
A NOTE ON GROUPS WITH NON-CENTRAL NORM
by R. A. BRYCE and L. J. RYLANDS

(Received 22 June, 1992)

1. Introduction. The norm K(G) of a group G is the subgroup of elements of G
which normalize every subgroup of G. Under the name kern this subgroup was
introduced by Baer [1]. The norm is Dedekindian in the sense that all its subgroups are
normal. A theorem of Dedekind [5] describes the structure of such groups completely: if
not abelian they are the direct product of a quaternion group of order eight and an
abelian group with no element of order four. Baer [2] proves that a 2-group with
non-abelian norm is equal to its norm.

As for the embedding of the norm Schenkman [10] proves that *(G) is always
contained in the second centre £2(G) of G. A recent result of one of us and Cossey and
Ormerod [3], extending a result of Meixner [9], concerns the restriction that a non-central
norm imposes on a group: a metabelian group G of exponent p2 where p is prime, and in
which K(G) is not central, has nilpotency class at most 2p — 2. (In some sense this is the
natural direction of generalization of Baer's result (op. cit.) for, when p is odd, the norm
is necessarily abelian.) However neither exponent p2 nor metabelian can be simply
omitted from this result if the desired result is bounded class. Indeed consider the group
G =A x B where A has exponent p and B has exponent p2 with K{B) not central; for
example, let B be non-abelian of exponent p2 and order p3. Then it is easy to see that
K(G) = t,x{A) X K(B)J= £ I (G) . However for suitably large primes p the group A, and
therefore the group G, need not even be nilpotent, and certainly there is no bound on its
class if it is nilpotent. Hence metabelian cannot simply be omitted. Choosing A =
Cp wr(Cp x Cp x . . .) and B = {a, b :ap' = b"2 = 1, b'^ab = ap+l) gives a group G which
is metabelian, of exponent p3, with K(G) not central, but which is not nilpotent.

The present note observes that the first counter-example above fails when p is three,
because then A is of class at most three. This is a result of Levi [8]; see M. Hall [6, p. 322]
for a proof. We prove in fact that no counter-example can be made in this case.

For convenience we denote by <$ the class of groups G of exponent dividing 9 in
which je(G)=9t£,(G).

THEOREM 1.1. A group in <§ has nilpotency class at most 5, and this bound is best
possible.

2. The class %t. It will be useful to recall the definition of the Hughes subgroup in
the present context. If G is a group then H3(G) is the subgroup of G generated by
elements whose order is not 3. Therefore the elements in G\H3(G), if any, all have order
exactly three. We will denote by $f the class of groups of exponent 9 for which
H3(G) ¥= G. Strauss and Szekeres [11] showed that the well-known question of Hughes [7]
has a positive answer in the case of the prime 3. We note this in our case as follows.

LEMMA 2.1 (Strauss and Szekeres [11]). / / H e W then \H: H3(H)\ = 3.

The next result is effectively in Strauss and Szekeres but for completeness we record
a proof. We adopt as a continuing notation that in a group H e W, H3(H) is denoted by
D.
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LEMMA 2.2. Let H e %€. Then for every y e D, the normal closure of y in H is abelian.

Proof. Let y e D and x $ D. Then xy and x2y are neither in D. Consequently x, xy
and x2y all have order 3. Therefore

1 = (xy)3 = xyxyxy = x~2yx2 . x~*yx . y =yx yxy (2.3)

and, similarly,

l=yxyx2y.

It follows that

yxyx2=yxY
and hence

[y\y] = l. (2.4)

Now for d e D, xd~l $ D so, from (2.4),

i = [yxd~\yY = [yx,ydl

In this we may replace x by x2, and get [yx2,yd] = l. But then from (2.3) we deduce
that [yJ,y] = 1. Combined with (2.4) this means that for all h in H, [yh,y] = 1. Finally
for all huh2eH,

[y'",yh2] = [yh'hi',yp = h

as required.

LEMMA 2.5. For H e $f, D has class at most 3 and y3(D) has exponent dividing 3.

Proof. By (2.2) for all yuy2eD,

It follows from a result of Levi [8] (see p. 322 of M. Hall [6] for a proof) that D has class 3
at most and that y3(£>) has exponent dividing 3.

LEMMA 2.6. Let He3t Suppose that y e y^D) for some i > 0. If x e H\D then for
some a e Yi{D),

[y,x,x] = a3.

