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Cortical white-matter microstructure

in schizophrenia

Diffusion imaging study
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Background Several, although not all,
of the previous small diffusion-weighted
imaging (DWI) studies have shown
cortical white-matter disruption in
schizophrenia.

Aims Toinvestigate cortical white-
matter microstructure with DWIin alarge
community-based sample of people with
schizophrenia.

Method Sixty-eight people with
schizophrenia and 64 healthy controls
underwent a session of DWI to obtain the
apparent diffusion coefficient (ADC) of
white-matter water molecules. Regions of
interest were placed in cortical lobes.

Results Compared with controls, the
schizophrenia group had significantly
greater ADCs in frontal, temporal and
occipital white matter (analysis of

covariance, P <0.05).

Conclusions Our findings confirm the
presence of cortical white-matter
microstructure disruption in frontal and
temporo-occipital lobes in the largest
sample of people with schizophrenia thus
for studied with this technique. Future
brain imaging studies, together with
genetic investigations, should further
explore white-matter integrity and genes
encoding myelin-related protein
expression in people with first-episode
schizophrenia and those at high risk of
developing the disorder.

Declaration of interest None.

Diffusion-weighted imaging (DWI) is a rela-
tively new technique capable of examining
molecular water mobility in brain tissue
by providing the apparent diffusion coeffi-
cient (ADC) of water molecules (Taylor et
al, 2004), particularly in white matter, a
highly organised tissue where water diffu-
sion is restricted. The ADC is the critical
measure for a detailed investigation of
white-matter integrity and inferences can
be drawn from it on white-matter micro-
structure, organisation and cytoarchitecture,
which cannot be visualised using conven-
tional magnetic resonance imaging (Basser,
2002). When brain tissue is disrupted, such
as in neurological disorders involving white
matter (for example multiple sclerosis), the
ADC is abnormally increased (Nusbaum et
al, 2000; Rovaris et al, 2002). Recently
DWIT has been used to explore white matter
in schizophrenia, since this tissue has been
suggested to have a major role in the patho-
physiology of this disorder (Keshavan, 1999;
Keshavan et al, 2005). Indeed, white-matter
changes may alter intra-hemispheric con-
nectivity and functional brain lateralisation
in people with schizophrenia (Falkai et al,
1995; DelLisi et al, 1997; Crow, 1998;
Brambilla et al, 2005), potentially sustain-
ing cognitive deficits. Several DWI studies
conducted in recent years have consistently
shown cortical white-matter disruptions
(Taylor et al, 2004), although not all inves-
tigations have done so (Steel et al, 2001;
Foong et al, 2002; see Table DS1 to the
online version of this paper). However,
previous diffusion imaging reports were
limited by small sample sizes.

We used DWI to investigate cortical
white-matter microstructure in a large
community-based sample of patients with
schizophrenia recruited from the geogra-
phically defined catchment area of South
Verona in Italy. Our hypothesis, based on
previously published findings of disrupted
white-matter integrity in schizophrenia,
was that people with schizophrenia would
have increased ADC values.

https://doi.org/10.1192/bjp.bp.105.020990 Published online by Cambridge University Press

