𝑞

is the trace of 𝑒−4𝜋𝑖𝑤 .en the condition 𝑒−2𝜋 (𝐻+𝑖) 𝑓 ∈ Tr𝒜(𝑀) (equivalent to (3.12))
implies 𝑒−2𝜋 (𝐻+𝑖) ( 𝑓+𝑞) = 𝑒−2𝜋 (𝐻+𝑖) 𝑓 𝑒−4𝜋𝑖𝑤 ∈ Tr𝒜(𝑀) and vice versa.

Now, suppose that (3.12) holds on Γ. en there is a holomorphic function 𝑤 on
𝑀 whose boundary trace is equal to 𝑒−2𝜋 (𝐻+𝑖) 𝑓 = 𝑒2𝜋𝑊 |Γ . Since 𝑒2𝜋𝑊 and 𝑤 are
holomorphic and 𝑒2𝜋𝑊 = 𝑤 on Γ, they coincide everywhere where one of them can
be analytically continued.us, 𝑒2𝜋𝑊 = 𝑤 on𝑀 and 𝑒2𝜋𝑊 is single-valued.e latter
means that 𝐵 has integer periods 𝑇 (𝐵 | [𝑙]) ([𝑙] ∈ 𝐻1 (𝑀,Z)). us, we arrive at the
following statement.

Proposition 3.2 Introduce be the additive group

𝒢 = {𝐵 ∈ D | 𝑇 (𝐵 | [𝑙]) ∈ Z ∀[𝑙] ∈ 𝐻1 (𝑀,Z)}

of vector elds with integer periods inD and denote by𝒢Γ = 𝔗(𝒢) the corresponding group
inDΓ . Then𝒢Γ can be determined from the DN map Λ via the formula

𝒢Γ = {{𝐵𝜈 , 𝑓 } ∈ DΓ | 𝑓 is a solution to (3.12)}.

Using representation (3.5) for 𝑓 , one can rewrite equation (3.12) in more conve-
nient form. Let 𝑓𝑘 = 𝑓−𝑘 = 𝛼𝑘 + 𝑖𝛽𝑘 , where 𝛼𝑘 , 𝛽𝑘 ∈ R (𝑘 = 1, . . . , 𝔤). Introduce the
functions

𝑝𝑘 : = exp
(
− 2𝜋𝑖[𝜂𝑘 (1 + 𝜇𝑘) + 𝜂𝑘 (1 − 𝜇𝑘)]

)
,

𝑞𝑘 : = exp
(
2𝜋[𝜂𝑘 (𝜇𝑘 + 1) + 𝜂𝑘 (𝜇𝑘 − 1)]

)
,

(3.13)

where 𝜂𝑘 , 𝜇𝑘 are given by (2.8) and (2.5). en

−2𝜋𝑖(𝐻 + 𝑖) 𝑓 = 2𝜋
∑︁
𝑘

[𝑐𝑘𝜂𝑘 (𝜇𝑘 + 1) − 2𝜋𝑐𝑘𝜂𝑘 (𝜇𝑘 − 1)]

and (3.12) is equivalent to (1.4). As easily seen from (1.4), condition (3.12) is actually an
equation on 2𝔤 real variables 𝛼𝑘 , 𝛽𝑘 . us, 𝜘 := (𝛼1, . . . , 𝛼𝔤, 𝛽1 . . . , 𝛽𝔤) is a solution
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to (3.12) if and only if

{𝐵𝜈 (𝜘), 𝑓 (𝜘)} =
(
𝑖

𝔤∑︁
𝑘=1

[(𝜇−1𝑘 − 𝜇𝑘) (𝛼𝑘 + 𝑖𝛽𝑘)𝜕𝛾𝜂𝑘 + (𝜇−1𝑘 + 𝜇𝑘) (𝛼𝑘 − 𝑖𝛽𝑘)𝜕𝛾𝜂𝑘],

𝔤∑︁
𝑘=1

[(𝛼𝑘 + 𝑖𝛽𝑘)𝜂𝑘 + (𝛼𝑘 − 𝑖𝛽𝑘)𝜂𝑘]
)
(3.14)

is the boundary data of an element of𝒢.

