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RANGE OF THE FIRST THREE EIGENVALUES
OF THE PLANAR DIRICHLET LAPLACIAN

MICHAEL LEVITIN anp RUSTEM YAGUDIN

Abstract

Extensive numerical experiments have been conducted by the au-
thors, aimed at finding the admissible range of the ratios of the first
three eigenvalues of a planar Dirichlet Laplacian. The results im-
prove the previously known theoretical estimates of M. Ashbaugh
and R. Benguria. Some properties of a maximizer of the iaia.1

are also proved in the paper.

1. Introduction

Let 2 be a bounded domain iR", n > 2. We consider the eigenvalue problem for the
Dirichlet Laplacian,

—Au=2iu ingQ; (1.2)
u|39 =0. (1.2)
Let us denote the eigenvalues b(2), 12(2), ..., where O0< A1 < A2 < A3 < ...

(we will sometimes omit the explicit dependencef@mvhen speaking about a generic do-
main). The corresponding orthonormal basis of real eigenfunctions will be de{m@}@iﬁl.

For the last fifty years, the problem of obtainiagriori estimates of the eigenvalues and
their ratios has attracted substantial attention. The existing results can be roughly divided i
two groups -universalestimates, which are valid, as the name suggests, for all eigenvalue
and all the domains iR, and which do not take into account any geometric information,
andisoperimetricestimates for low eigenvalues. We briefly survey some known results
below; the reader is referred to the very detailed survey paper [1] and the references ther
for a full discussion.

1.1. Universal estimates

Probably the first, and best-known, estimate of this type is the Payne—Polya—\Weinbert
inequality [16]:

4 m
Aerl <hm+— Z)"j~ (PPW)
mn =1
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Range of the first three eigenvalues of the planar Dirichlet Laplacian

This was subsequently improved by Hile and Protie¥]] and, in the 1990s, by Hong
Cang Yang [19], whose implicit estimate

m
> iz =) (bmsa = (143) ) <0 (HCY)
j=1
remains the best universal estimate so far for the eigenvalues of the Dirichlet Laplacian.
The general method of obtaining®W) and (HCY), as well as similar estimates for a
variety of other operators, has been the use of variational principles with some ingenio
choices of trial functions; se&]. Recently, an alternative abstract scheme, based on the sc
called ‘commutator trace identities’ (which easily implies, in particuRR\(V) and (HCY))
has been developed in [14]; see also [11].
By their very nature, the universal estimates are generically non-sharp.

1.2. Isoperimetric estimates
Both (PPW) and (HCY) give, fom = 1, the estimate

Ao 4
— <1+ -
A1 n
This upper bound cannot, in fact, be attained. Payne, Pdélya, and Weinberger conjectu
that the actual optimal upper bound on the ratio of the first two eigenvalues of the Dirichle
Laplacian is
;2
— 2t k. forQ c R (ABo)

-2
n-dimensional baII Jnj2-1,1

A2
A

( ) <

Note thatj, , stands here for thgth zero of the Bessel functiof, (p); so, in the planar
casen = 2, K> ~ 2.5387, compared with the (PPW) bound

—(Q)

< 3.
Al

QCcR2

Conjecture (AB) was eventually proved (only in the early 1990s) by Ashbaugh and
Benguria [2,4], using, in particular, symmetrization techniques going back to the Faber-
Krahn inequality

A1(R) = 21(29),

whereQ* is ann-dimensional ball of the same volume @s
We would like to mention, in this context, extensive computational experiments designe
by Haeberly [9,10] to verify (ABp).

