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Abstract. Let G be a group such that, for any subgroup H of G, every
automorphism of H can be extended to an automorphism of G. Such a group G
is said to be of injective type. The finite abelian groups of injective type are precisely
the quasi-injective groups. We prove that a finite non-abelian group G of injective type
has even order. If, furthermore, G is also quasi-injective, then we prove that G = K × B,
with B a quasi-injective abelian group of odd order and either K = Q8 (the quaternion
group of order 8) or K = Dih(A), a dihedral group on a quasi-injective abelian group
A of odd order coprime with the order of B. We give a description of the supersoluble
finite groups of injective type whose Sylow 2-subgroup are abelian showing that these
groups are, in general, not quasi-injective. In particular, the characterisation of such
groups is reduced to that of finite 2-groups that are of injective type. We give several
restrictions on the latter. We also show that the alternating group A5 is of injective type
but that the binary icosahedral group SL(2, 5) is not.

2000 Mathematics Subject Classification. Primary 20D45, Secondary 20F28.

1. Introduction. Eilenberg and Moore’s theorem states that the category of finite
groups does not contain non-trivial injective objects (see [3] and [6]). To sidestep this,
the following weaker condition, called quasi-injectivity, was introduced. A group G
is said to be quasi-injective if for every subgroup H of G and every homomorphism
φ : H → G there exists an endomorphism ψ : G → G that extends φ. In [2], it is
remarked that quasi-injective finite groups are precisely those finite groups G for which
all endomorphism of subgroups can be extended to endomorphisms of G. Quasi-
injective abelian groups were classified by L. Fuchs [4]: These are either divisible abelian
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groups or are periodic and each Sylow p-subgroup is a direct product of isomorphic
cyclic or quasi-cyclic groups (i.e. homocyclic groups).

Bertholf and Walls classified finite quasi-injective groups G ([2]) and Tomkinson
in [9] handled the soluble and locally finite case. In particular, it is proved that a locally
finite quasi-injective group is locally supersoluble, metabelian and a T-group. The
latter means that every subnormal subgroup is normal. In general, the classification of
quasi-injective groups is still not settled.

In [1], these investigations were continued focusing on extensions of automorphism
of subgroups. We recall the precise definition given to this. A group G is said to be
of injective type if for every subgroup H of G and every φ ∈ Aut(H) there exists
ψ ∈ Aut(G) such that φ = ψ|H . So, a necessary condition for a finite group G to be
of injective type is that |Aut(H)| divides |Aut(G)|, for every subgroup H of G. Clearly,
the group � is an abelian group of injective that, by the result of Fuchs, is not quasi-
injective. In [1], the abelian groups of injective type have been described. It follows that
a finite abelian group is of injective type if and only if it is quasi-injective. The non-
periodic abelian groups A of injective type are those with a divisible periodic subgroup
T(A) so that A/T(A) has rank one. Furthermore, it is shown that a finite nilpotent
group of odd order which is of injective type must be abelian.

In Section 2, we classify among the finite groups of injective type those that are
also quasi-injective. Next we show that finite groups of injective type must have even
order and classify finite supersoluble groups of injective type with abelian Sylow 2-
subgroups. In Section 3, we show that (non-abelian) Sylow 2-subgroups of a finite
group G of injective type can neither be a dihedral, nor a quaternion group of order
strictly larger than 8. However, if G is a non-abelian finite group of injective type,
with a non-central element of order at least three, then Aut(G) has a section that is
a dihedral group. It follows that |Aut(G)| is even and hence |Aut(G)| is even for all
groups of injective type (excluding C2). In the last section, we show that the alternating
group A5 is of injective type but the binary icosahedral group SL(2, 5) is not. On
the other hand, notice that a quasi-injective group is always soluble (see [2] and
[9]).

