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RADIT OF CONVEXITY OF
TWO CLASSES OF REGULAR FUNCTIONS

P.D. Tuan anp V.V, ANH

This paper establishes the radii of convexity of the following

two classes of regular functions,

RYa = {f(Z) =z - 2az° + ceed f%fl -yl <y,
y=1, 0=a=1-(2)7%, lz| < 1} ,
TY(G) ={f(z) =Z+a222+ e g.ﬁ((%)y_Y <y,
glz) €6, y=1, |z] <1},
where

G = {g(z) =z + a222 + .o lg'(z)-1] <1, |a] < 1} .

1. Introduction

Let N be the class of functions f(z) regular in the unit disc
A = {z; |z| < 1} with the normalisation f(0) =0, f'(0) =1 . The

classes of functions f(z) € ¥ which are univalent, univalent convex,

univalent starlike are denoted by S, Sc, S* |, respectively. Let F be a
subclass of N . By T(F) and Iy(F) we shall mean the classes

T(F) = {f(z) € Ny Re{ﬁ%ﬁ%} >0, gz) €F, z € A} ,
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gE'L:;—Y|<Y,9(Z)EF,YEl,ZEA}-

T (F) = {f(z) €N,
Y
We note that Zm(F) = 7(F) and T(S*) is the well-known class of close-
to-starlike functions introduced by Reade [§].

The problem of determining the radius of starlikeness of T(F) or
Ty(F) when F varies in a subclass of N or S has been extensively
studied. For example, MacGregor [4], [5] obtained the radii of starlike-
ness of T(F) and T,(F) when F = §° or F=8*; Krzyz and Reade [3]
found those of T(S) and Zi(S) . A more difficult question which arises

naturally is that of determining the radii of convexity of these classes.
Sakaguchi [10] established the radius of convexity of 7T(S*) . Reade,
Ogawa and Sakaguchi [9] obtained the radius of convexity for a subclass of

T(S*) , namely the class
R = {f(z) € N; Re{f(2)/z} > 0, z € A} .

The method of £9] and [70], which is based on certain coefficient
inequalities, does not apply to the classes under consideration; therefore

we shall take a different course.
The problem of finding the radii of convexity of the classes TY(F)

may be transformed into that of establishing bounds for certain functionals

over the class
. P={p(Z) =1+P13+P232+---; RE{p(z)}>O,z€A} .

In fact, let B be the class of functions w(z) regular in A and
satisfying w(0) = 0, |w(z)| <1 there. Let f(z) € TY(F) , then
writing ¢(z) =1 - Y-lf(z)/g(z) , we have |¢(z)| <1 in A and

$(o) =1 -yt = Yo - Put wl(z) = [W(2)-p ]/ [1-y¥(2)] 5 then w(z) €B
and Y(z) = Eo(z)+wo]/[l+wow(z)] . In view of this and the fact that every

w(2) € B can be represented by w(z) = [p(z)-11/[p(2)+1] for some
p(z) € P (see Nehari [7], p. 169), we get

(1.1) flz) = l+(2y-{§; 7 ZE€h.

This representation yields
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2 2 -1
zf"(z) z2p"(z) z2°g"(=z g’ (z) zp'(2) 2zp'(z)
(1.2) M2 ) R I:P(Z)ﬂi T glz) :H:g(z) T p(z)+u T op(a)+u ?

where U = (2\(—1)_l . Hence the problem now is to find the sharp upper

bounds on Izl =r for

zzp"(z) z gn ]l:z zp'(z) _l|
(z)+u ~ g(z) T p(z)+u

and |zp'(2)/(p(2z)+u)| and to check that these bounds are attained at the

same point.
In this paper we shall employ the method described above to establish
the radii of convexity of the classes

fz)

2 <Y,

= {f(z) =z - 2az° + cees
YZl,OSaSl-(Zy)_l,ZGA}

and TY(G) , wvhere G = {g(z) € WN; [g'(2)-1] <1, z € A} . Letting y > e
in these results we obtain the radii of convexity of the classes

R =1{f(z) = 2 - 2az® + ..., Re{f(z)/z} >0, 0 =a =1, z € A}

and T(G) , respectively. The result for Ra , which involves the second

coefficient in the series expansion of functions in the class, refines that

obtained by Reade, Ogawa and Sakaguchi [9].