1.3. Statement of the problem

As mentioned aboveAB) gives the full description of the range of the possible values
of the ratio of the first two eigenvalues of the Dirichlet Laplaciagy,i1, for domains in
Euclidean space (the obvious lower boundgi; > 1). In fact, similar results were also
obtained for domains i8" andH". A natural extension would be to find optimal upper
bounds on the range of the ratios of the fitseeeigenvalues of the Dirichlet Laplacian,
(A2/A1, A3/A1), in particular for planar domains. In other words, we would like to find,
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for x := A2/A1 andy := A3/A1, the function

A
Vi) = max (@) (1.3)
QCRZ(A/A)(Q)=x A1

and the number

A
Y*i= max y*(x) = max —(Q), (1.4)
xe[1,Kz] QCR2 A1
or their best possible estimates. We will use the notatiorid)(and {.4) when looking

for maxima in particular classes of domains as well.

Despite the apparent simplicity of this problem, and the wide attention that it has attracte
it turns out to be rather difficult. Ing], 7], Ashbaugh and Benguria proved a complicated
upper bound foy*(x), and also demonstrated that

35
3.1818~ 7 < ¥* £ 3.83103. (1.5)

Their estimates improve upon previous results of their own, as well as results due to Pay
Pdlya, and Weinberger, Brands, de Vries, Hile and Protter, Marcellini, Chitiand Hong Can
Yang; see, 7] and their earlier paper8][5] for an extensive bibliography and details of
proofs. We present their estimates and other known facts in the next section; just note at
momentthat the lower bound ifi.6) is attained whef is the rectangl®,, := [0, 1] %[0, a]

with a = \/8/3.

In the current paper, we describe extensive numerical experiments aimed at improvi
(1.5). We also show, using perturbation techniques, that the rect&rnglg does not maxi-
mize the raticiz/A1, and we indicate a class of domains among which a possible maximize
could be found.

2. Known results for the range @f2/11, A3/11) for planar domains
2.1. Explicit solutions

The spectral problem (1.1), (1.2) admits a full solution by separation of variables whe
Q is, for example, a disjoint union of a number of rectangles or circles. For reference, w
collect below the results on the range(@f/A1, A3/11) in these cases.

Rectangles. Let R, := [0, 1] x [0, a] be a rectangle with the side ratipwithout loss of
generalitya > 1. Then

Ao a2+4
_R —
and
249 8
i’ fora>\/j7
E(R _Ja?+1 3
o 4a”+1 forl<a < 8
241 SOSyE
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Thus, for rectangles, in the notation of (1.3) and (1.4),

8 5 20
:—)’x—é, forléxéﬁ,
yx) =y~ (x)|rectangles: 20 5 (2.1)
5—x, for — <x < -,
11 2
and the maximum value df3/11 is
35

Y*|rectangles: 11
attained whemr = /8/3. Note that for this particular rectangbg; is a degenerate eigen-
value:kg(Rm) = 24(R sgp3), and it is the only: for which A3(R,) is not simple.

In the (x, y)-plane, (2.1) corresponds to the two straight lines intersecting at the poir
(20/11,35/11).

Circles. Forasingle circley = y = K». As is easily checked, for a union of two or more
disjoint circles of arbitrary radii,

Y ) |grees = K2. for1<x < Ko (2.2)
Its graph in thgx, y)-plane is a straight line parallel to theaxis.

Disjoint unions. The following easily checked fact shows that one cannot obtain highe
values ofy*(x) by considering disjoint unions of sets from two different classes. In other
words, letC; be two arbitrary classes of domains, with corresponding functjdms)|@j

(not necessarily defined for all € [1, K»]). Then, for any domaif2 = Q1 U Q2

with Q; € €;, we have, forx = (A2/A1)(Q) andy = (A3/11)(R), the inequality

y <max(y*(x)le, » y*()le, » K2).

Other domains. There are other domains, such as sectors of annuli, ellipses, and so c
for which the problem of finding the eigenvalues is reduced by separation of variables
a problem of solving some transcendental equations. The latter problem is often no eas
than the numerical solution of the original problem, however, so we do not treat these cas
here.