The notation used is mostly standard and follows that of [5] and [8]. By Gp we
denote an element of Sylp(G), the set of Sylow p-subgroups of the finite group G, and
by φg we denote conjugation by g ∈ G given by the mapping x �→ g−1xg.

2. Groups of injective type. We begin with recalling three elementary properties
stated in [1].

LEMMA 2.1. Let G be a group of injective type and H a characteristic subgroup of
G. Then H is of injective type.

LEMMA 2.2. Let G be a group of injective type, H a subgroup of G, φ ∈ Aut(H) and
ψ ∈ Aut(G) such that φ = ψ|H. Then

(1) ψ(CG(H)) = CG(H), the centraliser of H in G.
(2) ψ(NG(H)) = NG(H), the normaliser of H in G.

LEMMA 2.3. Let G = N � X, a semidirect product of the groups N and X. If G is of
injective type and N is characteristic in G then X is of injective type.

Another useful and easily proved property is the following.
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LEMMA 2.4. Suppose G = N × X, the direct product of two groups N and X. If
(|N|, |X |) = 1 then G is of injective type if and only if N and X are of injective type.

Let p be a prime and r ∈ �. Recall that a p-group G is said to be homocyclic of
type (pr, m) if it is the direct product of m copies of the cyclic group of order pr. Here,
m is allowed to be any cardinal. We set �pk (G) = 〈g ∈ G : gpk = 1〉.

Also recall that an automorphism of a group G is said to be a power automorphism
if it leaves invariant every subgroup of G. The subgroup generated by the power
automorphisms is denoted by Paut(G).

If A is an abelian p-group of finite exponent and φ ∈ Paut(A), then there exists
l ∈ � such that φ(a) = al, for all a ∈ A (see [8, 13.4.3]). Hence, in this case, Paut(A) ⊆
Z(Aut(A)). Moreover, if φ is non-trivial and has order prime to p, then it is also
fixed-point free.

If σ is a p′-automorphism of the abelian p-group A. Then (see [5, Chapter 5, 2.4])
σ acts trivially on A if and only if it acts trivially on �p(A). More generally, if σ is a
p′-automorphism of the p-group A, with p odd, then (see [5, Chapter 5, 3.10]) σ acts
trivially on A if and only if it acts trivially on �p(A). Therefore, an involution which
is in Paut(A) and acts non-trivial on �p(A) must be inversion and hence, in this case,
Paut(A) has a unique involution.

Since we need the classification of finite quasi-injective groups, we recall the result
of Bertholf and Walls. It shows how Paut(G) comes naturally into the picture when
studying quasi-injective groups. We denote by Q8 the quaternion group of order 8.

THEOREM 2.5 (Bertholf-Walls [2]). A finite group G is quasi-injective if and only
if either G = Q8 × A, with A a quasi-injective finite abelian group of odd order or G =
K � H such that

(1) Kp and Hp are homocyclic for each prime p;
(2) G′ = K ;
(3) (|K|, |H|) = 1;
(4) For each h ∈ H, if p is a prime divisor of |K| then φh ∈ Paut(Kp);
(5) If Kπ is a Hall π -subgroup of K (for some set of primes π ) then CH(Kπ ) is a direct

factor of H. In particular, Z(G) ∩ H = CH(K) is a direct factor of G.

For an abelian group A we put Dih(A) = A � C2, the semidirect product, where
the cyclic group C2 of order two acts by inversion on A.

THEOREM 2.6. Let G be a finite non-abelian group that is quasi-injective. Then, G is
of injective type if and only if G ∼= K × B, with B a quasi-injective abelian group of odd
order and either K = Q8 or K ∼= Dih(A) with A a quasi-injective abelian group of odd
order coprime with the order of B.

