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Abstract. Numerical simulations of convection-driven dynamos in rotating spherical shells are
employed to better understand the observed strength and geometry of planetary magnetic fields.
The model computations cannot be performed for realistic values of several of the control pa-
rameters. By varying parameters within the accessible range, it is possible to derive scaling laws
for the magnetic field strength and the flow velocity in the dynamo region and for the dipole
moment. Our scaling laws suggest that, even though diffusivities are far too large in the models,
diffusive processes do not play an important role, just as in planetary cores. Extrapolating the
scaling laws to planetary values of the control parameters leads to reasonable predictions for the
field strength in the dynamo region and fits the observed dipole moments decently, in particular
in the cases of Earth and Jupiter. For Mercury, which does not fit well when applying the scaling
laws in a straightforward way, a model is proposed in which the upper part of the fluid core is
stably stratified and the dynamo operates only in its deep regions. The time-varying dynamo
field must diffuse through the stable region and is attenuated by the skin effect. The model
explains why Mercury has a very weak but probably dipole-dominated magnetic field.
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1. Introduction
Most planets and a few satellites in the solar system have a global magnetic field of

internal origin or they once had such a field. The magnetic field strengths at planetary
surfaces cover a wide range, from ≈ 400 nT for Mercury to ≈ 500,000 nT in the case
of Jupiter. In most cases the field is dominated by the axial dipole component, but the
magnetic fields of Uranus and Neptune have strongly tilted dipoles and large multipole
contributions. All these fields are thought to be generated by a dynamo process that is
maintained by thermal and compositional convection in the fluid and electrically con-
ducting cores of the planets (Stevenson 2003). The challenge for a unifying theory of
planetary magnetism is to explain the diversity of magnetic field strength and structure.
Scaling laws that relate the magnetic field strength to basic planetary parameters, such
as rotation rate, core size and energy flux, have been proposed in the past based mainly
on heuristic arguments (e.g. Stevenson 1979, Starchenko & Jones 2002) and their merits
still need to be assessed.

Numerical dynamos driven by convection in rotating fluid shells often produce magnetic
fields similar to the geomagnetic field, with a strong axial dipole component, secular
variation, and occasional polarity reversals (Kono & Roberts 2002). However, problems
remain in applying numerical model results directly, because the dynamo models are far
removed in parameter space from the planets. Specifically, numerical dynamos rotate
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too slowly, are less turbulent and have far too large viscosity compared to planetary
conditions. In terms of the non-dimensional parameters that govern convection-driven
rotating dynamos, this means that the Rayleigh number is too small and the Ekman
number and magnetic Prandtl number are too large (Glatzmaier 2002). Direct numerical
simulation with realistic values would require much higher temporal and spatial resolution
than what is feasible in the foreseeable future.

In this paper we review scaling laws derived recently from numerical dynamos within
the part of parameter space now accessible to computation. First we consider how prop-
erties inside the dynamo region, such as the characteristic flow velocity, the magnetic
field strength, and the efficiency of heat transport, depend on the control parameters.
We then consider scaling laws for the dipole moment as the basic observable dynamo
property.

While our scaling laws explain the observed magnetic field properties of most planets
decently well, the weakness of Mercury’s magnetic field poses a problem. Numerical sim-
ulations of Mercury’s dynamo assuming either a very small or a very large solid inner
core (Heimpel et al. 2005, Stanley et al. 2005, Takahashi & Matsushima 2006) exhibit
relatively low field strengths. However, their dipole moments are still too large by a factor
of ten, or the model field at the planet’s surface is dominated by higher multipole com-
ponents, which does not agree well with the available (limited) observations by Mariner
10. We describe a recently proposed model in which the upper part of Mercury’s core is
stably stratified and the dynamo operates only at depth.