The graphs ofy(x) = y*(x)| nd y*(x)| are shown in Figuré.

rectanglesa circles

2.2. Ashbaugh-Benguria estimates

In [7], Ashbaugh and Benguria proved, using a wide variety of methods, the followin
upper bounds fop*(x):

y*(x) < Kox, forl < x < 1.396, (AB1)

V@) <14x44/2v— (1+x2)/2,  forl.396 < x <1634, (AB»)

y¥(x) < F(x), for 1.634 < x < 1.676, (AB3)

y¥(x) < H(x) — x, for 1.676° < x < 2.198", (AB4)
and

y*(x) < G(x), for 2.198" < x < 2,539, (AB5)
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4.2 T T T
—— Ashbaugh-Benguria estimate
1 Admissible region
A1 — - Rectangles H
— - Circles
38 B
3.6F .
34F R
AN 30tk B
3l B
2.8 b
26 B
241 B
2.2
1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
)\2/)\1

Figure 1: Admissible range (shaded)@g/A1, 23/A1) according to [7]. Shown for com-
parison are the maximum valuesiaf/ 11 as functions o /A1 for rectangles and disjoint
unions of circles.

where the functiong! (x), F(x) andG(x) are defined as follows:

6, forx =1,
2 2
Hox) =1 min (2n~|— 4B+ y)*(x —(x—By/(B+y —1)) )
1<, E<x @CB-D2y —Dx—mx—E@x —-2-—n—§)
forx > 1,
with 8 = n ++/n2 —npandy = £ + /€2 — £. F(x) is the middle root of the cubic
2xy® — 2(5x° 4+ 3x + 1)y? + (6x° + 3982 + 2x — 1)y — (243 + 118 —4x — 1) =0

and ( B2 x—B2/(2B - 1) )

G = inf
=N\ 1t e —pr2E-1)-1

with the infimum taken over values gfsatisfyingx > 82/(28 — 1) + 1/ C2(8), and with
26 — 1 [ 22 () ar
B jloriiPwyar

We recall that/o(¢) denotes the standard Bessel function of order zerojgmds its first
positive zero. For the derivation of the bourd(;) and further discussion of it, se@|[ The
other bounds given above are due to Hong Cang Yang ($3€dr (AB2)) and Ashbaugh
and Benguria (see [3], [5] for (AB, [6] for (ABs), and [7] for (ABg)).

C2(B) =
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Figure 2: Parametrization of a quadrilateral.

The admissible region fan, /11, A3/11) defined jointly by ABy), the obvious bounds
A2/A1 = 1andis/A1 > A2/A1, and the inequalities (AB — (ABs), is shown in Figurel.
We make two remarks, following [7].

REMARK 2.1. The inequalities (AB) — (ABs) all apply on broader intervals of-values
than the intervals specified explicitly with them; the given intervals indicate the range fc
which the corresponding inequality gives the best bound yet found.

REMARK 2.2. The absolute maximum of the right-hand sidesAB() — (ABs) occurs at

the point whereF (x) has a maximum within the interval where it is the best bound. That
happens at the poirik, y) ~ (1.65728,3.83103), and implies the best upper bouhdb)

yet proven forig/As.

3. Numerical analysis of random domains

To the best of our knowledge, there have been no large-scale numerical experiments
low eigenvalues of the Dirichlet Laplacian for the planar domain. In an attempt to improv
the existing estimates on the range(bf/11, A3/11), we conducted such experiments for
a variety of domain classes.

3.1. General method

For each particular domain, the calculation of the first three eigenvalues has been c
ducted using a standard finite element method implementation via PDETodl6pard
FEMLAB [8] in Matlab, with two or three mesh refinements. For simple domains with
relatively ‘high’ values of the ratias/A1, optimization with respect to the parameters de-
scribing the domains of the particular class was performed in order to maximize this rati
The results of the calculations for some classes of domains are described below, and
summarized at the end of this section.