Step 3. Determination of boundary data of canonical bases in D.
As shown in Proposition 3.2, the solutions to (3.12) (or to (1.4)) provide the bound-
ary data of vectors with integer periods in D. e next step is to find among
them the boundary data 𝔗(𝐵1), . . . ,𝔗(𝐵2𝔤) corresponding to some canonical basis
𝐵1, . . . , 𝐵2𝔤 inD. To this end, we apply the following statement.

Proposition 3.3 a) Let 𝐵1, . . . , 𝐵2𝔤 be a basis in D such that each eld 𝐵𝑘 has integer
periods. Then it is canonical (i.e., dual to some canonical homology basis) if and only if

(Φ𝐵𝑖 , 𝐵 𝑗 ) = (Ω𝔤)𝑖 𝑗 ∀𝑖, 𝑗 = 1, . . . , 2𝔤. (3.15)

b) Let 𝜅1, . . . , 𝜅2𝔤 be elements of𝒢Γ . Then𝔗−1 (𝜅1), . . . ,𝔗−1 (𝜅2𝔤) constitute canonical
basis inD if and only if

〈𝜅𝑖 , 𝜅 𝑗〉 = (Ω𝔤)𝑖 𝑗 ∀𝑖, 𝑗 = 1, . . . , 2𝔤 (3.16)

(the form 〈·, ·〉 is given by (3.8)).

Proof a) e necessity follows from Lemma 2.4, b). Let us prove the sufficiency. Let
𝑄1, . . . , 𝑄2𝔤 be a canonical basis in D and let [𝑙 ·] be the corresponding canonical
homology basis. Since 𝐵1, . . . , 𝐵2𝔤 are linearly independent, we have 𝐵𝑖 = 𝑀𝑖 𝑗𝑄 𝑗 ,
where 𝑀 is an invertible matrix. en

𝑇 (𝐵𝑖 | [𝑙𝑘]) =
∑︁
𝑗

𝑀𝑖 𝑗𝑇 (𝑄 𝑗 | [𝑙𝑘]) =
∑︁
𝑗

𝑀𝑖 𝑗𝛿 𝑗𝑘 = 𝑀𝑖𝑘

and, since each 𝐵𝑖 has integer periods, the entries of 𝑀 are integer.
In view to Lemma 2.3, condition (3.15) implies

(Ω𝔤)𝑖 𝑗 = (Φ𝐵𝑖 , 𝐵 𝑗 ) = −(𝐵𝑖 ,Φ𝐵 𝑗 ) =
∑︁
𝑘𝑠

𝑇 (𝐵𝑖 | [𝑙𝑘]) (−Ω−1
𝔤 )𝑘𝑠𝑇 (−Φ2𝐵 𝑗 | [𝑙𝑠]) =

=
∑︁
𝑘𝑠

𝑇 (𝐵𝑖 | [𝑙𝑘]) (Ω𝔤)𝑘𝑠𝑇 (𝐵 𝑗 | [𝑙𝑠]) =
∑︁
𝑘𝑠

𝑀𝑖𝑘 (Ω𝔤)𝑘𝑠𝑀𝑇
𝑠 𝑗 = (𝑀Ω𝔤𝑀

𝑇 )𝑖 𝑗 .

us, we have Ω𝔤 = 𝑀Ω𝔤𝑀
𝑇 and 0 ≠ det(Ω𝔤) = det(Ω𝔤) (det(𝑀))2. Since the

entries of 𝑀 are integer, we have det(𝑀) = ±1. us, entries of 𝑀−1 are also integer
and 𝐵1, . . . , 𝐵2𝔤 is a basis inD dual to the homology basis