2. Radius of convexity of the class Rya

We first remark that there is no loss of generality in assuming the

second coefficient of functions f(z) € Rya to be real and negative, for,

if this is not the case, we may consider the functions

etef(e-iez) =z - ]a2|22 + ... ,vhere 0 =arga,+ 7.

We next define the subclass

= {p(z) € P; p'(0) = 2b, 0 =b = 1}

Then for p(z) € P }, » We may write p(z) = [1+w(z2)1/[1-w(2)] for some

w(z) € B so that
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_plz)

w(z) = p(a) 1 =bz + ... = aP(z) ,

where Y(z) is regular and |Y(z)| =1 in A with (0) =b . Now,
since 0 =b =1 , we have [Y(2)-2]/[1-Dy(2)] <3 in A (< reads "is
subordinate to"). Hence y(z) < (z+b)/(1+bz) in A . This yields

(2.1) Re{y(z)} = fE%H%}r > Ju(z)| = iE%Hgﬁ-, lo(2)] = 2] 75 tf

We now put 4 = (r+b)/(1+br) , 0 < r <1 , and define
Hr(z) = (1+42)/(1-Az) ; then it is clear that for p(z) ¢ Pb ,

p(z) £ H (z) , |z =» . And so, p(2) maps |z| < r into the disc

lp(z)—al =d , where

2 q- -5 g = rlr:b)

_ 1+4B
- ] ’
1-57 1-5° 14r

a

It follows immediately that for p(z) € Py s |zl =r <1,

_l_B < < < __l +B
(2.2) T35 = Re{p(z)} = |p(2)]| = I3 -
The first inequality is sharp for the function
2
p(z) = L2 4t z=-p ,
1-2bz+z

while the third inequality is sharp for the function

Returning to the class RYa , then in view of (1.1), every

f(z) =2 - 2az° + ... € Rya can be written as

(2.3) flz) = 3 a_lz)p(z) , 3 €A .

From the power series expansion of f(z) and (2.3) we find

p(z) =1 +2bz + ... , where b =2ya/(2y-1) . Also, 0=<b =<1 as
0=<a=1-(2y)"t . Thus p(z) € P, .
For f(z) € Rya , (1.2) bvecomes
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2
af"(z) _ zp'z) _ _ 2zp'(z)
(2.k) Y F e T T p@meweap (2) T pla)

33

The upper bounds for |zp’(z)/(p(2)+u)]| and |22p"(z)/(p(z)+u-zp'(z))l on

|z| = pr <1 are established in the following lemmas.

LEMMA 2.1. If plz) € P, , u>0, thenon |z|
(2.5) | p(z) 142bp+re

P(Z)ﬂl l+1.l+2b!‘+(l-u)l’2

Proof. Since p(z) = [1+#w(z)]/[1-w(z)] for w(z)

have
plz) _ 1 | 1+w(z)

(2.6) () = T TR0 /(L To(3)

r<i,

bz + ...

€ B

, we

From (2.1}, |w(z)]| = r(r+b)/(1+br) . Hence, in view of the Subordination

Principle, the image of ]zl = r under the transformation of the right-

hand side is contained in the disc

1w(z)  1-cB2| _ (1-C)B

(2.7) - <
wowlz) = o252l T ) 0%

>

where ¢ = (1-p)/(1+p) , B = r(r+b)/(1l+br) . The assertion now follows

from (2.6) and (2.7).
Equality in (2.5) occurs for the function
plz) = (1+2bz+z2)/(1-32] at z=r .
LEMMA 2.2. If p(z) € P, , then for 2z €A,

(2.8) Ip'(2)] = 2 Re{p(z)} b+213]+blzl§ .
1'|3|2 l+2b|z|+lz|2

Proof. Write p(z) = [1+a0(2)]/[1-29(2)] , where Y(z) =b + ...

such that |¢(z)| =1 in |z| <1 . fThen, from (2.1),

(2.9) [w(z)| = i%gffr.