METHOD

Sample

Sixty-eight people with a DSM-IV diag-
nosis of schizophrenia (American Psychi-
atric Association, 1994) were studied
(Table 1). They were recruited from the
geographically defined catchment area of
South Verona (100000 inhabitants) and
treated by the South Verona community-
based mental health service and by other
clinics reporting to the South Verona Psy-
chiatric Care Register (Amaddeo et al,
1997; Tansella & Burti, 2003). Diagnoses
of schizophrenia were obtained using the
Item Group Checklist of the Schedule for
Clinical Assessment in Neuropsychiatry
(IGC-SCAN; World Health Organization,
1992) and confirmed with the clinical
consensus of two staff psychiatrists. The
IGC-SCAN assessments were completed
by two trained research clinical psycholo-
gists (C.P., L.P.) with extensive experience
in using the SCAN instrument. They com-
pleted at least ten IGC-SCAN ratings with
a senior investigator trained in SCAN
assessment, after having conducted several
IGC-SCAN assessments. Successively, re-
liability was checked in a further ten assess-
ments with the senior investigator, masked
to the results. Similar diagnoses were
obtained for at least eight out of ten IGC-
SCAN assessments. Moreover, the psycho-
pathological item groups completed by the
two raters were compared in order to dis-
cuss any major symptom discrepancies. In
addition, we regularly assured reliability
of the IGC-SCAN diagnoses by holding
consensus meetings with treating psychia-
trists and a senior investigator. It is note-
worthy that the Italian version of the
SCAN was edited by our group (World
Health Organization, 1996) and that our
investigators attended specific training
courses held by an official trainer in order
to learn how to administer the IGC-SCAN.
Subsequently, diagnoses of schizophrenia
were corroborated with the clinical consen-
sus of two staff psychiatrists, according to
DSM-IV criteria. Patients with a comorbid
psychiatric disorder, alcohol or substance
misuse within the 6 months preceding the
study, a history of traumatic head injury
with loss of consciousness, or epilepsy or
other neurological diseases were excluded.
All but two patients were receiving anti-
psychotic medication at the time of
imaging. Specifically, 22 patients were
taking typical antipsychotic drugs (13 halo-
peridol, 3 chlorpromazine, 2 fluphenazine,
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Table | Socio-demographic and clinical variables of the sample

Control group Schizophrenia group

(n=64) (n=68)
Age, years: mean (s.d.) 40.70 (11.16) 41.39 (11.68)
Males/females, n 34/30 39/29
Right-handed 60 64
Ethnicity, %
White 100 100
Education, n
Primary or secondary school 22 L] o
High school 15 15
First degree or professional school 27 2
Clinical variables: mean (s.d.)
Age at onset, years 27.46 (9.48)
Length of iliness, years 14.40 (11.12)
Number of hospitalisations 3.79 (6.09)
Lifetime antipsychotic treatment, years 12.83 (10.76)
BPRS score
Total 45.38 (16.96)
Negative symptom score 9.08 (3.13)
Positive symptom score 11.74 (6.68)

Brief Psychiatric Rating Scale.
wiky2—33.31, P <0.001.

2 clotiapine, 1 thioridazine, 1 zuclopenthixol)
and 44 on atypical antipsychotic medi-
cation (25 on olanzapine, 9 on clozapine,
8 on risperidone, 2 on quetiapine). Patients’
clinical information was retrieved from
psychiatric interviews, the attending psy-
chiatrist and medical charts. Clinical
symptoms were characterised using the
24-item Brief Psychiatric Rating Scale
(BPRS; Ventura et al, 2000), which was
administered by two trained research clini-
cal psychologists (C.P., L.P.). The reliability
of the BPRS ratings was established and
monitored using similar procedures to
those used for the IGC-SCAN.

Sixty-four people were recruited to con-
stitute a healthy control group (Table 1).
They had no DSM-IV Axis I disorder, as
determined by an interview modified from
the Structured Clinical Interview — DSM-IV
Axis I Disorders, non-patient version
(Spitzer & Williams, 1988), no history of
psychiatric disorder in a first-degree rela-
tive, no history of alcohol or substance mis-
use and no current major medical illness.
Members of the control group were hospi-
tal or university staff volunteers or patients
undergoing magnetic resonance imaging
(MRI) for dizziness without evidence of
central nervous system abnormalities on the
scan, as reviewed by the neuroradiologist
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(R.C.); their dizziness was due to benign
paroxysmal positional vertigo or to non-
toxic labyrinthitis. Control group partici-
pants were scanned only after a full medical
history and general neurological, otoscopic
and physical examinations, and after they
had completely recovered from their dizzi-
ness. None was taking any medication at
the time of participation, including drugs
for nausea or vertigo.