[𝑙𝑖] = (𝑀−1)𝑖 𝑗 [𝑙 𝑗 ] .
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Moreover, the new homology basis [𝑙 ·] is canonical due to Lemma 2.4, b).
b) Denote 𝐵𝑘 = 𝔗−1 (𝜅𝑘), then conditions (3.15) and (3.16) are equivalent due to

(3.9). erefore, b) follows from a). �

Step 4. Determination of period matrices of 𝑀 and M.
Let 𝜅1 = 𝔗(𝐵1), . . . , 𝜅2𝔤 = 𝔗(𝐵2𝔤) be elements of GΓ obeying condition (3.16). In
view of Proposition 3.3, b), vectors 𝐵1, . . . , 𝐵2𝔤 constitute a basis in D dual to some
canonical homology basis [𝑙 ·] on𝑀 . In view of Lemma 2.4, c) and Proposition 3.1, the
auxiliary period matrix B corresponding to [𝑙 ·] obeys

(Ω(𝔤)𝔅)𝑖 𝑗 = (𝐵𝑖 , 𝐵 𝑗 ) = 𝜅𝑖 , 𝜅 𝑗 (3.17)

(the inner product onDΓ is defined by (3.7)).
So, using the previous steps and formula (3.17), one determines the auxiliary

period matrix 𝔅 of 𝑀 corresponding to some canonical homology basis [𝑙 ·] =

{𝑎1, . . . , 𝑎ð, 𝑏1, . . . , 𝑏ð} on it. en the 𝑏-period matrix B of M, corresponding to
symmetric canonical basis (2.17) is derived from𝔅 by applying formulas (2.21), (2.20).

It remains to note that, although one cannot control the choice of [𝑙 ·], it is still pos-
sible to find all other auxiliary periodmatrices (corresponding to all possible canonical
homology bases on𝑀) by applying transformations (2.18) to𝔅. en the substitution
of these matrices into (2.21), (2.20) provides all symmetric 𝑏-period matrices ofM.

On the stability of the algorithm under small noise in the boundary data

Let Λ be a DNmap of some (unknown) surface (𝑀, 𝑔) (we assume that the boundary
Γ of (𝑀, 𝑔) is given). We now explain the implementation of Steps 1-4 for the case
in which only some approximationΛ′ ofΛ is known. Namely, we assume thatΛ′ is a
continuous operator acting from 𝐻1 (Γ;C) to 𝐿C2 (Γ; 𝑑𝑙) and obeying

‖Λ − Λ′‖𝐻1 (Γ;C)→𝐿C
2 (Γ;𝑑𝑙)

≤ 𝜀, (3.18)

where 𝜀 is a small parameter called the noise bound. In what follows, we suppose that
the noise bound is known to the one who applies Steps 1-4.

Now, we describe the implementation of Steps 1-4 to obtain the approximation of
some 𝑏-period matrix B of the double of (𝑀, 𝑔) via Λ′.

Step 1 (implementation).
Introduce the approximate Hilbert transform 𝐻′ = Λ

′−1𝜕𝛾 . In view of (3.18), the
operator 𝐻

′−1 = 𝜕−1𝛾 Λ′ obeys

‖𝐻 ′−1 − 𝐻−1‖𝐻1 (Γ;C) ↦→𝐻1 (Γ;C) = 𝑂 (𝜀).

Here and in the subsequent, all estimates are assumed to be uniform in Λ′ (but not
uniform inΛ). In particular, the spectrum Sp(𝐻 ′−1) of𝐻 ′−1 is contained in the𝑂 (𝜀)-
neighborhood of the spectrum Sp(𝐻−1) of𝐻−1.e essential spectrumof𝐻−1 is {𝑖}∪
{−𝑖}. Since the set of Fredholm operators is open in the operator norm (seeeorem
1.4.17, [17]), the essential spectrum of 𝐻

′−1 is contained in the 𝑂 (𝜀)-neighborhoods
of ±𝑖. e same estimates are valid for the spectra of 𝐻′,𝐻.
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To find the approximations for eigenvalues (2.5) and eigenfunctions (2.8), we apply
the following simple lemma.