Proof. Let G be a finite non-abelian group of injective type. First assume G is
quasi-injective. So, G is as described in Theorem 2.5. Because of Lemma 2.4, to prove
the necessity of the conditions of the mentioned conditions, it is sufficient to deal
with the case that G = K � H, with K and H as in Theorem 2.5. So, if p is a prime
divisor of |K| and h ∈ H, then φh induces a power automorphisms on Kp. Denote
by ψ an extension of the inversion φ, say, on 〈h〉. Using the fact that the restriction
of φh on K is central in Aut(K), we obtain that φh = ψφhψ

−1 = φψ(h) = φh−1 and
hence φh2 = 1 (all homomorphisms are considered restricted to K). It follows that H2

centralises K . Hence, if |G| were odd, then H would centralise K and so G would be
abelian, a contradiction. So |H| must be even, A = O2′ (H) acts trivially on K and so
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is central in G. Because G is, by assumption, non-abelian, there exists a non-trivial
element of H/H2 � H2/H2

2 , say a, that acts non-trivially on K . Furthermore, as H2 is
homocyclic, for any other non-trivial element b of H/H2 there exits an automorphism
of H that induces an automorphism of H/H2 mapping a to b. Because G is of injective
type, such an automorphism is the restriction of an automorphism of G. As a is not
central in G it follows that b is not central in G. Because of Item 4 in Theorem 2.5,
it thus follows that the elementary abelian 2-group H/H2 � H2/H2

2 is isomorphic
with a subgroup of Paut(Kp). Hence, as remarked before Theorem 2.5, H/H2 must
be isomorphic to C2. Since H2 is homocyclic, we thus get that H � C2r × O2′ . Again
using that H2 is central in G, we obtain from Item 5 of Theorem 2.5 that r = 1 and thus
H � C2 × O2′ . So, G � (K � C2) × H2′ . As C2 acts non-trivial on each non-trivial Kp,
again by the comment before Theorem 2.5, the action of C2 on K is inversion. Hence,
G = Dih(K) × H2′ , as desired.

Because of Lemma 2.4 and Theorem 2.5, to prove the converse it is sufficient to
prove that if G = Dih(A), with A a homocyclic group of odd order, then G is of injective
type. Let H be a subgroup of Dih(A). If H ⊆ A, then, by the results mentioned in the
introduction, any automorphism of H extends to A and we get an extension to all
of G defining it as the identity on any element of order 2. So, we may suppose that
H = Dih(C) with C ⊆ A. Since C has odd order, it is characteristic in H and thus, any
automorphism of H restricts to an automorphism of C. Once again we can extend any
automorphism φ of H to all of G by first extending φ|C to an automorphism of A and
then extending this automorphism to G imposing that on some 2-element of H it acts
as φ. �

Together with the classification theorem of Bertholf and Walls, this theorem shows
that the class of finite groups that are quasi-injective differs from the class of finite
groups of injective type. We give an easy example. Let C7 = 〈x | x7 = 1〉, C3 = 〈y |
y3 = 1〉 and G = C7 � C3, with xy = x2. Then G is quasi-injective but is not of injective
type. This example also shows that if G has a normal subgroup H such that H and
G/H are of injective type, then G need not be of injective type. On the other hand, a
typical group which is both quasi-injective and of injective type is Dih(Cpr ), with p an
odd prime. Note that the indecomposable groups of Theorem 2.6, different from Q8,
are all Frobenius groups.

As mentioned in the introduction, Tomkinson extended the result of Bertholf and
Walls and showed that a locally finite quasi-injective group is metabelian and locally
soluble.

THEOREM 2.7. Let G be a finite non-abelian group of injective type. Then |G| is even.

Proof. Let G be a counter example of minimal order. By Feith-Thompson’s
Theorem, G is soluble. Denote the last non-trivial term of the lower central series
of G by L. Because L is characteristic in G we get from Lemma 2.1 that L is of injective
type. As, by assumption, G is a counter example of minimal order, it follows that L
is abelian. Hence (see for example [8, 9.2.7]), we have that G = L � N, where N is a
system normaliser and thus a nilpotent group. Because of Lemma 2.3, we thus also get
that N is a finite nilpotent group of injective type. Consequently, as mentioned in the
introduction, the subgroup N is abelian. Therefore, G′ ⊆ L and thus L = G′.