2. Scaling internal dynamo properties
In Christensen & Aubert (2006) we studied numerically an extensive set of dynamo

models in a rotating spherical shell with the geometry of Earth’s core, covering a wide
range of control parameters. Convection is driven from below and rigid boundaries are
assumed. The Ekman number E = ν/(ΩD2) varies between 3 × 10−6 and 3 × 10−4, the
magnetic Prandtl number Pm = ν/λ between 0.06 and 10, the Prandtl number Pr = ν/κ
between 0.1 and 10, and the (modified) Rayleigh number Ra∗ = αg∆T/(Ω2D) is up to
50 times critical. Here Ω is the rotation rate, ν kinematic viscosity, D shell thickness,
λ magnetic diffusivity, κ thermal diffusivity, α thermal expansion coefficient, g gravity,
and ∆T the imposed temperature contrast between the rigid boundaries. We find two
distinct classes of solutions with strong and weak dipole contributions to the overall
magnetic field, respectively. The transition from dipolar to non-dipolar dynamos occurs
when a local (scale-dependent) Rossby number, Ro� = U/(Ω�), exceeds a value of ≈ 0.12,
independent of the values of E, Pr and Pm (U is the rms-velocity and � a characteristic
length scale of the flow). Ro� is a measure for the ratio of inertial forces to the Coriolis
force. Hence dipolar dynamos break down when inertia starts to play a significant role
in the force balance (see also Sreenivasan & Jones 2006).

We find that in the dipolar regime the minimum magnetic Reynolds number Rm =
UD/λ for self-sustained dynamos is independent of the magnetic Prandtl number Pm
in the range 40 - 50. However, dynamos at low Pm exist only at sufficiently low Ekman
number E. The lowest magnetic Prandtl number at which a self-sustained dipolar dynamo
is found varies as Pm ∼ E3/4. At low Pm the hydrodynamic Reynolds number must be
large to exceed the critical value of Rm. The associated inertial effects have an adverse
influence on the dynamo and a low Ekman number is required to balance them by strong
rotational forces.

In Christensen & Aubert (2006) we concentrated on the dipolar regime in an attempt to
establish scaling laws that fit the numerical results. Assuming that diffusive effects do not
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Figure 1. Lorentz number with dissipation correction factor versus modified Rayleigh number.
The shape of the symbol indicates the value of the Ekman number and the shading indicates
magnetic Prandtl number, where dark means Pm < 1. Small crosses in the main symbol mean
Pr > 1 and circles Pr < 1. The slope of the correlation line is 0.34.

play a primary role, we introduced non-dimensional parameters that are independent of
any diffusivity (including kinematic viscosity). We take a modified Rayleigh number based
on the advected heat flux Q as the primary control parameter, Ra∗

Q = γαgQ/(ρcpΩ3D4),
which had been proposed earlier in the context of non-magnetic rotating convection
(Christensen 2002). Here γ is a numerical geometry factor, ρ is density, and cp is heat
capacity. The combination F = αQ/cp is a buoyancy (or mass anomaly) flux and can be
replaced by a buoyancy flux of arbitrary (e.g. compositional) origin. Ra∗

Q is equivalent to
the non-dimensional power driving the flow. Characteristic properties of the solution are
described by the global Rossby number Ro = U/(ΩD) for the flow velocity, the Lorentz
number Lo = B/([µρ]1/2ΩD) for the mean magnetic field strength B, and a modified
Nusselt number Nu∗ ∼ Q/(Ω∆TD3) for the heat transport efficiency. To first approxi-
mation, all the dynamo results can be collapsed into simple power-law dependencies on
the modified Rayleigh number:

Ro = 0.85 Ra∗0.41
Q (2.1)

Lo = 0.92 f
1/2
ohm Ra∗0.34

Q (2.2)

Nu∗ = 0.076 Ra∗0.53
Q (2.3)

The scaling law for the Lorentz number involves a correction factor depending on fohm,
the fractional contribution of ohmic dissipation to the total dissipation. Figure 1 shows
the fit for the Lorentz number. In the empirical fits, the residual dependencies on the
parameters related to diffusion (E, Pr, Pm) are weak. The Ekman number and hydrody-
namic Prandtl number seem to have no effect, but an influence of the magnetic Prandtl
number, with a power law exponent of order 0.1, may exist. A similar weak dependency
on Pm has been found before in a scaling law for the ohmic dissipation time in numerical
dynamo models by Christensen & Tilgner (2004), but has been rejected because it did
not agree well with the ohmic dissipation observed in the Karlsruhe dynamo experiment
(Stieglitz 2001) where Pm is much smaller than in the models.
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The Elsasser number Λ = B2/(ρµλΩ) is the conventional measure for the ratio of
Lorentz force to Coriolis force, and it is often assumed that the magnetic field in a
planetary dynamo saturates at a value that makes Λ to be of the order one (Stevenson
2003). However, in our numerical models Λ is found to vary widely, in the range 0.1
- 100. The scaling law for the Lorentz number rather suggests that the magnetic field
strength is controlled by the available power and not necessarily by a force balance. In
fact, the finding that the fit is improved by the introduction of the correction factor fohm