Lemma 3.4 Suppose that 𝜆 is a regular eigenvalue1 of a continuous operator 𝐴 (acting in
some Banach space 𝐸 ) of nite multiplicity and there is a punctured 𝑐0-neighborhood of 𝜆
which does not intersect the spectrum of 𝐴. Let 𝐴′ be an arbitrary continuous operator in 𝐸
obeying ‖𝐴′ − 𝐴‖ < 𝜀 for suciently small 𝜀. Let (𝜆′, 𝑓 ′) be any eigenpair of 𝐴′ obeying
|𝜆′ − 𝜆 | < 𝜀 and ‖ 𝑓 ′‖ = 1. Then there is 𝑓 ∈ Ker(𝐴 − 𝜆) such that ‖ 𝑓 − 𝑓 ′‖ = 𝑂 (𝜀).

Proof Consider the decomposition 𝐸 = Ker(𝐴−𝜆) ¤+𝐸 , where 𝐸 is a closed subspace
in 𝐸 (such 𝐸 exists since Ker(𝐴 − 𝜆) is finite-dimensional). Since 𝐴 is continuous,
(𝐴−𝜆)𝐸 is closed and the operator �̃� = ((𝐴−𝜆) |�̃�)−1 : (𝐴−𝜆)𝐸 → 𝐸 is continuous
due to the closed graph theorem. Decompose 𝑓 ′ as 𝑓 ′ = 𝑓 + 𝑓 , where 𝑓 ∈ Ker(𝐴−𝜆)
and 𝑓 ∈ 𝐸 . Since

𝑓 = �̃�(𝐴 − 𝜆) 𝑓 ′ = �̃�(𝐴 − 𝐴′) 𝑓 ′ − (𝜆 − 𝜆′) �̃� 𝑓 ′,

we have ‖ 𝑓 ‖ = 𝑂 (𝜀). �

us, to construct approximations of the eigenfunctions of𝐻 corresponding to the
unknown eigenvalue 𝜆 = 𝜆𝑖 , we find all (normalized in 𝐿C2 (Γ; 𝑑𝑙)) eigenfunctions of
𝐻′ corresponding to the (nonzero) eigenvalues 𝜆′

𝑘
obeying |𝜆′ ± 𝑖 | >

√
𝜀 and |𝜆′

𝑘
−

𝜆′
𝑙
| <

√
𝜀 and then chose among them the maximal collection of pairwise orthogonal

(in 𝐿C2 (Γ; 𝑑𝑙)) eigenfunctions 𝜂′𝑖 , . . . , 𝜂′𝑖+𝑚(𝑖) . As a result, for sufficiently small 𝜀, we
obtain the approximations (𝜆′±𝑘 , 𝜂

′
±𝑘) of the eigenpairs (𝜆±𝑘 , 𝜂±𝑘) obeying

|𝜆′±𝑘 − 𝜆±𝑘 | + ‖𝜂′±𝑘 − 𝜂±𝑘 ‖𝐻1 (Γ;C) = 𝑂 (𝜀) (𝑘 = 1, . . . , 𝔤). (3.19)

Now, we introduce the space D′
Γ
and the bilinear forms (·, ·)′, 〈·, ·〉 in the same way

as in Proposition 3.1, where 𝜂±𝑘 are replaced by 𝜂′±𝑘 . Denote

𝜅′±𝑘 := {−𝜕𝛾 (𝐻′ + 𝐻 ′−1)𝜂′±𝑘 , 𝜂
′
±𝑘},

then formulas (3.18), (3.19) imply the closeness between the structures onD′
Γ
andDΓ ,

(𝜅′±𝑖 , 𝜅′(±) 𝑗 )
′ − (𝜅±𝑖 , 𝜅 (±) 𝑗 ) = 𝑂 (𝜀),

〈𝜅′±𝑖 , 𝜅′(±) 𝑗〉
′ − 〈𝜅±𝑖 , 𝜅 (±) 𝑗〉 = 𝑂 (𝜀) (𝑘 = 1, . . . , 𝔤).