Proof. For, by (2.3), and using (2.2)

1 = y2(yx yxy)y~2 = y2yx2yxy~1 =y2yx2y~[yx

= y3[y,x2][y,x]

=y3[y,xf[y,x,x)

= (y[y,x])3[y,x,x]

which yields the required result.

LEMMA 2.7. For H effl,y eD and heH
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Proof. Note that

by (2.2), whence

LEMMA 2.8. For H e %, x e H\D, y{ e y,(£>), y2 e Yj(D) and y3 e D, we have
0) [[yi>x], bi, x]] = a3, for some a e Yi+i{D),
(ii) [yi,x,y1,x] = b3, for some b e yi+j(D),

and
(iii) [y,,x,y2,y3,x] = l.

Proof. From (2.2) we have 1 = lyiy2,x,yiy2]. Using standard commutator identities
we conclude, on expanding, that

x,yl] (2.9)

since all other terms are trivial by (2.2). Replacing yt by [^i,x] gives

I = [y\,x,x,y2][[y2,x],[yl,x]].

Therefore

for some a{) in /,(£>), by (2.2) and (2.6). This verifies (i).
(ii) From the Jacobi-type Hall identity we get

= [x,[yt,x]~\y2][y2,x-l,[yux]Y

by (2.2), (2.6) and (2.7). Therefore

[y\,x, y2, x] = [yx ,x,x,y2][[y2, x]'', [yx
u x]]

for some a,,ey,(Z?) and some bQeyi+j(D), by (2.2), (2.6) and (i). This is what (ii)
requires.

(iii) Now (2.9) holds for all x in H, not just for x $ D and it may be written in the
form 1 = [x,y\,y2][x,y2,yi\. In particular therefore we have
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whence
[yi, x, y2, y3,x] = [y, ,x ,[y2, y3], x]~l

e y3(£»)3

= 1,
by (ii) and (2.5).

This completes the proof of (2.8).
There is a close connexion between the classes <6 and $f. One aspect of this is given

in (3.2) below. Another is alluded to in the second example given in Section 1. We
formulate this here in the context of this note.

LEMMA 2.10. Let H e W and let K be non-abelian of order 27 and exponent 9. Then
there is a group G in <& and a sub-direct embedding G—*HxK.

Proof. Choose xa e H\D and let K = (a, b :a9 = b3 = 1, b~lab = a4). Define G to be
the subgroup D(a3, b){xQa) of H x K. It is left as an exercise for the reader to verify
that b e K(G)\^(G).

Once Theorem 1.1 is proved, (2.10) will allow us to conclude that groups in 34? have
class at most 5. In fact we will prove the following result.

THEOREM 2.11. Every group in Mhos class at most 5 and this bound is best possible.

3. Non-central norm. Recall that "S is the class of all groups G of exponent dividing
9 in which K(G) is not central.

LEMMA 3.1. Let G E » . Then ifw e K(G)\£,(G) and C = CG(w), (i) \G: C\ = 3 or G
has class at most 4, and (ii) [G, w] = (x3), for every x e G\C if G is not of class 4.

Proof. For every x e G\C, [w,x] =x±3 since w e #r(G)\£,(G). Hence every element
of C/Ci(C) not in C/£,(G) has order 3. Therefore H3(G/Ci(G)^C/^(G)^G/^(G).
By Strauss and Szekeres [11] therefore, either 3 = |G/£,(G)://3(G/£,(G))| s=
|G/t,(G):C7t,(G)|=s3 and it follows that \G:C\ = 3 as required by (i); or G/^(G) has
exponent 3 and therefore G has class at most 4 by Levi [8]. Part (ii) now follows
immediately.

COROLLARY 3.2. For every G e S of class greater than 4, G/[G,w]e ffl and
H3(G/[G, w]) = C/[G, w], for every w e jc(G)\e,(G).

For fixed w e K(G)\t\(G) we denote Cc(w) by C and [G, w] by X throughout.

LEMMA 3.3. Let G e'S have class greater than 4 and y eC. Then for every g e G,

[g,y3] = [g,yf.
Proof. Since by (3.2), G/XeW, we have from (2.2) that [g,y,y] e Xc

Hence, again using (2.2),

[g,y3] = fe, y]\g, y2Y

= [g,y)3

as required.
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LEMMA 3.4. For G &(S, x $ C and y,, y2, y3eC we have either Y$(G) = 1 or

[y\,yi,x, y3f = [yt,x, y2, y3? = 1-

Proof. Define Z by Z/X = £X(G/X). Note that Z c £2(G). We prove first that if G
has class greater than 4, then Z is contained in C and has exponent 3.