is in agreement with a power-controlled field strength. In Christensen & Aubert (2006)
we tried to assess the relative importance of the various forces by studying sources and
sinks of enstrophy (vorticity squared). In general the contributions of the Coriolis and
buoyancy terms to the enstrophy budget are of the same order, inertial and viscous terms
make smaller and variable contributions, and the Lorentz force term is highly variable.
We could give only a partial theoretical basis for the scaling laws. The missing piece is
an explanation for the empirical 2/5-exponent in the law for the Rossby number.

The scaling law for the Rossby number can be used to deduce the Rayleigh number of
the Earth’s core. Using core flow velocity estimates obtained from geomagnetic secular
variation, we obtain Ra∗

Q to be about 3×10−13 and an associated integrated buoyancy flux
of 3×104 kg/sec. When we assume that this represents predominantly the compositional
flux of light element in the fluid core which is rejected when the inner core solidifies, we
find a small growth rate of the inner core of the order of 0.1 mm/yr and an inner core
age of the order 3.5 Gyr.

Taking a power law exponent of 1/3 in the scaling law for the Lorentz number and
ignoring fohm and the possible weak dependence on Pm, a surprising implication is
that the mean magnetic field strength inside the dynamo B is independent of both the
conductivity and the rotation rate. This is in contrast to previously suggested magnetic
field scaling laws (Stevenson 1979, Starchenko & Jones 2002). B is basically controlled
by the buoyancy flux. With a buoyancy flux of 3× 104 kg/sec we obtain a magnetic field
strength slightly above 1 mT inside the core. This is lower than most previous estimates,
but is not unreasonable. It is in agreement with a value of 0.4 mT for the field component
pointing away from the rotation that has been inferred from the possible observation of
torsional oscillations in the core (Zatman & Bloxham 1997).

Applying our scaling laws to other planetary dynamos, we find that the observed
excess luminosity of Jupiter implies an internal field of 8 mT, in agreement with Jupiter’s
external field being ten times stronger than that of the Earth. The weakness of Mercury’s
field cannot be explained by a very low buoyancy flux in the core, because this would
correspond to a subcritical magnetic Reynolds number. We will discuss the issue of
Mercury further in the following sections.

3. Scaling of dipole moment
In an attempt to find a general scaling law for the dipole moment, we used in Olson

& Christensen (2006) a larger and less homogeneous set of numerical dynamo results
from the literature (Christensen et al. 1999, Christensen & Aubert 2006, Glatzmaier
2002, Kutzner & Christensen 2002, Kutzner & Christensen 2004, Wicht & Olson 2004,
Takahashi et al. 2005, Takahashi & Matsushima 2005) that covers a variety of boundary
conditions and modes of driving convection. We do not restrict our analysis to dynamos
that have a magnetic field dominated by the axial dipole, but include also the nondipolar
regime.

We follow the same path as above to define the most suitable non-dimensional pa-
rameters. The non-dimensional dipole moment is given by a Lorentz number Lodip =
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(2µ/ρ)1/2M/(4πr3
oΩD), where M is the dipole moment and ro the outer radius of the

fluid shell. Again Ra∗
Q is taken as the primary control parameter. A unique power-law

scaling the relates Lodip to Ra∗
Q does not exist, rather the dipolar regime must be distin-

guished from the nondipolar one. In the latter the contribution of the dipole to the field
at ro is weaker than that of higher multipoles. We had identified the local Rossby number
Ro� as the key parameter for controlling the dynamo regime in terms of the magnetic
field structure. In Olson & Christensen (2006) we found an empirical fit that relates it to
the four basic control parameters. In terms of the physical properties it can be expressed
as:

Ro� ∼
F 1/2λ1/5

Ω7/6D1/3ν1/3κ1/5
, (3.1)

where F is the buoyancy flux. While the transition from dipolar to nondipolar dynamos
is rather abrupt at Ro� ≈ 0.12 in the case of bottom-heated convection, it occurs more
gradually and at lower values of Ro� for internally heated dynamos. Interestingly, nu-
merical dynamos that are generally dipole-dominated but show occasional reversals and
excursions have a local Rossby number close to the transitional value.

