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Abstract

Let S? be the class of normalized univalent functions in the unit disk. For / e S? let S, be

the set of all star center points of / . Let J70 = {/ 6 S": 0 € 5°} where 5° is the interior

of Sy. The influence that the size of the set 5° has on the Taylor coefficients of a function

/ € <5̂  is examined, and estimates of these coefficients depending only on S° , as well as other
results, are obtained.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 30 C 50.

1. Introduction

Let S? be the class of functions f(z) = z + £ ^ 2 <*„*" which are analytic
and univalent in the unit disk D = {z e C: \z\ < 1}. For / e 5? the set
f(D) is a nonempty open connected proper subset of the complex plane C.
A point w e f(D) is called a star center point (s.c.p) of f(D) if and only if

tf(z) + (l-t)wef(D), zeD,0<t<\.

For / 6 S*, let Sf be the set of all s.c.p of f(D). Also let J^ be the
subclass of 3* having the property that if / € ^ then 0 e 5?, where Sfl
is the interior of S,.

In this paper we examine the influence that roughly the size of 5° has on
the Taylor coefficients, an , of a function in <5 .̂

In Theorem 1, we obtain estimates of \an\, depending on the size of 5^
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96 Nicolas K. Artemiadis [2]

Theorem 2 provides additional information concerning the coefficient esti-
mates obtained in Theorem 1. More precisely it is shown that if fx, f2 € ^
and S°f c S°f then B{f2, n) < B(fx, n), n = 1, 2, . . . , where B{fx, n),
B(f2, n) are the estimates for the n th coefficients of / , and f2 respectively.
Finally we give examples of functions in J/^ and compare our results with
those obtained in [1].

I would like to thank the referees for their helpful comments on the subject.

2. Preliminaries

In this section we prove three lemmas which will be used later.

LEMMA 1. The set of all star center points of a function in S0 is convex.

PROOF. Let g e S?, zx, z2 e D such that g{zx), g(z2) belong to Sg.
We show that the segment [g(zx), g(z2)] is contained in S . Suppose
[g(zx), g(z2)\ £ Sg and let w e (g(zx), g{z2)) be such that w £ Sg.
Since g(zi), g(z2) are s.c.p of g(D) we have w e g(D).

By the hypothesis on w there is z0 e D such that [g(z0), w] <f. g(D).
Observe that if the points g(z0), g(zx), g(z2) are collinear then there is
nothing to prove. Otherwise there is w{ e (g(z0), w) such that w{ $ g(D).
We have [#(z,), g(zQ)] c g(D) because g(z{) e Sg and g(z0) e g(D). Let
w2 be the intersection of the segment [g(z{), g(z0)] and the straight line
determined by the points g(z2) and w{. These two sets intersect because
w{ is an interior point of the triangle {g(z0), g{zx), g(z2)} . We have w2 e
g(D). Since g(z2) € Sg it follows that w{ e g(D) which contradicts wx £
g(D). Hence S is convex.

LEMMA 2. Let f e <9*Q, ^ : Z ) - > 5 ° be a univalent analytic function such
that <̂ (0) = 0, £(£>) = S°, and let z0, zx be complex numbers such that
\zo\ < |zj | = r < 1. Then the segment [ /(z,) , £(z0)] is contained in f(Dr),
where 7)r = {z: \z\ < r}.

PROOF. For £(z0) = 0 the lemma is known [2, page 220]. Let p and 6
be two real numbers such that 0 < p < I, -n < 6 < n, pe'ezx = zQ. Put
<j>(z) = tf{z) + (1 - t)£(pe'ez), zeD, 0 < t < 1. Clearly <P is analytic in
D, 0(0) = /(0) = 0, and for each z the point $(pe'ez) is a s.c.p of f{D).
Hence <1> is subordinate to / , so O(z) = f(cp{z)), where <p is analytic in
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D, and \q>(z)\ < \z\. We have

0(7,) = tf{zx) + (1 - t)Z(peiezx) = r/(z,) + (1 - 0«(z0) = /M*i))

and |p(z,) < |z, | . Hence *(z,) € / ( 5 r ) .