For each class of domains, we represent the results in the following graphical forr
The rangg1, K»] of possible values of = A»/1 is split into subintervals of lengtbw
(normally approximately equal ta@b). In each subinterval we choose, if it exists, a domain
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Figure 3: y*(x) for triangles, quadrilaterals and ellipses.

with maximaly = i3/A1, and plot the corresponding poitt, y). For comparison, the
graphs ofy(x) = y*(x)lrectanglesNd/0ry™* (x)|circles @re shown.

3.2. Triangles, quadrilaterals and ellipses

We start with cyclic calculations for all triangles, with angle ste§ 2For the triangles
with relatively high ratios ofi3/11 we repeat the procedure in the local neighbourhood
with angle step &°. The results are shown in Figuge

The computational procedure for quadrilaterals is essentially the same as that for tric
gles, with parameters, 8, y ands in the region(0, 7r); see Figure2.

We choose an angle step ab2 Note that quadrilaterals with negatiweand 8, or y
ands, do not have to be considered separately — they fit into the scheme above if we choc
another diagonal as a starting point, and re-scale. In cases of relatively highgétio
(> 3), we repeated the calculation with an angle st&J3 th the local neighbourhood of
that quadrilateral. The results are shown in Figiire

The results of cyclic calculations for the ellipses, with axis ratio varying between 1 and
with step 01 (0.001 in the vicinity of the ellipse with highegiz/A1), are also shown in
Figure3.

REMARK 3.1. Rather surprisingly, Figurg suggests that
y* (x) |quadri|aterals% y* () | rectangles (3' 1)

We give a partial explanation of this fact in the next section; see Remérk
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Figure 4: y*(x) for random sectors of annuli and pseudo-random polygons.

3.3. Annuli and random sectors of annuli

The calculations for annuli with inner radius 1 and outer radidemonstrate that the
corresponding valug.3/A1) (r) is monotonically increasing from 1 &, asr changes from
1 to oo (although convergence, for largeis very slow — just logarithmic). These results
are not very informative, and we do not include them in the graphs or the summary tab
below.

In calculations for sectors of the annuli of angleve choose randomly in the interval
(1,20) andé randomly in the interval0.01m,1.997). The results of the calculations are
shown in Figuret

3.4. Pseudo-random polygons

For polygons with more than four vertices, cyclic calculations through all the possibl
values of the geometric parameters with some reasonable step become impractical, du
the time constraints. Instead, we choose to perform calculations for randomly generat
polygons. We employ the following simple procedure for generating a pseudo-rando
polygon with N verticesyvi, ..., vy, lying inside a squarg0, 1°.

Verticesvy, Vo, v3. These are chosen randomly, using any pseudo-random generator.
Verticesv;, j = 4,...,N — 1. We choose a possible vertex at random. If the interval
[vj;, v;] intersects any of the previously constructed sifgs 1, vil, k = 1,..., j — 2,
then we make another random choice.

Vertexvy This is constructed in the same manner, but we additionally check that th
interval[vy, v1] does not intersect any of the existing sides.
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Figure 5: y*(x) for pseudo-random star-shaped domains.

To avoid infinite loops, we abort the construction if the number of attempts at som
stage exceeds some sulfficiently big number (say, 200). We also put in place a restricti
forbidding very small angles (which require special efforts in mesh generation).

The collated results of the calculations for pseudo-random pentagons, hexagons @
decagons are shown in FigudeThese results also include experiments on random pertur
bations of the rectangles constructed in the following wéyaoints were randomly chosen
on the sides of the rectanghg,, witha € (1,5), and 1< N < 8, and these points and the
four vertices of the original rectangle were randomly moved by a distance not exceedit
0.1a to form an(N + 4)-gon.

3.5. Star-shaped domainsimply and non-simply connected)

The procedure described above for random polygons does not work very effectively f
polygons with large numbers of vertices — it often takes a long time to generate a suitat
vertexv; with j 2 10. Thus, in these cases we restricted ourselves to star-shaped polygot
domains, which are much easier to construct. That s, for the vertieese'? , we chose the
angles) randomly between 0 and:r2 and the radii- randomly between the given numbers
r1 andra. We conducted a series of experiments with a fixed number of vertices (thirteel
seventeen and twenty-three), as well as a series of runs where the number of vertices:
chosen randomly between four and thirty.