Also,

p'(z) =2 '(z) (ig , z €A .
(1-2u(=))
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Thus
(2.10)  [|p'(a)| = 2lzp(@)w(a)] 1-|z(2) |
1-law(z) |2 |1-2w(2) |2
- 2la (@E)] | pegp(z))
1-|2y(z) |

29 (2) [+]p(z) ]
1-|z9(2) ]2
2l (1-10(z) [3) / (1-12]2) + [w(2) |
1—|ztp(z)|2

_ 2Relp(2)} | JU(z)]|+]=
- l-|z|2 1+|z

tA

2 Re{p(z)} -

IA

2 Relp(z)} -

The second last inequality follows from Carathéodory's inequality (see
Carathéodory [11, p. 18). The function (|Y(2)|+|z])/(1+]z]]v(2)]) is
monotonically increasing with respect to |¥(z)] ; hence from (2.9) and

(2.10) the result follows.

LEMMA 2.3. If p(z) €P,, u>0, thenon |z| =r<1,

(2.11) p'(a)| o 2n . _ brerebe?
p(z)+u l-r2 l+u+2br+(1-p)r2

Proof. For u > 0 , we have

zp{a)| ITZQ'(z)I _ lapi(=)] | 1
p(z)+u| ~ Relp(2)}+u = Relp(2)}  1+u/Relp(2)}

=

l+2br+r2

2r b+2r+br2 1 +4£Il-r2]
1—r2 l+2br+r2

-1
] , from (2.8) and (2.2)

2r b+2r+br®
1-r2 1+u+2br+(1—u)r2

Equality in (2.11) is attained for the function

p(z) = (142bz+42%)/(1-25) at z =7 .

The next lemma establishes an inequality which involves the second

derivative of p(z) . This is based on the well-known result that if
p(z) =1 +p,z + p222 + ... € P, then |p2| £ 2 . The bound also holds

true for functions in P with a fixed first coefficient. Indeed, let
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p(z) =1+ 2bz +pa” + ... €P, , 0sb =1, then from the
representation p(z) = [1+ap(2)]/[1-2¢9(2)] , where w(g) =b + blz + ...

and satisfies |[P(z)| =1 in A , we get after equating the coefficients
of the same powers of 2z ,
(2.12) 2b

It follows from Carathéodory's inequality that

2
bl,1_|b| .

Thus, in view of (2.12), we have

lp,-2b|° = 2 - 27,

that is, |p2| =< 2 , which is sharp for the function

2
=1+ 2bz + 222 + ...
Now let & be a complex number such that 0 < |£] <1 and p(z) ¢ Py .
Then the function g¢(z) defined by
q(z) = p[ 5'—5—] = p(€) + (1-1€]9)p"(8)z
1+&z
+ 5(1-1613) [(-1€19)pE)-2Bp" (£)]5% + ...

is regular and satisfies Re{g(z)} > 0 in A . Hence from the above

remark, the following lemma follows.

LEMMA 2.4. If p(z) € P, , then for lz] <1,

2
(2.13) zp"(z) - J%thg'P'(Z) = ——JLEi%‘E lp(2) | -
1]z (-1217)
In view of inequality (2.13) we get for | | <1,
2%p"(2)| . 2|2/ |2p'(2) Yz|® | p(z)
p(z)+u T 1-2)? p(z)+u (1-]2]3)2 p(z)+u

Thus an application of (2.11) and {2.5) to the right-hand side yields
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LEMMA 2.5. If p(z) €Py, u>0, thenon |z| =r<1,

(2.14) zgp"(z)| < hr2[l+3br+3r2+br3]
p(z)+u | (l—r2)2[i+u+2br+(l-u)r?]

Equality occurs for the function p(z) = (l+2bz+z2]/(l—22) at
z=r.

We are now in a position to prove the main result of this section.