(3.20)

Step 2 (implementation).
Instead of (1.4), we consider the (approximate) equation

𝜕𝛾 (𝐻′ − 𝑖)
[
(𝑝′1)𝛼

′
1 . . . (𝑝′𝔤)𝛼

′
𝔤 (𝑞′1)𝛽

′
1 . . . (𝑞′𝔤)𝛽

′
𝔤
]
= 0,

1i.e., its geometric and algebraic multiplicities coincide.
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where 𝑝′
𝑘
, 𝑞′

𝑘
are given by formula (3.13) with 𝜂𝑘 replaced by 𝜂′

𝑘
. Introduce the

functions

ℰ(𝜅) := ‖𝜕𝛾 (𝐻 − 𝑖)
[
𝑝
𝛼1
1 . . . 𝑝

𝛼𝔤

𝔤 𝑞
𝛽1
1 . . . 𝑞

𝛽𝔤
𝔤

]
‖𝐿C

2 (Γ;𝑑𝑙)
,

ℰ
′ (𝜅′) := ‖𝜕𝛾 (𝐻′ − 𝑖)

[
(𝑝′1)𝛼

′
1 . . . (𝑝′𝔤)𝛼

′
𝔤 (𝑞′1)𝛽

′
1 . . . (𝑞′𝔤)𝛽

′
𝔤
]
‖𝐿C

2 (Γ;𝑑𝑙)
,

where 𝜘 := (𝛼1, . . . , 𝛼𝔤, 𝛽1 . . . , 𝛽𝔤) and 𝜘′ := (𝛼′1, . . . , 𝛼′𝔤, 𝛽′1 . . . , 𝛽′𝔤).
Recall that the global minima (i.e., zeroes) ofℰ correspond to the boundary data of

elements ofD with integer periods via (3.14). Letℬ be a sufficiently large closed ball
in the parameter space R2𝔤 of 𝜘 whose interior contains the zeroes ofℰ correspond-
ing to the elements of some canonical dual basis in D. en estimates (3.19), (3.18),
formula (3.13), and the continuity of the embedding 𝐻1 (Γ;C) ⊂ 𝐶 (Γ;C) yield

‖ℰ′ −ℰ‖𝐶 (R2𝔤 ) = 𝑂 (𝜀). (3.21)

Let 𝜘 ∈ ℬ be a zero of ℰ, then Π = 𝑝
𝛼1
1 . . . 𝑝

𝛼𝔤

𝔤 𝑞
𝛽1
1 . . . 𝑞

𝛽𝔤
𝔤 is a trace

on Γ of holomorphic invertible function on (𝑀, 𝑔). For small variations 𝛿𝜘 :=
(𝛿𝛼1, . . . , 𝛿𝛼𝔤, 𝛿𝛽1, . . . , 𝛿𝛽𝔤), we have

𝜕𝛾 (𝐻 − 𝑖)
[
𝑝
𝛼1+𝛿𝛼1
1 . . .𝑝

𝛼𝔤+𝛿𝛼𝔤

𝔤 𝑞
𝛽1+𝛿𝛽1
1 . . . 𝑞

𝛽𝔤+𝛿𝛽𝔤
𝔤

]
=

=𝜕𝛾 (𝐻 − 𝑖)
∑︁
𝑘

[
log𝑝𝑘𝛿𝛼𝑘 + log𝑞𝑘𝛿𝛽𝑘

]
Π +𝑂 ( |𝛿𝜘|2).