Additionally, we conducted a series of experiments of non-simply connected domair
of the typesk sg73\ S1, S2\ R /573, andSi1 \ Sz, wheres; are random star-shaped polygons
such thatSy C R sgr3 C S2, andRm is the rectangle with the maximuiz /1.

The results for pseudo-random star-shaped domains are collated in Figure
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Figure 6: Typical dumbbell and jigsaw-piece domains.

15 ol —o— Dumbbells |
S —— Jigsaw pieces
y --— Rectangles
7 - - - Circles
1 1 1 1 1 1 I I
1 1.2 1.4 1.6 1 2 2.2 24 2.6
MR

Figure 7: y*(x) for pseudo-random dumbbells and jigsaw pieces.

3.6. Dumbbells and jigsaw pieces
By adumbbell, we understand a domain of the type

([0, 1] x [=h, h]) U C((0,0), r1) U C((, 0), r2), (3.2)

wherel, h, r1 andrp are positive parameters, adt{v, r) denotes a circle with radius
centred aw. By ajigsaw piece, we understand a domain of the typg C, whereR is
a rectangle, and’ is a circle with a centre ‘near’ the boundary of the rectangle. Typical
dumbbell and jigsaw-piece domains are shown in Figure

The results of numerical experiments on dumbbells and jigsaw pieces, with cycl
cal/random choice of the parameters, are shown in FiguFer dumbbells, we also opti-
mized over the parameters for domains wigfir; ~ 3.2, additionally allowing the centres
of the circles to move in the vertical direction along the sides of rectangles. However, th
did not lead to any improvement in the results.
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Table 1: Summary statistics for numerical experiments. The value in the fourth column
84 := (Agq — A3)/(A3(22%)), whereQ* is the domain that maximizes the ratig/A1 = Y*
in the corresponding class of domains.

Type of domain No. of experiments  Y* 34
Triangles 2145 2.827 0.016
Quadrilaterals 13222 3.183 1.610°
Sectors 360 3.149 46.107°
Ellipses 142 3.167 9.110°
Random polygons 26867 3.189 6.110°4
Random star-shaped domains 18320 3.159 0.022
Dumbbells 2871 3.202 110
Jigsaw pieces 1420 3.178 0.003
Total 65337 3.202 1.110°¢

3.7. Summary of the numerical experiments

We summarize the results of our numerical experiments in Table

As seen in the last column of Table in each class of domains the maximum of the
ratio A3/A1 is attained, within the accuracy of computations, on a domain détfenerate
eigenvalueiz ~ 14. The same, of course, holds for rectangles; 2 (This allows us to
conjecture that the absolute maximum and any local maxirhg ef 14 are also attained on
domains with degeneratg. We give a partial proof of this conjecture in the next section.

The computed absolute maximum ralie ~ 3.202 is attained on the dumbbell-shaped
domain (3.2) withl = 1, » = 1.4510,r1 = 0.7814, andr, = 0.7818; see Figuré®.
Note that the maximum valu&* is only slightly higher than the corresponding value
Y*|rectangles™ 3.1818.

REMARK 3.2. Additional experiments were conducted in order to check whether a maxi
mizer is likely to be a simply connected domain. That s, for the dumbbell-shaped d&@main
described above, we computed the eigenvalues for a number of domains obtained by
moving a small hole fronf2. In all the cases, the ratio of the third and the first eigenvalue
for a perturbed problem was quite significantly less than tha®for

The graph of the function*(x), built on the basis of all the numerical experiments, is
shown in Figures.

4. Asymptotic results

Inthis section, using standard perturbation techniques, we establish several results wh
although they do not give the full answer to the question of maximizing the(vaja.1 ) (2)
among all planar domairn®, give some indication of which domains may or may not be
a maximizer. We first prove the following theorem; we note here that Niculae Mandrach
has informed us that he has independently obtained a similar result.