LEMMA 3. Let n > 2 be an integer. Given 1/2 < x < 1 and integers
1 <P <Q, define

Then

(1) - n\n + nFn2(x) + 2x[Fn>i(x) + 2\2Fn4(x) + •••

+ (n- 2)\{n - 2)Fnn{x) + (n - 1)!(» - 1)] < 0.

PROOF. We proceed by induction on n . Observe that (1) holds for n = 3 .
We assume that it holds for n and we prove that it holds for n + 1 . It suffices
to show that the left-hand side of (1) is nonincreasing in n , for each fixed
JC e [1/2, 1], or equivalently

Now by the induction hypothesis we have

2x[FnJ(x) + 2\2Fn,{x) + ••• + ( « - l)!(n - 1)] < n\n - nFn2(x).

Hence (2) will hold if the following holds:

(n + l)Fn+12(x) - nFn2(x) + 2xn\n + (n - x)(n\n - nFnl{x))

< (n + l)\(n + I) - n\n.

This is equivalent to

(4) Fn+U2(x) + n\nx-(n+l)\<0.

To prove (4) we proceed as follows. We put O(x) = Fn+l 2(x) + n\nx
- {n + 1)! and we claim that the derivative O'(x) is nonnegative for 1/2 <
x < 1. If this is proven it will mean that O(JC) is nondecreasing so that its
maximum value will be taken for x = 1. But since O(l) = 0 (4) will be
proven.

We show that

(5) <t>'{x)
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Observe that from the definition of F p{x) it follows that

n+l .

(6) 4 > ) = - ^ I , 2 W ' 4

so (5) can be written
n+l .

fc=2 X

Since 1/2 < x < 1, to prove (7) it suffices to show

(«)
We again proceed by induction on n . It is easily seen that (8) holds for
n = 3 . Assume that it holds for n . To show that (8) holds for n + l we
prove that the left-hand side of (8) is nondecreasing in n , or that

(9) (» + l)!(» Q)[( i)
If in (9) the expression Fn+l 2(j) is replaced by

/

n+l ,

k=2 k ~ 3

we get

(10)

k-

Since (8) holds, it follows that (9) is true if (10) holds. But (10) is equivalent
to

which is easily seen to be true by induction. It follows that (9) holds, and
this proves the lemma.

3. The main results

We wish to give coefficient estimates for the Taylor expansion of a function
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Let / € <5̂  . From Lemma 1 it follows that S'i is convex. Also S*l ^ C
since f(C) ? C.

Let a be any point of S° . Riemann's Mapping Theorem asserts that there
is a unique analytic function

(12) 8a-S°f^D

having the properties
(a) ga(a) = 0 and g'a(a)>0,
(b) ga is one-to-one,
(c) ga(S°f) = D.

Put

THEOREM 1. Let f(z) = z + Yl7=2anz" be a function in <9*0 and let a be
a point of S°f. Then

(i) 0 < n(f, a) < 1.
( i i ) / / > ( / , a) = 1 then \an\ < 1, n = l,2,....

(iii) n(f, a) = 1 if and only if S°f = f(D).
(iv) Ifn(f, a) < 1 then \an\ < An(f, a) + R^o) = Mn(f, a), n>2,

*) = l + (n-l)f\n
k=2{k-l)/(k-o), a= l/(l+n(f, a)), and

-n\n n 2a

Z/2{k -a) n+ i -a n + l -a

1 2!2
12-ff

+ (2-<r)--- (n- l - (T) + (2-(7)-"(w-(7)J •
(v) |flB| < B(f, n),n>2, where B{f, n) = infaeSo(Mn(f, a ) ) .

PROOF. Put g = g~l where ga is the function denned in (12). Then
g: D -• 5° is analytic in D and has the following properties:

(a') g(0) = a, g'(0) = l/g'a(a)>0;
(b ') g is one-to-one;

(c#) ^z ) )=sy.
Let ^Q(0) = p . Then fi e D and g(fi) = 0 .
Put

(13) G{z) = g

The function G: D -» 51? is analytic in Z> and has the following properties:
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(a") G(0) = g(fi) = 0; G'(0) = g\fi){\ - |/?|2) = (1 - \fi\2)/g'a(0) =

(b " ) G is one-to-one;
(c") G(D) = S°f.
Clearly G is subordinate to / . It follows that

(14) G(z) = f(co(z))

where co is analytic on D and |to(z)| < \z\.
Put G{z) = Y^Li bnz" , z e D. We have since, G'(0) does not vanish,

that

(15) 0 < b{ = G'(0) = G)'(0) = [1 - \ga(0)\2]/g'a(0) = fi(f, a) < 1.