Note that the first termvanishes only if 𝛿𝜘 = 0. Indeed, otherwise, there is the nonzero
linear combination ofΠlog𝑝𝑘 andΠlog𝑞𝑘 which is a trace of a holomorphic function.
Since Π−1 is the trace of holomorphic function and log𝑝𝑘 , log𝑞𝑘 admit representa-
tions (3.13), we conclude that there is a nonzero linear combination of 𝜂±𝑘 which
is the trace of holomorphic function (i.e., an element of Ker(𝐻 − 𝑖) ¤+C), this gives a
contradiction. us, we obtain the non-degeneracy of all minima 𝜅 ofℰ,

0 < 𝑐0 <
ℰ(𝜘 + 𝛿𝜘)

|𝛿𝜘| < 𝑐1 < +∞ (|𝛿𝜘| < 𝑐3),

where the constants 𝑐1, 𝑐2, 𝑐3 depend on Λ and ℬ. In particular, the inequality
|ℰ(𝜘′) | < 𝜖 � 1 implies that 𝜘′ lies in𝑂 (𝜖)-neighborhood of some solution 𝜘 to (1.4).

Let us find the minimum 𝜘′ ∈ ℬ of ℰ′. en |ℰ′ (𝜘′) | < 𝜀 and (3.21) yields
|ℰ(𝜘) | = 𝑂 (𝜀). us, |𝜘′ − 𝜘| = 𝑂 (𝜀), where 𝜘 is a solution to (1.4). Now, remove
fromℬ the

√
𝜀-neighborhood of 𝜘′ and repeat the procedure, etc. As a result, we find

all the approximations of the solutions to (1.4) in ℬ. For each approximation 𝜘′, we
construct the approximate boundary data 𝜅′ := (𝐵′

𝜈 (𝜘′), 𝑓 ′ (𝜘′)) via formula (3.14)
with 𝛼𝑘 , 𝛽𝑘 , 𝜂𝑘 , 𝜇𝑘 replaced by 𝛼′

𝑘
, 𝛽′

𝑘
, 𝜂′

𝑘
, 𝜇′

𝑘
, respectively. As a result, we obtain

approximations 𝜅′ of all boundary data 𝜅 (with parameters 𝜘 inℬ) obeying

‖𝜅′ − 𝜅‖𝐿C
2 (Γ;𝑑𝑙)×𝐻1 (Γ;C) = 𝑂 (𝜀). (3.22)

Since the radius ofℬ is unknown, we actually start with some ballℬ′, then enlarge
it and repeat the above procedure, e.t.c., until we obtain the sufficiently large number
of solutions 𝜅′ to successfully perform the next step (finding the approximation of the
boundary data of some canonical dual basis).
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Step 3 (implementation).
Let us find a collection of approximations 𝜅′1, . . . , 𝜅

′
2𝔤 obeying

|〈𝜅′𝑖 , 𝜅′𝑗〉
′ − (Ω𝔤)𝑖 𝑗 | <

√
𝜀.

In view of (3.22) and (3.20), the corresponding exact boundary data 𝜅1, . . . , 𝜅2𝔤 obey
condition (3.16) up to the discrepancy𝑂 (

√
𝜀). Since the left-hand side of (3.16) is inte-

ger, this means that 𝜅1, . . . , 𝜅2𝔤 constitute the boundary data of some canonical dual
basis.

Step 4 (implementation).
Let us calculate the (2𝔤×2𝔤)-matrix𝔓′with the entries𝔓′

𝑖 𝑗
:= (𝜅′

𝑖
, 𝜅′

𝑗
)′.en formula

(3.17) and estimates (3.20), (3.22) imply that 𝔓′ − Ω(𝔤)𝔅 = 𝑂 (𝜀), where 𝔅 is some
auxilliary period matrix of (𝑀, 𝑔). us, we obtain the approximation𝔅′ = Ω−1

(𝔤)𝔓
′

of 𝔅 obeying 𝔅′ − 𝔅 = 𝑂 (𝜀). Now the substitution of 𝔅′ instead of 𝔅 into (2.21)
provides the approximationB′ of some 𝑏-period matrixB of the doubleM of (𝑀, 𝑔),
obeying B′ − B = 𝑂 (𝜀). ereby, Proposition 1.1 is proved.
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