We claim that (|L|, |N|) = 1. Suppose the contrary and let p be a common prime
divisor of |L| and |N|. So, Np and Lp are non-trivial and Sp = 〈Lp, Np〉 is a Sylow
p-subgroup of G. Choose 1 
= g0 ∈ Lp

⋂
Z(Sp) of order p and g1 ∈ Np also of order
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p. Then, since L
⋂

N = 1 and G is of injective type, there exist ψ ∈ Aut(G) such that
ψ(g0) = g1. But, since Lp is characteristic in G, it follows that g1 ∈ Lp, a contradiction.
This proves the claim.

Next we claim that L is a p-group for some prime p. If not, then L = Lp × Lp′ for
some non-trivial p′-subgroup Lp′ of L. As Lp and Lp′ are characteristic subgroups of
G, we get that 〈Lp, N〉 = Lp � N and 〈Lp′ , N〉 = Lp′ � N are proper subgroups of G =
Lp′ � (Lp � N) = Lp � (Lp′ � N). From Lemma 2.3 and the minimality assumption,
we thus obtain that Lp � N and Lp′ are abelian. Hence, G is abelian, a contradiction.
Hence, indeed L is an abelian p-group.

A similar argument also shows that N is of prime power order. Indeed for otherwise,
write N = Nq1 × Nq2 (with q1 and q2 positive integers that are coprime) and consider
the proper characteristic subgroups L � Nq1 and L � Nq2 . Because of Lemma 2.1,
both subgroups are of injective type. The minimality assumption implies that these are
abelian and thus G is abelian, a contradiction.

So we proved that G = L � N, with both L and N abelian groups of prime power
order.

Now let x ∈ N. Assume there exists y ∈ L such that yx 
∈ 〈y〉. Since 〈y〉 
= 〈yx〉 and
G is of injective type, there exists ψ ∈ Aut(G) such that ψ(y) = y−1 and ψ(yx) = yx.
But then yx = ψ(yx) = (y−1)ψ(x) and hence x−1ψ(x) inverts y. Since, y is of odd order,
we obtain that x−1ψ(x) is of even order, a contradiction. It follows that x induces a
power automorphism of L and so, as mentioned earlier, there exists l ∈ � such that
yx = yl, for all y ∈ L.

We are now in a position to finish the proof. Since G is non-abelian, there exists
y ∈ L and x ∈ N such that yx 
= y. Hence, by the previous, φx ∈ Paut(L) and there
exists k ∈ � such that zx = zk, for z ∈ L. Because x has odd order and G is of injective
type, there exists � ∈ Aut(G) such that �(x) = x2. Let z = �(y). It follows that

�(y)k2 = zk2 = zx2 = �(y)x2 = �(y)�(x) = �(yx) = �(yk) = �(y)k.

Hence, o(y) divides k2 − k. Because k and o(y) are coprime, we conclude that o(y)
divides k − 1. Consequently, yx = y, a contradiction. Hence, G indeed is of even
order. �

Our next result gives a characterisation of supersoluble finite groups that are of
injective type and whose Sylow 2-subgroup are abelian.

THEOREM 2.8. Let G be a finite supersoluble finite group with G2 abelian. Then, G is
of injective type if and only if either G is abelian or G � A × (K � H), where

(1) A and K are abelian groups of odd order and of injective type,
(2) (|A|, |K|) = 1,
(3) H ∼= C2n , for some integer n ≥ 1.
(4) kt = k−1, for all k ∈ K and t ∈ H \ CH(K).