This research study was approved by
the biomedical ethics committee of the
Azienda Ospedaliera of Verona. All indi-
viduals provided signed informed consent,
after having understood all issues involved
in study participation.

Imaging procedure

The MRI scans were acquired with a 1.5 T
Siemens Magnetom Symphony Maestro
Class, Syngo MR 2002B (http://www.medi-
cal.siemens.com). A standard head coil was
used for radiofrequency transmission and
reception of the MR signal and restraining
foam pads were used to minimise head
motion. First, T;-weighted images were
obtained to verify the participant’s head
position and the image quality: repetition
time (TR) 450ms, time to echo (TE)
14 ms, flip angle 90°, field of view (FOV)
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230mm x 230mm, 18 slices, slice thick-
ness=5mm, matrix size 384 mm X
512mm. Proton density T,~weighted
images were then acquired (TR= 2500 ms,
TE=24/121ms, flip angle 180°, FOV
230 mm x 230 mm, 20 slices, slice thickness
5 mm, matrix size 410 x 512), according to
an axial plane parallel to the anterior-
posterior commissures (AC-PC), for clini-
cal neurodiagnostic evaluations (exclusion
of focal lesions). Subsequently, diffusion-
weighted echoplanar images were acquired
in the axial plane parallel to the AC-PC line
(TR=3200 ms, TE=94 ms, FOV 230 mm x
230mm, 20 slices, slice thickness 5mm
with 1.5mm gap, matrix size 128 mm x
128 mm; these parameters were the same
for b=0, b=1000 and the ADC maps) and
in the coronal plane from the frontal to
the occipital lobes (TR=5000ms, TE=
94 ms, FOV 230 mm x 230 mm, 30 slices,
slice thickness 4 mm with 0.4 mm gap, ma-
trix size 128 x 128; these parameters were
the same for b=0, b=1000 and the ADC
maps). Specifically,
MRI was performed in three orthogonal
directions during all sequences.

diffusion-weighted

Image analyses

The apparent diffusion coefficients of water
molecules for cortical white matter were
detected by using software developed in-
house written in MatLab version 7 (The
Mathworks, Natick, Massachusetts, USA).
The ADCs were obtained by placing, bi-
laterally, circular regions of interest in the
frontal, temporal, parietal and occipital
cortex on the non-diffusion-weighted
(b=0) echoplanar images in reference to
standard brain atlases (Jackson & Duncan,
1996; Patel & Friedman, 1997) and accord-
ing to previous studies (Sun et al, 2003;
Wolkin et al, 2003; Kumra et al, 2004;
Kitamura et al, 2005; Fig. 1). The regions
of interest were then automatically trans-
ferred to the corresponding maps to obtain
the ADCs. The ADC maps were obtained
from the diffusion images with 6=1000,
according to the equation b,pc=In[A(b)/
A(0)], where A(b) is the measured echo
magnitude, b is the measure of diffusion
weighting and A(0) is the echo magnitude
without diffusion gradient applied (Basser,
2002). The resulting ADC was expressed
in units of 10~ mm?s. A trained rater
(N.A.), masked to group assignment and
patient identity, measured all scans. The
intraclass correlation coefficients, which
were calculated by having two independent
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Fig. 1 Circular regions of interest were placed in cortical white matter on the b=0 echoplanar images, and then automatically transferred to apparent diffusion

coefficient (ADC) maps (A, frontal lobes; B, temporal lobes; C, parietal lobes; D, occipital lobes).

raters (N.A. and A.V.) trace ten training
scans were higher than 0.90.

Anatomical landmarks
Frontal cortex

Regions of interest were positioned in the
axial slice at the level of the genu of corpus
callosum (standardised at 43.5 mm?), then
in the (standardised at
43.5mm?) and in the two superior slices

inferior slice

(standardised at 84.4mm?), posteriorly
and medially to the frontal horns of the
lateral ventricles.