THEOREM 2.6. The radius of convexity of Rya is given by the
smallest root in (0, 11 of the equation
(l+u)2 - 2b(1+u)r - 3(1+u)(5+u)1ﬂ2 - hb(6+5p)r3 - (1+2u_3u2+16b2]rh

- 6b(1)r° - (l-u)2r6' =0,

where b = 2ya/(2y-1) , u =1/(2y-1) .

Proof. As derived earlier in (2.4),

z2f"(z) _ 2zp’(z) z2p"(z)
I ) R Y =) FYMl] (e v oy M

where p(z) € P, . Hence

2 -1
2f"(z)) . 2zp'(2) 2p"(z) I ap '(z)
(2.15) Re{l + f, Z)} =1 - p(z)"_k1 - p(z)ﬂl 1 - p(Z)+u
Now, from (2.11), we have
zp'(z) zp '(z)
(2.16) Il—;}%;y:ﬁ =1 - E%W
., .2, _ biorebr®
l—r2 l+u+2br+(l—u)r2
_ l+u-2(2+u)r2--hbr3-(l—}g)rh
(lﬁre)[1+u+2br+(l-u)r2]
It is easy to check that the numerator has a root in (0, 1) . Let o be

its smallest root in (0, 1) ; then for |z| < o , we obtain

1 (1or?) [t dbrr(1-p)rP]

- l+u—2(2+u)r2-hbr3—(l-u)rh )

(2.17) |1 - Z?;gi&

Applying the bounds in (2.11), (2.14%) and (2.17) to (2.15) we get
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Re{l + ZJT(Z)} > F(r)
7'z [1+u+2br+(l-u)r2][l+u-2(2+u)r2-hbr3-(1-u)rh]

where

F(r) = (142 - 2b(1au)r - 3(14p) (5+)r% - Lb(6+5u)r>

- [1+2p_3u2+16b2)rh - 6b(l-u)rS - (1—u)2r6 .
Since F(0) = (1#m)2 >0, PF(1) = -16 - 16u - 16by - 32b - 1662 < 0 ,
F(r) has a root in (0, 1) . Denote its smallest root in (0, 1) by p ;
then the condition Re{l+zf"(2)/f'(2)} > 0 1is satisfied in

|z] < min(p, o) . We further note that, for f(z) as defined,
af'(=2)] _ zp'(a)] . 2p'(z)
Re{ f(z) } - Re{l - p(z)+u} =1 - @

Thus, in view of (2.16), we have Rel{zf'(2)/f(z)} >0 in |z| <o . 1In
other words, f(z) is starlike in Iz| < 0 . BSince the radius of star-
likeness of f(2) 1is greater than or equal to its radius of convexity, we

get p =0 and the assertion follows.

To see that the result is sharp, we consider the function

vz (1-22)
y+(2y-1)bz+(y-1)z

flz) = 5 -

The case b =1, Yy + ® corresponds to the theorem of Reade, Ogawa
and Sakaguchi [9].

3. Radius of convexity of the class TY(G)

We require the following lemmas:

LEMMA 3.1, If w(z) € B, then |w'(2)| =1 for |z| =V2-1.

LEMMA 3.2, If p(z) €P, u>0, thenon |z|=r<1

3

(3.1) zp {a)] 2r
) p(z)+u| = (1-r)[1x(1-p)r]
(3.2) |22p"(z) < Lp? )
| p(z)+u (l—r)2[1+u+(l-u)r]

A proof for Lemma 3.1, which is due to Dieudonné, may be found in
Carathéodory [1], p. 19. Inequalities (3.1) and (3.2) are derived from
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(2.11) and (2.14) respectively by putting » = 1 in the latter results.
Equalities in (3.1) and (3.2) occur for the function p{z) = (1+2)/(1-z)
at 2z =1r.

LEMMA 3.3. Let g(z) € N be such that |g'(2)-1| <1 in A . Then
on |zl =r,

2”
(3.3) iﬁli%,for p<V2 _ 1
(3.4) Re{ég%é§l} > 22;;?1 , for r <%,

The results are sharp.