In the dipolar regime the non-dimensional dipole moment can be expressed as

Lodip = a Ra
∗1/3
Q (3.2)

where a is in the range of 0.1 - 0.2. The fit is decent but not as good as in the case of the
Lorentz number describing the internal dynamo field. This can be explained with the more
heterogeneous set of model conditions employed to obtain equation (3.2), but also by the
fact that the dipole is only one field component that contributes in a variable degree to
the total field. In the nondipolar regime the dipole moments scatter more strongly, but
the value of Lodip/Ra

∗1/3
Q is at least a factor of ten smaller than for dipole-dominated

dynamos.
In Olson & Christensen (2006) we apply our results to the various planets of the solar

system. In most cases the uncertainties about the internal properties, in particular the
buoyancy flux, are rather large and a kind of educated guess has to be made. Nonetheless,
the dipole moments for Earth, Jupiter, and Saturn, where the constraints on internal
properties can be considered to be fair or good, are in the predicted range within a factor
of two. While Jupiter and Saturn are clearly in the dipolar regime according to our
scaling, Earth is close to the transition point to the nondipolar regime. We suggest that
occasional short lapses into the nondipolar structure may be the reason for geomagnetic
excursions and reversals. Applying equation (3.1) to Mercury predicts it to be far on
the nondipolar side, mainly because of the slow rotation. While this might explain the
weakness of Mercury’s observed field, it does not agree well with the relatively strong
and perhaps dominant dipole contribution (Ness 1979). Special conditions may apply to
Mercury’s dynamo, which we discuss in the next section.

4. A dynamo model for Mercury
According to thermal evolution models (e.g. Hauck et al. 2004), the heat flow at Mer-

cury’s core-mantle boundary is expected to be a few mWm−2. This is less than the
heat that can be conducted along an adiabatic temperature gradient in the core and
therefore the outer core should be thermally stable. The evolution models also predict
the existence of a solid inner core. The flux of light alloying elements from the bound-
ary of a growing inner core could drive compositional convection. Because the unstable

https://doi.org/10.1017/S1743921307000403 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921307000403


Planetary dynamos 193

−250

0

250

500

g 10  [n
T

]

40 60 80 100

−250

0

250

500

g 20  [n
T

]

time [kyrs]

Figure 2. Gauss coefficients of the axial dipole field (upper panel) and axial quadrupole field
as function of time at Mercury’s surface. The best fit to the Mariner 10 data gives an absolute
value of the dipole coefficient of 330 nT (Ness 1979).

compositional gradient dominates near the inner core, whereas the stabilizing thermal
gradient dominates at shallow depth, convection may be limited to a deep sublayer of the
liquid core. Christensen (2006) has modelled convection and magnetic field generation in
a partially stable fluid shell, with a positive buoyancy flux at the inner core boundary
and a negative flux at the core-mantle boundary.

Guided by the scaling laws in section 2, the control parameters have been chosen
such that the value of the magnetic Reynolds number in the dynamo region agrees with
the one expected for plausible assumptions on the driving buoyancy flux. Furthermore,
the parameters are in a range that leads to a nondipolar solution, in accord with our
findings in section 3. We find that active convection is restricted to the unstable layer,
roughly the lower 40% of the fluid shell in the models, although some toroidal flow occurs
in the stable region. In the convective layer a strong field is generated, with an Elsasser
number of order one. This spatial spectrum of the field has a broad maximum at spherical
harmonic degrees in the range 7-10. The dipole and quadrupole contributions are weak
in the dynamo region.

Christensen (2006) presented two model calculations. In case 1 the ratio of inner core
radius to core radius is 0.35 and in case 2 it is 0.5. The magnetic field at the planet’s
surface is dominated by the axial dipole, or temporarily by the axial quadrupole in case
1. The spatial power spectrum drops off rapidly for harmonic degrees n larger than two.
The average strength of the surface field is 20% of Mercury’s observed surface field in
case 1 and 200% in case 2. In a third case, not reported before, the dipole moment
(which varies with time) is of the same order as the observed moment of Mercury (Fig.
2). At all spatial scales the surface field is weaker than would be expected for a simple
geometric decrease of amplitude from the dynamo region to the surface according to
r−(n+2), particularly so at n > 3. The only exception is the axial dipole in case 2.