Parietal cortex

Regions of interest (standardised at
84.4mm?) were placed in the axial slice
when the lateral ventricles first disappeared
and in the superior slice, posteriorly to the

postcentral sulcus.

Temporal cortex

Regions of interest (standardised at
43.5 mm?) were positioned in the axial slice
at the level of the lateral fissure and in the
inferior slice, posteriorly and laterally to

the lateral fissure.

Occipital cortex

Regions of interest (standardised at
43.5 mm?) were placed in the two inferior
axial slices where the occipital horns of the
lateral ventricles become visible, posteriorly

to the occipital horns.

Statistical analyses

All analyses were conducted using the
Statistical Package for the Social Sciences
version 11.0 for Windows and the two-
tailed statistical significance level was set at
P<0.05. Analysis of covariance (ANCOVA)
with age and gender as covariates was
performed to compare white-matter ADCs
between the schizophrenia group and the
control group. Pearson’s correlation and
partial correlation analyses controlled for
age were used to examine possible asso-
ciation between age and clinical variables
respectively, and ADC measures.

RESULTS

Compared with the control group, the
participants with schizophrenia had sig-
nificantly greater apparent diffusion coeffi-
cients for frontal, temporal and occipital

https://doi.org/10.1192/bjp.bp.105.020990 Published online by Cambridge University Press

white matter (Table 2), even when taking
educational level into consideration (right
and left frontal ADCs, P=0.09, P=0.12;
right and left temporal ADCs, P=0.006,
P=0.009; right and left occipital ADCs,
P=0.006, P=0.002, respectively; ANCOVA,
age, gender and educational level as covari-
ates). Similar results were found when the
schizophrenia group was compared sepa-
rately with control participants recruited
from hospital and university staff (n=33)
(left frontal ADCs, P=0.14; temporal ADCs:
P <0.001, occipital ADCs, P<0.003) and
with control participants who had been
treated for dizziness (n=31) (right frontal
ADCs, P=0.07; temporal ADCs, P=0.01;
occipital ADCs, P<0.01) (ANCOVA; age
and gender as covariates). Also, no signifi-
cant difference for any ADC measure was
found between the two control subgroups
(ANCOVA; age and gender as covariates,
P>0.05).

The ADC measures were still greater in
the schizophrenia group than in the com-
bined control group when both groups
were stratified by gender, both in men (left
frontal ADCs, P=0.04; temporal ADCs,
P <0.001, occipital ADCs, P<0.002) and
women (right temporal ADCs, P=0.12; left
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Table2 Apparent diffusion coefficient measures for cortical white matter.

ADC, 10-*

mm?/s: mean (s.d.)

Control group

Schizophrenia F P

(n=64) group (n=68)
Right frontal cortex 7531 (3.43) 76.48 (4.34) 298 0.08
Left frontal cortex 72.17 (3.86) 73.59 (4.89) 4.10 0.04
Right temporal cortex 75.20 (4.37) 78.71 (5.66) 1591 <0.001
Left temporal cortex 75.23 (4.67) 78.88 (5.63) 16.83 <0.001
Right parietal cortex 71.04 (4.52) 70.63 (3.80) 0.22 0.64
Left parietal cortex 72.86 (3.95) 73.27 (3.27) 0.60 0.44
Right occipital cortex 77.47 (4.43) 80.94 (6.37) 12.98 <0.001
Left occipital cortex 7591 (3.70) 79.26 (5.14) 17.71 <0.001

ADC, apparent diffusion coefficient.

temporal ADCs, P=0.03; right occipital
ADCs, P=0.06; left occipital ADCs,
P=0.01) (Mann-Whitney U-test).