Proof, For g(z) as defined, we have g’(z) - 1 = w. (2) for some

1

wl(z) € B ; hence, in view of Lemma 3.1,

(3.5) lg"z)) =1, |z =Va-a1.

Also, from Section 2 of MacGregor [6],

aled | = s s
hence we may write
(3.6) g(z) =z + Faw,(z) , wylz) €B, =z €b.
This implies
(3.7) lg(2)] = |2] - 2]

and (3.3) now follows from (3.5) and (3.7).

From the representation (3.6) and Dieudonné's Lemma (see Duren [2]) we

get
")) zwé(z)
(3.8) re{2gl) -1 s Re{mg .

v

w,(2) rz-lw (2))2
1+ Re{ 2 : } 2 )

2Huylz ) [l-r2)12+w2(z)| '

Put 2 + wz(z) = Re‘l'e and denote the right-hand side of (3.8) by

S(R, 8) ; then 2r =R < 2# and
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2
S(R, 8) = 2 - [l%+ h2]cos 6 +’4—r . ;-_?+__R_2 .
1l-r 1-r l-r
Since 095/36 = sin 87(R) and
T(R) = 2, 4 >0,
R 2
1-r
the minimum of S(R, 6) occurs when 6 = 0 and R € [2-r, 2+r] . Now
1 2 2y 1
sz, 0) = = [;2(1+p J+(2+?) L+ %] ,

%
which yields dS{R, 0)/dR =0 at R = (2+r2)2 . This point is outside the

%
range of values of R if (2+r'2)2 < 2-r, that is, if » < % . Thus,
for »r < % , the minimum of S(R, 0) is attained at the end-point

R =2-r , its value being

2(1-r)

S(e-r, 0) = o

The sharpness of both results is easily verified for the function
_ 2
go(z) =z + 3/2 .
We now prove the main result of this section.
THEOREM 3.4. The radius of convexity of TY(G) i8 given by the only
root in (0, %) of the equation
412" - (1-y) (3+87)r> + ow® - 2y(7y-1)r + 22 = 0 .

Proof. In view of (1.2), we get for f(z) € TY(G) .

af"(z)
(3.9) Re{l + _}‘%F}

2 2 -1
z2p"(a) z27g"(2)|lzg'(z) =p’(z) 2zp'(z)
b Re{I:P(Z)ﬂl ~ g(z) [9(25 - p(z)ﬂ] B p(z)+u}

2 2 -1
- 2 p"(z)  27g"(8)||ag'(2) 2p'(z) 2zp'(2)
=1 Ptz g(z) g(z) " p(z)+u p(z)+n

2 2 -1
> 27p"(z) _27g"(z) 2g'(z)  2p'(z) 2zp’(=2)
S Y ) P TRl ) Eie{ glz) ~ p%z)ﬂiﬂ T | p(a)+u

provided that Re{(zg’(z)/g(2))-(2p'(2)/[p(2)+ul)} > 0 . From (3.4) and
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(3.1) we have

3

2g'(z) zp’(Z)} - 2lu+1-3(p+1) r+3ur+ (1-p)r

(3.10) Re{ g(z) " pla)wuf T (I-r)(2-r) [Leur(i-w)r]

It is easy to check that the numerator has a single root in (0, 1) ;
furthermore, this root is located in (%, %) . Thus the rigﬁt-hand side of
(3.10) is positive for r < % . This fact together with (3.1), (3.2),
(3.3) and (3.10) applied to (3.9) will give, for »r < % ,

R {1 + zfr(z)} > alr) ’
¢ f'(z) {(l-r)2[1+u+(1-u)r]-r(2—?)}[1+U+(1-U)P]

where

G(r) = 2(1-1)2" + (11) (Tusl) 23 + op(14)r? = (Lep) (5047)0 + (140)° .

Now G(0) = (1%, &%) = (27p2-hhu-87]/128 <0 for 0<ps1l. Ths
G(r) has a zero, which is unique, in (0, %) . The proof of the theorem

is therefore completed.

The result is sharp for the function

_ (l+z)(z+(z2/2]]
flz) = LM 1)z
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