Proof. Suppose that G is of injective type. Since G is finite and supersoluble it
follows, by [8, 5.4.9], that W = {g ∈ G : o(g) odd } = O2′ (G). Therefore, W is of injective
type (Lemma 2.1), has odd order and hence, by the previous theorem, is abelian and
(by Theorem 2.5) its Sylow subgroups are homocyclic characteristic subgroups of G.
Schur-Zassehaus’s theorem ([8, 9.1.2]) guarantees that G = W � H with H ∈ Syl2(G).
By hypothesis, H is an abelian and, since it is also of injective type, it is homocyclic. If
H acts trivially on W then G is abelian and so we may suppose that it acts non-trivial
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on W . Setting A = CW (H), we will show that A is a direct factor of G. To prove this,
we shall prove that H = 〈h0〉 and that h0 either centralises or acts as inversion on the
Sylow subgroups of W . Hence, we may write W = A × K , with h0 acting as inversion
on K .

To prove the last assertions, let p be a prime divisor of |W | and suppose that H
acts non-trivially on Wp. Write G = Op′ (G) � (Wp � H). As Op′ (G) is characteristic in
G, it follows from Lemma 2.4 that the subgroup V = Wp � H is of injective type and
is supersoluble.

Since p > 2, Zappa’s result ([8, 5.4.8]) implies that there exists x ∈ Wp, o(x) = p,
such that L = 〈x〉 is normal in V . Suppose there exists h ∈ H such that h2 
∈ CH(L)
but h4 ∈ CH(L). Then (L � 〈h〉)/〈h4〉 � L � C4 = L � 〈h〉, where the action defining
the semidirect product is given by xh = xh = xk, and gcd(k, p) = 1. Let N = 〈h〉 and
let φ ∈ Aut(N) be inversion. Then, since G is of injective type, there exists ψ ∈ Aut(G)
such that ψ |N = φ. Thus,

ψ(x)k = ψ(xh) = ψ(xh) = ψ(x)h−1
and ψ(x)

k = ψ(x)
h

−1

= ψ(x)
h

3

= ψ(x)
k3

.

Hence, p|(k3 − k), i.e., p|(k2 − 1), because gcd(k, p) = 1. It follows that [h2, x] = 1, a
contradiction. So we proved that h2 ∈ CH(L) for all h ∈ H.

Now, let z ∈ �p(Wp) and h ∈ H. Suppose z /∈ 〈x〉. Then, since V is of injective type,
there exists � ∈ Aut(V ) such that �(x) = z. From this we get that z = �(x�−1(h2)) =
zh2

, for all h ∈ H. It follows that h2 ∈ CH(Wp) and, consequently, h2 ∈ CH(Wp) (see
the comments after Lemma 2.4). Since 〈x〉 � V we also have that zh = �(x�−1(h)) ∈
〈z〉. This shows that any h ∈ H acts as a power automorphism on �p(Wp) and, as
h2 centralises �p(Wp), this action is an involution. Thus, invoking once more the
comments after Lemma 2.4, we have that each h ∈ H either centralises or acts as
inversion on �p(Wp). Since p is odd we have that h either centralises or acts as inversion
on Wp.

The former, and the structure of V , show that CH(Wp) is central in H, characteristic
and its index in H is 2. Hence CH(Wp) and H are homocyclic and [H : CH(Wp)] = 2. If
CH(Wp) 
= 1 then, since it is characteristic in H and H is of injective type, it contains
�2(H). Consequently, as both are homocyclic groups, they must have the same rank. It
follow that H ∼= C2n , for some integer n ≥ 2. Obviously, if CH(Wp) = 1 then H ∼= C2.