Age was significantly and directly cor-
related with left temporal ADC measures
in the control group (r=0.28, P=0.02) but
not in the schizophrenia group (r=0.16,
P=0.18). No significant association was
shown between age and other ADC values
(Pearson’s correlation, P>0.05) or between
clinical variables (age at onset, length of
illness, number of hospitalisations, BPRS
scores, antipsychotic lifetime treatment)
and white matter ADCs (partial correlation
controlled for age, P>0.05). Furthermore,
no significant difference for any ADC value
was observed between patients treated with
typical antipsychotic drugs (n=22) and
those treated with atypical antipsychotics
(n=44) (Mann-Whitney U-test, P>0.05).
Also, patients with severe illness
(BPRS>41; n=37) did not differ signifi-
cantly on any ADC measure compared with
patients with mild-to-moderate illness
(BPRS<41; n=31) (Mann—Whitney U-test,
P>0.05). A BPRS total score of 41 was
chosen as the cut-off level for mild or mod-
erate illness, indicated by Leucht et al
(2005).

DISCUSSION

This study found widespread regional
white-matter disruption in schizophrenia,
as shown by higher ADCs in frontal, tem-
poral and occipital lobes. To our knowl-
edge, this is the largest study to show
disrupted white-matter cytoarchitecture in
schizophrenia (Kanaan et al, 2005). Consis-
tently, impairments of cortical white-matter
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integrity have been found in people with
schizophrenia by a number of prior small
diffusion imaging studies (Kubicki et al,
2007, see online Table DS1). Specifically,
abnormally increased water diffusion co-
efficients or abnormally decreased frac-
tional anisotropy have been found in at
least ten prior investigations of frontal
lobes (Buchsbaum et al, 1998; Ardekani et
al, 2003; Minami et al, 2003; Kumra et
al, 2004; Wang et al, 2004; Kitamura et
al, 2005; Kubicki et al, 2005a; Szeszko et
al, 2005; Hao et al, 2006; Shin et al,
2006) and in temporo-occipital lobes
(Lim et al, 1999; Agartz et al, 2001; Arde-
kani et al, 2003, 2005; Minami et al,
2003; Kumra et al, 2004; Kubicki et al,
2005a; Szeszko et al, 2005; Hao et al,
2006; Shin et al, 2006). However, some
studies report preserved integrity of white
matter in schizophrenia (Steel et al, 2001;
Foong et al, 2002; Kubicki et al, 2002).
Both ADC and fractional anisotropy are
considered as complementary indices of
white-matter microstructure organisation,
providing evidence of disruption when in-
creased and decreased respectively (Taylor
et al, 2004). In our study, we did not report
fractional ansotropy because the diffusion
tensor sequence was not collected. Specifi-
cally, the ADC image provides a relative
presentation of the diffusion coefficient in
each pixel within the image, where low
and high intensity values indicate respec-
tively low and high diffusion (Basser,
2002). Abnormalities in cortical white mat-
ter may lead to impaired connection, which
may ultimately alter the speed, quantity
and/or quality of intrahemispheric commu-
nication, relevant to cognitive disturbances
reported in schizophrenia (Krabbendam et
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al, 2005). This may be a result of reduced
axonal density or myelination. Indeed,
oligodendrocytes, which have the potential
to influence myelination and synaptic trans-
mission, have been found to be functionally
abnormal in schizophrenia (Hof ez al, 2002;
Davis et al, 2003; Bartzokis & Altshuler,
2005). None the less, several factors may
contribute to explain increased water
white-matter diffusion, such as less dense
packing of fibres, disruption of internal
integrity (reduced
microtubular density), reduced degree of
myelination or variation in membrane per-

axonal intra-axonal

meability to water. However, since white-
matter is mostly composed of myelinated
axons, the density of axonal membranes
and myelin seem to play the major part
(Beaulieu & Allen, 1994; Giedd, 2004).