This proves assertion (1) of Theorem 1.
The function G{z)/bl = Y^Li^n/^i)2" belongs to the class i ^ and maps

D onto the region (1/2^)5° = {w/bl: w e S®} which is convex since 5° is
convex. It follows that

(16) I V M < 1 , n = l,2,....
Observe that co is univalent in D because the composition of two univa-

lent functions is univalent.
Summarizing the properties of co, we have:
(i) co is univalent in D;
(ii) co{D) c D;
(iii) co(0) = 0;
(iv) 0 < &/(0) = ^ < 1.
If in addition we had co{D) = D then we would have co{z) = z, co'(0) =

bl = 1 and it would follow from (14) and (16) that G(z) = f{z) so that
an = bn, \an\ < 1. This proves assertion (ii) of Theorem 1.

Next assume that co{D) is a proper subset of D. Then it follows from
the condition for equality in Schwarz's lemma that <y'(0) < 1.

The above imply

(i) co(D) = D if and only if co'{0) = 1,

(17) (ii) if G / (0 ) < 1 then 0 < bt < 1,

( i i i ) I M < I M < l ,
and assertion (iii) of Theorem 1 follows from (17)(i).

Let z, zQ e D such that \zo\ < \z\ = r < 1. Put G(z0) = w e S°f,

f{z) - w - Re'x, z — re'e . It follows from Lemma 2 that w is a s.c.p of
f(Dr). Therefore
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We have
log[/(z) - w] = log-R + h

so

In view of
d . ie d . d

WE = ire - j - = iz-j-
89 dz dz

we get
Re [z / ( z ) / ( / ( z ) - G(z0))] > 0.

The last inequality holds for all z, z0 in D for which \z\ > \zo\. Therefore
if X is a real number such that 0 < X < 1, we have

Re[z / ( z ) / ( / ( z ) - G(-Xz))] > 0, z e D.

Put

(18) F(z) = [z/(z)/(f(z) - G(-Xz))] = J2cnz
n, zeD.

n=0

It is easily seen that F is analytic in D and that c0 = 1/(1 + bxX).
Due to the inequality

R e F ( z ) > 0 , zeD

we have

(19) lc^2co = T-^I-

From (18) we get

z/(z) = f:nanzn = JT[an - bn(-X)n]z" .±cnzn.
n=\ n=\ n=0

The last equation gives

or

(20) (R - co)an = £ akcn_k - Y,{-X)kbkcn_k.
k=\ k=\

If we set X = 0 then (20) and (19) provide the well known inequality \an\ <
n, n = 2, 3 , . . . .
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From (20) we obtain, on account of (16) and (19),

Now if we let X -> 1 we get, since &j cr = 1 - er, that

(21) K|<j£-Vfa|+"-^2"-'), n > 2 .

From (21) we deduce that for n > 2,

(22) \an\ < An(f, a) + Rn_x{a) = Mn(f, a) < AH(f, a).

The last part of (22) follows immediately from Lemma 3, since Rn(o) is
nonpositive for n > 1 and 1/2 < a < 1.

To prove the first part of (22) we proceed by induction on n . It is easily
seen that for n = 2, 3 , (21) provides

\a2\ < 1 + j ^ = A2(f, a) + R^ff) = A2(f, a ) ,

2!2
W ^ l + ( 2 _ ff)'(3 _ a) = A*(f> Q) + R2^ = A3W> a ) '

because R^a) = R2(a) = 0, which proves that (22) holds for n = 2, 3 .
Assume that (22) holds for « . We get from (21), after some calculations,
that

\a \< l a r i a l . (1

It follows that (22) holds for n + 1. This proves assertion (iv) of Theorem
1, while assertion (v) is obvious. The theorem is proved.