THEOREM 4.1. The rectangleR g3 does not maximize thies/A1 among all planar do-
mains.

This should be compared, however, with Reméiikbelow.
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Figure 8: y*(x) for all computed domains.

Figure 9: Domain maximizings/A1 on the basis of computations.

We also give a proof of the following, more general, result, which justifies the remarl
made at the end of the previous section.

THEOREM 4.2. Suppose thaf2z C R? is a local maximizer ofi3/A1)(2) among planar
domains with sufficiently smooth boundaries. Thef2) = 14().

We should emphasize here that neither the statement nor the proof (found below)
Theorem4.2 is fully rigorous. In the former, we do not discuss the requirements on the
smoothness of the boundary, or the concept of a local maximizer; nor do we prove th
maximizers actually exist. In the latter, we rely on the following unproven, although ven
plausible, conjecture.

CONJECTURE 4.3. Let A3 be a simple eigenvalue of the Dirichlet Laplacian on a planar
connected domain. Then not all nodal lines of the corresponding eigenfunction are close
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Such a conjecture is not unreasonable since it is, in general, quite difficult to constru
domains for which even one nodal line of a low eigenfunction is closed; see [13].

Before giving the proofs of Theoremsland4.2, we recall, without proof, some classical
results from domain perturbation theory. The details can be found in, for exarhplég].

4.1. Domain perturbations

For simplicity, we restrict ourselves to domainsRiA; all the results stated here hold in
any dimension.

Consider, for small absolute values of the real parametefamily of bounded domains
Q¢ in R? of a variablex = (%1, ¥2), which are transformed by the change of coordinates

X=X+ eS(X) (4.1)

into the domain2 = QP in R? of variablex. We assume that the boundatg2 and the
vector-functionS are sufficiently smooth.
Let n be the outer unit normal t@€2, and denote

f=S-n

(infact,ef is a smooth function oA$2 which gives, up to the leading order for smaglthe
normal distance betwedf2 anddQ?).

Denote byr; < A2 < --- < A; < ... the eigenvalues of the Dirichlet Laplacian on
Q, and by{u;} the corresponding basis of normalized orthogonal eigenfunctions (whicl
are chosen real). Also, denote b}/the eigenvalues of the Dirichlet Laplacian €. For
sufficiently smallle|, theA? are continuous functions ef and tend td.; ase — 0.

The following two results go back to Rellich [17].

ProPoOSITION 4.4. Leta;, j > 1, be asimpleeigenvalue of the Dirichlet Laplacian af.
Thenk;? has the asymptotic expansion

)»;; = +85&j,1+825\'.j,2+... (4.2)
ase — 0, where 5
~ ou;
on
a0
The situation is slightly more complicated whep= --- = ;4 is an eigenvalue of

multiplicity m + 1. For simplicity, we consider just the cage= 1.

PROPOSITION 4.5. LetAy = Ar41 be adoubleeigenvalue of the Dirichlet Laplacian dn.
Then,ag — 0,2y anda;_ , still have the asymptotic expansidds2) (wherej = k, k+1)
with

M1 = % min(epa, epz), Met1,1 = ;—L max(eu, ep2), (4.4)
whereu1, uo are two real roots of the quadratic equation
(Fi + 1) (Figtge1 + 1) — g =0 (4.5)
and
Fpq= / 88% 88% do. (4.6)
aQ
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We will, in fact, be interested in the asymptotic expansiomj)/fkg, which follows
from (4.2):
&
)Lj _ )\/ & ~

I )»_1 + W()\j’l)\l — 5\1,1)»]‘) + 0(82)~ (4.7)
1

4.2. Proof of Theoren.1

Let @ = R /g73 be the rectanglé(x1, x2) : 0 < x1 < 1, 0 < xp < +/8/3}. We shall
construct an explicit perturbatia® using (4.1) such that the first correction term in the
asymptotic formula (4.7) is positive fer> 0, and therefore.5 /A7 > A3/A1 for sufficiently
small positives.