Several earlier diffusion imaging studies
reported frontal, temporal and occipital
white-matter alterations within regions of
interest identified by visual inspection of
the individual anatomy, as in our method
(Steel et al, 2001; Hoptman et al, 2002;
Minami et al, 2003; Wolkin et al, 2003;
Kumra et al, 2004; Kitamura et al, 2005).
In particular, we examined the middle and
inferior frontal white-matter regions, which
have been shown to be functionally altered
in schizophrenia (Shenton et al, 2001),
potentially sustaining executive function
deficits (MacDonald et al, 2005; Brambilla
et al, 2007). Moreover, temporal regions of
interest were positioned in the medial tem-
poral white matter regions, which are in-
volved in modulating language domain in
humans and are likely to have a key role
in language abnormalities in schizophrenia
(Seidman et al, 2003; Antonova et al,
2004). Finally, the occipital regions of
interest were placed in medial occipital
areas, which have been shown to be altered
in schizophrenia by other diffusion imaging
studies (Lim et al, 1999; Agartz et al, 2001;
Ardekani et al, 2003, 2005; Minami et al,
2003; Kumra et al, 2004). Furthermore,
abnormalities in early-stage visual proces-
sing in schizophrenia have recently been
shown, possibly contributing to higher-
level cognitive deficits (Butler et al, 2005;
Schechter et al, 2005). Therefore, our
findings suggest that frontal and temporo-
occipital white-matter disruption may in
part support cognitive and language deficits
in schizophrenia.

Taken together, these brain imaging
findings indicate that cortical white-matter
microstructure is disrupted in schizophrenia.
Moreover, these results may be supported
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by post-mortem studies showing a quanti-
tative reduction in white matter cells (Ak-
barian et al, 1996; Uranova et al, 2004).
In particular, reduced expression of myelin
and oligodendrocyte-related genes and pro-
teins has been shown in schizophrenia, sug-
gesting oligodendrocyte dysfunction (Flynn
et al, 2003; Hof et al, 2003; Tkachev et al,
2003; Chambers & Perrone-Bizzozero,
2004). Specifically, neuregulin 1 (NRG1),
a candidate gene for schizophrenia (Stefans-
son et al, 2002; Tosato et al, 2005; Wil-
liams et al, 2005), has been shown to
have a key role in oligodendrocyte develop-
ment and proliferation (Marchionni et al,
1993; Vartanian et al, 1999; Liu et al,
2001). Therefore, altered expression of
NRG1 or other myelination-related genes
may potentially result in abnormal oligo-
dendrocyte function or myelination in
schizophrenia (Hakak et al, 2001; O’Dono-
van et al, 2003). However, it remains to be
elucidated whether cortical white-matter
impairment mostly reflects brain mal-
development or neurodegeneration. In par-
ticular, it would be of great interest to
understand how and when the white-matter
disruption in schizophrenia relates to the
physiological processes of white-matter ma-
turation (Bartzokis, 2002; Hafner, 2004;
Harrison, 2004; Bresnahan et al, 2005). In-
deed, recent reports suggest that intracorti-
cal myelination increases during adulthood,
reaching its peak during the fifth decade of
life, particularly in the frontal and temporal
lobes (Bartzokis et al, 2003), in a constant
state of well-regulated structural and func-
tional change. Affected myelination in
schizophrenia, which may itself be due to
multiple genetic and environmental factors,
may contribute to alter this temporally ex-
panded view of brain white-matter develop-
ment from adolescence until middle age. As
proposed by Bartzokis, this would ulti-
mately result in dysregulation of the tem-
poral synchronous development of widely
distributed neural networks in schizo-
phrenia, being manifested in the hetero-
geneity  of and cognitive
impairments (Bartzokis, 2002). Interest-

symptoms

ingly, white-matter alterations (particularly
of corpus callosum) and abnormal down-
regulation of oligodendrocyte and myelin-
ation genes have been demonstrated in
bipolar affective disorder as well as in
schizophrenia (Brambilla et al, 2003,
2004; Tkachev et al, 2003). This sustains
the notion that the two disorders may have
similar white-matter pathophysiological
pathways. Future brain imaging studies

together with genetic investigations should
further explore white-matter integrity and
genes
expression in people with first-episode

encoding myelin-related protein

schizophrenia and possibly bipolar affective
disorder, and in the populations at high risk
of developing these disorders.