REMARK. If in (19) and (16) equality holds for n = 2 , 3 , 4 then for
Cj = c2 — c3 = 2a, b2 = bA = -b{, b3 = bx, k = 1, it is easily checked that
(22) is sharp for n < 4 . Indeed we find

fl.u 1 n _ , , 4

1 8 a 2 - a
* (2 - ff)(3 - <r)(4 - a) ^ (2 - <r)(3 - (T)(4 - a)'

However the sharpness of (22) for all n remains open.

https://doi.org/10.1017/S1446788700033334 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700033334


[9] Univalent functions 103

We make the following conjecture.
CONJECTURE. Let / e ̂ , a e 5 ° . Then

(*) \an\<An(f,a) + Rn_l(<j) + Hn(<j), n>2,

where
n-2

HH(*) = £ \/!-fc-l
'n+3-fc

Rk{a){2a)n-k-x \[ {p - a)

for « > 5 and Hn{a) = 0 for n < 5 .
Furthermore, if equality holds in (16) and (19) and if

c n = 2a' b i q
 = ~ b \ > b i q - \ = b i > n = 1 , 2 , . . . , ? = 1 , 2 , . . . ,

then for the an obtained from (20), (*) is sharp.

THEOREM 2. Let fx, f2 be functions in S^. Let B(fx, n), B(f2, n) be
the corresponding bounds on the Taylor coefficients of fx and f2 respectively,
as these are defined in Theorem l(v). Suppose S*l c S^ . Then

(23) B{f2,n)<B{fx,n).

PROOF. Let a G 5° . Let Gx be the function obtained from / , exactly
the same way as G was obtained from / in (13). Similarly, since a also
belongs to 5° , let G2 be the function obtained from f2 . We have

Gx (D) = S°A c S° = G2(D), Gx (0) = G2(0) = 0 ,

and both Gx and G2 are regular and univalent in D. It follows that Gx

is subordinate to G2 , so Gx(z) = G2(<p(z)), where q> is analytic in D and
\<p{z)\ < \z\. We have G'x(z) = &2{9(z))9'(z), or

<?>) = n{fx, a) = G'2(0)<p'(0) = fi(f2, a)<p\O).

Since |^'(0)| < 1 we have

(24)

Put

1 1 + fi(fx, a) ' 2

We have from (24) that

(25) ax > a2.
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Now the function Mn(f, a) = An(f, a) + Rn_x(a), denned in the statement
of Theorem 1, can be written as follows

w / y \ . It — i lO

n-a n- a

[2 - a (2 - CT)(3 - a) (2 - a) • • • (n - 1 - a)\

It is easily seen that the derivative of Mn(f, a) with respect to a is non-
negative, which implies that Mn(f, a) is an increasing function of a. It
follows that

(26) Mn{f,,a)>Mn{f2,a).

By taking the infinum of the left side of (26) for a e 5° and of the right

side for a e 5? , we get (23) because S*l C 5° . This proves the theorem.

4. Examples and comments

EXAMPLE (from [1]). The function

' «*. K.<2.

belongs to the class <9*0 . This is easily seen if we sketch f(D). More precisely
let Ll, L2 be the rays which start from the point ( - l / 2 e , 0) and make with
the positive x-axis the angles (2 - e)f, (e - 2 ) | respectively. Then S'j- is
the open set which contains the origin and is bounded by the rays L{, L2.
Let T be the symmetric set of 5° with respect to the line x = - l / 2 e . Then

C-T.
If we choose a = 0 € 51? then the function G considered in (13), which

°
?

maps D onto Sj, is

- 1 , zeD,

and we have /i{f, 0) = G'(0) = (2 - e)/e and a = e/2.
Other examples can be found in [2, pages 196, 197].
We close with the following comment.
In [1] the authors present a different approach to the subject. Given / e

the index 8 of starlikeness of / is denned to be

S = sup{r: f(z) is a s.c.p of f(D), whenever \z\ < r).
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Let Â  be the class of all starlike functions whose index is equal to 6,
0 < 8 < 1. For f &AS the following inequality holds:

(27) \an\

The estimates given by (27) depend on 5, or equivalently on the size of
f{Ds) which (in the cases of interest, that is, when 0 < S < 1) is always a
bounded subset of 5° .

On the other hand the estimates, given in Theorem 1 above, depend on the
entire set 5° . If S® is unbounded (see example given above) then f{Ds)
is a proper subset of Sj-. Now it is possible in this case (that is, when
5° is unbounded) that the "unused" part of 5^ "hides" some additional
information on the an , including some concerning the sharpness of (27).
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