The main cause for the strong and selective reduction of the field strength outside the
core is the skin effect. The dynamo field is time-dependent and must diffuse through the
stable conducting layer in the outer parts of the core, which acts to first approximation as
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a filter that passes only low frequencies. Modes with higher n tend to vary more rapidly
with time, hence they are attenuated more strongly in comparison to those with low
n. The axial dipole reverses on a 10,000 yr time scale in case 1, twice in 100,000 yr in
case 3 (Fig. 2), and not at all in case 2. Outside the core the axial dipole is moderately
attenuated in case 1, little attenuated in case 3, and not at all damped in case 3. In
contrast, most non-dipole components vary on a thousand year or shorter time scale and
are strongly damped. Therefore, the axial dipole can dominate the weak surface field
although it is only a minor component of the dynamo field. The equatorial dipole also
fluctuates rapidly, which makes the field outside the core much more axisymmetric than
it is in the dynamo region. A phase shift accompanies the attenuation by the skin effect,
so that variations in the dynamo field reach the core-mantle boundary with a time lag
on the order of 3000 yrs.

5. Discussion and Conclusions
Numerical models of planetary dynamos suffer from the inability to adopt realistic

values for several of the control parameters. Nonetheless, by varying the parameters in
the accessible range, scalings law can be derived for the various dynamo properties. It
is encouraging that these scaling laws are to first order independent of the viscosity and
other diffusion constants, whose values cannot be matched to planetary values in the
models. This suggests that present models are approaching already a dynamical regime
where the diffusivities are unimportant, as it is expected to be the case in planetary
cores. The results of applying the scaling laws to the geodynamo and other planetary
dynamos are encouraging. A drawback is that so far the scalings laws are partly empirical.
Challenges for the future are (1) to establish a more complete theoretical basis for the
scaling laws, (2) further explore their range of validity, and (3) to clarify the possible
influence of the magnetic Prandtl number. For the latter two points the comparison with
future laboratory dynamo experiments will be very helpful.

A model where a dynamo operates below a stable layer in the outer parts of the fluid
core can explain the properties of Mercury’s magnetic field in terms of field strength
and field geometry, as far as they are known from the limited Mariner 10 observations.
The Messenger and Bepi Colombo missions will characterize the magnetic field much
better. Some model predictions can be tested with new data, namely that the field has
little energy at n > 3, that it is predominantly axisymmetric, and that because of the
frequency filtering of the skin effect no secular variation should observable on the time
scale of decades.
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Discussion

G. Ruediger: In other geodynamo models I found a strong dependence of both geometry
and amplitude of the induced magnetic field on the magnetic Prandtl number. In your
presentation the magnetic Prandtl number did not play any role.

Christensen: Results for different values of the magnetic Prandtl number can be col-
lapsed when control parameters and non-dimensional characteristic numbers are defined
without refering to any of the diffusivities involved in the problem. The residual depen-
dence on the magnetic Prandtl number is then weak.

J. Toomre: What do you believe happened to Mars and its magnetic dynamo ? Com-
positional convection not available ?

Christensen: A likely scenario is that an early dynamo was driven by thermal con-
vection, but that subsequently the heat flow from the core dropped below the heat that
can be conducted along the adiabatic gradient, making the core thermally stable. The
lack of plate tectonics on Mars implies that the mantle probably extracts less heat from
the core than on Earth. Mars may have failed to nucleate a solid inner core, because of
slower cooling and probably a high concentration of sulphur, which reduces the melting
point. Hence compositional convection could be unavailable.

R. Rincon: Numerical results seem to agree well with observations in your case in spite
of unrealistic viscosity/diffusivity astrophysical convection codes face the same situation.
What can you suggest to check whether or not we get the right results for the right
reason ?

Christensen: You have to make an exhaustive study of parameter space and try to
extract scaling laws. Then you may be able to extrapolate to computationally unreachable
values of parameters.
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