Interestingly, we found a significant
direct correlation between age and left tem-
poral ADC values in the control group
which was not present in the schizophrenia
group. This is consistent with a recent in-
vestigation showing in controls, but not in
patients, a significant negative effect of
age on the integrity of the left superior
longitudinal fasciculus, which connects the
frontal and temporal cortex (Jones et al,
2006). Also, age-related decline of cerebral
white-matter coherence in humans, which
may represent subtle structural white-
matter changes with normal ageing, has
been demonstrated by diffusion imaging
studies (Engelter et al, 2000; Pfefferbaum
et al, 2000; O’Sullivan et al, 2001; Sullivan
et al, 2001). Thus, as a speculative in-
terpretation, it is possible that the effects
of physiological ageing on white matter
cannot be seen in schizophrenia owing to
the presence, since early adolescence, of ab-
normal neurodevelopment and cytoarchi-
tectural organisation of cortical white
matter, particularly in the temporal region
(Pantelis et al, 2005).

No significant association between
ADC values and any clinical variable was
found in our study, consistent with several
prior reports exploring correlations be-
tween diffusion measures and clinical fea-
tures in schizophrenia (Steel et al, 2001;
Kumra et al, 2004, 2005; Jones et al,
2005; Kubicki et al, 2005a; Kitamura et
al, 2005; Szeszko et al, 2005). This suggests
that cortical white-matter disruption in
schizophrenia is not a secondary effect of
chronicity, medication or psychopathology
but is potentially related to the core patho-
physiology of the disease. However, it
should be mentioned that two small studies
have found increased white-matter altera-
tions in people with schizophrenia with
more severe negative symptoms in the right
insula (Shin et al, 2006) and the inferior
frontal region (Wolkin et al, 2003). How-
ever, the latter group also showed a re-
lationship between impulsivity/aggression
and altered white-matter microstructure in
the right inferior frontal region and insula
in men with schizophrenia (Hoptman et al,
2002, 2004). Therefore, the correlation
between white-matter cytoarchitecture and
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clinical symptoms in schizophrenia is still
controversial and needs further investiga-
tion in large samples.

It should be noted that our schizo-
phrenia sample mostly comprised treated
patients with chronic illness, thus it is not
clear whether white-matter disruption pre-
ceded the onset of the illness or appeared
subsequently as a result of illness course
or psychotropic
length of illness or antipsychotic lifetime
administration did not significantly affect
ADC values, suggesting that
white-matter abnormalities may not be
related to illness or medication. Also, we
recruited a relatively larger number of

treatment. However,

cortical

participants than prior diffusion imaging
studies, with a good match between those
in the schizophrenia and control groups,
providing adequate power. Part of our con-
trol group was selected from individuals
undergoing MRI scanning for dizziness,
which may represent a methodological lim-
itation. However, these participants were
fully recovered at the time of scanning
and had no evidence of central nervous sys-
tem abnormalities on the scan. Finally, no
particular white-matter tracts could be de-
tected with our approach, such as the unci-
nate or the arcuate fasciculi which form
specific temporo- and parieto-frontal con-
nections (Burns et al, 2003; Kubicki et al,
2005b; Jones et al, 2006).

In conclusion, altered cortical white-
matter microstructure in schizophrenia has
been replicated in this large study, particu-
larly in frontal and temporo-occipital lobes.
Hypothetically, abnormal myelination due
to oligodendrocyte dysfunction might
account for these findings. This might
potentially affect intrahemispheric commu-
nication and ultimately lead to the cogni-
tive disturbances seen in people with
schizophrenia.
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