Suppose that G has class greater than 4. Then Z c.C because, if not, there exists
x(teZ\C and, by (3.1), G = C{x{)). However C has class at most 4 by (3.2) and (2.5).
Therefore every commutator of weight at least 5 whose entries are x{1 or belong to C is
trivial (recall that x{)e t2(G)), contradicting the assumption that G has class greater than
4. It follows that Z c C a s claimed.

Suppose that z e Z and choose x e G\C. Then xz $ C and so by (3.1) (ii) (xz)3 = x±3.
However

{xzf = J C W z = x3z3[z, x2][z, x] = x3z3[z, x]3 = x3z3.

Therefore x3z3 = (xz)3 = x±3, whence z3 = 1 or z3 = JK3. Since z2 also is in Z and has order
the same as z, we must have that z3 = 1 or z6 = (z2)3 = x3 = z3, whence z3 = 1. It follows
that Z has exponent 3.

The result will follow when we show that [yi,y2,x,y3] and [yx,x,y2,y3] are in Z.
Note first that, by (2.5), both [yt,y2,x,y3,y] and [yx,x,y2,y3,y] are in A'for every y e C.
Secondly consider [y\,y2,x,y3,x] and [y\,x,y2,y3,x]. Both are in Xby (2.8)(ii) and (iii).
Putting both these facts together we have the result claimed, that [.yi,^,*,}^] and
[y\iX,y2,y3] are in Z. This completes the proof of (3.4).

We are now in a position to begin the proof-proper of Theorem 1.1. It suffices to
show that every simple commutator of weight six whose entries are, in some order, /,, t2,
/3, t4, ts, tf, is trivial. Since C has class at most 4 by (3.2) and (2.5) we may as well assume
that one of tu. . . ,/6 is not in C. Renaming if necessary we may suppose it to be t6

which we now call x. A different /,• will have the property that precisely one of /,, tjx and
t,-x~l is in C. Whichever it is, call it _y, ( l < / < 5 ) . Since {tut2,...,t6} and
{y\,y2, • • • ,y5,x} generate the same group we need only show that every simple
commutator of weight 6 with entries from the latter set is trivial. Without loss of
generality we may suppose that its first entry is _y,.

LEMMA 3.5. / / exactly three of the unspecified entries in [yu -,-,-, -,x] or
[yu - , - , - , -,y2] are x then each commutator is trivial.

Proof. Since the missing entries contain three x's, both entries of one pair of
adjacent entries are x. Hence by (2.6), (3.2) and (3.3) the commutators in question will
take one of the forms

[y\,x,y2,x]3 or [yuy2,x,x]3

on the one hand, and

[yi,x,y2,y3f or [yuy2,x,y3f
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on the other. The latter two are trivial by (3.4); and the first two are likewise trivial by
(2.8)(ii) and (3.2), and (2.5) and (3.2) respectively.

LEMMA 3.6. Both commutators [yux,x,x,x,x] and [y{,x,x,x,x,y] are equal to 1.

Proof. This follows from (2.6) and (3.3).

It is now sufficient to show that the following result holds.

LEMMA 3.7. Every commutator of the form [yu - , - , - , -] in which at most two of the
unspecified entries are equal to x is central in G.

Proof. By (3.2) we can work in H = G/X, assuming the y's are in D = C/X and
x e H\D, and show that the commutators in question are trivial.

If at most one unspecified entry is x then the commutator is trivial by (2.5). So
suppose exactly two are equal to x. By (2.6), (2.8) the commutator is equal to d3 for some
d e y3(D) and therefore is 1 by (2.5).

This completes the proof of the Theorem 1.1, apart from the claim that 5 is the best
possible bound.

4. An example. Consider the group on three generators a, b, c and with defining
relators

a3, b\ c9, ( b a ) 3 , ( c a ) 3 , (a[c, b ] ) 3 , [b,a,b]

[b, c, b], [c, a, c], [c,b,c\, [be, a, be], [b,a,c, c], [c,a, b, b].

Using the computer program CAYLEY (Cannon [4]) we find the maximal nilpotent
3-quotient of exponent 9 of this group, to be of class 5. Its order is 313. A
power-commutator presentation of this group, H say, on thirteen generators can
therefore be found, say g\,g2, • • • , g\3 where g, is the image of a.

CAYLEY checks that (g2,g3,--- , g o ) is the Hughes subgroup H3(H) which is
therefore proper.

Hence the proof of Theorem 2.11 is complete. Using (2.10) this also completes the
proof of (1.1).
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