Conversely, suppose that G is as described, V is a subgroup of G and φ ∈ Aut(V ).
We have to prove that φ can be lifted to an automorphism of G. Write V = VA ×
(VK � VH), where the subscripts have the obvious meaning (for example VK = V ∩
K). Clearly, φ fixes VA and VK . The Schur-Zassenhaus theorem guarantees that the
complements of the kernels of the semidirect products involved all are conjugated to
each other. Hence, if necessary, conjugating by an element of G we also may assume that
φ fixes VH . Because of the assumptions, we have that kh = k−1, for any h ∈ H \ CH(K)
and all k ∈ K . Denote by φA, φK and φH the restrictions of φ to VA, VK and VH ,
respectively. Extend each one of them to A, K and H, respectively and denote these
extensions by �A, �K and �H (such extension exists because of the assumptions 1. and
3.). Then it is readily verified that the mapping � : G → G defined by mapping akh to
�A(a)�K (k)�H(h) (with a ∈ A, k ∈ K and h ∈ H) yields an automorphism of G that is
an extension of ψ , as desired. �

It remains an open problem to characterise the finite 2-groups that are of injective
type. In the next section, we will prove some information on their structure.

https://doi.org/10.1017/S0017089512000031 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089512000031


EXTENSION OF AUTOMORPHISMS OF SUBGROUPS 377

We finish this section by giving an example of a finite group of injective type that is
not quasi-injective. Let G � K � C2n , with n ≥ 2, C2n = 〈x | x2n = 1〉, K a homocyclic
p-group, p an odd prime and x acts via inversion on K . Then, by Theorem 2.8, G is
of injective type. But, because of Theorem 2.5 and since Z(G) = C2n−1 is not a direct
factor of C2n , the group G is not quasi-injective.

3. Obstruction to injectiveness. Here, we give some obstruction for a finite group
to be of injective type. By D2m (respectively Q2m ), we denote the dihedral (respectively
quaternion) group of order m.

PROPOSITION 3.1. Let G be a finite group of injective type.

(1) Let p be a prime divisor of |Z(G)|. Then there exists a positive integer n such that
Sylp(Z(G)) = �pn (G). Consequently, if, moreover, G is a 2-group, then Z(G) =
�2n (G), with 2n the exponent of Z(G) and thus D8 is not a subgroup of G.

(2) Let A be a characteristic subgroup of G and p a prime divisor of |A ⋂
Z(G)|.

Then �p(G) ⊆ A.
(3) If Q8 is a subgroup of G, then either all cyclic subgroups of order 4 of Q8 are

normal in G or none of them are. Consequently, Q2n is not a characteristic subgroup
of G.

Proof. Suppose a and b are elements of G, with |〈a〉| = |〈b〉| = pk, such that a ∈
Z(G) and 〈a〉 ∩ 〈b〉 = 1. Then H = 〈a, b〉 = 〈a〉 × 〈b〉 is a subgroup of G. Let φ ∈
Aut(H) defined by φ(a) = b and φ(b) = a. Then there exists ψ ∈ Aut(G) such that
ψ |H = φ. It follows that b = ψ(a) ∈ Z(G).

Let now g ∈ G be an element of order pk, where pk is at most the exponent
of Sylp(Z(G)), and let a ∈ Z(G) be an element of order pk. Then, by the previous,
〈g〉 ∩ 〈a〉 
= {1}. Hence, W = 〈g, a〉 ∼= Cpk × Cpl , with 0 < l < k, and 〈g〉 and 〈a〉 are
direct summands of W . Therefore, there exists φ ∈ Aut(W ) so that φ(a) = g. As G is
of injective type, there exists a ψ ∈ Aut(G) so that ψ|W = φ. Consequently, g = ψ(a) is
a central element of G. It follows that Sylp(Z(G)) = �pn (G) for some n.

Assume now that G also is a 2-group. Since elements of order 2 in D8 are central
in D8, it follows from the previous that D8 cannot be a subgroup of G. Hence, the first
part of the statement follows.