Let

8
QfF = 1(x1,x2) :0<x1 <1, O<xz<\/;+eg(x1)],
where

o
g(x1) = co+ Y v/2c; cos(nl).
1=0
We will choose the coefficients later.
The corresponding functiofi appearing in the asymptotic formulae above is

gxy), ifxa=,/8, 0<x <1,
0, if (x1,x2) € 992, x2 # \/g

Note that we shall uset(3) for computing.s 1, and (4.4) for computings 1 andi4 1,
sincei3 = A4 is a double eigenvalue of the unperturbed problem. Elementary but tediol
calculations show that the correction tertgsy, k = 1,2, 3,4, depend only upon the
parameters; with j =0, ..., 4. For brevity, we omit the explicit expressions.

Letus choose the parametess. . ., ¢4 in suchaway thaks 1 = A4 (that iS,A5 remains
a double eigenvalue up to the linear termg)nThis, by Propositiort.5, happens when
F3 3= Fa4andFz4 = 0, whichinturnleads to the following conditions on coefficiants

fx1, x2) =

c3 =1, ca =9c — 8«/560. (4.8)

Under conditions (4.8), the asymptotic formula®) simplifies dramatically, and be-
comes

A a3 96V3

38 _ 2
T 121 (c2= V200) e + 062,

and we can choosg andc; in such a way that its right-hand side is positive for sufficiently

small positives. This proves Theorer.1.

REMARK 4.6. LetQ2 = R, be any rectangle, and consider the perturbatihas above, but
with function f linear in x1, x2 (and, naturallyg replacing./8/3 throughout). Thus, we are
consideringquadrilaterals2¢ which are small perturbations of the rectangle The same
elementary calculations then imply that, fot := (A2/A1)(2°) andy® := (A3/A1)(2%),
we obtain, up to and inclusive of the terms of order

& _ ko €
y=y )’rectangles
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Range of the first three eigenvalues of the planar Dirichlet Laplacian

wherey* (x)lrectangledS 9iven by the right-hand side o2.(1). In other words, up to the terms
of ordere, the rectangles are local maximizers among all quadrilaterals that are sufficent
‘close’ to them; see Remarfk 1.

4.3. Proof of Theorend.2

Suppose thaf is a planar domain with sufficiently smooth boundary, which locally
maximizes the ratias/A1 in the following sense: for any sufficiently smooth perturbation
Q¢ determined by (4.1), we have

A A
AR
1 1
Assume additionally thats is a simple eigenvalue of the Dirichlet Laplacian in the
unperturbed domait. We shall show that this assumption leads to the contradiction tc
Conjecture4.3.

Since bothk1 andig are simple eigenvalues, the asymptotic formdl&) becomes, in
accordance with Propositich4,

)\.g A3 &
P <A1>2/f<Ag
IR
Now, ases can be chosen both positive and negatied) can hold only if

2
/f(kg >d6=0,
Q2

and sincef is an arbitrary smooth function, this requires
2 2
=M

(4.9)

duq 2

on

ous

n

2
— M )da+ 0(&?).

duq us
an an
everywhere ordQ2. But the normal derivative of the first eigenfunction of the Dirichlet

Laplacian is non-zero everywhere on the boundary, so the last formula implies that tl
third eigenfunction has the same property, and therefore all its nodal lines are closed,
contradiction with Conjecturé.3.

A3

5. Final remarks

On the basis of the numerical computations and the results proven above, we make
following conjecture, most of which has still to be rigorously established (or disproved).

ConJECcTURE. The domain maximizing the ratig /A1 for planar domains is close in shape
to the optimal computed dumbbell-shaped domain shown in Figjusesimply connected,

and has a smooth boundary. The maximal admissible vafuie approximately equal to,

or is slightly greater than3.202
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