The proof of the second item is basically the same as that of the first item.
To prove the third part. Let Q8 = 〈a, b〉. Then there exists an automorphism of Q8

so that φ(a) = b. Because G is of injective type, there exists an automorphism � of G
so that �|Q8

= φ. So, if 〈a〉 is normal in G, then so is 〈b〉. Hence, the result follows. �

Note that it follows from the second part of the proposition that if G = Q8 × A is
of injective type, with A a finite 2-group, then A is trivial. Indeed, if A has an element,
say c of order 4 and Q8 = 〈a, b〉 then H = 〈a〉 and K = 〈ac〉 are subgroups of order
4 and L = HK = H × K . Let φ ∈ Aut(L) be such that φ(a) = ac. Thus, if G were of
injective type, then there exists ψ ∈ Aut(G) such that ψ|H = φ. Since H is a normal
subgroup in G we have that K = ψ(H) is a normal subgroup in G, a contradiction,
because (ac)b = a−1c = a2(ac) /∈ K . On the other hand, if A were elementary abelian
then choose 〈c〉 ⊂ A. Note that c is not a square in G. Set H = 〈a2〉 and K = 〈ac〉.
If G were of injective type then we can find an automorphism � of G such that
c = �(a2) = �(a)2 and hence c would be a square, a contradiction.
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The previous also shows that if G is a finite 2-group of injective type, and y ∈ G is
such that y2 ∈ Z(G) has order 2 then any element of Z(G) that is of order 2 is a square
of some element of G.

REMARK 3.2. Let G be a finite group of injective type and y ∈ G a non-central
element, o(y) ≥ 3. Then there exists ψ ∈ Aut(G), whose order is a power of 2, such
that ψ(y) = y−1. It follows that ψφyψ

−1 = φy−1 . Consequently, Aut(G) has a section
which is a dihedral group and hence |Aut(G)| is even. It is now easily seen that if G is
of injective type then |Aut(G)| is either trivial or has even order.

LEMMA 3.3. Let G be a a finite group and P a Sylow 2-subgroup of G. If P is
isomorphic to D2n , n ≥ 3 or Q2n , n ≥ 4, then G is not of injective type.

Proof. The main idea is the same in both cases. Let G be any of the two groups
and let 〈a〉 be the maximal cyclic characteristic subgroup of P. Choose b 
∈ 〈a〉 such
that o(b) = o(a2k

) and set c = a2k
, H = 〈b, c〉. In any case, there exist φ ∈ Aut(H)

such that φ(b) = c and φ(c) = b. If G were of injective type then φ would be the
restriction of ψ ∈ Aut(G). It follows that 〈ψ(a)〉 is a characteristic subgroup of ψ(P)
and b would be in this characteristic subgroup. Hence, b would be a square in P, a
contradiction. �

4. Non-soluble examples. We finish with looking at two finite non-soluble groups
one of which is of injective type but the other fails to be. In the latter case, we exhibit
the subgroup having an automorphisms, which does not extend to an automorphism
of the whole group.

EXAMPLE 4.1. The alternating group A5 is of injective type. More precisely, if
H < A5 and φ ∈ Aut(H) then there exists g ∈ S5 such that φ = (φg)|H .

Proof. Let H be a subgroup of A5. We need to show that any automorphism � of H
can be extended to an automorphism of A5. Actually, we will show that each � can be
lifted to an automorphism that is induced by conjugation with an element of S5. This is
clear in case H is cyclic, as elements of the same cyclic structure in Sn are conjugate. If
H has order 6 then H ∼= S3 and so all its automorphisms are inner and hence the claim
follows. If H has order 10, then H is conjugate to M = 〈(12345)〉 � 〈(14)(23)〉 and we
have that Out(M) has order 2 and is generated by the element which sends (12345) to
its square and fixes (14)(23). But this automorphism is induced by conjugation with
(1243) ∈ S5. So, again the claim follows. Assume now that H has order 4. Then H is
isomorphic to the Klein four-group and all such groups are conjugated in A5 (as they are
2-Sylow subgroups). Without the loss of generality, we may assume that H ⊂ A4 ⊂ A5

and we know that H � S4 ⊂ S5. Since the elements of order 2 of A4 are conjugate in
in S5, it follows that the normaliser of H in S5 contains a subgroup isomorphic to S3

which in turn is isomorphic to Aut(H) and thus the claim follows. Finally, it remains
to deal with H of order 12. In this case, H ∼= A4 and is the set of even permutations
of one of the following sets {1, 2, 3, 4}, {1, 2, 3, 5}, {1, 2, 4, 5}, {1, 3, 4, 5}, {2, 3, 4, 5}.
Hence, since Aut(A4) ∼= S4

∼= Inn(S4) and NS5 (A4) ∼= S4 ⊂ S5, the claim again
follows. �

The group G = SL(2, 5) is not of injective type. Nearly all its subgroups have
the property that their isomorphisms can be lifted to isomorphisms of G. Only the
subgroups of order 20 do not have this property. We show how this works since it
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might be useful. In fact, [7, Theorem 18.6] guarantees the existence of a Frobenius
complement G0, say, of order 240 such that G0/Z(G0) ∼= S5, the symmetric group
on five elements, and contains SL(2, 5) as a subgroup of index 2. We also have
SL(2, 5)/Z(G0) ∼= A5 and that Z(G0) is the unique subgroup of order 2 of G0. Let
H < G and H0 = H ∩ Z(G0). Denote by H the image of H in A5 < S5 and let
φ ∈ Aut(H); then φ(H0) = H0 and so φ induces an isomorphism φ ∈ Aut(H), given
by φ(g) = φ(g). By Example 4.1, it follows that φ = φx, for some x ∈ G0. So we have
that φ(h) = x−1hx or φ(h) = x−1hxz0, where Z(G0) = 〈z0〉. Hence, if o(h) is odd then
φ(h) = x−1hx. H is one of the following groups: C2, C3, C4, C5, C6, K8, C10, C3 � C4

with a generator of C4 inverting C3, C5 � C4 with a generator of C4 inverting C5 or
K8 � C3 = SL(2, 3). If H is cyclic then φ can obviously be lifted to G. In case H = K8,
note that NG0 (H) is the binary octahedral group of order 48 and CG0 (H) = Z(G0).
So we have that NG0 (H)/CG0 (H) ∼= S4 = Aut(K8) and hence once more φ is given by
conjugation with an element of G0. If H = SL(2, 3), then it is generated by its elements
of order 3. For an element h of order 3, we have that φ(h) = x−1hx and hence this holds
for all elements of H. Hence, we are left with H ∈ {C3 � C4, C5 � C4}.

In case H = C3 � C4 = 〈a〉 � 〈b〉 we have that Aut(H) ∼= 〈φ1〉 × (〈φa〉 � 〈φb〉),
where φ1 is a central automorphism defined by φ1(a) = a and φ1(b) = b−1. This shows
that Aut(H) ∼= S3 × C2. In case H = C5 � C4 = 〈a〉 � 〈b〉 we have that Aut(H) ∼=
〈φ1〉 × (〈φa〉 � 〈φb〉), where φ1 is a central automorphism defined by φ1(a) = a and
φ1(g) = b−1. This shows that Aut(H) ∼= C2 × (C5 � C4), with C4 acting faithfully
on C5.

If H = C3 � C4 < G then its image in A5 is S3 and hence there exists C2 < S5 such
that S3 × C2 < S5. It follows that the latter subgroup of S5 is the image of a subgroup
K containing H and such that K ∼= C3 � K8. From this we have that φ1 ∈ Aut(H)
is induced by the conjugation of an element of K8 < K . Since inner automorphisms
account for S3, it follows that all automorphisms of H are induced by conjugation with
an element of G0. However, if H = C5 � C4 < G then we have that Aut(SL(2, 5) ∼= S5

must have a section of order |Aut(H)| = 40, which is not the case. It is not hard to see
that φ1 is an automorphism, which cannot be extended to the whole group.
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